51
|
Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are discovered as crucial pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Later studies showed their involvement in the recognition of various damage/danger-associated molecular patterns (DAMPs) generated by host itself. Thus, TLRs are capable of recognizing wide-array of patterns/molecules derived from pathogens and host as well and initiating a proinflammatory immune response through the activation of NF-κB and other transcription factors causing synthesis of proinflammatory molecules. The process of neuroinflammation is seen under both sterile and infectious inflammatory diseases of the central nervous system (CNS) and may lead to the development of neurodegeneration. The present article is designed to highlight the importance of TLRs in the pathogenesis of neuroinflammation under diverse conditions. TLRs are expressed by various immune cells present in CNS along with neurons. However out of thirteen TLRs described in mammals, some are present and active in these cells, while some are absent and are described in detail in main text. The role of various immune cells present in the brain and their role in the pathogenesis of neuroinflammation depending on the type of TLR expressed is described. Thereafter the role of TLRs in bacterial meningitis, viral encephalitis, stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and autoimmune disease including multiple sclerosis (MS) is described. The article is designed for both neuroscientists needing information regarding TLRs in neuroinflammation and TLR biologists or immunologists interested in neuroinflammation.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
52
|
Mitchell DM, Sun C, Hunter SS, New DD, Stenkamp DL. Regeneration associated transcriptional signature of retinal microglia and macrophages. Sci Rep 2019; 9:4768. [PMID: 30886241 PMCID: PMC6423051 DOI: 10.1038/s41598-019-41298-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
Zebrafish have the remarkable capacity to regenerate retinal neurons following a variety of damage paradigms. Following initial tissue insult and a period of cell death, a proliferative phase ensues that generates neuronal progenitors, which ultimately regenerate damaged neurons. Recent work has revealed that Müller glia are the source of regenerated neurons in zebrafish. However, the roles of another important class of glia present in the retina, microglia, during this regenerative phase remain elusive. Here, we examine retinal tissue and perform QuantSeq. 3'mRNA sequencing/transcriptome analysis to reveal localization and putative functions, respectively, of mpeg1 expressing cells (microglia/macrophages) during Müller glia-mediated regeneration, corresponding to a time of progenitor proliferation and production of new neurons. Our results indicate that in this regenerative state, mpeg1-expressing cells are located in regions containing regenerative Müller glia and are likely engaged in active vesicle trafficking. Further, mpeg1+ cells congregate at and around the optic nerve head. Our transcriptome analysis reveals several novel genes not previously described in microglia. This dataset represents the first report, to our knowledge, to use RNA sequencing to probe the microglial transcriptome in such context, and therefore provides a resource towards understanding microglia/macrophage function during successful retinal (and central nervous tissue) regeneration.
Collapse
Affiliation(s)
- Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
| | - Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
- Ophthalmology, Washington University in St. Louis, 4523 Clayton Ave St. Louis, Missouri, 63110, USA
| | - Samuel S Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Daniel D New
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
53
|
Caggiu E, Arru G, Hosseini S, Niegowska M, Sechi G, Zarbo IR, Sechi LA. Inflammation, Infectious Triggers, and Parkinson's Disease. Front Neurol 2019; 10:122. [PMID: 30837941 PMCID: PMC6389614 DOI: 10.3389/fneur.2019.00122] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/29/2019] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons of the substantia nigra pars compacta with a reduction of dopamine concentration in the striatum. The complex interaction between genetic and environmental factors seems to play a role in determining susceptibility to PD and may explain the heterogeneity observed in clinical presentations. The exact etiology is not yet clear, but different possible causes have been identified. Inflammation has been increasingly studied as part of the pathophysiology of neurodegenerative diseases, corroborating the hypothesis that the immune system may be the nexus between environmental and genetic factors, and the abnormal immune function can lead to disease. In this review we report the different aspects of inflammation and immune system in Parkinson's disease, with particular interest in the possible role played by immune dysfunctions in PD, with focus on autoimmunity and processes involving infectious agents as a trigger and alpha-synuclein protein (α-syn).
Collapse
Affiliation(s)
- Elisa Caggiu
- Microbiology Section, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giannina Arru
- Microbiology Section, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sepideh Hosseini
- Microbiology Section, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Magdalena Niegowska
- Microbiology Section, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - GianPietro Sechi
- Department of Clinical, Surgical and Experimental Medicine, Neurological Clinic, University of Sassari, Sassari, Italy
| | - Ignazio Roberto Zarbo
- Department of Clinical, Surgical and Experimental Medicine, Neurological Clinic, University of Sassari, Sassari, Italy
| | - Leonardo A Sechi
- Microbiology Section, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
54
|
Liu R, Liao XY, Pan MX, Tang JC, Chen SF, Zhang Y, Lu PX, Lu LJ, Zou YY, Qin XP, Bu LH, Wan Q. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB p65/Hif-1α Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 202:1704-1714. [DOI: 10.4049/jimmunol.1801166] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
|
55
|
Carroll JA, Race B, Williams K, Chesebro B. Toll-like receptor 2 confers partial neuroprotection during prion disease. PLoS One 2018; 13:e0208559. [PMID: 30596651 PMCID: PMC6312208 DOI: 10.1371/journal.pone.0208559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation and neurodegeneration are common during prion infection, but the mechanisms that underlie these pathological features are not well understood. Several components of innate immunity, such as Toll-like receptor (TLR) 4 and Complement C1q, have been shown to influence prion disease. To identify additional components of innate immunity that might impact prion disease within the central nervous system (CNS), we screened RNA from brains of pre-clinical and clinical 22L-infected mice for alterations in genes associated with innate immunity. Transcription of several genes encoding damage-associated molecular pattern (DAMP) proteins and receptors were increased in the brains of prion-infected mice. To investigate the role of some of these proteins in prion disease of the CNS, we infected mice deficient in DAMP receptor genes Tlr2, C3ar1, and C5ar1 with 22L scrapie. Elimination of TLR2 accelerated disease by a median of 10 days, while lack of C3aR1 or C5aR1 had no effect on disease tempo. Histopathologically, all knockout mouse strains tested were similar to infected control mice in gliosis, vacuolation, and PrPSc deposition. Analysis of proinflammatory markers in the brains of infected knockout mice indicated only a few alterations in gene expression suggesting that C5aR1 and TLR2 signaling did not act synergistically in the brains of prion-infected mice. These results indicate that signaling through TLR2 confers partial neuroprotection during prion infection.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| |
Collapse
|
56
|
Abstract
Sporadic Creutzfeldt-Jakob disease (CJD), the most common human prion disease, is generally regarded as a spontaneous neurodegenerative illness, arising either from a spontaneous PRNP somatic mutation or a stochastic PrP structural change. Alternatively, the possibility of an infection from animals or other source remains to be completely ruled out. Sporadic CJD is clinically characterized by rapidly progressive dementia with ataxia, myoclonus, or other neurologic signs and, neuropathologically, by the presence of aggregates of abnormal prion protein, spongiform change, neuronal loss, and gliosis. Despite these common features the disease shows a wide phenotypic variability which was recognized since its early descriptions. In the late 1990s the identification of key molecular determinants of phenotypic expression and the availability of a large series of neuropathologically verified cases led to the characterization of definite clinicopathologic and molecular disease subtypes and to an internationally recognized disease classification. By showing that these disease subtypes correspond to specific agent strain-host genotype combinations, recent transmission studies have confirmed the biologic basis of this classification. The introduction of brain magnetic resonance imaging techniques such as fluid-attenuated inversion recovery and diffusion-weighted imaging sequences and cerebrospinal fluid biomarker assays for the detection of brain-derived proteins as well as real-time quaking-induced conversion assay, allowing the specific detection of prions in accessible biologic fluids and tissues, has significantly contributed to the improved accuracy of the clinical diagnosis of sporadic CJD in recent years.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, University Hospital, Georg-August-University, Goettingen, Germany.
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
57
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
58
|
Wang J, Li J, Wang Q, Kong Y, Zhou F, Li Q, Li W, Sun Y, Wang Y, Guan Y, Wu M, Wen T. Dcf1 Deficiency Attenuates the Role of Activated Microglia During Neuroinflammation. Front Mol Neurosci 2018; 11:256. [PMID: 30104955 PMCID: PMC6077288 DOI: 10.3389/fnmol.2018.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Microglia serve as the principal immune cells and play crucial roles in the central nervous system, responding to neuroinflammation via migration and the execution of phagocytosis. Dendritic cell-derived factor 1 (Dcf1) is known to play an important role in neural stem cell differentiation, glioma apoptosis, dendritic spine formation, and Alzheimer’s disease (AD), nevertheless, the involvement of the Dcf1 gene in the brain immune response has not yet been reported. In the present paper, the RNA-sequencing and function enrichment analysis suggested that the majority of the down-regulated genes in Dcf1-/- (Dcf1-KO) mice are immune-related. In vivo experiments showed that Dcf1 deletion produced profound effects on microglial function, increased the expression of microglial activation markers, such as ionized calcium binding adaptor molecule 1 (Iba1), Cluster of Differentiation 68 (CD68) and translocator protein (TSPO), as well as certain proinflammatory cytokines (Cxcl1, Ccl7, and IL17D), but decreased the migratory and phagocytic abilities of microglial cells, and reduced the expression levels of some other proinflammatory cytokines (Cox-2, IL-1β, IL-6, TNF-α, and Csf1) in the mouse hippocampus. Furthermore, in vitro experiments revealed that in the absence of lipopolysaccharide (LPS), the majority of microglia were ramified and existed in a resting state, with only approximately 10% of cells exhibiting an amoeboid-like morphology, indicative of an activated state. LPS treatment dramatically increased the ratio of activated to resting cells, and Dcf1 downregulation further increased this ratio. These data indicated that Dcf1 deletion mediates neuroinflammation and induces dysfunction of activated microglia, preventing migration and the execution of phagocytosis. These findings support further investigation into the biological mechanisms underlying microglia-related neuroinflammatory diseases, and the role of Dcf1 in the immune response.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yangyang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Yihui Guan
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
59
|
Mitchell DM, Lovel AG, Stenkamp DL. Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. J Neuroinflammation 2018; 15:163. [PMID: 29804544 PMCID: PMC5971432 DOI: 10.1186/s12974-018-1185-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In contrast to mammals, zebrafish have the capacity to regenerate retinal neurons following a variety of injuries. Two types of glial cells, Müller glia (MG) and microglia, are known to exist in the zebrafish retina. Recent work has shown that MG give rise to regenerated retinal neurons, but the role of resident microglia, and the innate immune system more generally, during retinal regeneration is not well defined. Specifically, characteristics of the immune system and microglia following substantial neuron death and a successful regenerative response have not been documented. METHODS The neurotoxin ouabain was used to induce a substantial retinal lesion of the inner retina in zebrafish. This lesion results in a regenerative response that largely restores retinal architecture, neuronal morphologies, and connectivities, as well as recovery of visual function. We analyzed cryosections from damaged eyes following immunofluorescence and H&E staining to characterize the initial immune response to the lesion. Whole retinas were analyzed by confocal microscopy to characterize microglia morphology and distribution. Statistical analysis was performed using a two-tailed Student's t test comparing damaged to control samples. RESULTS We find evidence of early leukocyte infiltration to the retina in response to ouabain injection followed by a period of immune cell proliferation that likely includes both resident microglia and substantial numbers of proliferating, extra-retinally derived macrophages, leading to rapid accumulation upon retinal damage. Following immune cell proliferation, Müller glia re-enter the cell cycle. In retinas that have regenerated the layers lost to the initial injury (histologically regenerated), microglia retain morphological features of activation, suggesting ongoing functions that are likely essential to restoration of retinal function. CONCLUSIONS Collectively, these results indicate that microglia and the immune system are dynamic during a successful regenerative response in the retina. This study provides an important framework to probe inflammation in the initiation of, and functional roles of microglia during retinal regeneration.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Anna G. Lovel
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| |
Collapse
|
60
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
61
|
NLRs as Helpline in the Brain: Mechanisms and Therapeutic Implications. Mol Neurobiol 2018; 55:8154-8178. [DOI: 10.1007/s12035-018-0957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
|
62
|
Shohayeb B, Diab M, Ahmed M, Ng DCH. Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 2018; 7:4. [PMID: 29484176 PMCID: PMC5822640 DOI: 10.1186/s40035-018-0109-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis involves persistent proliferative neuroprogenitor populations that reside within distinct regions of the brain. This phenomenon was first described over 50 years ago and it is now firmly established that new neurons are continually generated in distinct regions of the adult brain. The potential of enhancing the neurogenic process lies in improved brain cognition and neuronal plasticity particularly in the context of neuronal injury and neurodegenerative disorders. In addition, adult neurogenesis might also play a role in mood and affective disorders. The factors that regulate adult neurogenesis have been broadly studied. However, the underlying molecular mechanisms of regulating neurogenesis are still not fully defined. In this review, we will provide critical analysis of our current understanding of the factors and molecular mechanisms that determine neurogenesis. We will further discuss pre-clinical and clinical studies that have investigated the potential of modulating neurogenesis as therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Belal Shohayeb
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| | - Mohamed Diab
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Mazen Ahmed
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Dominic Chi Hiung Ng
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| |
Collapse
|
63
|
Identifying the Role of Complement in Triggering Neuroinflammation after Traumatic Brain Injury. J Neurosci 2018; 38:2519-2532. [PMID: 29437855 DOI: 10.1523/jneurosci.2197-17.2018] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/03/2018] [Accepted: 01/29/2018] [Indexed: 12/28/2022] Open
Abstract
The complement system is implicated in promoting acute secondary injury after traumatic brain injury (TBI), but its role in chronic post-traumatic neuropathology remains unclear. Using various injury-site targeted complement inhibitors that block different complement pathways and activation products, we investigated how complement is involved in neurodegeneration and chronic neuroinflammation after TBI in a clinically relevant setting of complement inhibition. The current paradigm is that complement propagates post-TBI neuropathology predominantly through the terminal membrane attack complex (MAC), but the focus has been on acute outcomes. Following controlled cortical impact in adult male mice, we demonstrate that although inhibition of the MAC (with CR2-CD59) reduces acute deficits, inhibition of C3 activation is required to prevent chronic inflammation and ongoing neuronal loss. Activation of C3 triggered a sustained degenerative mechanism of microglial and astrocyte activation, reduced dendritic and synaptic density, and inhibited neuroblast migration several weeks after TBI. Moreover, inhibiting all complement pathways (with CR2-Crry), or only the alternative complement pathway (with CR2-fH), provided similar and significant improvements in chronic histological, cognitive, and functional recovery, indicating a key role for the alternative pathway in propagating chronic post-TBI pathology. Although we confirm a role for the MAC in acute neuronal loss after TBI, this study shows that upstream products of complement activation generated predominantly via the alternative pathway propagate chronic neuroinflammation, thus challenging the current concept that the MAC represents a therapeutic target for treating TBI. A humanized version of CR2fH has been shown to be safe and non-immunogenic in clinical trials.SIGNIFICANCE STATEMENT Complement, and specifically the terminal membrane attack complex, has been implicated in secondary injury and neuronal loss after TBI. However, we demonstrate here that upstream complement activation products, generated predominantly via the alternative pathway, are responsible for propagating chronic inflammation and injury following CCI. Chronic inflammatory microgliosis is triggered by sustained complement activation after CCI, and is associated with chronic loss of neurons, dendrites and synapses, a process that continues to occur even 30 d after initial impact. Acute and injury-site targeted inhibition of the alternative pathway significantly improves chronic outcomes, and together these findings modify the conceptual paradigm for targeting the complement system to treat TBI.
Collapse
|
64
|
Zhou T, Zhu M, Liang Z. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson's disease. Mol Med Rep 2018; 17:4883-4888. [PMID: 29363729 PMCID: PMC5865947 DOI: 10.3892/mmr.2018.8470] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 03/16/2017] [Indexed: 12/27/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is the most widely studied catechin in green tea and has been identified to regulate immune function. The objective of the present study was to explore the possible application of EGCG in the treatment of Parkinson's disease (PD) by examining its effects on the peripheral immune system in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)‑induced PD mouse model. The results demonstrated that EGCG treatment restored the movement behavior of the mice impaired by MPTP, and protected tyrosine hydroxylase‑positive cells in the substantia nigra pars compacta region from MPTP toxicity. Flow cytometric analysis indicated that the ratio of CD3+CD4+ to CD3+CD8+ T lymphocytes in the peripheral blood increased in MPTP‑treated mice following treatment with EGCG, and EGCG reduced expression of inflammatory factors tumor necrosis factor‑α and interleukin‑6 in serum. The present findings indicated that EGCG serves neuroprotective effects in an MPTP‑induced PD mice model and may exert this through modulating peripheral immune response.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mengru Zhu
- Department of Plastic Surgery, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
65
|
Song J, Kim OY. Perspectives in Lipocalin-2: Emerging Biomarker for Medical Diagnosis and Prognosis for Alzheimer's Disease. Clin Nutr Res 2018; 7:1-10. [PMID: 29423384 PMCID: PMC5796918 DOI: 10.7762/cnr.2018.7.1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023] Open
Abstract
Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily was reported to participate in various biological processes including cell migration, cell survival, inflammatory responses, and insulin sensitivity. LCN2 is expressed in the multiple tissues such as kidney, liver, uterus, and bone marrow. The receptors for LCN2 were additionally found in microglia, astrocytes, epithelial cells, and neurons, but the role of LCN2 in the central nervous system (CNS) has not been fully understood yet. Recently, in vitro, in vivo, and clinical studies reported the association between LCN2 and the risk of Alzheimer's disease (AD). Here, we reviewed the significant evidences showing that LCN2 contributes to the onset and progression of AD. It may suggest that the manipulation of LCN2 in the CNS would be a crucial target for regulation of the pathogenesis and risk of AD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Korea.,Human Life Research Center, Dong-A University, Busan 49315, Korea
| | - Oh Yoen Kim
- Human Life Research Center, Dong-A University, Busan 49315, Korea.,Department of Food Science and Nutrition, Brain Busan 21 Project, Dong-A University, Busan 49315, Korea
| |
Collapse
|
66
|
Ferrari R, Manzoni C, Momeni P. Genetic Risk Factors for Sporadic Frontotemporal Dementia. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
67
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, Iyer SS, Bhagavan SM, Beladakere-Ramaswamy S, Zaheer A. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis. Front Neurosci 2017; 11:703. [PMID: 29302258 PMCID: PMC5733004 DOI: 10.3389/fnins.2017.00703] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Govindhasamy P. Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Mohammad E. Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sudhanshu P. Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Shankar S. Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Sachin M. Bhagavan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Swathi Beladakere-Ramaswamy
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| |
Collapse
|
68
|
Zhang QL, Xu B, Wang XQ, Yuan ML, Chen JY. Genome-wide comparison of the protein-coding repertoire reveals fast evolution of immune-related genes in cephalochordates and Osteichthyes superclass. Oncotarget 2017; 9:83-95. [PMID: 29416598 PMCID: PMC5787515 DOI: 10.18632/oncotarget.22749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Amphioxus is used to investigate the origin and evolution of vertebrates. To better understand the characteristics of genome evolution from cephalochordates to Osteichthyes, we conducted a genome-wide pairwise comparison of protein-coding genes within amphioxus (a comparable group) and parallel analyses within Osteichthyes (two comparable groups). A batch of fast-evolving genes in each comparable group was identified. Of these genes, the most fast-evolving genes (top 20) were scrutinized, most of which were involved in immune system. An analysis of the fast-evolving genes showed that they were enriched into gene ontology (GO) terms and pathways primarily involved in immune-related functions. Similarly, this phenomenon was detected within Osteichthyes, and more well-known and abundant GO terms and pathways involving innate immunity were found in Osteichthyes than in cephalochordates. Next, we measured the expression responses of four genes belonging to metabolism or energy production-related pathways to lipopolysaccharide challenge in the muscle, intestine or skin of B. belcheri; three of these genes (HMGCL, CYBS and MDH2) showed innate immune responses. Additionally, some genes involved in adaptive immunity showed fast evolution in Osteichthyes, such as those involving "intestinal immune network for IgA production" or "T-cell receptor signaling pathway". In this study, the fast evolution of immune-related genes in amphioxus and Osteichthyes was determined, providing insights into the evolution of immune-related genes in chordates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Bin Xu
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Xiu-Qiang Wang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jun-Yuan Chen
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
69
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
70
|
Chen X, Wang S, Cao W. Mesenchymal stem cell-mediated immunomodulation in cell therapy of neurodegenerative diseases. Cell Immunol 2017; 326:8-14. [PMID: 28778534 DOI: 10.1016/j.cellimm.2017.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
Dysfunction of immune responses has been identified to involve in the pathogenesis of various neurodegenerative diseases. Abnormal activation of glia cells and/or infiltration of peripheral adaptive immune cells always sustains neuroinflammation and the disease progression. Obviously, the regulation of neuroinflammation has become a potential therapeutic strategy against neurodegenerative diseases. Mesenchymal stem cells (MSCs) exhibit complex interactions with various immune cells including T cells, macrophages and especially resident glia cells in the central nervous system. In response to tissue injury signals, MSCs adopt specific phenotype to suppress or promote immune responses depending on the inflammatory microenvironment they reside. Therefore, manipulation of MSCs may hold great potentials to improve MSC-based therapy on neurodegenerative diseases. Here we review MSC-mediated immunomodulation in cell therapy of neurodegenerative diseases, providing fundamental information for guiding appropriate applications of MSCs in clinical settings.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Shijia Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
71
|
Lu JQ, Steve TA, Wheatley M, Gross DW. Immune Cell Infiltrates in Hippocampal Sclerosis: Correlation With Neuronal Loss. J Neuropathol Exp Neurol 2017; 76:206-215. [PMID: 28395090 DOI: 10.1093/jnen/nlx001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune mechanisms have been increasingly recognized in the pathogenesis of hippocampal sclerosis (HS), but infiltration of cytotoxic T-cells and its pathological significance in patients with HS has not been explored. We examined 30 cases of surgically resected hippocampi, including 16 International League Against Epilepsy (ILAE) type 1, 9 ILAE type 2, 1 ILAE type 3 HS, and 4 ILAE No-HS, as well as 6 autopsy No-HS hippocampi. The HS hippocampi showed sparse to scattered CD8-positive T-cells, rare CD4-positive T-cells, and a modest increase in CD68-positive microglia/macrophages, which were significantly more numerous than those in the No-HS controls. The infiltration of CD8-positive T-cells was significantly greater in the CA1 subfield than other subfields of type 1 and type 2 HS. The numbers of CD8-positive T-cells positively correlated with those of CD4-positive T-cells; there was a lower ratio of CD4/CD8-positive T-cells. There were positive correlations between these cells and scores of neuronal loss but no significant correlation between the infiltration of these cells and epilepsy disease duration or age of epilepsy onset. These findings suggest that an autoimmune process may be involved in the pathogenesis of HS and infiltration of immune cells, particularly CD8-positive cytotoxic T-cells, may contribute to neuronal loss in HS.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Trevor A Steve
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matt Wheatley
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Donald W Gross
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
72
|
Natural Withanolides in the Treatment of Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:329-373. [PMID: 27671823 PMCID: PMC7121644 DOI: 10.1007/978-3-319-41334-1_14] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Withanolides, and in particular extracts from Withania somnifera, have been used for over 3,000 years in traditional Ayurvedic and Unani Indian medical systems as well as within several other Asian countries. Traditionally, the extracts were ascribed a wide range of pharmacologic properties with corresponding medical uses, including adaptogenic, diuretic, anti-inflammatory, sedative/anxiolytic, cytotoxic, antitussive, and immunomodulatory. Since the discovery of the archetype withaferin A in 1965, approximately 900 of these naturally occurring, polyoxygenated steroidal lactones with 28-carbon ergostane skeletons have been discovered across 24 diverse structural types. Subsequently, extensive pharmacologic research has identified multiple mechanisms of action across key inflammatory pathways. In this chapter we identify and describe the major withanolides with anti-inflammatory properties, illustrate their role within essential and supportive inflammatory pathways (including NF-κB, JAK/STAT, AP-1, PPARγ, Hsp90 Nrf2, and HIF-1), and then discuss the clinical application of these withanolides in inflammation-mediated chronic diseases (including arthritis, autoimmune, cancer, neurodegenerative, and neurobehavioral). These naturally derived compounds exhibit remarkable biologic activity across these complex disease processes, while showing minimal adverse effects. As novel compounds and analogs continue to be discovered, characterized, and clinically evaluated, the interest in withanolides as a novel therapeutic only continues to grow.
