51
|
Nag A, Gupta K, Dubey N, Mishra SK, Panigrahi J. Genomic characterization of ZIP genes in pigeonpea ( CcZIP) and their expression analysis among the genotypes with contrasting host response to pod borer. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2787-2804. [PMID: 35035136 PMCID: PMC8720128 DOI: 10.1007/s12298-021-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Zinc (Zn) is a vital micronutrient from the perspective of biofortification and biotic stress endurance in pigeonpea. The ZIP transporters with domain (Pfam: PF02535) regulate uptake and transport of metal ions, including Zn, in consonance with plant metal homeostasis. Genome-wide analysis in pigeonpea identified 19 non-redundant members of ZIP family (CcZIP) that were analyzed for gene structure, conserved motifs and homology besides other structural and biochemical parameters. Intra-specific as well as the inter-specific phylogenetic relationships of these 19 CcZIPs were elucidated by comparison with ZIP proteins of Arabidopsis thaliana, Medicago truncatula, Phaseolus vulgaris and Glycine max. In addition to gene structure, the cis-regulatory elements (CREs) in the promoter region were also identified. It revealed several stress responsive CREs that might be regulatory for differential expression of CcZIP proteins. Expression analysis showed that both CcZIP3 and CcZIP15, having zinc deficiency responsive element, up-regulated in the reproductive leaf tissues and down-regulated in matured green pods of the pod borer resistant genotypes with higher zinc content. Alternately, the expression of CcZIP6 and CcZIP13 was higher in matured green pods than reproductive leaves of the resistant genotypes. These findings on differential expression indicate the possible role of these CcZIPs on the mobilization of Zn from leaves to pods, phloem loading and unloading, and higher accumulation of seed zinc in pod borer resistant genotypes used in this study. Further functional characterization of CcZIP genes could shed light on their role in bio-fortification and genetic improvement to inhibit the pod borer herbivory in pigeonpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01111-1.
Collapse
Affiliation(s)
- Atul Nag
- Department of Biosciences and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007 India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti vihar, Odisha 768019 India
| | - Kapil Gupta
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817 India
- Department of Biotechnology, Sidhharth University, Kapilvastu, Siddharth Nagar, UP 272202 India
| | - Neeraj Dubey
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817 India
| | - Sujit K. Mishra
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti vihar, Odisha 768019 India
- Department of Zoology, Centurion University of Technology and Management, R. Sitapur, Odisha India
| | - Jogeswar Panigrahi
- Department of Biosciences and Bioinformatics, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007 India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti vihar, Odisha 768019 India
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817 India
| |
Collapse
|
52
|
Jayawardhane J, Wijesinghe MKPS, Bykova NV, Igamberdiev AU. Metabolic Changes in Seed Embryos of Hypoxia-Tolerant Rice and Hypoxia-Sensitive Barley at the Onset of Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:2456. [PMID: 34834819 PMCID: PMC8622212 DOI: 10.3390/plants10112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Rice (Oryza sativa L.) and barley (Hordeum vulgare L.) are the cereal species differing in tolerance to oxygen deficiency. To understand metabolic differences determining the sensitivity to low oxygen, we germinated rice and barley seeds and studied changes in the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), activities of the enzymes involved in their scavenging, and measured cell damage parameters. The results show that alcohol dehydrogenase activity was higher in rice than in barley embryos providing efficient anaerobic fermentation. Nitric oxide (NO) levels were also higher in rice embryos indicating higher NO turnover. Both fermentation and NO turnover can explain higher ATP/ADP ratio values in rice embryos as compared to barley. Rice embryos were characterized by higher activity of S-nitrosoglutathione reductase than in barley and a higher level of free thiols in proteins. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase) in imbibed embryos were higher in rice than in barley, which corresponded to the reduced levels of ROS, malonic dialdehyde and electrolyte leakage. The observed differences in metabolic changes in embryos of the two cereal species differing in tolerance to hypoxia can partly explain the adaptation of rice to low oxygen environments.
Collapse
Affiliation(s)
- Jayamini Jayawardhane
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - M. K. Pabasari S. Wijesinghe
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| |
Collapse
|
53
|
Crosstalk during the Carbon-Nitrogen Cycle That Interlinks the Biosynthesis, Mobilization and Accumulation of Seed Storage Reserves. Int J Mol Sci 2021; 22:ijms222112032. [PMID: 34769462 PMCID: PMC8585027 DOI: 10.3390/ijms222112032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrates are the major storage reserves in seeds, and they are produced and accumulated in specific tissues during the growth and development of a plant. The storage products are hydrolyzed into a mobile form, and they are then translocated to the developing tissue following seed germination, thereby ensuring new plant formation and seedling vigor. The utilization of seed reserves is an important characteristic of seed quality. This review focuses on the seed storage reserve composition, source–sink relations and partitioning of the major transported carbohydrate form, i.e., sucrose, into different reserves through sucrolytic processes, biosynthetic pathways, interchanging levels during mobilization and crosstalk based on vital biochemical pathways that interlink the carbon and nitrogen cycles. Seed storage reserves are important due to their nutritional value; therefore, novel approaches to augmenting the targeted storage reserve are also discussed.
Collapse
|
54
|
Zuk M, Szperlik J, Szopa J. Linseed Silesia, Diverse Crops for Diverse Diets. New Solutions to Increase Dietary Lipids in Crop Species. Foods 2021; 10:foods10112675. [PMID: 34828956 PMCID: PMC8623773 DOI: 10.3390/foods10112675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the work was to compare the new variety of oil flax (Silesia) with already cultivated varieties in terms of plant productivity, oil content, fatty acid composition and significant secondary metabolites. The analyzed linseed varieties are characterized by low (Linola), medium (Silesia) and high (Szafir) content of omega-3 fatty acids. Special attention was paid to the quality of the oil and the characteristics that determine its stability (reduction of susceptibility to oxidation). A number of antioxidant compounds of secondary metabolism (simple phenols, phenolic acids, flavonoids, tannins) were identified in the linseed oils. All of these compounds can affect lipid oxidation by a mechanism that attenuates initiating radicals such as hydroxyl or forms an oxidizing primary product such as peroxides. Chelation of metal ions may also be involved in lipid oxidation. We propose a mechanism that encompasses all these processes and facilitates understanding of the complex relationships between them. The general thesis is that the ratio of polyunsaturated fatty acids is associated with a better metabolic state of flaxseed, and thus with a higher nutritional value. In addition, we find a number of specialized secondary metabolites characteristic of the flax studied, which could be useful for chemotaxonomy.
Collapse
Affiliation(s)
- Magdalena Zuk
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
- Linum Fundation, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland;
- Correspondence:
| | - Jakub Szperlik
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
| | - Jan Szopa
- Linum Fundation, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland;
| |
Collapse
|
55
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
56
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
57
|
Grant JE, Ninan A, Cripps-Guazzone N, Shaw M, Song J, Pet Ík I, Novák OE, Tegeder M, Jameson PE. Concurrent overexpression of amino acid permease AAP1(3a) and SUT1 sucrose transporter in pea resulted in increased seed number and changed cytokinin and protein levels. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:889-904. [PMID: 34366001 DOI: 10.1071/fp21011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
Using pea as our model crop, we sought to understand the regulatory control over the import of sugars and amino acids into the developing seeds and its importance for seed yield and quality. Transgenic peas simultaneously overexpressing a sucrose transporter and an amino acid transporter were developed. Pod walls, seed coats, and cotyledons were analysed separately, as well as leaves subtending developing pods. Sucrose, starch, protein, free amino acids, and endogenous cytokinins were measured during development. Temporal gene expression analyses (RT-qPCR) of amino acid (AAP), sucrose (SUT), and SWEET transporter family members, and those from cell wall invertase, cytokinin biosynthetic (IPT) and degradation (CKX) gene families indicated a strong effect of the transgenes on gene expression. In seed coats of the double transgenics, increased content and prolonged presence of cytokinin was particularly noticeable. The transgenes effectively promoted transition of young sink leaves into source leaves. We suggest the increased flux of sucrose and amino acids from source to sink, along with increased interaction between cytokinin and cell wall invertase in developing seed coats led to enhanced sink activity, resulting in higher cotyledon sucrose at process pea harvest, and increased seed number and protein content at maturity.
Collapse
Affiliation(s)
- Jan E Grant
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand; and Corresponding authors. Emails: ;
| | - Annu Ninan
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; and The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Natalia Cripps-Guazzone
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand; and Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Martin Shaw
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; and School of Life Sciences, Yantai University, Yantai 264005, China
| | - Ivan Pet Ík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Ond Ej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; and Corresponding authors. Emails: ;
| |
Collapse
|
58
|
Li F, Yang A, Hu Z, Lin S, Deng Y, Tang YZ. Probing the Energetic Metabolism of Resting Cysts under Different Conditions from Molecular and Physiological Perspectives in the Harmful Algal Blooms-Forming Dinoflagellate Scrippsiella trochoidea. Int J Mol Sci 2021; 22:7325. [PMID: 34298944 PMCID: PMC8307125 DOI: 10.3390/ijms22147325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/02/2023] Open
Abstract
Energetic metabolism is essential in maintaining the viability of all organisms. Resting cysts play important roles in the ecology of dinoflagellates, particularly for harmful algal blooms (HABs)-causative species. However, the energetic metabolism underlying the germination potency maintenance of resting cysts of dinoflagellate have been extremely scarce in studies from physiological and, particularly, molecular perspectives. Therefore, we used the cosmopolitan Scrippsiella trochoidea as a representative of HABs-forming and cyst-producing dinoflagellates in this work to obtain novel insights into the molecular mechanisms, regulating the energetic metabolism in dinoflagellate resting cysts, under different physical condition. As the starting step, we established a cDNA subtractive library via suppression subtractive hybridization (SSH) technology, from which we screened an incomplete sequence for the β subunit of ATP synthase gene (β-F1-ATPase), a key indicator for the status of cell's energetic metabolism. The full-length cDNA of β-F1-ATPase gene from S.trochoidea (Stβ-F1-ATPase) was then obtained via rapid amplification of cDNA ends (RACE) (Accession: MZ343333). Our real-time qPCR detections, in vegetative cells and resting cysts treated with different physical conditions, revealed that (1) the expression of Stβ-F1-ATPase in resting cysts was generally much lower than that in vegetative cells, and (2) the Stβ-F1-ATPase expressions in the resting cysts under darkness, lowered temperature, and anoxia, and during an extended duration of dormancy, were significantly lower than that in cysts under the condition normally used for culture-maintaining (a 12 h light:12 h dark cycle, 21 °C, aerobic, and newly harvested). Our detections of the viability (via Neutral Red staining) and cellular ATP content of resting cysts, at the conditions corresponding to the abovementioned treatments, showed that both the viability and ATP content decreased rapidly within 12 h and then maintained at low levels within the 4-day experimentation under all the three conditions applied (4 °C, darkness, and anoxia), which are well in accordance with the measurements of the transcription of Stβ-F1-ATPase. These results demonstrated that the energy consumption of resting cysts reaches a low, but somehow stable, level within a short time period and is lower at low temperature, darkness, and anoxia than that at ambient temperature. Our work provides an important basis for explaining that resting cysts survive long-term darkness and low temperature in marine sediments from molecular and physiological levels.
