51
|
Chen JX, Li L, Cantrell AC, Williams QA, Zeng H. High Glucose Activates Prolyl Hydroxylases and Disrupts HIF-α Signaling via the P53/TIGAR Pathway in Cardiomyocyte. Cells 2023; 12:1060. [PMID: 37048134 PMCID: PMC10093703 DOI: 10.3390/cells12071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The induction of hypoxia tolerance has emerged as a novel therapeutic strategy for the treatment of ischemic diseases. The disruption of hypoxic signaling by hyperglycemia has been shown to contribute to diabetic cardiomyopathy. In this study, we explored the potential molecular mechanisms by which high glucose (HG) impairs hypoxia-inducible factor-α (HIF-α) signaling in cardiomyocytes. The exposure of H9c2 cell lines to HG resulted in time- and concentration-dependent decreases in HIF-1α and HIF-2α expression together with an increase in prolyl hydroxylase-1,2 (PHD1 and PHD2) expression, the main regulators of HIF-α destabilization in the heart. The exposure of H9c2 cells to normal glucose (5.5 mM) and high glucose (15, 30, and 45 mM) led to dose-dependent increases in p53 and TIGAR and a decrease in SIRT3 expression. The pretreatment of H9c2 with p53 siRNA to knockdown p53 attenuated PHD1 and PHD2 expression, thus significantly enhancing HIF-1α and HIF-2α expression in H9c2 cells under HG conditions. Interestingly, pretreatment with p53 siRNA altered H9c2 cell metabolism by reducing oxygen consumption rate and increasing glycolysis. Similarly, pretreatment with TIGAR siRNA blunted HG-induced PHD1 and PHD2 expression. This was accompanied by an increase in HIF-1α and HIF-2α expression with a reduction in oxygen consumption rate in H9c2 cells. Furthermore, pretreatment with adenovirus-SIRT3 (Ad-SIRT3) significantly reduced the HG-induced expression of p53 and PHDs and increased HIF-1α levels in H9c2 cells. Ad-SIRT3 treatment also regulated PHDs-HIF-1α levels in the hearts of diabetic db/db mice. Our study revealed a novel role of the HG-induced disruption of PHDs-HIF-α signaling via upregulating p53 and TIGAR expression. Therefore, the p53/TIGAR signaling pathway may be a novel target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.-X.C.)
| |
Collapse
|
52
|
Sun Y, Stenson K, Mohan ML, Gupta MK, Wanner N, Asosingh K, Erzurum S, Naga Prasad SV. Hypoxia Sensing of β-Adrenergic Receptor Is Regulated by Endosomal PI3Kγ. