51
|
Bach JF. Revisiting the Hygiene Hypothesis in the Context of Autoimmunity. Front Immunol 2021; 11:615192. [PMID: 33584703 PMCID: PMC7876226 DOI: 10.3389/fimmu.2020.615192] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Initially described for allergic diseases, the hygiene hypothesis was extended to autoimmune diseases in the early 2000s. A historical overview allows appreciation of the development of this concept over the last two decades and its discussion in the context of evolution. While the epidemiological data are convergent, with a few exceptions, the underlying mechanisms are multiple and complex. A major question is to determine what is the respective role of pathogens, bacteria, viruses, and parasites, versus commensals. The role of the intestinal microbiota has elicited much interest, but is it a cause or a consequence of autoimmune-mediated inflammation? Our hypothesis is that both pathogens and commensals intervene. Another question is to dissect what are the underlying cellular and molecular mechanisms. The role of immunoregulatory cytokines, in particular interleukin-10 and TGF beta is probably essential. An important place should also be given to ligands of innate immunity receptors present in bacteria, viruses or parasites acting independently of their immunogenicity. The role of Toll-Like Receptor (TLR) ligands is well documented including via TLR ligand desensitization.
Collapse
Affiliation(s)
- Jean-François Bach
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Academie des Sciences, Paris, France
| |
Collapse
|
52
|
Dopkins N, Becker W, Miranda K, Walla M, Nagarkatti P, Nagarkatti M. Tryptamine Attenuates Experimental Multiple Sclerosis Through Activation of Aryl Hydrocarbon Receptor. Front Pharmacol 2021; 11:619265. [PMID: 33569008 PMCID: PMC7868334 DOI: 10.3389/fphar.2020.619265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tryptamine is a naturally occurring monoamine alkaloid which has been shown to act as an aryl hydrocarbon receptor (AHR) agonist. It is produced in large quantities from the catabolism of the essential amino acid tryptophan by commensal microorganisms within the gastrointestinal (GI) tract of homeothermic organisms. Previous studies have established microbiota derived AHR ligands as potent regulators of neuroinflammation, further defining the role the gut-brain axis plays in the complex etiology in multiple sclerosis (MS) progression. In the current study, we tested the ability of tryptamine to ameliorate symptoms of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We found that tryptamine administration attenuated clinical signs of paralysis in EAE mice, decreased the number of infiltrating CD4+ T cells in the CNS, Th17 cells, and RORγ T cells while increasing FoxP3+Tregs. To test if tryptamine acts through AHR, myelin oligodendrocyte glycoprotein (MOG)-sensitized T cells from wild-type or Lck-Cre AHRflox/flox mice that lacked AHR expression in T cells, and cultured with tryptamine, were transferred into wild-type mice to induce passive EAE. It was noted that in these experiments, while cells from wild-type mice treated with tryptamine caused marked decrease in paralysis and attenuated neuroinflammation in passive EAE, similar cells from Lck-Cre AHRflox/flox mice treated with tryptamine, induced significant paralysis symptoms and heightened neuroinflammation. Tryptamine treatment also caused alterations in the gut microbiota and promoted butyrate production. Together, the current study demonstrates for the first time that tryptamine administration attenuates EAE by activating AHR and suppressing neuroinflammation.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mike Walla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
53
|
Therapeutic Effect of Ginsenoside Rd on Experimental Autoimmune Encephalomyelitis Model Mice: Regulation of Inflammation and Treg/Th17 Cell Balance. Mediators Inflamm 2021; 2020:8827527. [PMID: 33380901 PMCID: PMC7762661 DOI: 10.1155/2020/8827527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease. Inflammatory infiltrates and demyelination of the CNS are the major characteristics of MS and its related animal model-experimental autoimmune encephalomyelitis (EAE). Immoderate autoimmune responses of Th17 cells and dysfunction of Treg cells critically contribute to the pathogenesis of MS and EAE. Our previous study showed that Ginsenoside Rd effectively ameliorated the clinical severity in EAE mice, but the mechanism remains unclear. In this study, we investigated the therapeutic effect of Ginsenoside Rd on EAE in vivo and in vitro and also explored the potential mechanisms for alleviating the injury of EAE. The results indicated that Ginsenoside Rd was effective for the treatment of EAE in mice and splenocytes. Ginsenoside Rd treatment on EAE mice ameliorated the severity of EAE and attenuated the characteristic signs of disease. Ginsenoside Rd displayed the therapeutic function to EAE by modulating inflammation and autoimmunity, via the downregulation of related proinflammatory cytokines IL-6 and IL-17, upregulation of inhibitory cytokines TGF-β and IL-10, and modulation of Treg/Th17 imbalance. And the Foxp3/RORγt/JAK2/STAT3 signaling was found to be associated with this protective function. In addition, analysis of gut microbiota showed that Ginsenoside Rd also had modulation potential on gut microbiota in EAE mice. Based on this study, we hypothesize that Ginsenoside Rd could be a potential and promising agent for the treatment of MS.
Collapse
|
54
|
Ullah H, Tovchiga O, Daglia M, Khan H. Modulating Gut Microbiota: An Emerging Approach in the Prevention and Treatment of Multiple Sclerosis. Curr Neuropharmacol 2021; 19:1966-1983. [PMID: 33596808 PMCID: PMC9185793 DOI: 10.2174/1570159x19666210217084827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neuromuscular disorder characterized by demyelination of neurons of the central nervous system (CNS). The pathogenesis of the disorder is described as an autoimmune attack targeting the myelin sheath of nerve cell axons in the CNS. Available treatments only reduce the risk of relapse, prolonging the remissions of neurological symptoms and halt the progression of the disorder. Among the new ways of targeting neurological disorders, including MS, there is modulation of gut microbiota since the link between gut microbiota has been rethought within the term gut-brain axis. Gut microbiota is known to help the body with essential functions such as vitamin production and positive regulation of immune, inflammatory, and metabolic pathways. High consumption of saturated fatty acids, gluten, salt, alcohol, artificial sweeteners, or antibiotics is the responsible factor for causing gut dysbiosis. The latter can lead to dysregulation of immune and inflammatory pathways, which eventually results in leaky gut syndrome, systemic inflammation, autoimmune reactions, and increased susceptibility to infections. In modern medicine, scientists have mostly focused on the modulation of gut microbiota in the development of novel and effective therapeutic strategies for numerous disorders, with probiotics and prebiotics being the most widely studied in this regard. Several pieces of evidence from preclinical and clinical studies have supported the positive impact of probiotic and/or prebiotic intake on gut microbiota and MS. This review aims to link gut dysbiosis with the development/progression of MS, and the potential of modulation of gut microbiota in the therapeutics of the disease.
Collapse
Affiliation(s)
| | | | - Maria Daglia
- Address correspondence to this author at the Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy, International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang212013, China; E-mail:
| | | |
Collapse
|
55
|
Leaky Gut and Autoimmunity: An Intricate Balance in Individuals Health and the Diseased State. Int J Mol Sci 2020; 21:ijms21249770. [PMID: 33371435 PMCID: PMC7767453 DOI: 10.3390/ijms21249770] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Damage to the tissue and the ruining of functions characterize autoimmune syndromes. This review centers around leaky gut syndromes and how they stimulate autoimmune pathogenesis. Lymphoid tissue commonly associated with the gut, together with the neuroendocrine network, collaborates with the intestinal epithelial wall, with its paracellular tight junctions, to maintain the balance, tolerance, and resistance to foreign/neo-antigens. The physiological regulator of paracellular tight junctions plays a vital role in transferring macromolecules across the intestinal barrier and thereby maintains immune response equilibrium. A new paradigm has explained the intricacies of disease development and proposed that the processes can be prevented if the interaction between the genetic factor and environmental causes is barred by re-instituting the intestinal wall function. The latest clinical evidence and animal models reinforce this current thought and offer the basis for innovative methodologies to thwart and treat autoimmune syndromes.