Collapse
Affiliation(s)
- Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aoao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
59
|
Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song BH, An YQC, Li Z, Zhang D. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics 2021; 22:453. [PMID: 34134624 PMCID: PMC8207594 DOI: 10.1186/s12864-021-07783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Seeds are the economic basis of oilseed crops, especially soybeans, the most widely cultivated oilseed crop worldwide. Seed development is accompanied by a multitude of diverse cellular processes, and revealing the underlying regulatory activities is critical for seed improvement. RESULTS In this study, we profiled the transcriptomes of developing seeds at 20, 25, 30, and 40 days after flowering (DAF), as these stages represent critical time points of seed development from early to full development. We identified a set of highly abundant genes and highlighted the importance of these genes in supporting nutrient accumulation and transcriptional regulation for seed development. We identified 8925 differentially expressed genes (DEGs) that exhibited temporal expression patterns over the course and expression specificities in distinct tissues, including seeds and nonseed tissues (roots, stems, and leaves). Genes specific to nonseed tissues might have tissue-associated roles, with relatively low transcript abundance in developing seeds, suggesting their spatially supportive roles in seed development. Coexpression network analysis identified several underexplored genes in soybeans that bridge tissue-specific gene modules. CONCLUSIONS Our study provides a global view of gene activities and biological processes critical for seed formation in soybeans and prioritizes a set of genes for further study. The results of this study help to elucidate the mechanism controlling seed development and storage reserves.
Collapse
Affiliation(s)
- Hengyou Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiyan Lv
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Zhimin Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
60
|
Cisneros-Hernández I, Vargas-Ortiz E, Sánchez-Martínez ES, Martínez-Gallardo N, Soto González D, Délano-Frier JP. Highest Defoliation Tolerance in Amaranthus cruentus Plants at Panicle Development Is Associated With Sugar Starvation Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:658977. [PMID: 34163500 PMCID: PMC8215675 DOI: 10.3389/fpls.2021.658977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 05/15/2023]
Abstract
Defoliation tolerance (DT) in Amaranthus cruentus is known to reach its apex at the panicle emergence (PE) phase and to decline to minimal levels at flowering (FL). In this study, defoliation-induced changes were recorded in the content of non-structural carbohydrates and raffinose family oligosaccharides (RFOs), and in the expression and/or activity of sugar starvation response-associated genes in plants defoliated at different vegetative and reproductive stages. This strategy identified sugar-starvation-related factors that explained the opposite DT observed at these key developmental stages. Peak DT at PE was associated with increased cytosolic invertase (CI) activity in all organs and with the extensive induction of various class II trehalose-phosphate synthase (TPS) genes. Contrariwise, least DT at FL coincided with a sharp depletion of starch reserves and with sucrose (Suc) accumulation, in leaves and stems, the latter of which was consistent with very low levels of CI and vacuolar invertase activities that were not further modified by defoliation. Increased Suc suggested growth-inhibiting conditions associated with altered cytosolic Suc-to-hexose ratios in plants defoliated at FL. Augmented cell wall invertase activity in leaves and roots, probably acting in a regulatory rather than hydrolytic role, was also associated with minimal DT observed at FL. The widespread contrast in gene expression patterns in panicles also matched the opposite DT observed at PE and FL. These results reinforce the concept that a localized sugar starvation response caused by C partitioning is crucial for DT in grain amaranth.
Collapse
Affiliation(s)
| | - Erandi Vargas-Ortiz
- Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | | | | | | | - John Paul Délano-Frier
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
61
|
Wang G, Li X, Ye N, Huang M, Feng L, Li H, Zhang J. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. THE NEW PHYTOLOGIST 2021; 230:1925-1939. [PMID: 33629374 DOI: 10.1111/nph.17300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Seed germination is essential for direct seeding in rice. It has been demonstrated that trehalose-6-phosphate phosphatase 1 (OsTPP1) plays roles in improving yield and stress tolerance in rice. In this study, the roles of OsTPP1 on seed germination in rice were investigated. The tpp1 mutant germinated slower than the wild-type (WT), which can be restored by exogenous trehalose. tpp1 seeds showed higher ABA content compared with WT seeds. The tpp1 mutant was hypersensitive to ABA and ABA catabolism inhibitor (Dinicozanole). Furthermore, two ABA catabolism genes were downregulated in the tpp1 mutant which were responsible for increased ABA concentrations, and exogenous trehalose increased transcripts of ABA catabolism genes, suggesting that OsTPP1 and ABA catabolism genes acted in the same signaling pathway. Further analysis showed that a transcription factor of OsGAMYB was an activator of OsTPP1, and expression of OsGAMYB was decreased by both the exogenous and endogenous ABA, subsequently reducing the expression of OsTPP1, which suggested a new signaling pathway required for seed germination in rice. In addition, ABA-responsive genes, especially OsABI5, were invoved in OsTPP1-mediated seed germination. Overall, our study provided new pathways in seed germination that OsTPP1 controlled seed germination through crosstalk with the ABA catabolism pathway.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Mingkun Huang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
62
|
Zablatzká L, Balarynová J, Klčová B, Kopecký P, Smýkal P. Anatomy and Histochemistry of Seed Coat Development of Wild ( Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and Domesticated Pea ( Pisum sativum subsp. sativum L.). Int J Mol Sci 2021; 22:4602. [PMID: 33925728 PMCID: PMC8125792 DOI: 10.3390/ijms22094602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.
Collapse
Affiliation(s)
- Lenka Zablatzká
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Jana Balarynová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Barbora Klčová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Pavel Kopecký
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
- Genetic Resources for Vegetables and Specialty Crops, Crop Research Institute, Šlechtitelů 29, 783 71 Olomouc, Czech Republic
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| |
Collapse
|
63
|
Chesneau G, Torres-Cortes G, Briand M, Darrasse A, Preveaux A, Marais C, Jacques MA, Shade A, Barret M. Temporal dynamics of bacterial communities during seed development and maturation. FEMS Microbiol Ecol 2021; 96:5910485. [PMID: 32966572 DOI: 10.1093/femsec/fiaa190] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Seed microbiota acts as a starting point for the assembly of the plant microbiota and contributes to successful plant establishment. To date, the order and timing of microbial taxa immigration during seed development and maturation remained unknown. We investigated the temporal dynamics of seed bacterial communities in bean and radish. A high phylogenetic turnover was observed for both plant species with few taxa associated with all seed developmental stages. Greater heterogeneity in communities structure within each stage was observed for radish. While, about one-third of radish seed bacterial taxa were detected in buds, flowers and fruits, very few taxa seem to be transmitted by the floral route in bean. In the latter species, bacterial populations belonging to the P. fluorescens species complex were found either in buds, flowers and fruits or in seeds. The relative phylogenetic proximity of these bacterial populations combined with their habitat specificity led us to explore the genetic determinants involved in successful seed transmission in bean. Comparative genomic analyses of representatives bacterial strains revealed dozens of coding sequences specifically associated with seed-transmitted strains. This study provided a first glimpse on processes involved in seed microbiota assembly, which could be used for designing plant-beneficial microbial consortia.
Collapse
Affiliation(s)
- Guillaume Chesneau
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Gloria Torres-Cortes
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Armelle Darrasse
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Preveaux
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Program in Ecology, Evolutionary Biology, and Behavior, The DOE Great Lakes Bioenergy Research Center, and The Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Matthieu Barret
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
64
|
Henriet C, Balliau T, Aimé D, Le Signor C, Kreplak J, Zivy M, Gallardo K, Vernoud V. Proteomics of developing pea seeds reveals a complex antioxidant network underlying the response to sulfur deficiency and water stress. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2611-2626. [PMID: 33558872 DOI: 10.1093/jxb/eraa571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/19/2021] [Indexed: 05/17/2023]
Abstract
Pea is a legume crop producing protein-rich seeds and is increasingly in demand for human consumption and animal feed. The aim of this study was to explore the proteome of developing pea seeds at three key stages covering embryogenesis, the transition to seed-filling, and the beginning of storage-protein synthesis, and to investigate how the proteome was influenced by S deficiency and water stress, applied either separately or combined. Of the 3184 proteins quantified by shotgun proteomics, 2473 accumulated at particular stages, thus providing insights into the proteome dynamics at these stages. Differential analyses in response to the stresses and inference of a protein network using the whole proteomics dataset identified a cluster of antioxidant proteins (including a glutathione S-transferase, a methionine sulfoxide reductase, and a thioredoxin) possibly involved in maintaining redox homeostasis during early seed development and preventing cellular damage under stress conditions. Integration of the proteomics data with previously obtained transcriptomics data at the transition to seed-filling revealed the transcriptional events associated with the accumulation of the stress-regulated antioxidant proteins. This transcriptional defense response involves genes of sulfate homeostasis and assimilation, thus providing candidates for targeted studies aimed at dissecting the signaling cascade linking S metabolism to antioxidant processes in developing seeds.