Collapse
|
73
|
Laskowitz DT, Wang H, Chen T, Lubkin DT, Cantillana V, Tu TM, Kernagis D, Zhou G, Macy G, Kolls BJ, Dawson HN. Neuroprotective pentapeptide CN-105 is associated with reduced sterile inflammation and improved functional outcomes in a traumatic brain injury murine model. Sci Rep 2017; 7:46461. [PMID: 28429734 PMCID: PMC5399447 DOI: 10.1038/srep46461] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
At present, there are no proven pharmacological treatments demonstrated to improve long term functional outcomes following traumatic brain injury(TBI). In the setting of non-penetrating TBI, sterile brain inflammatory responses are associated with the development of cerebral edema, intracranial hypertension, and secondary neuronal injury. There is increasing evidence that endogenous apolipoprotein E(apoE) modifies the neuroinflammatory response through its role in downregulating glial activation, however, the intact apoE holoprotein does not cross the blood-brain barrier due to its size. To address this limitation, we developed a small 5 amino acid apoE mimetic peptide(CN-105) that mimics the polar face of the apoE helical domain involved in receptor interactions. The goal of this study was to investigate the therapeutic potential of CN-105 in a murine model of closed head injury. Treatment with CN-105 was associated with a durable improvement in functional outcomes as assessed by Rotarod and Morris Water Maze and a reduction in positive Fluoro-Jade B stained injured neurons and microglial activation. Administration of CN-105 was also associated with reduction in mRNA expression of a subset of inflammatory and immune-related genes.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.,Aegis-CN LLC., Durham, NC, USA
| | - Haichen Wang
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony Chen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David T Lubkin
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Viviana Cantillana
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tian Ming Tu
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Dawn Kernagis
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Guanen Zhou
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gary Macy
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bradley J Kolls
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hana N Dawson
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
74
|
Lakatos A, Goldberg NRS, Blurton-Jones M. Integrated analysis of genetic, behavioral, and biochemical data implicates neural stem cell-induced changes in immunity, neurotransmission and mitochondrial function in Dementia with Lewy Body mice. Acta Neuropathol Commun 2017; 5:21. [PMID: 28283027 PMCID: PMC5345195 DOI: 10.1186/s40478-017-0421-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/24/2017] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.
Collapse
|
75
|
Ahuja M, Buabeid M, Abdel-Rahman E, Majrashi M, Parameshwaran K, Amin R, Ramesh S, Thiruchelvan K, Pondugula S, Suppiramaniam V, Dhanasekaran M. Immunological alteration & toxic molecular inductions leading to cognitive impairment & neurotoxicity in transgenic mouse model of Alzheimer's disease. Life Sci 2017; 177:49-59. [PMID: 28286225 DOI: 10.1016/j.lfs.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/27/2017] [Accepted: 03/08/2017] [Indexed: 01/08/2023]
Abstract
AIMS Inflammation is considered to be one of the crucial pathological factors associated with the development of Alzheimer's disease, although supportive experimental evidence remains undiscovered. Therefore, the current study was carried out to better understand and establish the pathophysiological involvement of chronic inflammation in a double transgenic mouse model of Alzheimer's disease. MAIN METHODS We analyzed amyloid-beta deposition, oxidative stress, biochemical, neurochemical and immunological markers in a 10month old (APΔE9) mouse model. Memory functions were assessed by behavioral testing followed by measurement of synaptic plasticity via extracellular field recordings. KEY FINDINGS Substantial increases in amyloid-beta levels, beta-secretase activity, and oxidative stress, along with significant neurochemical alterations in glutamate and GABA levels were detected in the brain of APΔE9 mice. Interestingly, marked elevations of pro-inflammatory cytokines in whole brain lysate of APΔE9 mice were observed. Flow cytometric analysis revealed a higher frequency of CD4+ IL-17a and IFN-γ secreting T-cells in APΔE9 brain, indicating a robust T-cell infiltration and activation. Behavioral deficits in learning and memory tasks, along with impairment in long-term potentiation and associated biochemical changes in the expression of glutamatergic receptor subunits were evident. SIGNIFICANCE Thus, this study establishes the role by which oxidative stress, alterations in glutamate and GABA levels and inflammation increases hippocampal and cortical neurotoxicity resulting in the cognitive deficits associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Manuj Ahuja
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Manal Buabeid
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Engy Abdel-Rahman
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA; Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Kodeeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Kariharan Thiruchelvan
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Satyanarayana Pondugula
- Department of Anatomy and Physiology, College of Veterinary Science, Auburn University, AL 36849, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA.
| |
Collapse
|
76
|
Skaper SD, Facci L, Zusso M, Giusti P. Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons. Neuroscientist 2017; 23:478-498. [PMID: 29283023 DOI: 10.1177/1073858416687249] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions.
Collapse
Affiliation(s)
- Stephen D Skaper
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Laura Facci
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Morena Zusso
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Pietro Giusti
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
77
|
Li N, Zhang X, Dong H, Hu Y, Qian Y. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res 2017; 322:60-69. [PMID: 28082194 DOI: 10.1016/j.bbr.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced neuroinflammation, which is also a key element in the pathobiology of neurodegenerative diseases, stroke, and neuropsychiatric disorders. There is extensive communication between the immune system and the central nervous system (CNS). Inflammation resulting from activation of the innate immune system cells in the periphery can impact central nervous system behaviors, such as cognitive performance. Mast cells (MCs), as the"first responders" in the CNS, can initiate, amplify, and prolong other immune and nervous responses upon activation. In addition, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. Neuroinflammation has been considered to be linked to neurovascular dysfunction in several neurological disorders. This review will provide a brief overview of the bidirectional relationship of MCs-neurovascular unit communication in neuroinflammation and its involvement in POCD, providing a new and unique therapeutic target for the adjuvant treatment of POCD.
Collapse
Affiliation(s)
- Nana Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Youli Hu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
78
|
Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J 2016; 36:583-603. [PMID: 28007893 DOI: 10.15252/embj.201694591] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co-culturing organotypic brain slices from up to 20-month-old, amyloid-bearing AD mouse model (APPPS1) and young, neonatal wild-type (WT) mice. Surprisingly, co-culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.
Collapse
Affiliation(s)
- Anna Daria
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| |
Collapse
|
79
|
Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M. Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 2016; 13:297. [PMID: 27881137 PMCID: PMC5121946 DOI: 10.1186/s12974-016-0763-8] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.
Collapse
Affiliation(s)
- Diogo Lobo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Guilhermina M Carriche
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
80
|
Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A. Neuroinflammation Induces Neurodegeneration. JOURNAL OF NEUROLOGY, NEUROSURGERY AND SPINE 2016; 1:1003. [PMID: 28127589 PMCID: PMC5260818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS) are characterized by neuronal degeneration and neuronal death in specific regions of the central nervous system (CNS). In AD, neurons of the hippocampus and entorhinal cortex are the first to degenerate, whereas in PD, dopaminergic neurons in the substantia nigra degenerate. MS patients show destruction of the myelin sheath. Once the CNS neurons are damaged, they are unable to regenerate unlike any other tissue in the body. Neurodegeneration is mediated by inflammatory and neurotoxic mediators such as interleukin-1beta (IL-1β), IL-6, IL-8, IL-33, tumor necrosis factor-alpha (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), CCL5, matrix metalloproteinase (MMPs), granulocyte macrophage colony-stimulating factor (GM-CSF), glia maturation factor (GMF), substance P, reactive oxygen species (ROS), reactive nitrogen species (RNS), mast cells-mediated histamine and proteases, protease activated receptor-2 (PAR-2), CD40, CD40L, CD88, intracellular Ca+ elevation, and activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-kB). Activated microglia, astrocytes, neurons, T-cells and mast cells release these inflammatory mediators and mediate neuroinflammation and neurodegeneration in a vicious manner. Further, immune and inflammatory cells and inflammatory mediators from the periphery cross the defective blood-brain-barrier (BBB) and augment neuroinflammation. Though inflammation is crucial in the onset and the progression of neurodegenerative diseases, anti-inflammatory drugs do not provide significant therapeutic effects in these patients till date, as the disease pathogenesis is not yet clearly understood. In this review, we discuss the possible factors involved in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- D Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - R Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - PA Natteru
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - GP Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - D Saeed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - H Zahoor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - S Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - SS Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - A Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| |
Collapse
|
81
|
Tzour A, Leibovich H, Barkai O, Biala Y, Lev S, Yaari Y, Binshtok AM. K V 7/M channels as targets for lipopolysaccharide-induced inflammatory neuronal hyperexcitability. J Physiol 2016; 595:713-738. [PMID: 27506492 DOI: 10.1113/jp272547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Neuroinflammation associated with CNS insults leads to neuronal hyperexcitability, which may culminate in epileptiform discharges. Application of the endotoxin lipopolysaccharide (LPS) to brain tissue initiates a neuroinflammatory cascade, providing an experimental model to study the mechanisms of neuroinflammatory neuronal hyperexcitability. Here we show that LPS application to hippocampal slices markedly enhances the excitability of CA1 pyramidal cells by inhibiting a specific potassium current, the M-current, generated by KV 7/M channels, which controls the excitability of almost every neuron in the CNS. The LPS-induced M-current inhibition is triggered by sequential activation of microglia, astrocytes and pyramidal cells, mediated by metabotropic purinergic and glutamatergic transmission, leading to blockade of KV 7/M channels by calcium released from intracellular stores. The identification of the downstream molecular target of neuroinflammation, namely the KV 7/M channel, potentially has far reaching implications for the understanding and treatment of many acute and chronic brain disorders. ABSTRACT Acute brain insults and many chronic brain diseases manifest an innate inflammatory response. The hallmark of this response is glia activation, which promotes repair of damaged tissue, but also induces structural and functional changes that may lead to an increase in neuronal excitability. We have investigated the mechanisms involved in the modulation of neuronal activity by acute inflammation. Initiating inflammatory responses in hippocampal tissue rapidly led to neuronal depolarization and repetitive firing even in the absence of active synaptic transmission. This action was mediated by a complex metabotropic purinergic and glutamatergic glia-to-neuron signalling cascade, leading to the blockade of neuronal KV 7/M channels by Ca2+ released from internal stores. These channels generate the low voltage-activating, non-inactivating M-type K+ current (M-current) that controls intrinsic neuronal excitability, and its inhibition was the predominant cause of the inflammation-induced hyperexcitability. Our discovery that the ubiquitous KV 7/M channels are the downstream target of the inflammation-induced cascade, has far reaching implications for the understanding and treatment of many acute and chronic brain disorders.