Collapse
|
56
|
de Campos Fraga-Silva TF, Mimura LAN, de Oliveira LRC, Dos Santos Toledo JH, Borim PA, Zorzella-Pezavento SFG, Alonso DP, Ribolla PEM, de Oliveira CAF, da Fonseca DM, Villablanca EJ, Sartori A. Selenization of S. cerevisiae increases its protective potential in experimental autoimmune encephalomyelitis by triggering an intestinal immunomodulatory loop. Sci Rep 2020; 10:22190. [PMID: 33335128 PMCID: PMC7746691 DOI: 10.1038/s41598-020-79102-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease that affects the myelinated central nervous system (CNS) neurons and triggers physical and cognitive disabilities. Conventional therapy is based on disease-modifying drugs that control disease severity but can also be deleterious. Complementary medicines have been adopted and evidence indicates that yeast supplements can improve symptoms mainly by modulating the immune response. In this investigation, we evaluated the therapeutic potential of Saccharomyces cerevisiae and its selenized derivative (Selemax) in experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice submitted to EAE induction were orally supplemented with these yeasts by gavage from day 0 to day 14 after EAE induction. Both supplements determined significant reduction in clinical signs concomitantly with diminished Th1 immune response in CNS, increased proportion of Foxp3+ lymphocytes in inguinal and mesenteric lymph nodes and increased microbiota diversity. However, Selemax was more effective clinically and immunologically; it reduced disease prevalence more sharply, increased the proportion of CD103+ dendritic cells expressing high levels of PD-L1 in mesenteric lymph nodes and reduced the intestinal inflammatory process more strongly than S. cerevisiae. These results suggest a clear gut-brain axis modulation by selenized S. cerevisiae and suggest their inclusion in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego Peres Alonso
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | | | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Alexandrina Sartori
- Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
57
|
Baniahmad A, Birkner K, Görg J, Loos J, Zipp F, Wasser B, Bittner S. The frequency of follicular T helper cells differs in acute and chronic neuroinflammation. Sci Rep 2020; 10:20485. [PMID: 33235306 PMCID: PMC7686332 DOI: 10.1038/s41598-020-77588-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022] Open
Abstract
Beyond the major role of T cells in the pathogenesis of the autoimmune neuroinflammatory disorder multiple sclerosis (MS), recent studies have highlighted the impact of B cells on pathogenic inflammatory processes. Follicular T helper cells (Tfh) are essential for the promotion of B cell-driven immune responses. However, their role in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), is poorly investigated. A first step to achieving a better understanding of the contribution of Tfh cells to the disease is the consideration of Tfh cell localization in relation to genetic background and EAE induction method. Here, we investigated the Tfh cell distribution during disease progression in disease relevant organs in three different EAE models. An increase of Tfh frequency in the central nervous system (CNS) was observed during peak of C57BL/6 J EAE, paralleling chronic disease activity, whereas in relapsing-remitting SJL EAE mice Tfh cell frequencies were increased during remission. Furthermore, transferred Tfh-skewed cells polarized in vitro induced mild clinical symptoms in B6.Rag1-/- mice. We identified significantly higher levels of Tfh cells in the dura mater than in the CNS both in C57BL/6 and in SJL/J mice. Overall, our study emphasizes diverse, non-static roles of Tfh cells during autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Adalie Baniahmad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Katharina Birkner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johanna Görg
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Julia Loos
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
58
|
TernÁk GÁ, BerÉnyi KÁ, MÁrovics G, SÜmegi A, Fodor B, NÉmeth B, Kiss I. Dominant Antibiotic Consumption Patterns Might Be Associated With the Prevalence of Multiple Sclerosis in European Countries. In Vivo 2020; 34:3467-3472. [PMID: 33144455 DOI: 10.21873/invivo.12186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIM With a prevalence of 50-300 per 100,000 people, about 2.3 million people are estimated to live with multiple sclerosis (MS) globally. The role of antibiotics in the development, or prevention of MS is controversial. We aimed to elucidate the association between antibiotic consumption and MS. PATIENTS AND METHODS Pearson statistical comparisons were performed between the annual average antibiotic consumption patterns expressed in Defined Daily Dose/1,000 inhabitants/Day of the antibiotic consumption for the years of 1997-2018 in 30 European countries, with the respective prevalence of MS estimated for 2016. RESULTS A positive correlation (promoting effect) has been observed between narrow spectrum penicillin (r=0.636) and tetracycline (r=0.412) consumption with MS prevalence. CONCLUSION Countries, with high consumption of narrow spectrum penicillin and tetracycline, experience a higher prevalence of MS than other countries.
Collapse
Affiliation(s)
- GÁbor TernÁk
- Medical School, Institute of Migration Health, University of Pécs, Pécs, Hungary
| | - KÁroly BerÉnyi
- Department of Public Health Medicine, University of Pécs, Pécs, Hungary
| | - Gergely MÁrovics
- Department of Public Health Medicine, University of Pécs, Pécs, Hungary
| | - AndrÁs SÜmegi
- Department of Public Health Medicine, University of Pécs, Pécs, Hungary
| | - Barbara Fodor
- Department of Public Health Medicine, University of Pécs, Pécs, Hungary
| | - BalÁzs NÉmeth
- Department of Public Health Medicine, University of Pécs, Pécs, Hungary
| | - IstvÁn Kiss
- Department of Public Health Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
59
|
Montgomery TL, Künstner A, Kennedy JJ, Fang Q, Asarian L, Culp-Hill R, D'Alessandro A, Teuscher C, Busch H, Krementsov DN. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc Natl Acad Sci U S A 2020; 117:27516-27527. [PMID: 33077601 PMCID: PMC7959502 DOI: 10.1073/pnas.2002817117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. The etiology of MS is multifactorial, with disease risk determined by genetics and environmental factors. An emerging risk factor for immune-mediated diseases is an imbalance in the gut microbiome. However, the identity of gut microbes associated with disease risk, their mechanisms of action, and the interactions with host genetics remain obscure. To address these questions, we utilized the principal autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), together with a genetically diverse mouse model representing 29 unique host genotypes, interrogated by microbiome sequencing and targeted microbiome manipulation. We identified specific gut bacteria and their metabolic functions associated with EAE susceptibility, implicating short-chain fatty acid metabolism as a key element conserved across multiple host genotypes. In parallel, we used a reductionist approach focused on two of the most disparate phenotypes identified in our screen. Manipulation of the gut microbiome by transplantation and cohousing demonstrated that transfer of these microbiomes into genetically identical hosts was sufficient to modulate EAE susceptibility and systemic metabolite profiles. Parallel bioinformatic approaches identified Lactobacillus reuteri as a commensal species unexpectedly associated with exacerbation of EAE in a genetically susceptible host, which was functionally confirmed by bacterial isolation and commensal colonization studies. These results reveal complex interactions between host genetics and gut microbiota modulating susceptibility to CNS autoimmunity, providing insights into microbiome-directed strategies aimed at lowering the risk for autoimmune disease and underscoring the need to consider host genetics and baseline gut microbiome composition.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Josephine J Kennedy
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Qian Fang
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Lori Asarian
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045
| | - Cory Teuscher
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401;
| |
Collapse
|
60
|
Pinke KH, Zorzella-Pezavento SFG, Lara VS, Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? Neural Regen Res 2020; 15:1995-2007. [PMID: 32394947 PMCID: PMC7716037 DOI: 10.4103/1673-5374.282238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells are immune cells of the myeloid lineage that are found throughout the body, including the central nervous system. They perform many functions associated with innate and specific immunity, angiogenesis, and vascular homeostasis. Moreover, they have been implicated in a series of pathologies (e.g., hypersensitivity reactions, tumors, and inflammatory disorders). In this review, we propose that this cell could be a relevant therapeutic target in multiple sclerosis, which is a central nervous system degenerative disease. To support this proposition, we describe the general biological properties of mast cells, their contribution to innate and specific immunity, and the participation of mast cells in the various stages of multiple sclerosis and experimental autoimmune encephalomyelitis development. The final part of this review is dedicated to an overview of the available mast cells immunomodulatory drugs and their activity on multiple sclerosis and experimental autoimmune encephalomyelitis, including our own experience related to the effect of ketotifen fumarate on experimental autoimmune encephalomyelitis evolution.
Collapse
Affiliation(s)
- Karen Henriette Pinke
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Vanessa Soares Lara
- Bauru School of Dentistry, Department of Surgery, Stomatology, Pathology and Radiology, University of São Paulo, Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
61
|
Shaik L, Kashyap R, Thotamgari SR, Singh R, Khanna S. Gut-Brain Axis and its Neuro-Psychiatric Effects: A Narrative Review. Cureus 2020; 12:e11131. [PMID: 33240722 PMCID: PMC7682910 DOI: 10.7759/cureus.11131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota regulates the function and health of the human gut. Preliminary evidence suggests its impact on multiple human systems including the nervous and immune systems. A major area of research has been the directional relationship between intestinal microbiota and the central nervous system (CNS), called the microbiota-gut-brain axis. It is hypothesized that the intestinal microbiota affects brain activity and behavior via endocrine, neural, and immune pathways. An alteration in the composition of the gut microbiome has been linked to a variety of neurodevelopmental and neurodegenerative disorders. The connection between gut microbiome and several CNS disorders indicates that the focus of research in the future should be on the bacterial and biochemical targets. Through this review, we outline the established knowledge regarding the gut microbiome and gut-brain axis. In addition to gut microbiome in neurological and psychiatry diseases, we have briefly discussed microbial metabolites affecting the blood-brain barrier (BBB), immune dysregulation, modification of autonomic sensorimotor connections, and hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Likhita Shaik
- Internal Medicine, Ashwini Rural Medical College, Hospital & Research Centre, Solapur, IND
- Medical Oncology, Mayo Clinic, Rochester, USA
| | | | - Sahith Reddy Thotamgari
- Cardiology, Mayo Clinic, Rochester, USA
- Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Romil Singh
- Internal Medicine, Metropolitan Hospital, Jaipur, IND
| | | |
Collapse
|
62
|
Probiotics in Treatment of Viral Respiratory Infections and Neuroinflammatory Disorders. Molecules 2020; 25:molecules25214891. [PMID: 33105830 PMCID: PMC7660077 DOI: 10.3390/molecules25214891] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.
Collapse
|
63
|
Hasic Telalovic J, Music A. Using data science for medical decision making case: role of gut microbiome in multiple sclerosis. BMC Med Inform Decis Mak 2020; 20:262. [PMID: 33046051 PMCID: PMC7549194 DOI: 10.1186/s12911-020-01263-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A decade ago, the advancements in the microbiome data sequencing techniques initiated the development of research of the microbiome and its relationship with the host organism. The development of sophisticated bioinformatics and data science tools for the analysis of large amounts of data followed. Since then, the analyzed gut microbiome data, where microbiome is defined as a network of microorganisms inhabiting the human intestinal system, has been associated with several conditions such as irritable bowel syndrome - IBS, colorectal cancer, diabetes, obesity, and metabolic syndrome, and lately in the study of Parkinson's and Alzheimer's diseases as well. This paper aims to provide an understanding of differences between microbial data of individuals who have been diagnosed with multiple sclerosis and those who were not by exploiting data science techniques on publicly available data. METHODS This study examines the relationship between multiple sclerosis (MS), an autoimmune central nervous system disease, and gut microbial community composition, using the samples acquired by 16s rRNA sequencing technique. We have used three different sets of MS samples sequenced during three independent studies (Jangi et al, Nat Commun 7:1-11, 2016), (Miyake et al, PLoS ONE 10:0137429, 2015), (McDonald et al, Msystems 3:00031-18, 2018) and this approach strengthens our results. Analyzed sequences were from healthy control and MS groups of sequences. The extracted set of statistically significant bacteria from the (Jangi et al, Nat Commun 7:1-11, 2016) dataset samples and their statistically significant predictive functions were used to develop a Random Forest classifier. In total, 8 models based on two criteria: bacteria abundance (at six taxonomic levels) and predictive functions (at two levels), were constructed and evaluated. These include using taxa abundances at different taxonomy levels as well as predictive function analysis at different hierarchical levels of KEGG pathways. RESULTS The highest accuracy of the classification model was obtained at the genus level of taxonomy (76.82%) and the third hierarchical level of KEGG pathways (70.95%). The second dataset's 18 MS samples (Miyake et al, PLoS ONE 10:0137429, 2015) and 18 self-reported healthy samples from the (McDonald et al, Msystems 3:00031-18, 2018) dataset were used to validate the developed classification model. The significance of this step is to show that the model is not overtrained for a specific dataset but can also be used on other independent datasets. Again, the highest classification model accuracy for both validating datasets combined was obtained at the genus level of taxonomy (70.98%) and third hierarchical level of KEGG pathways (67.24%). The accuracy of the independent set remained very relevant. CONCLUSIONS Our results demonstrate that the developed classification model provides a good tool that can be used to suggest the presence or absence of MS condition by collecting and analyzing gut microbiome samples. The accuracy of the model can be further increased by using sequencing methods that allow higher taxa resolution (i.e. shotgun metagenomic sequencing).
Collapse
Affiliation(s)
- Jasminka Hasic Telalovic
- University Sarajevo School of Science and Technology, Hrasnicka cesta 3a, Ilidza, 71210 Bosnia and Herzegovina
| | - Azra Music
- University Sarajevo School of Science and Technology, Hrasnicka cesta 3a, Ilidza, 71210 Bosnia and Herzegovina
| |
Collapse
|
64
|
Zhu F, Li C, Chu F, Tian X, Zhu J. Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:544235. [PMID: 33132894 PMCID: PMC7572848 DOI: 10.3389/fnagi.2020.544235] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is commonly an age-associated dementia with neurodegeneration. The pathogenesis of AD is complex and still remains unclear. The inflammation, amyloid β (Aβ), and neurofibrillary tangles as well misfolded tau protein in the brain may contribute to the occurrence and development of AD. Compared with tau protein, Aβ is less toxic. So far, all efforts made in the treatments of AD with targeting these pathogenic factors were unsuccessful over the past decades. Recently, many studies demonstrated that changes of the intestinal environment and gut microbiota via gut–brain axis pathway can cause neurological disorders, such as AD, which may be involved in the pathogenesis of AD. Thus, remodeling the gut microbiota by various ways to maintain their balance might be a novel therapeutic strategy for AD. In the review article, we analyzed the characteristics of gut microbiota and its dysbiosis in AD and its animal models and investigated the possibility of targeting the gut microbiota in the treatment of the patients with AD in the future.