Collapse
Affiliation(s)
- Charlotte Henriet
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Thierry Balliau
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR Génétique Quantitative et Évolution-Le Moulon, Gif-sur-Yvette, France
| | - Delphine Aimé
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Le Signor
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR Génétique Quantitative et Évolution-Le Moulon, Gif-sur-Yvette, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Vanessa Vernoud
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
65
|
The SV, Snyder R, Tegeder M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 11:628366. [PMID: 33732269 PMCID: PMC7957077 DOI: 10.3389/fpls.2020.628366] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 05/22/2023]
Abstract
In agricultural cropping systems, relatively large amounts of nitrogen (N) are applied for plant growth and development, and to achieve high yields. However, with increasing N application, plant N use efficiency generally decreases, which results in losses of N into the environment and subsequently detrimental consequences for both ecosystems and human health. A strategy for reducing N input and environmental losses while maintaining or increasing plant performance is the development of crops that effectively obtain, distribute, and utilize the available N. Generally, N is acquired from the soil in the inorganic forms of nitrate or ammonium and assimilated in roots or leaves as amino acids. The amino acids may be used within the source organs, but they are also the principal N compounds transported from source to sink in support of metabolism and growth. N uptake, synthesis of amino acids, and their partitioning within sources and toward sinks, as well as N utilization within sinks represent potential bottlenecks in the effective use of N for vegetative and reproductive growth. This review addresses recent discoveries in N metabolism and transport and their relevance for improving N use efficiency under high and low N conditions.
Collapse
Affiliation(s)
| | | | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
66
|
Guo J, Cao K, Yao JL, Deng C, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Guo W, Wang L. Reduced expression of a subunit gene of sucrose non-fermenting 1 related kinase, PpSnRK1βγ, confers flat fruit abortion in peach by regulating sugar and starch metabolism. BMC PLANT BIOLOGY 2021; 21:88. [PMID: 33568056 PMCID: PMC7877075 DOI: 10.1186/s12870-021-02850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fruit abortion is a major limiting factor for fruit production. In flat peach, fruit abortion is present in the whole tree of some accessions during early fruit development. However, the physiological factors and genetic mechanism underlying flat fruit abortion remain largely elusive. RESULTS In this study, we have revealed that the fertilization process was accomplished and the reduction of sucrose and starch contents might result in flat fruit abortion. By combining association and gene expression analysis, a key candidate gene, PpSnRK1βγ, was identified. A 1.67-Mb inversion co-segregated with flat fruit shape altered the promoter activity of PpSnRK1βγ, resulting in much lower expression in aborting flat peach. Ectopic transformation in tomato and transient overexpression in peach fruit have shown that PpSnRK1βγ could increase sugar and starch contents. Comparative transcriptome analysis further confirmed that PpSnRK1βγ participated in carbohydrate metabolism. Subcellular localization found that PpSnRK1βγ was located in nucleus. CONCLUSIONS This study provides a possible reason for flat fruit abortion and identified a critical candidate gene, PpSnRK1βγ, that might be responsible for flat fruit abortion in peach. The results will provide great help in peach breeding and facilitate gene identification for fruit abortion in other plant species.
Collapse
Affiliation(s)
- Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenwu Guo
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
67
|
Meitzel T, Radchuk R, McAdam EL, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross JJ, Lunn JE, Borisjuk L. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. THE NEW PHYTOLOGIST 2021; 229:1553-1565. [PMID: 32984971 DOI: 10.1111/nph.16956] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/13/2020] [Indexed: 05/21/2023]
Abstract
Plants undergo several developmental transitions during their life cycle. One of these, the differentiation of the young embryo from a meristem-like structure into a highly specialized storage organ, is believed to be controlled by local connections between sugars and hormonal response systems. However, we know little about the regulatory networks underpinning the sugar-hormone interactions in developing seeds. By modulating the trehalose 6-phosphate (T6P) content in growing embryos of garden pea (Pisum sativum), we investigate here the role of this signaling sugar during the seed-filling process. Seeds deficient in T6P are compromised in size and starch production, resembling the wrinkled seeds studied by Gregor Mendel. We show also that T6P exerts these effects by stimulating the biosynthesis of the pivotal plant hormone, auxin. We found that T6P promotes the expression of the auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE RELATED2 (TAR2), and the resulting effect on auxin concentrations is required to mediate the T6P-induced activation of storage processes. Our results suggest that auxin acts downstream of T6P to facilitate seed filling, thereby providing a salient example of how a metabolic signal governs the hormonal control of an integral phase transition in a crop plant.
Collapse
Affiliation(s)
- Tobias Meitzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
- DeepTrait S.A., Dobrzańskiego 3, Lublin, 20-262, Poland
| | - Erin L McAdam
- School of Natural Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Ina Thormählen
- Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - John J Ross
- School of Natural Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| |
Collapse
|
68
|
Wu Y, Ren Z, Gao C, Sun M, Li S, Min R, Wu J, Li D, Wang X, Wei Y, Xia Y. Change in Sucrose Cleavage Pattern and Rapid Starch Accumulation Govern Lily Shoot-to-Bulblet Transition in vitro. FRONTIERS IN PLANT SCIENCE 2021; 11:564713. [PMID: 33519832 PMCID: PMC7840508 DOI: 10.3389/fpls.2020.564713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 05/11/2023]
Abstract
In bulb crops, bulbing is a key progress in micropropagation and is the feature that most distinguishes bulbous crops from other plants. Generally, bulbing involves a shoot-to-bulblet transition; however, the underlying mechanism remains elusive. We explored this process by tracking the shoot-to-bulblet transition under different culture conditions. Rapid starch accumulation occurred at 15 days after transplanting (DAT) in the bulblet-inducing treatments as confirmed via histological observations and the significant elevation of starch synthesis related-gene transcription, including LohAGPS, LohAGPL, LohGBSS, LohSS, and LohSBE. However, for shoots that did not transition to bulblets and maintained the shoot status, much higher soluble sugars were detected. Interestingly, we observed a clear shift from invertase-catalyzed to sucrose synthase-catalyzed sucrose cleavage pattern based on the differential expression of LohCWIN and LohSuSy during the key transition stage (prior to and after bulbing at 0-15 DAT). Shoots that transitioned into bulblets showed significantly higher LohSuSy expression, especially LohSuSy4 expression, than shoots that did not transition. A symplastic phloem unloading pathway at the bulblet emergence stage (15 DAT) was verified via the 6(5)-carboxyfluorescein diacetate fluorescent tracer. We propose that starch is the fundamental compound in the shoot-to-bulblet transition and that starch synthesis is likely triggered by the switch from apoplastic to symplastic sucrose unloading, which may be related to sucrose depletion. Furthermore, this study is the first to provide a complete inventory of the genes involved in starch metabolism based on our transcriptome data. Two of these genes, LohAGPS1.2b and LohSSIIId, were verified by rapid amplification of cDNA ends cloning, and these data will provide additional support for Lilium research since whole genome is currently lacking.
Collapse
Affiliation(s)
- Yun Wu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minyi Sun
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shiqi Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruihan Min
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanping Wei
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
69
|
Jiang Y, Tian M, Wang C, Zhang Y. Transcriptome sequencing and differential gene expression analysis reveal the mechanisms involved in seed germination and protocorm development of Calanthe tsoongiana. Gene 2021; 772:145355. [PMID: 33340562 DOI: 10.1016/j.gene.2020.145355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Calanthe tsoongiana is a rare orchid species native to China. Asymbiotic seed germination is of great importance in the ex situ conservation of this species. Based on morphological characteristics and anatomical structures, the C. tsoongiana developmental process from seeds to seedlings was divided into four stages (SA, PB, PC and PD), and subsequently, changes in endogenous hormone contents and gene expression were assessed using RNA-seq analysis. K-means analysis divided the DEGs into eight clusters. The gene expression decreased markedly between the imbibed seed and globular protocorm stages, with this being the most notably enriched cluster. During the seed germination period, DEGs were dominated by ATP metabolic processes, respiration and photosynthesis. A small change in gene expression was found in the globular protocorm versus the finger-like protocorm stages. During the last developmental stage, DEGs were significantly enriched in lignin catabolic processes and plant-type secondary cell wall biogenesis. DEG homologs, such as TSA1, DAO, NCED1, STM, and CUC2, were related to phytohormones and the morphogenesis of shoots, leaves and roots. Particularly, interactions between CUC2 and STM as well as AS1 and STM were likely involved in protocorm formation and development. Furthermore, TSA1 and DAO were distinctly validated and implicated in the synthesis and metabolism of auxin, which has a pivotal role in plant development. Our study is the first to combine morphological and transcriptome analysis to examine the process of protocorm formation and development. The results provide a foundation for understanding the mechanisms of seed germination and protocorm development of C. tsoongiana.
Collapse
Affiliation(s)
- Yating Jiang
- Research Institution of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
| | - Min Tian
- Research Institution of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China.
| | - Caixia Wang
- Research Institution of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
| | - Ying Zhang
- Research Institution of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
| |
Collapse
|
70
|
Shah AN, Tanveer M, Abbas A, Yildirim M, Shah AA, Ahmad MI, Wang Z, Sun W, Song Y. Combating Dual Challenges in Maize Under High Planting Density: Stem Lodging and Kernel Abortion. FRONTIERS IN PLANT SCIENCE 2021; 12:699085. [PMID: 34868101 PMCID: PMC8636062 DOI: 10.3389/fpls.2021.699085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 05/09/2023]
Abstract
High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Mehmet Yildirim
- Department of Field Crop, Faculty of Agriculture, Dicle University, Diyarbakir, Turkey
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | | | - Zhiwei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Weiwei Sun
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Youhong Song
| |
Collapse
|
71
|
Moreno Curtidor C, Annunziata MG, Gupta S, Apelt F, Richard SI, Kragler F, Mueller-Roeber B, Olas JJ. Physiological Profiling of Embryos and Dormant Seeds in Two Arabidopsis Accessions Reveals a Metabolic Switch in Carbon Reserve Accumulation. FRONTIERS IN PLANT SCIENCE 2020; 11:588433. [PMID: 33343596 PMCID: PMC7738343 DOI: 10.3389/fpls.2020.588433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In flowering plants, sugars act as carbon sources providing energy for developing embryos and seeds. Although most studies focus on carbon metabolism in whole seeds, knowledge about how particular sugars contribute to the developmental transitions during embryogenesis is scarce. To develop a quantitative understanding of how carbon composition changes during embryo development, and to determine how sugar status contributes to final seed or embryo size, we performed metabolic profiling of hand-dissected embryos at late torpedo and mature stages, and dormant seeds, in two Arabidopsis thaliana accessions with medium [Columbia-0 (Col-0)] and large [Burren-0 (Bur-0)] seed sizes, respectively. Our results show that, in both accessions, metabolite profiles of embryos largely differ from those of dormant seeds. We found that developmental transitions from torpedo to mature embryos, and further to dormant seeds, are associated with major metabolic switches in carbon reserve accumulation. While glucose, sucrose, and starch predominantly accumulated during seed dormancy, fructose levels were strongly elevated in mature embryos. Interestingly, Bur-0 seeds contain larger mature embryos than Col-0 seeds. Fructose and starch were accumulated to significantly higher levels in mature Bur-0 than Col-0 embryos, suggesting that they contribute to the enlarged mature Bur-0 embryos. Furthermore, we found that Bur-0 embryos accumulated a higher level of sucrose compared to hexose sugars and that changes in sucrose metabolism are mediated by sucrose synthase (SUS), with SUS genes acting non-redundantly, and in a tissue-specific manner to utilize sucrose during late embryogenesis.