Collapse
Affiliation(s)
- Arik Tzour
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Hodaya Leibovich
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Yoav Biala
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| | - Yoel Yaari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, 91120, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Israel
| |
Collapse
|
82
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
83
|
De Lucia C, Rinchon A, Olmos-Alonso A, Riecken K, Fehse B, Boche D, Perry VH, Gomez-Nicola D. Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Behav Immun 2016; 55:179-190. [PMID: 26541819 PMCID: PMC4907582 DOI: 10.1016/j.bbi.2015.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
Neurogenesis is altered in neurodegenerative disorders, partly regulated by inflammatory factors. We have investigated whether microglia, the innate immune brain cells, regulate hippocampal neurogenesis in neurodegeneration. Using the ME7 model of prion disease we applied gain- or loss-of CSF1R function, as means to stimulate or inhibit microglial proliferation, respectively, to dissect the contribution of these cells to neurogenesis. We found that increased hippocampal neurogenesis correlates with the expansion of the microglia population. The selective inhibition of microglial proliferation caused a reduction in neurogenesis and a restoration of normal neuronal differentiation, supporting a pro-neurogenic role for microglia. Using a gene screening strategy, we identified TGFβ as a molecule controlling the microglial pro-neurogenic response in chronic neurodegeneration, supported by loss-of-function mechanistic experiments. By the selective targeting of microglial proliferation we have been able to uncover a pro-neurogenic role for microglia in chronic neurodegeneration, suggesting promising therapeutic targets to normalise the neurogenic niche during neurodegeneration.
Collapse
Affiliation(s)
- Chiara De Lucia
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Adeline Rinchon
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Adrian Olmos-Alonso
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| | - V. Hugh Perry
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
84
|
Impellizzeri D, Cordaro M, Bruschetta G, Crupi R, Pascali J, Alfonsi D, Marcolongo G, Cuzzocrea S. 2-pentadecyl-2-oxazoline: Identification in coffee, synthesis and activity in a rat model of carrageenan-induced hindpaw inflammation. Pharmacol Res 2016; 108:23-30. [PMID: 27083308 DOI: 10.1016/j.phrs.2016.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
N-acylethanolamines (NAEs) comprise a family of bioactive lipid molecules present in animal and plant tissues, with N-palmitoylethanolamine (PEA) having received much attention owing to its anti-inflammatory, analgesic and neuroprotective activities. 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline of PEA, reportedly modulates activity of N-acylethanolamine-hydrolyzing acid amidase (NAAA), which catabolizes PEA. Because PEA is produced on demand and exerts pleiotropic effects on non-neuronal cells implicated in neuroinflammation, modulating the specific amidases for NAEs (NAAA in particular) could be a way to preserve PEA role in maintaining cellular homeostasis through its rapid on-demand synthesis and equally rapid degradation. This study provides the first description of PEA-OXA in both green and roasted coffee beans and Moka infusions, and its synthesis. In an established model of carrageenan (CAR)-induced rat paw inflammation, PEA-OXA was orally active in limiting histological damage and thermal hyperalgesia 6h after CAR intraplantar injection in the right hindpaw and the accumulation of infiltrating inflammatory cells. PEA-OXA appeared to be more potent compared to ultramicronized PEA given orally at the same dose (10mg/kg). PEA-OXA markedly reduced also the increase in hindpaw myeloperoxidase activity, an index of polymorphonuclear cell accumulation in inflammatory tissues. NAAA modulators like PEA-OXA may serve to maximize availability of NAEs (e.g. PEA) while providing for recycling of the NAE components for further resynthesis.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jennifer Pascali
- dto Labs Analytical Excellence Center, Agilent Technologies, Via Fratta 25, 31023, Resana (TV), Italy
| | | | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
85
|
Ferrari R, Forabosco P, Vandrovcova J, Botía JA, Guelfi S, Warren JD, Momeni P, Weale ME, Ryten M, Hardy J. Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. Mol Neurodegener 2016; 11:21. [PMID: 26912063 PMCID: PMC4765225 DOI: 10.1186/s13024-016-0085-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Background In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Results Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. Conclusions This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0085-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Russell Square House, 9-12 Russell Square House, London, WC1N 3BG, UK.
| | - Paola Forabosco
- Istituto di Ricerca Genetica e Biomedica, Cittadella Universitaria di Cagliari, 09042, Monserrato, Sardinia, Italy.
| | - Jana Vandrovcova
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Russell Square House, 9-12 Russell Square House, London, WC1N 3BG, UK. .,King's College London, Department of Medical & Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Juan A Botía
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Russell Square House, 9-12 Russell Square House, London, WC1N 3BG, UK. .,King's College London, Department of Medical & Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Sebastian Guelfi
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Russell Square House, 9-12 Russell Square House, London, WC1N 3BG, UK. .,King's College London, Department of Medical & Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | | | | | - Michael E Weale
- King's College London, Department of Medical & Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Mina Ryten
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Russell Square House, 9-12 Russell Square House, London, WC1N 3BG, UK. .,King's College London, Department of Medical & Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Russell Square House, 9-12 Russell Square House, London, WC1N 3BG, UK.