Collapse
Affiliation(s)
- Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
65
|
Johanson DM, Goertz JE, Marin IA, Costello J, Overall CC, Gaultier A. Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract. Sci Rep 2020; 10:15183. [PMID: 32938979 PMCID: PMC7494894 DOI: 10.1038/s41598-020-72197-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome is known to be sensitive to changes in the immune system, especially during autoimmune diseases such as Multiple Sclerosis (MS). Our study examines the changes to the gut microbiome that occur during experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We collected fecal samples at key stages of EAE progression and quantified microbial abundances with 16S V3–V4 amplicon sequencing. Our analysis of the data suggests that the abundance of commensal Lactobacillaceae decreases during EAE while other commensal populations belonging to the Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae families expand. Community analysis with microbial co-occurrence networks points to these three expanding taxa as potential mediators of gut microbiome dysbiosis. We also employed PICRUSt2 to impute MetaCyc Enzyme Consortium (EC) pathway abundances from the original microbial abundance data. From this analysis, we found that a number of imputed EC pathways responsible for the production of immunomodulatory compounds appear to be enriched in mice undergoing EAE. Our analysis and interpretation of results provides a detailed picture of the changes to the gut microbiome that are occurring throughout the course of EAE disease progression and helps to evaluate EAE as a viable model for gut dysbiosis in MS patients.
Collapse
Affiliation(s)
- David M Johanson
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, 22908, USA.,Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jennifer E Goertz
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, 22908, USA.,Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.,Dept. of Neuroscience, Cornell University, Ithaca, NY, 14850, USA
| | - Ioana A Marin
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, 22908, USA.,Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.,Dept. of Neuroscience, Stanford University, Stanford, CA, 94305, USA
| | - John Costello
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, 22908, USA.,Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Christopher C Overall
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, 22908, USA.,Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.,Myriad Genetics, Inc., San Francisco, CA, 94080, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
66
|
Engen PA, Zaferiou A, Rasmussen H, Naqib A, Green SJ, Fogg LF, Forsyth CB, Raeisi S, Hamaker B, Keshavarzian A. Single-Arm, Non-randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in Multiple Sclerosis. Front Neurol 2020; 11:978. [PMID: 33013647 PMCID: PMC7506051 DOI: 10.3389/fneur.2020.00978] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests intestinal microbiota as a central contributing factor to the pathogenesis of Relapsing-Remitting-Multiple-Sclerosis (RRMS). This novel RRMS study evaluated the impact of fecal-microbiota-transplantation (FMT) on a broad array of physiological/clinical outcomes using deep metagenome sequencing of fecal microbiome. FMT interventions were associated with increased abundances of putative beneficial stool bacteria and short-chain-fatty-acid metabolites, which were associated with increased/improved serum brain-derived-neurotrophic-factor levels and gait/walking metrics. This proof-of-concept single-subject longitudinal study provides evidence of potential importance of intestinal microbiota in the pathogenesis of MS, and scientific rationale to help design future randomized controlled trials assessing FMT in RRMS patients.
Collapse
Affiliation(s)
- Phillip A Engen
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Antonia Zaferiou
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Heather Rasmussen
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Ankur Naqib
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Louis F Fogg
- Department of Community, Systems and Mental Health Nursing, College of Nursing, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Shohreh Raeisi
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Department of Physiology, Rush University Medical Center, Chicago, IL, United States.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
67
|
Lam T, VoPham T, Munger KL, Laden F, Hart JE. Long-term effects of latitude, ambient temperature, and ultraviolet radiation on the incidence of multiple sclerosis in two cohorts of US women. Environ Epidemiol 2020; 4:e0105. [PMID: 32903352 PMCID: PMC7431017 DOI: 10.1097/ee9.0000000000000105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Differences in multiple sclerosis (MS) risk by latitude have been observed worldwide; however, the exposures driving these associations are unknown. Ultraviolet radiation (UV) has been explored as a risk factor, and ambient temperature has been correlated with disease progression. However, no study has examined the impact of all three exposures. We examined the association between these exposures and incidence of MS within two nationwide prospective cohorts of women, the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII). METHODS Both cohorts were followed with biennial questionnaires to ascertain new diagnoses and risk factors. Time-varying exposures to latitude, cumulative average July temperature (°C), and cumulative average July erythemal UV (mW/m2) were predicted at each participant's biennially updated residential addresses. Using Cox proportional hazards models adjusted for MS risk factors, we calculated hazard ratios (HR) and 95% confidence intervals (CIs) within each cohort and pooled via meta-analyses. RESULTS In multivariable models, there were suggestions that decreasing latitude (meta-analysis multivariable-adjusted HR = 0.72; 95% CI 0.55, 0.94 for women living <35.73° compared with those ≥42.15°, P-for-trend = 0.007) and increasing cumulative average July temperature (meta-analysis multivariable-adjusted HR = 0.81; 95% CI 0.72, 0.91 for each interquartile range increase [3.91°]) were associated with decreasing risk of MS. There was no evidence of heterogeneity between cohorts. We did not observe consistent associations with cumulative average UV. CONCLUSION Our results suggest that adult exposures to decreasing latitude and increasing temperature, but not UV, were associated with reduced MS risk in these two cohorts of women. Studies of MS incidence may want to consider temperature as a risk factor.
Collapse
Affiliation(s)
- Thao Lam
- Graduate School of Life Sciences, Utrecht University, Utrecht, the Netherlands
| | - Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kassandra L. Munger
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
68
|
Huang Q, Yu F, Liao D, Xia J. Microbiota-Immune System Interactions in Human Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:509-526. [PMID: 32713337 DOI: 10.2174/1871527319666200726222138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China,Hunan Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
69
|
Prevention of Severe Intestinal Barrier Dysfunction Through a Single-Species Probiotics is Associated With the Activation of Microbiome-Mediated Glutamate-Glutamine Biosynthesis. Shock 2020; 55:128-137. [PMID: 32694391 DOI: 10.1097/shk.0000000000001593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Intra-abdominal hypertension (IAH), the leading complication in the intensive care unit, significantly disturbs the gut microbial composition by decreasing the relative abundance of Lactobacillus and increasing the relative abundance of opportunistic infectious bacteria. METHODS To evaluate the preventative effect of Lactobacillus-based probiotics on IAH-induced intestinal barrier damages, a single-species probiotics (L92) and a multispecies probiotics (VSL#3) were introduced orally to Sprague-Dawley rats for 7 days before inducing IAH. The intestinal histology and permeability to macromolecules (fluoresceine isothiocyanate, FITC-dextran, N = 8 for each group), the parameters of immunomodulatory and oxidative responses [monocyte chemotactic protein 1 (MCP-1), interleukin-1β (IL-1β), interleukin-4 (IL-4), interleukin-10 (IL-10), malonaldehyde, glutathione peroxidase (GSH- Px), catalase (CAT), and superoxide dismutase; N = 4 for each group], and the microbiome profiling (N = 4 for each group) were analyzed. RESULTS Seven-day pretreatments of L92 significantly alleviated the IAH-induced increase in intestinal permeability to FITC-dextran and histological damage (P < 0.0001), accompanied with the suppression of inflammatory and oxidative activation. The increase of MCP-1 and IL-1β was significantly inhibited (P < 0.05); the anti-inflammatory cytokines, IL-4, and IL-10 were maintained at high levels; and the suppression of CAT (P < 0.05) was significantly reversed when pretreated with L92. On the contrary, no significant protective effects were observed in the VSL#3-pretreated group. Among the 84 identified species, 260 MetaCyc pathways, and 217 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, the protective effects of L92 were correlated with an increased relative abundance of Bacteroides finegoldii, Odoribacter splanchnicus, and the global activation of amino acid biosynthesis pathways, especially the glutamate-glutamine biosynthesis pathway. CONCLUSIONS Seven-day pretreatment with a single-species probiotics can prevent IAH-induced severe intestinal barrier dysfunction, potentially through microbial modulation.