Collapse
Affiliation(s)
- Catalina Moreno Curtidor
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sarah Isabel Richard
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Justyna Jadwiga Olas
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
72
|
Transcriptome analyses reveals the dynamic nature of oil accumulation during seed development of Plukenetia volubilis L. Sci Rep 2020; 10:20467. [PMID: 33235240 PMCID: PMC7686490 DOI: 10.1038/s41598-020-77177-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is a shrub native to Amazon rainforests that’s of commercial interest as its seeds contain 35–60% edible oil (dry weight). This oil is one of the healthiest vegetable oils due to its high polyunsaturated fatty acid content and favourable ratio of omega-6 to omega-3 fatty acids. De novo transcriptome assembly and comparative analyses were performed on sacha inchi seeds from five stages of seed development in order to identifying genes associated with oil accumulation and fatty acid production. Of 30,189 unigenes that could be annotated in public databases, 20,446 were differentially expressed unigenes. A total of 14 KEGG pathways related to lipid metabolism were found, and 86 unigenes encoding enzymes involved in α-linolenic acid (ALA) biosynthesis were obtained including five unigenes encoding FATA (Unigene0008403), SAD (Unigene0012943), DHLAT (Unigene0014324), α-CT (Unigene0022151) and KAS II (Unigene0024371) that were significantly up-regulated in the final stage of seed development. A total of 66 unigenes encoding key enzymes involved in the synthesis of triacylglycerols (TAGs) were found, along with seven unigenes encoding PDCT (Unigene0000909), LPCAT (Unigene0007846), Oleosin3 (Unigene0010027), PDAT1 (Unigene0016056), GPDH (Unigene0022660), FAD2 (Unigene0037808) and FAD3 (Unigene0044238); these also proved to be up-regulated in the final stage of seed development.
Collapse
|
73
|
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev 2020; 7:1776-1786. [PMID: 34691511 PMCID: PMC8290959 DOI: 10.1093/nsr/nwaa110] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/02/2023] Open
Abstract
Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here, re-sequencing data from >800 genotypes revealed a strong selection during soybean domestication on GmSWEET10a. The selection of GmSWEET10a conferred simultaneous increases in soybean-seed size and oil content as well as a reduction in the protein content. The result was validated using both near-isogenic lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover, GmSWEET10b was found to be functionally redundant with its homologue GmSWEET10a and to be undergoing selection in current breeding, leading the the elite allele GmSWEET10b, a potential target for present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil and protein contents and seed size in soybean. We conclude that past selection of optimal GmSWEET10a alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite allele GmSWEET10b may further improve the yield and seed quality of modern soybean cultivars.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Bin Zhou
- Institute of Crop Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ya-Chi Yu
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
74
|
Sun S, Yi C, Ma J, Wang S, Peirats-Llobet M, Lewsey MG, Whelan J, Shou H. Analysis of Spatio-Temporal Transcriptome Profiles of Soybean ( Glycine max) Tissues during Early Seed Development. Int J Mol Sci 2020; 21:E7603. [PMID: 33066688 PMCID: PMC7589660 DOI: 10.3390/ijms21207603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023] Open
Abstract
Soybean (Glycine max) is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development. The tissue specificity of gene expression was greater than stage specificity, and only three genes were differentially expressed in all seed tissues. Tissues had both unique and shared enriched functional categories of tissue-specifically expressed genes associated with them. Strong spatio-temporal correlation in gene expression was identified using weighted gene co-expression network analysis, with the most co-expression occurring in one seed tissue. Transcription factors with distinct spatiotemporal gene expression programs in each seed tissue were identified as candidate regulators of expression within those tissues. Gene ontology (GO) enrichment of orthogroup clusters revealed the conserved functions and unique roles of orthogroups with similar and contrasting expression patterns in transcript abundance between soybean and Arabidopsis during embryo proper and endosperm development. Key regulators in each seed tissue and hub genes connecting those networks were characterized by constructing gene regulatory networks. Our findings provide an important resource for describing the structure and function of individual soybean seed compartments during early seed development.
Collapse
Affiliation(s)
- Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Changyu Yi
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Jing Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China;
| | - Marta Peirats-Llobet
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia;
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| |
Collapse
|
75
|
Offler CE, Patrick JW. Transfer cells: what regulates the development of their intricate wall labyrinths? THE NEW PHYTOLOGIST 2020; 228:427-444. [PMID: 32463520 DOI: 10.1111/nph.16707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Transfer cells (TCs) support high nutrient rates into, or at symplasmic discontinuities within, the plant body. Their transport capacity is conferred by an amplified plasma membrane surface area, enriched in nutrient transporters, supported on an intricately invaginated wall labyrinth (WL). Thus, development of the WL is at the heart of TC function. Enquiry has shifted from describing WL architecture and formation to discovering mechanisms regulating WL assembly. Experimental systems used to examine these phenomena are critiqued. Considerable progress has been made in identifying master regulators that commit stem cells to a TC fate (e.g. the maize Myeloblastosis (MYB)-related R1-type transcription factor) and signals that induce differentiated cells to undergo trans-differentiation to a TC phenotype (e.g. sugar, auxin and ethylene). In addition, signals that provide positional information for assembly of the WL include apoplasmic hydrogen peroxide and cytosolic Ca2+ plumes. The former switches on, and specifies the intracellular site for WL construction, while the latter creates subdomains to direct assembly of WL invaginations. Less is known about macromolecule species and their spatial organization essential for WL assembly. Emerging evidence points to a dependency on methyl-esterified homogalacturonan accumulation, unique patterns of cellulose and callose deposition and spatial positioning of arabinogalactan proteins.
Collapse
Affiliation(s)
- Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
76
|
Global transcriptome analysis of subterranean pod and seed in peanut (Arachis hypogaea L.) unravels the complexity of fruit development under dark condition. Sci Rep 2020; 10:13050. [PMID: 32747681 PMCID: PMC7398922 DOI: 10.1038/s41598-020-69943-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Peanut pods develop underground, which is the most salient characteristic in peanut. However, its developmental transcriptome remains largely unknown. In the present study, we sequenced over one billion transcripts to explore the developmental transcriptome of peanut pod using Illumina sequencing. Moreover, we identified and quantified the abundances of 165,689 transcripts in seed and shell tissues along with a pod developmental gradient. The dynamic changes of differentially expressed transcripts (DETs) were described in seed and shell. Additionally, we found that photosynthetic genes were not only pronouncedly enriched in aerial pod, but also played roles in developing pod under dark condition. Genes functioning in photomorphogenesis showed distinct expression profiles along subterranean pod development. Clustering analysis unraveled a dynamic transcriptome, in which transcripts for DNA synthesis and cell division during pod expansion were transitioning to transcripts for cell expansion and storage activity during seed filling. Collectively, our study formed a transcriptional baseline for peanut fruit development under dark condition.
Collapse
|
77
|
Sun Y, Li JQ, Yan JY, Yuan JJ, Li GX, Wu YR, Xu JM, Huang RF, Harberd NP, Ding ZJ, Zheng SJ. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1193-1212. [PMID: 32619040 DOI: 10.1111/jipb.12986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Because Iron (Fe) is an essential element, Fe storage in plant seeds is necessary for seedling establishment following germination. However, the mechanisms controlling seed Fe storage during seed development remain largely unknown. Here we reveal that an ERF95 transcription factor regulates Arabidopsis seed Fe accumulation. We show that expression of ERF95 increases during seed maturation, and that lack of ERF95 reduces seed Fe accumulation, consequently increasing sensitivity to Fe deficiency during seedling establishment. Conversely, overexpression of ERF95 has the opposite effects. We show that lack of ERF95 decreases abundance of FER1 messenger RNA in developing seed, which encodes Fe-sequestering ferritin. Accordingly, a fer1-1 loss-of-function mutation confers reduced seed Fe accumulation, and suppresses ERF95-promoted seed Fe accumulation. In addition, ERF95 binds to specific FER1 promoter GCC-boxes and transactivates FER1 expression. We show that ERF95 expression in maturing seed is dependent on EIN3, the master transcriptional regulator of ethylene signaling. While lack of EIN3 reduces seed Fe content, overexpression of ERF95 rescues Fe accumulation in the seed of ein3 loss-of-function mutant. Finally, we show that ethylene production increases during seed maturation. We conclude that ethylene promotes seed Fe accumulation during seed maturation via an EIN3-ERF95-FER1-dependent signaling pathway.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia Qi Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rong Feng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nicholas P Harberd
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Plant Science, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
78
|
Jammer A, Albacete A, Schulz B, Koch W, Weltmeier F, van der Graaff E, Pfeifhofer HW, Roitsch TG. Early-stage sugar beet taproot development is characterized by three distinct physiological phases. PLANT DIRECT 2020; 4:e00221. [PMID: 32766510 PMCID: PMC7395582 DOI: 10.1002/pld3.221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Alfonso Albacete
- Institute of BiologyUniversity of GrazGrazAustria
- Present address:
Department of Plant Production and AgrotechnologyInstitute for Agri‐Food Research and Development of Murcia (IMIDA)MurciaSpain
| | | | | | | | - Eric van der Graaff
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Present address:
Koppert Cress B.V.MonsterThe Netherlands
| | | | - Thomas G. Roitsch
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Department of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
79
|
Antonets KS, Belousov MV, Sulatskaya AI, Belousova ME, Kosolapova AO, Sulatsky MI, Andreeva EA, Zykin PA, Malovichko YV, Shtark OY, Lykholay AN, Volkov KV, Kuznetsova IM, Turoverov KK, Kochetkova EY, Bobylev AG, Usachev KS, Demidov ON, Tikhonovich IA, Nizhnikov AA. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol 2020; 18:e3000564. [PMID: 32701952 PMCID: PMC7377382 DOI: 10.1371/journal.pbio.3000564] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/19/2020] [Indexed: 02/04/2023] Open
Abstract
Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved β-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.