| |
Collapse
|
86
|
Marinelli C, Di Liddo R, Facci L, Bertalot T, Conconi MT, Zusso M, Skaper SD, Giusti P. Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. J Neuroinflammation 2015; 12:244. [PMID: 26714634 PMCID: PMC4696218 DOI: 10.1186/s12974-015-0458-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Background Toll-like receptor (TLR) activation on microglia and astrocytes are key elements in neuroinflammation which accompanies a number of neurological disorders. While TLR activation on glia is well-established to up-regulate pro-inflammatory mediator expression, much less is known about how ligand engagement of one TLR may affect expression of other TLRs on microglia and astrocytes. Methods In the present study, we evaluated the effects of agonists for TLR2 (zymosan), TLR3 (polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analogue of double-stranded RNA) and TLR4 (lipopolysaccaride (LPS)) in influencing expression of their cognate receptor as well as that of the other TLRs in cultures of rat cortical purified microglia (>99.5 %) and nominally microglia-free astrocytes. Elimination of residual microglia (a common contaminant of astrocyte cultures) was achieved by incubation with the lysosomotropic agent l-leucyl-l-leucine methyl ester (L-LME). Results Flow cytometric analysis confirmed the purity (essentially 100 %) of the obtained microglia, and up to 5 % microglia contamination of astrocytes. L-LME treatment effectively removed microglia from the latter (real-time polymerase chain reaction). The three TLR ligands robustly up-regulated gene expression for pro-inflammatory markers (interleukin-1 and interleukin-6, tumor necrosis factor) in microglia and enriched, but not purified, astrocytes, confirming cellular functionality. LPS, zymosan and poly(I:C) all down-regulated TLR4 messenger RNA (mRNA) and up-regulated TLR2 mRNA at 6 and 24 h. In spite of their inability to elaborate pro-inflammatory mediator output, the nominally microglia-free astrocytes (>99 % purity) also showed similar behaviours to those of microglia, as well as changes in TLR3 gene expression. LPS interaction with TLR4 activates downstream mitogen-activated protein kinase and nuclear factor-κB signalling pathways and subsequently causes inflammatory mediator production. The effects of LPS on TLR2 mRNA in both cell populations were antagonized by a nuclear factor-κB inhibitor. Conclusions TLR2 and TLR4 activation in particular, in concert with microglia and astrocytes, comprise key elements in the initiation and maintenance of neuropathic pain. The finding that both homologous (zymosan) and heterologous (LPS, poly(I:C)) TLR ligands are capable of regulating TLR2 gene expression, in particular, may have important implications in understanding the relative contributions of different TLRs in neurological disorders associated with neuroinflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0458-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Marinelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy.
| |
Collapse
|
87
|
Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, Magnus T, Planas AM. Dendritic cells in brain diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1862:352-67. [PMID: 26569432 DOI: 10.1016/j.bbadis.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Gallizioli
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah Behr
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa H Brait
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
88
|
Zhou TT, Zu G, Wang X, Zhang XG, Li S, Liang ZH, Zhao J. Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) -induced mouse model of Parkinson's disease. Int Immunopharmacol 2015; 29:334-343. [PMID: 26548343 DOI: 10.1016/j.intimp.2015.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Ginsenoside Rg1, one of the biologically active ingredients of ginseng, has been considered to be a candidate neuroprotective drug. The objective of the study was to study the protective effects of Rg1 through the peripheral and central inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Rg1 treatment protected TH-positive cells in the SNpc region from MPTP toxicity measured with immunofluoresence. The protein expression levels of TH in the SNpc region of MPTP-induced mice following treatment with Rg1 were higher than MPTP-induced mice which were tested with Western blot. The ratio of CD3(+)CD4(+) to CD3(+)CD8(+) T cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells in the blood increased in MPTP-induced mice following treatment with Rg1 which were detected by flow cytometry analysis. Moreover, Rg1 reduced the serum concentrations of proinflammatory cytokines TNF-α, IFN-γ, IL-1β and IL-6 which were tested with enzyme-linked immunosorbent assay (ELISA). In addition, Rg1 inhibited the activation of microglia and reduced the infiltration of CD3(+) T cells into the SNpc region which were measured by immunofluorescence. Our results indicated that Rg1 may represent a promising drug for the treatment of PD via the regulation of the peripheral and central inflammation.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guo Zu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xi Wang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Xiao-Gang Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Zhan-Hua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Zhao
- Department of Physiology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
89
|
Gramlich OW, Ding QJ, Zhu W, Cook A, Anderson MG, Kuehn MH. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Acta Neuropathol Commun 2015; 3:56. [PMID: 26374513 PMCID: PMC4591529 DOI: 10.1186/s40478-015-0234-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Several studies have indicated that autoimmune and neuroinflammatory processes contribute to the neurodegeneration of retinal ganglion cells in human glaucoma patients and in animal models. To test the involvement of cellular immune processes in the pathophysiology of retinal ganglion cell degeneration in vivo, we carried out adoptive transfer experiments from two independent genetic mouse models of glaucoma into normal recipient mice. RESULTS Our findings indicate that transfer results in a progressive loss of retinal ganglion cells and their axons despite normal intraocular pressure in recipient mice. Signs of pan-retinal inflammation were not detected. Similar findings were obtained following transfer of isolated T-lymphocytes, but not after transfer of splenocytes from immune deficient glaucomatous mice. Transferred lymphocytes were detected integrated in the spleen and in the retinal ganglion cell layer of recipient animals, albeit at very low frequencies. Furthermore, we observed cell-cell interaction between transferred T-cells and recipient microglia along with focal microglial activation in recipient eyes. CONCLUSION This study demonstrates that the pathophysiology of glaucomatous degeneration in the tested animal models includes T-cell mediated events that are capable of causing loss of healthy retinal ganglion cells.
Collapse
Affiliation(s)
- Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, 52242, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 3135C MERF, 375 Newton Road, Iowa City, IA, 52242, USA
| | - Qiong J Ding
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, 52242, IA, USA
| | - Wei Zhu
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, 52242, IA, USA
| | - Amy Cook
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, 52242, IA, USA
| | - Michael G Anderson
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, 52242, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 3135C MERF, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, 52242, IA, USA
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, 52242, IA, USA.
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 3135C MERF, 375 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
90
|
Samantaray S, Knaryan VH, Shields DC, Cox AA, Haque A, Banik NL. Inhibition of Calpain Activation Protects MPTP-Induced Nigral and Spinal Cord Neurodegeneration, Reduces Inflammation, and Improves Gait Dynamics in Mice. Mol Neurobiol 2015; 52:1054-66. [PMID: 26108182 DOI: 10.1007/s12035-015-9255-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, resulting in dopaminergic (DA) neuronal loss in the substantia nigra pars compacta (SNpc) and damage to the extranigral spinal cord neurons. Current therapies do not prevent the disease progression. Hence, developing efficacious therapeutic strategies for treatment of PD is of utmost importance. The goal of this study is to delineate the involvement of calpain-mediated inflammation and neurodegeneration in SN and spinal cord in MPTP-induced parkinsonian mice (C57BL/6 N), thereby elucidating potential therapeutic target(s). Increased calpain expression was found localized to tyrosine hydroxylase (TH(+)) neurons in SN with significantly increased TUNEL-positive neurons in SN and spinal cord neurons in MPTP mice. Inflammatory markers Cox-2, caspase-1, and NOS-2 were significantly upregulated in MPTP mouse spinal cord as compared to control. These parameters correlated with the activation of astrocytes, microglia, infiltration of CD4(+)/CD8(+) T cells, and macrophages. We found that subpopulations of CD4(+) cells (Th1 and Tregs) were differentially expanded in MPTP mice, which could be regulated by inhibition of calpain with the potent inhibitor calpeptin. Pretreatment with calpeptin (25 μg/kg, i.p.) attenuated glial activation, T cell infiltration, nigral dopaminergic degeneration in SN, and neuronal death in spinal cord. Importantly, calpeptin ameliorated MPTP-induced altered gait parameters (e.g., reduced stride length and increased stride frequency) as demonstrated by analyses of spatiotemporal gait indices using ventral plane videography. These findings suggest that calpain plays a pivotal role in MPTP-induced nigral and extranigral neurodegenerative processes and may be a valid therapeutic target in PD.