Collapse
|
70
|
Zhou J, Yang J, Dai M, Lin D, Zhang R, Liu H, Yu A, Vakal S, Wang Y, Li X. A combination of inhibiting microglia activity and remodeling gut microenvironment suppresses the development and progression of experimental autoimmune uveitis. Biochem Pharmacol 2020; 180:114108. [PMID: 32569628 DOI: 10.1016/j.bcp.2020.114108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Noninfectious (autoimmune and immune-mediated) uveitis is an ocular inflammatory disease which can lead to blindness in severe cases. Due to the potential side effects of first-line drugs for clinical uveitis, novel drugs and targets against uveitis are still urgently needed. In the present study, using rat experimental autoimmune uveitis (EAU) model, we first found that minocycline treatment can substantially inhibit the development of EAU and improve the retinal function by suppressing the retinal microglial activation, and block the infiltration of inflammatory cells, including Th17, into the retina by decreasing the major histocompatibility complex class II (MHC II) expression in resident and infiltrating cells. Moreover, we demonstrated that minocycline treatment can remodel the gut microenvironment of EAU rats by restoring the relative abundance of Ruminococcus bromii, Streptococcus hyointestinalis, and Desulfovibrio sp. ABHU2SB and promoting a functional shift in the gut via reversing the levels of L-proline, allicin, aceturic acid, xanthine, and leukotriene B4, and especially increasing the production of propionic acid, histamine, and pantothenic acid. At last, we revealed that minocycline treatment can significantly attenuate the progression of EAU after inflammation onset, which may be explained by the role of minocycline in the remodeling of the gut microenvironment since selective elimination of retinal microglia on the later stages of EAU was shown to have little effect. These data clearly demonstrated that inhibition of microglial activation and remodeling of the gut microenvironment can suppress the development and progression of experimental autoimmune uveitis. Considering the excellent safety profile of minocycline in multiple clinical experiments, we suggest that minocycline may have therapeutic implications for clinical uveitis.
Collapse
Affiliation(s)
- Jianhong Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Jingjing Yang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Mali Dai
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Dan Lin
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Renshu Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Ailing Yu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku 20541, Finland
| | - Yuqin Wang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| | - Xingyi Li
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
71
|
Dysregulation of gut microbiome is linked to disease activity of rheumatic diseases. Clin Rheumatol 2020; 39:2523-2528. [PMID: 32519049 DOI: 10.1007/s10067-020-05170-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Objective rheumatism refers to a large group of diseases with different etiology, mainly characterized by autoimmune disorder. Intestinal flora combines with the digestive organs of the human body to synthesize and secrete the key substances of growth. Several studies have reported abnormal intestinal flora in rheumatic diseases. The purposes of this research were to review the primary studies and figure out the relationship between intestinal flora and rheumatic disease activity. The article search was based on the database of PubMed (MEDLINE), EMBASE, Cochrane to collect English language studies that were published from 1985 to 2019. The articles concerning the intestinal flora and disease activities of rheumatic diseases were classified by disease types, and the relationship between disease activities and intestinal flora was summarized. Eight rheumatic diseases were included in the study. It was found that the changes of intestinal flora were significantly correlated with the activities of rheumatic diseases. There were significant differences in the classification of disease activity and the composition of intestinal flora. Interfering with the composition of intestinal flora can apparently modulate the development of disease. But how to apply such findings is rarely reported. The study finds out that intestinal flora disorder is linked to the activity of rheumatic diseases. But which specific gut flora is connected to the disease activity needs further researches. More discussion is needed on how to apply the results to clinical treatment.
Collapse
|
72
|
Brown J, Quattrochi B, Everett C, Hong BY, Cervantes J. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis. Mult Scler 2020; 27:807-811. [PMID: 32507072 DOI: 10.1177/1352458520928301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intestinal microbiota alterations have been found to be directly related to a wide range of disease states in humans, including multiple sclerosis (MS). The etiology of MS is highly debated and subsequently, there is no cure. Research dedicated to MS and its murine model, experimental autoimmune encephalomyelitis (EAE), have found that dysbiosis of the gut microbiota may play a role in the disease state and severity. In this review, we discuss the characteristic dysbiosis in MS, the role commensal-derived ligands may have in the pathogenesis of the disease, and the possibility of targeting the microbiota as a future therapy.
Collapse
Affiliation(s)
- Jordan Brown
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Blair Quattrochi
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Colleen Everett
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Bo-Young Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
73
|
Sarcoidosis: Causes, Diagnosis, Clinical Features, and Treatments. J Clin Med 2020; 9:jcm9041081. [PMID: 32290254 PMCID: PMC7230978 DOI: 10.3390/jcm9041081] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is a multisystem granulomatous disease with nonspecific clinical manifestations that commonly affects the pulmonary system and other organs including the eyes, skin, liver, spleen, and lymph nodes. Sarcoidosis usually presents with persistent dry cough, eye and skin manifestations, weight loss, fatigue, night sweats, and erythema nodosum. Sarcoidosis is not influenced by sex or age, although it is more common in adults (< 50 years) of African-American or Scandinavians decent. Diagnosis can be difficult because of nonspecific symptoms and can only be verified following histopathological examination. Various factors, including infection, genetic predisposition, and environmental factors, are involved in the pathology of sarcoidosis. Exposures to insecticides, herbicides, bioaerosols, and agricultural employment are also associated with an increased risk for sarcoidosis. Due to its unknown etiology, early diagnosis and detection are difficult; however, the advent of advanced technologies, such as endobronchial ultrasound-guided biopsy, high-resolution computed tomography, magnetic resonance imaging, and 18F-fluorodeoxyglucose positron emission tomography has improved our ability to reliably diagnose this condition and accurately forecast its prognosis. This review discusses the causes and clinical features of sarcoidosis, and the improvements made in its prognosis, therapeutic management, and the recent discovery of potential biomarkers associated with the diagnostic assay used for sarcoidosis confirmation.
Collapse
|
74
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
75
|
Chen K, Nakasone Y, Xie K, Sakao K, Hou DX. Modulation of Allicin-Free Garlic on Gut Microbiome. Molecules 2020; 25:molecules25030682. [PMID: 32033507 PMCID: PMC7036987 DOI: 10.3390/molecules25030682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/14/2023] Open
Abstract
The allicin diallyldisulfid-S-oxide, a major garlic organosulfur compound (OSC) in crushed garlic (Allium sativum L.), possesses antibacterial effects, and influences gut bacteria. In this study, we made allicin-free garlic (AFG) extract and investigated its effects on gut microbiome. C57BL/6N male mice were randomly divided into 6 groups and fed normal diet (ND) and high-fat diet (HFD) supplemented with or without AFG in concentrations of 1% and 5% for 11 weeks. The genomic DNAs of feces were used to identify the gut microbiome by sequencing 16S rRNA genes. The results revealed that the ratio of p-Firmicutes to p-Bacteroidetes increased by aging and HFD was reduced by AFG. In particular, the f-Lachnospiraceae, g-Akkermansia, and g-Lactobacillus decreased by aging and HFD was enhanced by AFG. The g-Dorea increased by aging and HFD decreased by AFG. In addition, the ratio of glutamic-pyruvic transaminase to glutamic-oxaloacetic transaminase (GPT/GOT) in serum was significantly increased in the HFD group and decreased by AFG. In summary, our data demonstrated that dietary intervention with AFG is a potential way to balance the gut microbiome disturbed by a high-fat diet.
Collapse
Affiliation(s)
- Keyu Chen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (K.C.); (K.X.); (K.S.)
| | | | - Kun Xie
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (K.C.); (K.X.); (K.S.)
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (K.C.); (K.X.); (K.S.)