Collapse
Affiliation(s)
- Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maria E. Belousova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - Yury V. Malovichko
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | | | | | | | | | | | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Konstantin S. Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg. N. Demidov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- INSERM UMR1231, UBFC, Dijon, France
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
80
|
Min CW, Park J, Bae JW, Agrawal GK, Rakwal R, Kim Y, Yang P, Kim ST, Gupta R. In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells 2020; 9:E1517. [PMID: 32580392 PMCID: PMC7349688 DOI: 10.3390/cells9061517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the significant technical advancements in mass spectrometry-based proteomics and bioinformatics resources, dynamic resolution of soybean seed proteome is still limited because of the high abundance of seed storage proteins (SSPs). These SSPs occupy a large proportion of the total seed protein and hinder the identification of low-abundance proteins. Here, we report a TMT-based quantitative proteome analysis of matured and filling stages seeds of high-protein (Saedanbaek) and low-protein (Daewon) soybean cultivars by application of a two-way pre-fractionation both at the levels of proteins (by PS) and peptides (by basic pH reverse phase chromatography). Interestingly, this approach led to the identification of more than 5900 proteins which is the highest number of proteins reported to date from soybean seeds. Comparative protein profiles of Saedanbaek and Daewon led to the identification of 2200 and 924 differential proteins in mature and filling stages seeds, respectively. Functional annotation of the differential proteins revealed enrichment of proteins related to major metabolism including amino acid, major carbohydrate, and lipid metabolism. In parallel, analysis of free amino acids and fatty acids in the filling stages showed higher contents of all the amino acids in the Saedanbaek while the fatty acids contents were found to be higher in the Daewon. Taken together, these results provide new insights into proteome changes during filling stages in soybean seeds. Moreover, results reported here also provide a framework for systemic and large-scale dissection of seed proteome for the seeds rich in SSPs by two-way pre-fractionation combined with TMT-based quantitative proteome analysis.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Joonho Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 03080, Korea; (J.P.); (Y.K.)
| | - Jin Woo Bae
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea;
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; (G.K.A.); (R.R.)
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; (G.K.A.); (R.R.)
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 3058574, Japan
| | - Youngsoo Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 03080, Korea; (J.P.); (Y.K.)
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
81
|
Sinha A, Haider T, Narula K, Ghosh S, Chakraborty N, Chakraborty S. Integrated Seed Proteome and Phosphoproteome Analyses Reveal Interplay of Nutrient Dynamics, Carbon–Nitrogen Partitioning, and Oxidative Signaling in Chickpea. Proteomics 2020; 20:e1900267. [DOI: 10.1002/pmic.201900267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Arunima Sinha
- National Institute of Plant Genome Research Aruna Asaf Ali Marg New Delhi 110067 India
| | - Toshiba Haider
- National Institute of Plant Genome Research Aruna Asaf Ali Marg New Delhi 110067 India
| | - Kanika Narula
- National Institute of Plant Genome Research Aruna Asaf Ali Marg New Delhi 110067 India
| | - Sudip Ghosh
- National Institute of Plant Genome Research Aruna Asaf Ali Marg New Delhi 110067 India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research Aruna Asaf Ali Marg New Delhi 110067 India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
82
|
Malovichko YV, Shtark OY, Vasileva EN, Nizhnikov AA, Antonets KS. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea ( Pisum sativum L.). Cells 2020; 9:E779. [PMID: 32210065 PMCID: PMC7140803 DOI: 10.3390/cells9030779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023] Open
Abstract
The garden pea (Pisum sativum L.) is a legume crop of immense economic value. Extensive breeding has led to the emergence of numerous pea varieties, of which some are distinguished by accelerated development in various stages of ontogenesis. One such trait is rapid seed maturation, which, despite novel insights into the genetic control of seed development in legumes, remains poorly studied. This article presents an attempt to dissect mechanisms of early maturation in the pea line Sprint-2 by means of whole transcriptome RNA sequencing in two developmental stages. By using a de novo assembly approach, we have obtained a reference transcriptome of 25,756 non-redundant entries expressed in pea seeds at either 10 or 20 days after pollination. Differential expression in Sprint-2 seeds has affected 13,056 transcripts. A comparison of the two pea lines with a common maturation rate demonstrates that while at 10 days after pollination, Sprint-2 seeds show development retardation linked to intensive photosynthesis, morphogenesis, and cell division, and those at 20 days show a rapid onset of desiccation marked by the cessation of translation and cell anabolism and accumulation of dehydration-protective and -storage moieties. Further inspection of certain transcript functional categories, including the chromatin constituent, transcription regulation, protein turnover, and hormonal regulation, has revealed transcriptomic trends unique to specific stages and cultivars. Among other remarkable features, Sprint-2 demonstrated an enhanced expression of transposable element-associated open reading frames and an altered expression of major maturation regulators and DNA methyltransferase genes. To the best of our knowledge, this is the first comparative transcriptomic study in which the issue of the seed maturation rate is addressed.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
| | - Ekaterina N. Vasileva
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
83
|
Li S, Cai WJ, Wang W, Sun MX, Feng YQ. Rapid Analysis of Monosaccharides in Sub-milligram Plant Samples Using Liquid Chromatography-Mass Spectrometry Assisted by Post-column Derivatization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2588-2596. [PMID: 32031793 DOI: 10.1021/acs.jafc.9b07623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monosaccharides play important roles in plant growth and development, and their biofunctions are closely related to their endogenous contents. Therefore, the determination of monosaccharides is beneficial for the further study of monosaccharide biofunction. In this work, we developed a liquid chromatography-mass spectrometry analytical method assisted by a post-column derivatization technique (LC-PCD-MS) for the fast and automatic determination of 16 monosaccharides in samples. Post-column chemical derivatization of monosaccharides was performed by a reaction of monosaccharides with 4-benzylaminobenzeneboronic acid (4-PAMBA) through boronate ester formation in a three-way connector. 4-PAMBA worked as a derivatization reagent to improve the selectivity and sensitivity of monosaccharide detection by MS. The developed LC-PCD-MS method integrates LC separation, chemical derivatization, and MS detection in one run, thus greatly reducing the analysis time for each sample. The limits of detection and limits of quantification for 16 monosaccharides were in the range of 0.002-0.1 and 0.007-0.5 ng/mL, respectively. Good linearity was obtained from the linear regression, with a determination coefficient (R2) ranging from 0.9928 to 1.0000. The relative recoveries were in the range of 80.7-117.8%, with the intra- and interday relative standard deviations less than 19.7 and 16.5%, respectively, indicating good accuracy and acceptable reproducibility of the method. Finally, the method was successfully applied to investigate the spatial and temporal distribution of 16 monosaccharides in the developing flower and germinating seed of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Wen-Jing Cai
- Department of Chemistry , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Yu-Qi Feng
- Department of Chemistry , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
- Frontier Science Center for Immunology and Metabolism , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| |
Collapse
|
84
|
Simkin AJ, Faralli M, Ramamoorthy S, Lawson T. Photosynthesis in non-foliar tissues: implications for yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1001-1015. [PMID: 31802560 PMCID: PMC7064926 DOI: 10.1111/tpj.14633] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis is currently a focus for crop improvement. The majority of this work has taken place and been assessed in leaves, and limited consideration has been given to the contribution that other green tissues make to whole-plant carbon assimilation. The major focus of this review is to evaluate the impact of non-foliar photosynthesis on carbon-use efficiency and total assimilation. Here we appraise and summarize past and current literature on the substantial contribution of different photosynthetically active organs and tissues to productivity in a variety of different plant types, with an emphasis on fruit and cereal crops. Previous studies provide evidence that non-leaf photosynthesis could be an unexploited potential target for crop improvement. We also briefly examine the role of stomata in non-foliar tissues, gas exchange, maintenance of optimal temperatures and thus photosynthesis. In the final section, we discuss possible opportunities to manipulate these processes and provide evidence that Triticum aestivum (wheat) plants genetically manipulated to increase leaf photosynthesis also displayed higher rates of ear assimilation, which translated to increased grain yield. By understanding these processes, we can start to provide insights into manipulating non-foliar photosynthesis and stomatal behaviour to identify novel targets for exploitation in continuing breeding programmes.