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, MSC 606, Charleston, SC, 29425, USA
| | | | | | | | | | | |
Collapse
|
91
|
Skaper SD, Facci L, Barbierato M, Zusso M, Bruschetta G, Impellizzeri D, Cuzzocrea S, Giusti P. N-Palmitoylethanolamine and Neuroinflammation: a Novel Therapeutic Strategy of Resolution. Mol Neurobiol 2015; 52:1034-42. [PMID: 26055231 DOI: 10.1007/s12035-015-9253-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 02/06/2023]
Abstract
Inflammation is fundamentally a protective cellular response aimed at removing injurious stimuli and initiating the healing process. However, when prolonged, it can override the bounds of physiological control and becomes destructive. Inflammation is a key element in the pathobiology of chronic pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders. Glia, key players in such nervous system disorders, are not only capable of expressing a pro-inflammatory phenotype but respond also to inflammatory signals released from cells of immune origin such as mast cells. Chronic inflammatory processes may be counteracted by a program of resolution that includes the production of lipid mediators endowed with the capacity to switch off inflammation. These naturally occurring lipid signaling molecules include the N-acylethanolamines, N-arachidonoylethanolamine (an endocannabinoid), and its congener N-palmitoylethanolamine (palmitoylethanolamide or PEA). PEA may play a role in maintaining cellular homeostasis when faced with external stressors provoking, for example, inflammation. PEA is efficacious in mast cell-mediated models of neurogenic inflammation and neuropathic pain and is neuroprotective in models of stroke, spinal cord injury, traumatic brain injury, and Parkinson disease. PEA in micronized/ultramicronized form shows superior oral efficacy in inflammatory pain models when compared to naïve PEA. Intriguingly, while PEA has no antioxidant effects per se, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treat neuroinflammation. This review is intended to discuss the role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Wang F, Ni J, Wang X, Xie B, Feng C, Zhao S, Saeed Y, Qing H, Deng Y. Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1 Cells Through the mTOR Pathway in a Co-culture System. Neurochem Res 2015; 40:932-41. [PMID: 25773262 DOI: 10.1007/s11064-015-1547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
Despite extensive efforts to study the inflammatory process in the central nervous system of Parkinson's disease (PD) patients, little is known about the role of peripheral blood mononuclear cells (PBMCs) in PD. In the present study, we used an in vitro co-culture system to study the role of the human monocyte cell line THP-1 in medium conditioned by the neuroblastoma cell line SH-SY5Y damaged with the endogenous neurotoxin 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (Salsolinol, Sal) in co-culture with the human glioma cell line U87. For this purpose, SH-SY5Y and U87 co-cultures were treated with Sal, and this conditioned medium containing mediators, including the potential effector CCL2, was isolated and applied to THP-1 cells. This treatment resulted in approximately 19 % cell proliferation as well as activation of mTOR and induction of phosphorylated 4E-BP1, S6K1, PI3K, and AKT proteins. Treatment with rapamycin, an mTOR inhibitor, attenuated the proliferation of THP-1 cells. U87 glial cells were essential for this as medium conditioned without them had no effect on THP-1 cells. These results suggest a positive effect of THP-1 cells on Sal-induced neurotoxicity in a cellular model of PD and this is likely mediated by the enhancement of cell proliferation through activation of the mTOR signaling pathway. Hence, PBMCs and their mTOR signaling pathway could be of therapeutic benefit in treating the endogenous neurotoxin-induced neuroinflammation in PD.
Collapse
Affiliation(s)
- Fuli Wang
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
94
|
Garcia-Bonilla L, Park L, Iadecola C. Commentary on Myers et al.: growing role of the innate immunity receptor CD36 in central nervous system diseases. Exp Neurol 2014; 261:633-7. [PMID: 25157902 DOI: 10.1016/j.expneurol.2014.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Activation of innate immunity by sterile inflammation has emerged as a key event in selected CNS diseases, with a defining impact on all stages of the pathological process. Due to its multiple functions and assembly with other pattern recognition receptors, the innate immunity receptor CD36 has been implicated in a wide variety of brain pathologies, ranging from acute brain injury to neurodegeneration. However, the role of CD36 is complex involving both tissue destruction, related mainly to oxidative stress and inflammation, and beneficial reparative effects due to the involvement of CD36 in tissue repair and reorganization. A recent paper of Meyer at al. provided novel evidence for a role of CD36 also in spinal cord trauma, a condition in which the effect of CD36 was found to be univocally deleterious. This commentary will provide a brief overview of the pathobiology of CD36 and its expanding role in diseases of the brain and spinal cord.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
95
|
Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm (Vienna) 2014; 122:1055-68. [DOI: 10.1007/s00702-014-1293-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 11/27/2022]
|
96
|
|
97
|
Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JBJ, Dobson-Stone C, Brooks WS, Schofield PR, Halliday GM, Hodges JR, Piguet O, Bartley L, Thompson E, Haan E, Hernández I, Ruiz A, Boada M, Borroni B, Padovani A, Cruchaga C, Cairns NJ, Benussi L, Binetti G, Ghidoni R, Forloni G, Galimberti D, Fenoglio C, Serpente M, Scarpini E, Clarimón J, Lleó A, Blesa R, Waldö ML, Nilsson K, Nilsson C, Mackenzie IRA, Hsiung GYR, Mann DMA, Grafman J, Morris CM, Attems J, Griffiths TD, McKeith IG, Thomas AJ, Pietrini P, Huey ED, Wassermann EM, Baborie A, Jaros E, Tierney MC, Pastor P, Razquin C, Ortega-Cubero S, Alonso E, Perneczky R, Diehl-Schmid J, Alexopoulos P, Kurz A, Rainero I, Rubino E, Pinessi L, Rogaeva E, St George-Hyslop P, Rossi G, Tagliavini F, Giaccone G, Rowe JB, Schlachetzki JCM, Uphill J, Collinge J, Mead S, Danek A, Van Deerlin VM, Grossman M, Trojanowski JQ, van der Zee J, Deschamps W, Van Langenhove T, Cruts M, Van Broeckhoven C, Cappa SF, Le Ber I, Hannequin D, Golfier V, Vercelletto M, Brice A, Nacmias B, Sorbi S, Bagnoli S, Piaceri I, Nielsen JE, Hjermind LE, Riemenschneider M, Mayhaus M, Ibach B, Gasparoni G, Pichler S, Gu W, Rossor MN, Fox NC, Warren JD, Spillantini MG, Morris HR, Rizzu P, Heutink P, Snowden JS, Rollinson S, Richardson A, Gerhard A, Bruni AC, Maletta R, Frangipane F, Cupidi C, Bernardi L, Anfossi M, Gallo M, Conidi ME, Smirne N, Rademakers R, Baker M, Dickson DW, Graff-Radford NR, Petersen RC, Knopman D, Josephs KA, Boeve BF, Parisi JE, Seeley WW, Miller BL, Karydas AM, Rosen H, van Swieten JC, Dopper EGP, Seelaar H, Pijnenburg YAL, Scheltens P, Logroscino G, Capozzo R, Novelli V, Puca AA, Franceschi M, Postiglione A, Milan G, Sorrentino P, Kristiansen M, Chiang HH, Graff C, Pasquier F, Rollin A, Deramecourt V, Lebert F, Kapogiannis D, Ferrucci L, Pickering-Brown S, Singleton AB, Hardy J, Momeni P. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 2014; 13:686-99. [PMID: 24943344 PMCID: PMC4112126 DOI: 10.1016/s1474-4422(14)70065-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72--have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. METHODS We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10(-8)) single-nucleotide polymorphisms. FINDINGS We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10(-8)). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, HLA locus (immune system), for rs9268877 (p=1·05 × 10(-8); odds ratio=1·204 [95% CI 1·11-1·30]), rs9268856 (p=5·51 × 10(-9); 0·809 [0·76-0·86]) and rs1980493 (p value=1·57 × 10(-8), 0·775 [0·69-0·86]) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural FTD subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10(-7); 0·814 [0·71-0·92]). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. INTERPRETATION Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. FUNDING The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center.