- The United Graduate School of Agriculture, Forest and Fishery Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (K.C.); (K.X.); (K.S.)
- The United Graduate School of Agriculture, Forest and Fishery Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: or
| |
Collapse
|
76
|
Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 2020; 17:25. [PMID: 31952509 PMCID: PMC6969442 DOI: 10.1186/s12974-020-1705-z] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing that the dynamic changes in the gut microbiota can alter brain physiology and behavior. Cognition was originally thought to be regulated only by the central nervous system. However, it is now becoming clear that many non-nervous system factors, including the gut-resident bacteria of the gastrointestinal tract, regulate and influence cognitive dysfunction as well as the process of neurodegeneration and cerebrovascular diseases. Extrinsic and intrinsic factors including dietary habits can regulate the composition of the microbiota. Microbes release metabolites and microbiota-derived molecules to further trigger host-derived cytokines and inflammation in the central nervous system, which contribute greatly to the pathogenesis of host brain disorders such as pain, depression, anxiety, autism, Alzheimer’s diseases, Parkinson’s disease, and stroke. Change of blood–brain barrier permeability, brain vascular physiology, and brain structure are among the most critical causes of the development of downstream neurological dysfunction. In this review, we will discuss the following parts:
Overview of technical approaches used in gut microbiome studies Microbiota and immunity Gut microbiota and metabolites Microbiota-induced blood–brain barrier dysfunction Neuropsychiatric diseases
■ Stress and depression ■ Pain and migraine ■ Autism spectrum disorders
Neurodegenerative diseases
■ Parkinson’s disease ■ Alzheimer’s disease ■ Amyotrophic lateral sclerosis ■ Multiple sclerosis
Cerebrovascular disease
■ Atherosclerosis ■ Stroke ■ Arteriovenous malformation
Conclusions and perspectives
Collapse
Affiliation(s)
- Sibo Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Kelin Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,School of Data Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Genming Zhao
- School of Data Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
77
|
Abstract
The microbiome is the ecological community of commensal, symbiotic, and pathogenic microorganisms that share our body space (Medical and Health Genomics, 2016, page 15-28). The human gut is the location where the maximum number of microorganisms can be found. Among the different microorganisms they can be broadly classified into two groups: the beneficial and harmful. In the human gut there is always a balance between the beneficial and the opportunistic microorganism which maintains human health. However, if the balance is not maintained and homeostasis is disturbed, with an increase in opportunistic microorganisms, it may result in various diseases like inflammatory bowel disease, irritable bowel disease, ulcerative colitis, Crohn's disease, colorectal cancer, metabolic disorders and neurodegenerative diseases including motor neuron diseases. In the present chapter we discuss the role of gut bacteria in motor neuron diseases like multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis.
Collapse
|
78
|
Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav Immun 2019; 82:25-35. [PMID: 31356922 PMCID: PMC6866665 DOI: 10.1016/j.bbi.2019.07.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, a combination of marijuana cannabinoids including delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is used as a drug to treat muscle spasticity in patients with Multiple Sclerosis (MS). Because these cannabinoids can also suppress inflammation, it is unclear whether such patients benefit from suppression of neuroinflammation and if so, what is the mechanism through which cannabinoids act. In the currently study, we used a murine model of MS, experimental autoimmune encephalomyelitis (EAE), to study the role of gut microbiota in the attenuation of clinical signs of paralysis and inflammation caused by cannabinoids. THC + CBD treatment attenuated EAE and caused significant decrease in inflammatory cytokines such as IL-17 and IFN-γ while promoting the induction of anti-inflammatory cytokines such as IL-10 and TGF-β. Use of 16S rRNA sequencing on bacterial DNA extracted from the gut revealed that EAE mice showed high abundance of mucin degrading bacterial species, such as Akkermansia muciniphila (A. muc), which was significantly reduced after THC + CBD treatment. Fecal Material Transfer (FMT) experiments confirmed that THC + CBD-mediated changes in the microbiome play a critical role in attenuating EAE. In silico computational metabolomics revealed that LPS biosynthesis, a key component in gram-negative bacteria such as A. muc, was found to be elevated in EAE mice which was confirmed by demonstrating higher levels of LPS in the brain, while treatment with THC + CBD reversed this trend. EAE mice treated with THC + CBD also had significantly higher levels of short chain fatty acids such as butyric, isovaleric, and valeric acids compared to naïve or disease controls. Collectively, our data suggest that cannabinoids may attenuate EAE and suppress neuroinflammation by preventing microbial dysbiosis seen during EAE and promoting healthy gut microbiota.
Collapse
|
79
|
Mørkholt AS, Trabjerg MS, Oklinski MKE, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ, Nieland JDV. CPT1A plays a key role in the development and treatment of multiple sclerosis and experimental autoimmune encephalomyelitis. Sci Rep 2019; 9:13299. [PMID: 31527712 PMCID: PMC6746708 DOI: 10.1038/s41598-019-49868-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
Human mutations in carnitine palmitoyl transferase 1A (CPT1A) are correlated with a remarkably low prevalence of multiple sclerosis (MS) in Inuits (P479L) and Hutterites (G710E). To elucidate the role of CPT1A, we established a Cpt1a P479L mouse strain and evaluated its sensitivity to experimental autoimmune encephalomyelitis (EAE) induction. Since CPT1a is a key molecule in lipid metabolism, we compared the effects of a high-fat diet (HFD) and normal diet (ND) on disease progression. The disease severity increased significantly in WT mice compared to that in Cpt1 P479L mice. In addition, WT mice receiving HFD showed markedly exacerbated disease course when compared either with Cpt1a P479L mice receiving HFD or WT control group receiving ND. Induction of EAE caused a significant decrease of myelin basic protein expression in the hindbrain of disease affected WT mice in comparison to Cpt1a P479L mice. Further, WT mice showed increased expression of oxidative stress markers like Nox2 and Ho-1, whereas expression of mitochondrial antioxidants regulator Pgc1α was increased in Cpt1a P479L mice. Our results suggest that, lipids metabolism play an important role in EAE, as shown by the higher severity of disease progression in both WT EAE and WT EAF HFD-fed mice in contrast to their counterpart Cpt1a P479L mutant mice. Interestingly, mice with downregulated lipid metabolism due to the Cpt1a P479L mutation showed resistance to EAE induction. These findings support a key role for CPT1A in the development of EAE and could be a promising target in MS treatment.