Collapse
Affiliation(s)
- Andrew J. Simkin
- Genetics, Genomics and BreedingNIAB EMRNew Road, East MallingKentME19 6BJUK
| | - Michele Faralli
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- Present address:
Department of Biodiversity and Molecular EcologyResearch and Innovation CentreFondazione Edmund Mach, via Mach 1San Michele all'Adige (TN)38010Italy
| | - Siva Ramamoorthy
- School of Bio Sciences and TechnologyVellore Institute of TechnologyVellore632014India
| | - Tracy Lawson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
| |
Collapse
|
85
|
Lu MZ, Snyder R, Grant J, Tegeder M. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:217-236. [PMID: 31520495 DOI: 10.1111/tpj.14533] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 05/03/2023]
Abstract
Seed development largely depends on the long-distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source-to-sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this 'Push-and-Pull' approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source-to-sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1-overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild-type plants. Together, the results demonstrate that the SUT1-overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Push-and-Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Rachel Snyder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Jan Grant
- New Zealand Institute for Plant and Food Research Ltd, Christchurch, 8140, New Zealand
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
86
|
Yang P, Li Z, Wu C, Luo Y, Li J, Wang P, Gao X, Gao J, Feng B. Identification of Differentially Expressed Genes Involved in the Molecular Mechanism of Pericarp Elongation and Differences in Sucrose and Starch Accumulation between Vegetable and Grain Pea ( Pisum sativum L.). Int J Mol Sci 2019; 20:E6135. [PMID: 31817460 PMCID: PMC6941006 DOI: 10.3390/ijms20246135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
Pea (Pisum sativum L.), as a major source of plant protein, is becoming one of the major cultivated crop species worldwide. In pea, the pericarp is an important determinant of the morphological characteristics and seed yield. To investigate the molecular mechanism of pericarp elongation as well as sucrose and starch accumulation in the pods of different pea cultivars, we performed transcriptomic analysis of the pericarp of two types of pea cultivar (vegetable pea and grain pea) using RNA-seq. A total of 239.44 Gb of clean sequence data were generated, and were aligned to the reference genome of Pisum sativum L. In the two samples, 1935 differentially expressed genes (DEGs) were identified. Among these DEGs, three antioxidant enzyme superoxide dismutase (SOD) were detected to have higher expression levels in the grain pea pericarps at the pod-elongating stages. Otherwise, five peroxidase (POD)-encoding genes were detected to have lower expression levels in the vegetative pericarps at the development stage of pea pod growth. Furthermore, genes related to starch and sucrose metabolism in the pea pod, such as SUS, INV, FBA, TPI, ADPase, SBE, SSS, and GBSS, were found to be differentially expressed. The RNA-seq data were validated through real-time quantitative RT-PCR of 13 randomly selected genes. Our findings provide the gene expression profile of, as well as differential expression information on, the two pea cultivars, which will lay the foundation for further studies on pod development and nutrition accumulation in the pea and provide valuable information for pea cultivar improvement.
Collapse
Affiliation(s)
- Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Zhonghao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Caoyang Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Yan Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
87
|
Das A, Nigam D, Junaid A, Tribhuvan KU, Kumar K, Durgesh K, Singh NK, Gaikwad K. Expressivity of the key genes associated with seed and pod development is highly regulated via lncRNAs and miRNAs in Pigeonpea. Sci Rep 2019; 9:18191. [PMID: 31796783 PMCID: PMC6890743 DOI: 10.1038/s41598-019-54340-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNA’s like miRNA, lncRNA, have gained immense importance as a significant regulatory factor in different physiological and developmental processes in plants. In an effort to understand the molecular role of these regulatory agents, in the present study, 3019 lncRNAs and 227 miRNAs were identified from different seed and pod developmental stages in Pigeonpea, a major grain legume of Southeast Asia and Africa. Target analysis revealed that 3768 mRNAs, including 83 TFs were targeted by lncRNAs; whereas 3060 mRNA, including 154 TFs, were targeted by miRNAs. The targeted transcription factors majorly belong to WRKY, MYB, bHLH, etc. families; whereas the targeted genes were associated with the embryo, seed, and flower development. Total 302 lncRNAs interact with miRNAs and formed endogenous target mimics (eTMs) which leads to sequestering of the miRNAs present in the cell. Expression analysis showed that notably, Cc_lncRNA-2830 expression is up-regulated and sequestrates miR160h in pod leading to higher expression of the miR160h target gene, Auxin responsive factor-18. A similar pattern was observed for SPIKE, Auxin signaling F-box-2, Bidirectional sugar transporter, and Starch synthetase-2 eTMs. All the identified target mRNAs code for transcription factor and genes are involved in the processes like cell division, plant growth and development, starch synthesis, sugar transportation and accumulation of storage proteins which are essential for seed and pod development. On a combinatorial basis, our study provides a lncRNA and miRNA based regulatory insight into the genes governing seed and pod development in Pigeonpea.
Collapse
Affiliation(s)
- Antara Das
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Deepti Nigam
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Alim Junaid
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Kuldeep Kumar
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - N K Singh
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India.
| |
Collapse
|
88
|
Phosphorylation of TIP3 Aquaporins during Phaseolus vulgaris Embryo Development. Cells 2019; 8:cells8111362. [PMID: 31683651 PMCID: PMC6912600 DOI: 10.3390/cells8111362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022] Open
Abstract
The membrane phosphoproteome in plant seed changes dynamically during embryo development. We examined the patterns of Phaseolus vulgaris (common bean) seed membrane protein phosphorylation from the mid-maturation stage until two days after germination. Serine and threonine phosphorylation declined during seed maturation while tyrosine phosphorylation remained relatively constant. We discovered that the aquaporin PvTIP3;1 is the primary seed membrane phosphoprotein, and PvTIP3;2 shows a very low level of expression. The level of phosphorylated Ser7 in PvTIP3;1 increased four-fold after seed maturation. Since phosphorylation increases water channel activity, we infer that water transport by PvTIP3;1 is highest in dry and germinating seeds, which would be optimal for seed imbibition. By the use of isoform-specific, polyclonal peptide antibodies, we found that PvTIP3;2 is expressed in a developmental pattern similar to PvTIP3;1. Unexpectedly, PvTIP3;2 is tyrosine phosphorylated following seed maturation, which may suggest a mechanism for the regulation of PvTIP3;2 following seed germination. Analysis of protein secondary structure by circular dichroism spectroscopy indicated that the amino-terminal domain of PvTIP3;1 is generally unstructured, and phosphorylation increases polyproline II (PPII) helical structure. The carboxy-terminal domain also gains PPII character, but in a pH-dependent manner. These structural changes are a first step to understand TIP3 aquaporin regulation.
Collapse
|
89
|
Hell AF, Kretzschmar FS, Simões K, Heyer AG, Barbedo CJ, Braga MR, Centeno DC. Metabolic Changes on the Acquisition of Desiccation Tolerance in Seeds of the Brazilian Native Tree Erythrina speciosa. FRONTIERS IN PLANT SCIENCE 2019; 10:1356. [PMID: 31708957 PMCID: PMC6819373 DOI: 10.3389/fpls.2019.01356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 05/31/2023]
Abstract
Erythrina speciosa Andrews (Fabaceae) is a native tree of Atlantic forest from Southern and Southeastern Brazil. Although this species is found in flooded areas, it produces highly desiccation tolerant seeds. Here, we investigated the physiological and metabolic events occurring during seed maturation of E. speciosa aiming to better understand of its desiccation tolerance acquisition. Seeds were separated into six stages of maturation by the pigmentation of the seed coat. Water potential (WP) and water content (WC) decreased gradually from the first stage to the last stage of maturation (VI), in which seeds reached the highest accumulation of dry mass and seed coat acquired water impermeability. At stage III (71% WC), although seeds were intolerant to desiccation, they were able to germinate (about 15%). Desiccation tolerance was first observed at stage IV (67% WC), in which 40% of seeds were tolerant. At stage V (24% WC), all seeds were tolerant to desiccation and at stage VI all seeds germinated. Increased deposition of the arabinose-containing polysaccharides, which are known as cell wall plasticizers polymers, was observed up to stage IV of seed maturation. Raffinose and stachyose gradually increased in axes and cotyledons with greater increment in the fourth stage. Metabolic profile analysis showed that levels of sugars, organic, and amino acids decrease drastically in embryonic axes, in agreement with lower respiratory rates during maturation. Moreover, a non-aqueous fractionation revealed a change on the proportions of sugar accumulation among cytosol, plastid, and vacuoles between the active metabolism (stage I) and the dormant seeds (stage VI). The results indicate that the physiological maturity of the seeds of E. speciosa is reached at stage V and that the accumulation of raffinose can be a result of the change in the use of carbon, reducing metabolic activity during maturation. This work confirms that raffinose is involved in desiccation tolerance in seeds of E. speciosa, especially considering the different subcellular compartments and suggests even that the acquisition of desiccation tolerance in this species occurs in stages prior to the major changes in WC.
Collapse
Affiliation(s)
- Aline F. Hell
- Curso de Pós-Graduação em Biodiversidade e Meio Ambiente do Instituto de Botânica de São Paulo, São Paulo, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Fernanda S. Kretzschmar
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | | | - Arnd G. Heyer
- Department of Plant Biotechnology, Universität Stuttgart, Stuttgart, Germany
| | - Claudio J. Barbedo
- Núcleo de Pesquisa em Sementes, Instituto de Botânica, São Paulo, Brazil
| | - Marcia R. Braga
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, Brazil
| | - Danilo C. Centeno
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
90
|
Xu X, Ren Y, Wang C, Zhang H, Wang F, Chen J, Liu X, Zheng T, Cai M, Zeng Z, Zhou L, Zhu S, Tang W, Wang J, Guo X, Jiang L, Chen S, Wan J. OsVIN2 encodes a vacuolar acid invertase that affects grain size by altering sugar metabolism in rice. PLANT CELL REPORTS 2019; 38:1273-1290. [PMID: 31321495 DOI: 10.1007/s00299-019-02443-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/19/2019] [Accepted: 07/13/2019] [Indexed: 05/29/2023]
Abstract
OsVIN2, a vacuolar invertase, affects grain size and yield by altering sugar composition, transport, and starch accumulation in rice. Grain size, a major determinant of rice yield, is influenced by many developmental and environmental factors. Sugar metabolism plays vital roles in plant development. However, the way in which sugar metabolism affects rice grain size remains largely elusive. In this study, we characterized the small grain-size rice mutant sgs1. Histological analyses showed that reduced spikelet hull and endosperm size results from decreased cell size rather than cell number. Map-based cloning and complementation tests revealed that a DaiZ7 transposon insertion in a vacuolar invertase gene OsVIN2 is responsible for the mutant phenotype. Subcellular distribution and biochemical analysis indicated that OsVIN2 is located in the vacuolar lumen, and that its sucrose hydrolysis activity is maintained under acidic conditions. Furthermore, an altered sugar content with increased sucrose and decreased hexose levels, as well as changes in invertase and sucrose synthase activities, sugar transport gene expression, and starch constitution in sgs1 implies that OsVIN2 affects sucrose metabolism, including sugar composition, transport, and conversion from the source to the sink organs. Collectively, OsVIN2 is involved in sugar metabolism, and thus regulates grain size; our findings provide insights into grain development and also suggest a potential strategy to improve grain quality and yield in rice.