Collapse
Affiliation(s)
- Raffaele Ferrari
- Laboratory of Neurogenetics, Department of Internal Medicine, Texas Tech University Health Science Center, Lubbock, Texas, USA; Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Dena G Hernandez
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Rohrer
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Adaikalavan Ramasamy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - John B J Kwok
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - William S Brooks
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - John R Hodges
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | | | - Elizabeth Thompson
- South Australian Clinical Genetics Service, SA Pathology at Women's and Children's Hospital, North Adelaide, SA, Australia; Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - Eric Haan
- South Australian Clinical Genetics Service, SA Pathology at Women's and Children's Hospital, North Adelaide, SA, Australia; Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - Isabel Hernández
- Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Agustín Ruiz
- Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mercè Boada
- Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain; Hospital Universitari Vall d'Hebron-Institut de Recerca, Universitat Autonoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | | | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nigel J Cairns
- Hope Center, Washington University School of Medicine, St Louis, Missouri, USA; Department of Pathology and Immunology, Washington University, St Louis, Missouri, USA
| | - Luisa Benussi
- NeuroBioGen Lab-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- NeuroBioGen Lab-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Proteomics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Gianluigi Forloni
- Biology of Neurodegenerative Disorders, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Daniela Galimberti
- University of Milan, Milan, Italy; Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- University of Milan, Milan, Italy; Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Serpente
- University of Milan, Milan, Italy; Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- University of Milan, Milan, Italy; Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Jordi Clarimón
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Rafael Blesa
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Landqvist Waldö
- Unit of Geriatric Psychiatry, Department of Clinical Sciences, Lund University, Sweden
| | - Karin Nilsson
- Unit of Geriatric Psychiatry, Department of Clinical Sciences, Lund University, Sweden
| | - Christer Nilsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Sweden
| | - Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ging-Yuek R Hsiung
- Division of Neurology, University of British Columbia, Vancouver, Canada
| | - David M A Mann
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Salford Royal Hospital, Stott Lane, Salford, UK
| | - Jordan Grafman
- Rehabilitation Institute of Chicago, Departments of Physical Medicine and Rehabilitation, Psychiatry, and Cognitive Neurology and Alzheimer's Disease Center, IL, USA; Feinberg School of Medicine, Northwestern University, IL, USA; Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, IL, USA
| | - Christopher M Morris
- Rehabilitation Institute of Chicago, Departments of Physical Medicine and Rehabilitation, Psychiatry, and Cognitive Neurology and Alzheimer's Disease Center, IL, USA; Feinberg School of Medicine, Northwestern University, IL, USA; Newcastle Brain Tissue Resource, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK; Newcastle University, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; Institute of Neuroscience, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Johannes Attems
- Rehabilitation Institute of Chicago, Departments of Physical Medicine and Rehabilitation, Psychiatry, and Cognitive Neurology and Alzheimer's Disease Center, IL, USA; Feinberg School of Medicine, Northwestern University, IL, USA; Newcastle Brain Tissue Resource, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK; Newcastle University, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Rehabilitation Institute of Chicago, Departments of Physical Medicine and Rehabilitation, Psychiatry, and Cognitive Neurology and Alzheimer's Disease Center, IL, USA; Feinberg School of Medicine, Northwestern University, IL, USA; Newcastle Brain Tissue Resource, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Ian G McKeith
- Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Newcastle University, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - P Pietrini
- Clinical Psychology Branch, Pisa University Hospital, Pisa, Italy; Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
| | - Edward D Huey
- Taub Institute, Departments of Psychiatry and Neurology, Columbia University, New York, NY, USA 10032
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Atik Baborie
- Neuropathology Department, Walton Centre FT, Liverpool, UK
| | - Evelyn Jaros
- Newcastle University, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; Neuropathology/Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Michael C Tierney
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pau Pastor
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain; Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine, Pamplona, Spain
| | - Cristina Razquin
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Sara Ortega-Cubero
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Elena Alonso
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Robert Perneczky
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK; West London Cognitive Disorders Treatment and Research Unit, West London Mental Health Trust, London TW8 8 DS, UK; Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Innocenzo Rainero
- Neurology I, Department of Neuroscience, University of Torino, Italy; AO Città della Salute e della Scienza di Torino, Italy
| | - Elisa Rubino
- Neurology I, Department of Neuroscience, University of Torino, Italy; AO Città della Salute e della Scienza di Torino, Italy
| | - Lorenzo Pinessi
- Neurology I, Department of Neuroscience, University of Torino, Italy; AO Città della Salute e della Scienza di Torino, Italy
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Cambridge Institute for Medical Research and the Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fabrizio Tagliavini
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giorgio Giaccone
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - James B Rowe
- Cambridge University Department of Clinical Neurosciences, Cambridge CB2 0SZ, UK; MRC Cognition and Brain Sciences Unit, Cambridge, UK; Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| | - Johannes C M Schlachetzki
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Germany; Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - James Uphill
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Vivianna M Van Deerlin
- University of Pennsylvania Perelman School of Medicine, Department of Neurology and Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Murray Grossman
- University of Pennsylvania Perelman School of Medicine, Department of Neurology and Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - John Q Trojanowski
- University of Pennsylvania Perelman School of Medicine, Department of Neurology and Penn Frontotemporal Degeneration Center, Philadelphia, PA, USA
| | - Julie van der Zee
- Neurodegenerative Brain Diseases group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - William Deschamps
- Neurodegenerative Brain Diseases group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Tim Van Langenhove
- Neurodegenerative Brain Diseases group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Marc Cruts
- Neurodegenerative Brain Diseases group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Stefano F Cappa
- Neurorehabilitation Unit, Deptartment Of Clinical Neuroscience, Vita-Salute University and San Raffaele Scientific Institute, Milan, Italy
| | - Isabelle Le Ber
- Inserm, UMR_S975, CRICM, F-75013; UPMC Univ Paris 06, UMR_S975, F-75013; and CNRS UMR 7225, F-75013, Paris, France; AP-HP, Hôpital de la Salpêtrière, Département de Neurologie-Centre de Références des Démences Rares, F-75013, Paris, France
| | - Didier Hannequin
- Service de Neurologie, Inserm U1079, CNR-MAJ, Rouen University Hospital, France
| | | | | | - Alexis Brice
- Inserm, UMR_S975, CRICM, F-75013; UPMC Univ Paris 06, UMR_S975, F-75013; and CNRS UMR 7225, F-75013, Paris, France; AP-HP, Hôpital de la Salpêtrière, Département de Neurologie-Centre de Références des Démences Rares, F-75013, Paris, France
| | - Benedetta Nacmias
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA) University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA) University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA) University of Florence, Florence, Italy
| | - Irene Piaceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA) University of Florence, Florence, Italy
| | - Jørgen E Nielsen
- Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark; Department of Cellular and Molecular Medicine, Section of Neurogenetics, The Panum Institute, University of Copenhagen, Denmark
| | - Lena E Hjermind
- Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Denmark; Department of Cellular and Molecular Medicine, Section of Neurogenetics, The Panum Institute, University of Copenhagen, Denmark
| | - Matthias Riemenschneider
- Saarland University Hospital, Department for Psychiatry and Psychotherapy, Homburg/Saar, Germany; Saarland University, Laboratory for Neurogenetics, Kirrberger, Homburg/Saar, Germany
| | - Manuel Mayhaus
- Saarland University, Laboratory for Neurogenetics, Kirrberger, Homburg/Saar, Germany
| | - Bernd Ibach
- University Regensburg, Department of Psychiatry, Psychotherapy and Psychosomatics, Universitätsstr 84, Regensburg, Germany
| | - Gilles Gasparoni
- Saarland University, Laboratory for Neurogenetics, Kirrberger, Homburg/Saar, Germany
| | - Sabrina Pichler
- Saarland University, Laboratory for Neurogenetics, Kirrberger, Homburg/Saar, Germany
| | - Wei Gu
- Saarland University, Laboratory for Neurogenetics, Kirrberger, Homburg/Saar, Germany; Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Martin N Rossor
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Maria Grazia Spillantini
- University of Cambridge, Department of Clinical Neurosciences, John Van Geest Brain Repair Centre, Cambridge, UK
| | - Huw R Morris
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, School of Medicine, Cardiff, UK
| | - Patrizia Rizzu
- German Center of Neurodegenerative Diseases-Tübingen, Tübingen, Germany
| | - Peter Heutink
- German Center of Neurodegenerative Diseases-Tübingen, Tübingen, Germany
| | - Julie S Snowden
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Sara Rollinson
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Anna Richardson
- Salford Royal Foundation Trust, Faculty of Medical and Human Sciences, University of Manchester, UK
| | - Alexander Gerhard
- Institute of Brain, Behaviour and Mental Health, The University of Manchester, Withington, Manchester, UK
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | | | | | - Chiara Cupidi
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Livia Bernardi
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Maria Anfossi
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Maura Gallo
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | | | | - David Knopman
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Anna M Karydas
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, CA, USA
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Medical Genetics, VU University Medical Centre, Amsterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre and Department of Neurology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Centre and Department of Neurology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Giancarlo Logroscino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs of the Aldo Moro, University of Bari, Italy
| | - Rosa Capozzo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs of the Aldo Moro, University of Bari, Italy
| | - Valeria Novelli
- Department of Molecular Cardiology, IRCCS Fondazione S Maugeri, Pavia, Italy
| | - Annibale A Puca
- Cardiovascular Research Unit, IRCCS Multimedica, Milan, Italy; Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | | | - Alfredo Postiglione
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Graziella Milan
- Geriatric Center Frullone-ASL Napoli 1 Centro, Naples, Italy
| | | | | | - Huei-Hsin Chiang
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Department of Geriatric Medicine, Genetics Unit, Karolinska Universtiy Hospital, Stockholm
| | - Caroline Graff
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Department of Geriatric Medicine, Genetics Unit, Karolinska Universtiy Hospital, Stockholm
| | | | | | | | | | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA
| | - Stuart Pickering-Brown
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.
| | - Parastoo Momeni
- Laboratory of Neurogenetics, Department of Internal Medicine, Texas Tech University Health Science Center, Lubbock, Texas, USA
| |
Collapse
|