Collapse
Affiliation(s)
- Anne Skøttrup Mørkholt
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg, Denmark
| | - Michael Sloth Trabjerg
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg, Denmark
| | | | - Luise Bolther
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg, Denmark
| | - Lona John Kroese
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Colin Eliot Jason Pritchard
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Ivo Johan Huijbers
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | | |
Collapse
|
80
|
Chen H, Ma X, Liu Y, Ma L, Chen Z, Lin X, Si L, Ma X, Chen X. Gut Microbiota Interventions With Clostridium butyricum and Norfloxacin Modulate Immune Response in Experimental Autoimmune Encephalomyelitis Mice. Front Immunol 2019; 10:1662. [PMID: 31428083 PMCID: PMC6689973 DOI: 10.3389/fimmu.2019.01662] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota has been proposed as an important environmental factor which can intervene and modulate central nervous system autoimmunity. Here, we altered the composition of gut flora with Clostridium butyricum and norfloxacin in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We found that appropriate C. butyricum (5.0 × 106 CFU/mL intragastrically daily, staring at weaning period of age) and norfloxacin (5 mg/kg intragastrically daily, 1 week prior to EAE induction) treatment could both ameliorate EAE although there are obvious differences in gut microbiota composition between these two interventions. C. butyricum increased while norfloxacin decreased the abundance and diversity of the gut microbiota in EAE mice, and both of the treatments decreased firmicutes/bacteroidetes ratio. In the genus level, C. butyricum treatment increased the abundance of Prevotella while Akkermansia and Allobaculum increased in norfloxacin treatment. Moreover, both interventions reduced Desulfovibroneceae and Ruminococcus species. Although there was discrepancy in the gut microbiota composition with the two interventions, C. butyricum and norfloxacin treatment both reduced Th17 response and increased Treg response in the gastrointestinal tract and extra-gastrointestinal organ systems in EAE mice. And the reduced activity of p38 mitogen-activated kinase and c-Jun N-terminal kinase signaling in spinal cord could be observed in the two interventions. The results suggested that manipulation of gut microbiota interventions should take factors such as timing, duration, and dosage into consideration. The discrepancy in the gut microbiota composition and the similar protective T cells response of C. butyricum and norfloxacin implies that achieving intestinal microecology balance by promoting and/or inhibiting the gut microbiota contribute to the well-being of immune response in EAE mice.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoyu Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiuli Lin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Si
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueying Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
81
|
Mechanism of gut microbiota and Axl/SOCS3 in experimental autoimmune encephalomyelitis. Biosci Rep 2019; 39:BSR20190228. [PMID: 31221818 PMCID: PMC6603274 DOI: 10.1042/bsr20190228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS). The present study explored the role of intestinal microbiota in the initiation and propagation of mice induced by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. 48 C57BL/6 were randomly divided into control group and EAE group. The changes of body weight and the scores of neurological function were recorded. The mRNA expression of the receptor tyrosine kinase subfamily (AXL) was detected by real-time quantitative PCR. The levels of IL-17 and IFN-γ in blood samples were examined by ELISA. The intestinal microbial composition of mice at different time points during the EAE induction was analyzed by 16S rRNA gene-based sequencing. In EAE group, the body weight began to reduce at day 3 and neurological symptoms began to appear at day 7 after EAE induction. The levels of IL-17 and IFN-γ in EAE group reached the peak at day 21 and then decreased gradually. However, the expression of Axl and SOCS3 reached the lowest level at day 21 and then increased gradually. The microbiome analyses revealed that the abundances of Alistipes, Blautia, and Lachnospiraceae_NK4A136_group were significantly changed at day 14, whereas the abundances of Allobaculum, Eubacterium and Helicobacter were significantly changed at day 30 of EAE induction. The prevotellaceae_NK3B31_group may be key bacteria that contribute to the development of MS. Regulation of intestinal microbiota composition can become a new therapeutic target for the treatment of MS.
Collapse
|
82
|
Chen K, Xie K, Liu Z, Nakasone Y, Sakao K, Hossain A, Hou DX. Preventive Effects and Mechanisms of Garlic on Dyslipidemia and Gut Microbiome Dysbiosis. Nutrients 2019; 11:nu11061225. [PMID: 31146458 PMCID: PMC6627858 DOI: 10.3390/nu11061225] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023] Open
Abstract
Garlic (Allium sativum L.) contains prebiotic components, fructans, antibacterial compounds, and organosulfur compounds. The complex ingredients of garlic seem to impart a paradoxical result on the gut microbiome. In this study, we used a mouse model to clarify the effects of whole garlic on the gut microbiome. C57BL/6N male mice were fed with or without whole garlic in normal diet (ND) or in high-fat diet (HFD) for 12 weeks. Supplementation with whole garlic attenuated HFD-enhanced ratio of serum GPT/GOT (glutamic-pyruvic transaminase/glutamic-oxaloacetic transaminase), levels of T-Cho (total cholesterol) and LDLs (low-density lipoproteins), and index of homeostatic model assessment for insulin resistance (HOMA-IR), but had no significant effect in the levels of serum HDL-c (high density lipoprotein cholesterol), TG (total triacylglycerol), and glucose. Moreover, garlic supplementation meliorated the HFD-reduced ratio of villus height/crypt depth, cecum weight, and the concentration of cecal organic acids. Finally, gut microbiota characterization by high throughput 16S rRNA gene sequencing revealed that whole garlic supplementation increased the α-diversity of the gut microbiome, especially increasing the relative abundance of f_Lachnospiraceae and reducing the relative abundance of g_Prevotella. Taken together, our data demonstrated that whole garlic supplementation could meliorate the HFD-induced dyslipidemia and disturbance of gut microbiome.
Collapse
Affiliation(s)
- Keyu Chen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Kun Xie
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Zhuying Liu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | | | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Kenkoukazoku Co., Kagoshima 892-0848, Japan.
| | - Amzad Hossain
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
83
|
Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients 2019; 11:nu11051076. [PMID: 31096592 PMCID: PMC6566411 DOI: 10.3390/nu11051076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.
Collapse
|
84
|
He Z, Kong X, Shao T, Zhang Y, Wen C. Alterations of the Gut Microbiota Associated With Promoting Efficacy of Prednisone by Bromofuranone in MRL/lpr Mice. Front Microbiol 2019; 10:978. [PMID: 31118928 PMCID: PMC6504707 DOI: 10.3389/fmicb.2019.00978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota played an important role in systemic lupus erythematosus (SLE) and glucocorticoids were prone to cause alterations in gut microbiota. This study addressed the effect of bromofuranone on the treatment of SLE with prednisone, since bromofuranone could regulate gut microbiota by inhibiting the AI-2/LuxS quorum-sensing. Remarkably, bromofuranone did not alleviate lupus but promoted the efficacy of prednisone in the treatment of lupus. The alterations in the gut microbiota, including decreased Mucispirillum, Oscillospira, Bilophila and Rikenella, and increased Anaerostipes, were associated with prednisone treatment for SLE. In addition, the increase of Lactobacillus, Allobaculum, Sutterella, and Adlercreutzia was positively associated with the bromofuranone-mediated promotion for the treatment of lupus. This was the first study demonstrating that the efficacy of glucocorticoids could be affected by the interventions in gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Yun Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
85
|
Hachim MY, Elemam NM, Maghazachi AA. The Beneficial and Debilitating Effects of Environmental and Microbial Toxins, Drugs, Organic Solvents and Heavy Metals on the Onset and Progression of Multiple Sclerosis. Toxins (Basel) 2019; 11:E147. [PMID: 30841532 PMCID: PMC6468554 DOI: 10.3390/toxins11030147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system is common amongst young adults, leading to major personal and socioeconomic burdens. However, it is still considered complex and challenging to understand and treat, in spite of the efforts made to explain its etiopathology. Despite the discovery of many genetic and environmental factors that might be related to its etiology, no clear answer was found about the causes of the illness and neither about the detailed mechanism of these environmental triggers that make individuals susceptible to MS. In this review, we will attempt to explore the major contributors to MS autoimmunity including genetic, epigenetic and ecological factors with a particular focus on toxins, chemicals or drugs that may trigger, modify or prevent MS disease.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Immuno-Oncology group, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| |
Collapse
|
86
|
Campos-Acuña J, Elgueta D, Pacheco R. T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease. Front Immunol 2019; 10:239. [PMID: 30828335 PMCID: PMC6384270 DOI: 10.3389/fimmu.2019.00239] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting mainly the dopaminergic neurons of the nigrostriatal pathway, a neuronal circuit involved in the control of movements, thereby the main manifestations correspond to motor impairments. The major molecular hallmark of this disease corresponds to the presence of pathological protein inclusions called Lewy bodies in the midbrain of patients, which have been extensively associated with neurotoxic effects. Importantly, different research groups have demonstrated that CD4+ T-cells infiltrate into the substantia nigra of PD patients and animal models. Moreover, several studies have consistently demonstrated that T-cell deficiency results in a strong attenuation of dopaminergic neurodegeneration in animal models of PD, thus indicating a key role of adaptive immunity in the neurodegenerative process. Recent evidence has shown that CD4+ T-cell response involved in PD patients is directed to oxidised forms of α-synuclein, one of the main constituents of Lewy bodies. On the other hand, most PD patients present a number of non-motor manifestations. Among non-motor manifestations, gastrointestinal dysfunctions result especially important as potential early biomarkers of PD, since they are ubiquitously found among confirmed patients and occur much earlier than motor symptoms. These gastrointestinal dysfunctions include constipation and inflammation of the gut mucosa and the most distinctive pathologic features associated are the loss of neurons of the enteric nervous system and the generation of Lewy bodies in the gut. Moreover, emerging evidence has recently shown a pivotal role of gut microbiota in triggering the development of PD in genetically predisposed individuals. Of note, PD has been positively correlated with inflammatory bowel diseases, a group of disorders involving a T-cell driven inflammation of gut mucosa, which is strongly dependent in the composition of gut microbiota. Here we raised the hypothesis that T-cell driven inflammation, which mediates dopaminergic neurodegeneration in PD, is triggered in the gut mucosa. Accordingly, we discuss how structural components of commensal bacteria or how different mediators produced by gut-microbiota, including short-chain fatty acids and dopamine, may affect the behaviour of T-cells, triggering the development of T-cell responses against Lewy bodies, initially confined to the gut mucosa but later extended to the brain.