Collapse
Affiliation(s)
- Xinyang Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jun Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tianhui Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Maohong Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoqiong Zeng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Weijie Tang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiulin Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Saihua Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
91
|
Ribalta FM, Pazos-Navarro M, Edwards K, Ross JJ, Croser JS, Ochatt SJ. Expression Patterns of Key Hormones Related to Pea ( Pisum sativum L.) Embryo Physiological Maturity Shift in Response to Accelerated Growth Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:1154. [PMID: 31611890 PMCID: PMC6776635 DOI: 10.3389/fpls.2019.01154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/23/2019] [Indexed: 05/28/2023]
Abstract
Protocols have been proposed for rapid generation turnover of temperate legumes under conditions optimized for day-length, temperature, and light spectra. These conditions act to compress time to flowering and seed development across genotypes. In pea, we have previously demonstrated that embryos do not efficiently germinate without exogenous hormones until physiological maturity is reached at 18 days after pollination (DAP). Sugar metabolism and moisture content have been implicated in the modulation of embryo maturity. However, the role of hormones in regulating seed development is poorly described in legumes. To address this gap, we characterized hormonal profiles (IAA, chlorinated auxin [4-Cl-IAA], GA20, GA1, and abscisic acid [ABA]) of developing seeds (10-22 DAP) from diverse pea genotypes grown under intensive conditions optimized for rapid generation turnover and compared them to profiles of equivalent samples from glasshouse conditions. Growing plants under intensive conditions altered the seed hormone content by advancing the auxin, gibberellins (GAs) and ABA profiles by 4 to 8 days, compared with the glasshouse control. Additionally, we observed a synchronization of the auxin profiles across genotypes. Under intensive conditions, auxin peaks were observed at 10 to 12 DAP and GA20 peaks at 10 to 16 DAP, indicative of the end of embryo morphogenesis and initiation of seed desiccation. GA1 was detected only in seeds harvested in the glasshouse. These results were associated with an acceleration of embryo physiological maturity by up to 4 days in the intensive environment. We propose auxin and GA profiles as reliable indicators of seed maturation. The biological relevance of these hormonal fluctuations to the attainment of physiological maturity, in particular the role of ABA and GA, was investigated through the study of precocious in vitro germination of seeds 12 to 22 DAP, with and without exogenous hormones. The extent of sensitivity of developing seeds to exogenous ABA was strongly genotype-dependent. Concentrations between 5 and 10 µM inhibited germination of seeds 18 DAP. Germination of seeds 12 DAP was enhanced 2.5- to 3-fold with the addition of 125 µM GA3. This study provides further insights into the hormonal regulation of seed development and in vitro precocious germination in legumes and contributes to the design of efficient and reproducible biotechnological tools for rapid genetic gain.
Collapse
Affiliation(s)
- Federico M. Ribalta
- Centre for Plant Genetics and Breeding, School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Maria Pazos-Navarro
- Centre for Plant Genetics and Breeding, School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Kylie Edwards
- Centre for Plant Genetics and Breeding, School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - John J. Ross
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Janine S. Croser
- Centre for Plant Genetics and Breeding, School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Sergio J. Ochatt
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
92
|
Raizada A, Souframanien J. Transcriptome sequencing, de novo assembly, characterisation of wild accession of blackgram (Vigna mungo var. silvestris) as a rich resource for development of molecular markers and validation of SNPs by high resolution melting (HRM) analysis. BMC PLANT BIOLOGY 2019; 19:358. [PMID: 31419947 PMCID: PMC6697964 DOI: 10.1186/s12870-019-1954-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/31/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Blackgram [Vigna mungo (L.) Hepper], is an important legume crop of Asia with limited genomic resources. We report a comprehensive set of genic simple sequence repeat (SSR) and single nucleotide polymorphism (SNPs) markers using Illumina MiSeq sequencing of transcriptome and its application in genetic variation analysis and mapping. RESULTS Transcriptome sequencing of immature seeds of wild blackgram, V. mungo var. silvestris by Illumina MiSeq technology generated 1.9 × 107 reads, which were assembled into 40,178 transcripts (TCS) with an average length of 446 bp covering 2.97 GB of the genome. A total of 38,753 CDS (Coding sequences) were predicted from 40,178 TCS and 28,984 CDS were annotated through BLASTX and mapped to GO and KEGG database resulting in 140 unique pathways. The tri-nucleotides were most abundant (39.9%) followed by di-nucleotide (30.2%). About 60.3 and 37.6% of SSR motifs were present in the coding sequences (CDS) and untranslated regions (UTRs) respectively. Among SNPs, the most abundant substitution type were transitions (Ts) (61%) followed by transversions (Tv) type (39%), with a Ts/Tv ratio of 1.58. A total of 2306 DEGs were identified by RNA Seq between wild and cultivar and validation was done by quantitative reverse transcription polymerase chain reaction. In this study, we genotyped SNPs with a validation rate of 78.87% by High Resolution Melting (HRM) Assay. CONCLUSION In the present study, 1621genic-SSR and 1844 SNP markers were developed from immature seed transcriptome sequence of blackgram and 31 genic-SSR markers were used to study genetic variations among different blackgram accessions. Above developed markers contribute towards enriching available genomic resources for blackgram and aid in breeding programmes.
Collapse
Affiliation(s)
- Avi Raizada
- Nuclear Agriculture and Biotechnology Division, BARC, Trombay, Mumbai, Trombay, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Anushakti Nagar, 400094, India
| | - J Souframanien
- Nuclear Agriculture and Biotechnology Division, BARC, Trombay, Mumbai, Trombay, 400085, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Anushakti Nagar, 400094, India.
| |
Collapse
|
93
|
Ratajczak E, Staszak AM, Wojciechowska N, Bagniewska-Zadworna A, Dietz KJ. Regulation of thiol metabolism as a factor that influences the development and storage capacity of beech seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:61-70. [PMID: 31200171 DOI: 10.1016/j.jplph.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 05/07/2023]
Abstract
Seeds are the basis of propagation for the common beech (Fagus sylvatica L.), but the seed set of the beech is unsteady, with 5-10 years between abundant crops. Beech seeds are very difficult to store and lose their viability quickly even in optimum storage conditions. To date, it has not been possible to determine factors indicative of the aging process and the loss of viability of beech seeds during storage. To address this important economic challenge and interesting scientific problem, we analyzed the adjustment of the redox state during the development and storage of seeds. Many metabolic processes are based on reduction and oxidation reactions. Thiol proteins control and react to the redox state in the cells. The level of thiol proteins increased during seed maturation and decreased during storage. Gel-based redox proteomics identified 17 proteins in beech seeds during development. The proteins could be assigned to processes like metabolism and antioxidant functions. During storage, the number of proteins decreased to only six, i.e., oxidoreductases, peptidases, hydrolases and isomerases. The occurrence of peroxiredoxins (PRX) as thiol peroxidases and redox regulators indicates an important role of cytosolic 1CysPRX and PRXIIC, mitochondrial PRXIIF, and plastidic PRXIIE, 2CysPRX, and PRXQ in beech seeds during development and storage. Particularly, 2CysPRX was present in beech seeds during development and storage and may perform an important function in regulation of the redox state during both seed development and storage. The role of thiol proteins in the regulation of the redox state during the development and storage of beech seeds is discussed.
Collapse
Affiliation(s)
- E Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, 62-035, Kórnik, Poland.
| | - A M Staszak
- Plant Physiology Department, Faculty of Biology and Chemistry, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - N Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - A Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - K J Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, University Street 25, Bielefeld, 33501, Germany
| |
Collapse
|
94
|
O'Neill JP, Colon KT, Jenik PD. The onset of embryo maturation in Arabidopsis is determined by its developmental stage and does not depend on endosperm cellularization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:286-301. [PMID: 30900325 PMCID: PMC6635039 DOI: 10.1111/tpj.14324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 05/06/2023]
Abstract
Seeds are dormant and desiccated structures, filled with storage products to be used after germination. These properties are determined by the maturation program, which starts, in Arabidopsis thaliana, mid-embryogenesis, at about the same time and developmental stage in all the seeds in a fruit. The two factors, chronological and developmental time, are closely entangled during seed development, so their relative contribution to the transition to maturation is not well understood. It is also unclear whether that transition is determined autonomously by each seed or whether it depends on signals from the fruit. The onset of maturation follows the cellularization of the endosperm, and it has been proposed that there exists a causal relationship between both processes. We explored all these issues by analyzing markers for maturation in Arabidopsis mutant seeds that develop at a slower pace, or where endosperm cellularization happens too early, too late, or not at all. Our data show that the developmental stage of the embryo is the key determinant of the initiation of maturation, and that each seed makes that transition autonomously. We also found that, in contrast with previous models, endosperm cellularization is not required for the onset of maturation, suggesting that this transition is independent of the hexose/sucrose ratio in the seed. Our observations indicate that the mechanisms that control endosperm cellularization, embryo growth, and embryo maturation act independently of each other.
Collapse
Affiliation(s)
- John P O'Neill
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| | - Kristen T Colon
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| | - Pablo D Jenik
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| |
Collapse
|
95
|
Li M, Wang S, Liu Y, Zhang Y, Ren M, Liu L, Lu T, Wei H, Wei Z. Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. PLANT MOLECULAR BIOLOGY 2019; 100:215-230. [PMID: 31053988 DOI: 10.1007/s11103-019-00850-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Two homologs PsnSuSy1 and PsnSuSy2 from poplar played largely similar but little distinct roles in modulating sink strength, accelerating vegetative growth and modifying secondary growth of plant. Co-overexpression of them together resulted in small but perceptible additive effects. Sucrose synthase (SuSy) acts as a crucial determinant of sink strength by controlling the conversion of sucrose into UDP-glucose, which is not only the sole precursor for cellulose biosynthesis but also an extracellular signaling molecule for plants growth. Therefore, modification of SuSy activity in plants is of utmost importance. We have isolated two SuSy genes from poplar, PsnSuSy1 and PsnSuSy2, which were preferentially expressed in secondary xylem/phloem. To investigate their functions, T2 tobacco transgenic lines of PsnSuSy1 and PsnSuSy2 were generated and then crossed to generate PsnSuSy1/PsnSuSy2 dual overexpression transgenic lines. SuSy activities in all lines were significantly increased though PsnSuSy1/PsnSuSy2 lines only exhibited slightly higher SuSy activities than either PsnSuSy1 or PsnSuSy2 lines. The significantly increased fructose and glucose, engendered by augmented SuSy activities, caused the alternations of many physiological, biochemical measures and phenotypic traits that include accelerated vegetative growth, thickened secondary cell wall, and increased stem breaking force, accompanied with altered expression levels of related pathway genes. The correlation relationships between SuSy activities and many of these traits were statistically significant. However, differences of almost all traits among three types of transgenic lines were insignificant. These findings clearly demonstrated that PsnSuSy1 and PsnSuSy2 had similar but little distinct functions and insubstantial additive effects on modulating sink strength and affecting allocation of carbon elements among secondary cell wall components.