Collapse
Affiliation(s)
- Javier Campos-Acuña
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
87
|
Wahls TL, Chenard CA, Snetselaar LG. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients 2019; 11:E352. [PMID: 30736445 PMCID: PMC6412750 DOI: 10.3390/nu11020352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
The precise etiology of multiple sclerosis (MS) is unknown but epidemiologic evidence suggests this immune-mediated, neurodegenerative condition is the result of a complex interaction between genes and lifetime environmental exposures. Diet choices are modifiable environmental factors that may influence MS disease activity. Two diets promoted for MS, low saturated fat Swank and modified Paleolithic Wahls Elimination (WahlsElim), are currently being investigated for their effect on MS-related fatigue and quality of life (NCT02914964). Dr. Swank theorized restriction of saturated fat would reduce vascular dysfunction in the central nervous system (CNS). Dr. Wahls initially theorized that detailed guidance to increase intake of specific foodstuffs would facilitate increased intake of nutrients key to neuronal health (Wahls™ diet). Dr. Wahls further theorized restriction of lectins would reduce intestinal permeability and CNS inflammation (WahlsElim version). The purpose of this paper is to review the published research of the low saturated fat (Swank) and the modified Paleolithic (Wahls™) diets and the rationale for the structure of the Swank diet and low lectin version of the Wahls™ diet (WahlsElim) being investigated in the clinical trial.
Collapse
Affiliation(s)
- Terry L Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Chenard
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Linda G Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
88
|
McCombe PA. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J Clin Med 2018; 7:jcm7120494. [PMID: 30486504 PMCID: PMC6306813 DOI: 10.3390/jcm7120494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
The role of pregnancy in multiple sclerosis (MS) is of importance because many patients with MS are young women in the childbearing age who require information to inform their reproductive decisions. Pregnancy is now well-known to be associated with fewer relapses of MS and reduced activity of autoimmune encephalomyelitis (EAE). However, in women with multiple sclerosis, this benefit is not always sufficient to protect against a rebound of disease activity if disease-modulating therapy is ceased for pregnancy. There is concern that use of assisted reproductive therapies can be associated with relapses of MS, but more data are required. It is thought that the beneficial effects of pregnancy are due to the pregnancy-associated changes in the maternal immune system. There is some evidence of this in human studies and studies of EAE. There is also evidence that having been pregnant leads to better long-term outcome of MS. The mechanism for this is not fully understood but it could result from epigenetic changes resulting from pregnancy or parenthood. Further studies of the mechanisms of the beneficial effects of pregnancy could provide information that might be used to produce new therapies.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Brisbane, QLD 4029, Australia.
| |
Collapse
|
89
|
Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. Int J Mol Sci 2018; 19:ijms19123720. [PMID: 30467295 PMCID: PMC6320976 DOI: 10.3390/ijms19123720] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of metabolic disorders, including diabetes, has elevated exponentially during the last decades and enhanced the risk of a variety of complications, such as diabetes and cardiovascular diseases. In the present review, we have highlighted the new insights on the complex relationships between diet-induced modulation of gut microbiota and metabolic disorders, including diabetes. Literature from various library databases and electronic searches (ScienceDirect, PubMed, and Google Scholar) were randomly collected. There exists a complex relationship between diet and gut microbiota, which alters the energy balance, health impacts, and autoimmunity, further causes inflammation and metabolic dysfunction, including diabetes. Faecalibacterium prausnitzii is a butyrate-producing bacterium, which plays a vital role in diabetes. Transplantation of F. prausnitzii has been used as an intervention strategy to treat dysbiosis of the gut’s microbial community that is linked to the inflammation, which precedes autoimmune disease and diabetes. The review focuses on literature that highlights the benefits of the microbiota especially, the abundant of F. prausnitzii in protecting the gut microbiota pattern and its therapeutic potential against inflammation and diabetes.
Collapse
|
90
|
Pétrin J, Fiander M, Doss PMIA, Yeh EA. A Scoping Review of Modifiable Risk Factors in Pediatric Onset Multiple Sclerosis: Building for the Future. CHILDREN (BASEL, SWITZERLAND) 2018; 5:E146. [PMID: 30373215 PMCID: PMC6262383 DOI: 10.3390/children5110146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Knowledge of the effect of modifiable lifestyle factors in the pediatric multiple sclerosis (MS) population is limited. We therefore conducted a scoping review, following the framework provided by Arksey and O'Malley. Four databases were searched for pediatric MS and modifiable lifestyle factors using index terms and keywords, from inception to May 2018. All quantitative and qualitative primary articles were included and limited to English and full text. Of the 7202 articles identified and screened, 25 full-text articles were relevant to our objective and were included. These articles focused on diet obesity, physical activity, and sleep. In cross-sectional analyses, these lifestyle factors were associated with increased risk of pediatric onset MS (POMS), and increased disease activity. Diet, particularly vitamin D and vegetable intake, was associated with reduced relapse rate. Obesity was linked to increased risk of POMS, and physical activity was associated with reduced relapse rate and sleep/rest fatigue. Thus, available studies of lifestyle related outcomes in pediatric MS suggest specific lifestyle related factors, including obesity, higher vitamin D levels, and higher physical activity may associate with lower disease burden in POMS. Studies reviewed are limited by their observational designs. Future studies with longitudinal and experimental designs may further clarify the role of modifiable lifestyle factors in this population.
Collapse
Affiliation(s)
- Julie Pétrin
- Department of Rehabilitation Sciences, School of Rehabilitation Therapy, Queen's University, Louise D Acton Building, 31 George St, Kingston, ON K7L 3N6, Canada.
| | - Max Fiander
- Faculty of Medicine, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Prenitha Mercy Ignatius Arokia Doss
- Department of Neurosciences, Faculty of Medicine, Université Laval, Pavillon Ferdinand Vandry, 1050, Medecine Avenue, Quebec City, QC G1V 0A6, Canada.
| | - E Ann Yeh
- Hospital for Sick Children, Division of Neurology, SickKids Research Institute, Neurosciences and Mental Health, University of Toronto, 27 King's College Cir, Toronto, ON M5S 3H7, Canada.
| |
Collapse
|