Collapse
Affiliation(s)
- Meilang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Shuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Menxuan Ren
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Lulu Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Tingting Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hairong Wei
- School of Forest Resource and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
96
|
Galibina NA, Novitskaya LL, Nikerova KM, Moshchenskaya YL, Borodina MN, Sofronova IN. Apoplastic Invertase Activity Regulation in the Cambial Zone of Karelian Birch. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
97
|
Shen S, Ma S, Liu Y, Liao S, Li J, Wu L, Kartika D, Mock HP, Ruan YL. Cell Wall Invertase and Sugar Transporters Are Differentially Activated in Tomato Styles and Ovaries During Pollination and Fertilization. FRONTIERS IN PLANT SCIENCE 2019; 10:506. [PMID: 31057596 PMCID: PMC6482350 DOI: 10.3389/fpls.2019.00506] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 05/05/2023]
Abstract
Flowering plants depend on pollination and fertilization to activate the transition from ovule to seed and ovary to fruit, namely seed and fruit set, which are key for completing the plant life cycle and realizing crop yield potential. These processes are highly energy consuming and rely on the efficient use of sucrose as the major nutrient and energy source. However, it remains elusive as how sucrose imported into and utilizated within the female reproductive organ is regulated in response to pollination and fertilization. Here, we explored this issue in tomato by focusing on genes encoding cell wall invertase (CWIN) and sugar transporters, which are major players in sucrose phloem unloading, and sink development. The transcript level of a major CWIN gene, LIN5, and CWIN activity were significantly increased in style at 4 h after pollination (HAP) in comparison with that in the non-pollination control, and this was sustained at 2 days after pollination (DAP). In the ovaries, however, CWIN activity and LIN5 expression did not increase until 2 DAP when fertilization occurred. Interestingly, a CWIN inhibitor gene INVINH1 was repressed in the pollinated style at 2 DAP. In response to pollination, the style exhibited increased expressions of genes encoding hexose transporters, SlHT1, 2, SlSWEET5b, and sucrose transporters SlSUT1, 2, and 4 from 4 HAP to 2 DAP. Upon fertilization, SlSUT1 and SlHT1 and 2, but not SlSWEETs, were also stimulated in fruitlets at 2 DAP. Together, the findings reveal that styles respond promptly and more broadly to pollination for activation of CWIN and sugar transporters to fuel pollen tube elongation, whereas the ovaries do not exhibit activation for some of these genes until fertilization occurs. HIGHLIGHTS Expression of genes encoding cell wall invertases and sugar transporters was stimulated in pollinated style and fertilized ovaries in tomato.
Collapse
Affiliation(s)
- Si Shen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Ma
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yonghua Liu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shengjin Liao
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jun Li
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Limin Wu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dewi Kartika
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
98
|
Bernal J, Mouzo D, López-Pedrouso M, Franco D, García L, Zapata C. The Major Storage Protein in Potato Tuber Is Mobilized by a Mechanism Dependent on Its Phosphorylation Status. Int J Mol Sci 2019; 20:ijms20081889. [PMID: 30999555 PMCID: PMC6514604 DOI: 10.3390/ijms20081889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
The role of the protein phosphorylation mechanism in the mobilization of vegetative storage proteins (VSPs) is totally unknown. Patatin is the major VSP of the potato (Solanum tuberosum L.) tuber that encompasses multiple differentially phosphorylated isoforms. In this study, temporal changes in the phosphorylation status of patatin isoforms and their involvement in patatin mobilization are investigated using phosphoproteomic methods based on targeted two-dimensional electrophoresis (2-DE). High-resolution 2-DE profiles of patatin isoforms were obtained in four sequential tuber life cycle stages of Kennebec cultivar: endodormancy, bud break, sprouting and plant growth. In-gel multiplex identification of phosphorylated isoforms with Pro-Q Diamond phosphoprotein-specific stain revealed an increase in the number of phosphorylated isoforms after the tuber endodormancy stage. In addition, we found that the phosphorylation status of patatin isoforms significantly changed throughout the tuber life cycle (P < 0.05) using the chemical method of protein dephosphorylation with hydrogen fluoride-pyridine (HF-P) coupled to 2-DE. More specifically, patatin phosphorylation increased by 32% from endodormancy to the tuber sprouting stage and subsequently decreased together with patatin degradation. Patatin isoforms were not randomly mobilized because highly phosphorylated Kuras-isoforms were preferably degraded in comparison to less phosphorylated non-Kuras isoforms. These results lead us to conclude that patatin is mobilized by a mechanism dependent on the phosphorylation status of specific isoforms.
Collapse
Affiliation(s)
- Javier Bernal
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Daniel Mouzo
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Daniel Franco
- Meat Technology Center of Galicia, 32900 San Cibrao das Viñas, Ourense, Spain.
| | - Lucio García
- Meat Technology Center of Galicia, 32900 San Cibrao das Viñas, Ourense, Spain.
| | - Carlos Zapata
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
99
|
Wang R, Gangola MP, Irvine C, Gaur PM, Båga M, Chibbar RN. Co-localization of genomic regions associated with seed morphology and composition in a desi chickpea (Cicer arietinum L.) population varying in seed protein concentration. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1263-1281. [PMID: 30661107 DOI: 10.1007/s00122-019-03277-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Major QTL on LG 1 and 3 control seed filling and seed coat development, thereby affecting seed shape, size, color, composition and weight, key determinants of crop yield and quality. A chickpea (Cicer arietinum L.) population consisting of 189 recombinant inbred lines (RILs) derived from a cross between medium-protein ICC 995 and high-protein ICC 5912 genotypes of the desi market class was analyzed for seed properties. Seed from the parental lines and RILs was produced in four different environments for determination of seed shape (SS), 100-seed weight (100-SW), protein (PRO) and starch (STA) concentration. Polymorphic genetic markers for the population were identified by Genotyping by Sequencing and assembled into a 522.5 cM genetic map. Phenotype data from the different growth environments were analyzed by QTL mapping done by single and multi-environment analyses and in addition, single marker association mapping. The analyses identified in total 11 QTL, of which the most significant (P < 0.05) loci were located on LG 1 (q-1.1), LG 2 (q-2.1), LG 3 (q-3.2, q-3.3), LG 4 (q-4.2), and LG 5 (q-5.1). STA was mostly affected by q-1.1, which explained 19.0% of the phenotypic variance for the trait. The largest QTL effects were demonstrated by q-3.2 that explained 52.5% of the phenotypic variances for 100-SW, 44.3% for PRO, and 14.6% for SS. This locus was also highly associated with flower color (COL; 95.2% explained) and showed q-3.2 alleles from the ICC 5912 parent conferred the blue flower color and production of small, round seeds with relatively high protein concentration. Genes affecting seed filling at q-1.1 and seed coat development at q-3.2, respectively, were considered to underlie differences in seed composition and morphology in the RIL population.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Manu P Gangola
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Craig Irvine
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502 324, India
| | - Monica Båga
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
100
|
Zúñiga-Sánchez E, Rodríguez-Sotres R, Coello P, Martínez-Barajas E. Effect of catalytic subunit phosphorylation on the properties of SnRK1 from Phaseolus vulgaris embryos. PHYSIOLOGIA PLANTARUM 2019; 165:632-643. [PMID: 29766514 DOI: 10.1111/ppl.12761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Legume seed development represents a high demand for energy and metabolic resources to support the massive synthesis of starch and proteins. However, embryo growth occurs in an environment with reduced O2 that forces the plant to adapt its metabolic activities to maximize efficient energy use. SNF1-related protein kinase1 (SnRK1) is a master metabolic regulator needed for cells adaptation to conditions that reduce energy availability, and its activity is needed for the successful development of seeds. In bean embryo extracts, SnRK1 can be separated by anion exchange chromatography into two pools: one where the catalytic subunit is phosphorylated (SnRK1-p) and another with reduced phosphorylation (SnRK1-np). The phosphorylation of the catalytic subunit produces a large increase in SnRK1 activity but has a minor effect in determining its sensitivity to metabolic inhibitors such as trehalose 6-P (T6P), ADP-glucose (ADPG), glucose 1-P (G1P) and glucose 6-P (G6P). In Arabidopsis thaliana, upstream activating kinases (SnAK) phosphorylate the SnRK1 catalytic subunit at T175/176, promoting and enhancing its activity. Recombinant Phaseolus vulgaris homologous to SnAK proteins (PvSnAK), can phosphorylate and activate the catalytic domains of the α-subunits of Arabidopsis, as well as the SnRK1-np pool purified from bean embryos. While the phosphorylation process is extremely efficient for catalytic domains, the phosphorylation of the SnRK1-np complex was less effective but produced a significant increase in activity. The presence of SnRK1-np could contribute to a quick response to unexpected adverse conditions. However, in addition to PvSnAK kinases, other factors might contribute to regulating the activation of SnRK1.
Collapse
Affiliation(s)
- Esther Zúñiga-Sánchez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México, DF, 04510, Mexico
| | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México, DF, 04510, Mexico
| | - Patricia Coello
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México, DF, 04510, Mexico
| | - Eleazar Martínez-Barajas
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México, DF, 04510, Mexico
| |
Collapse
|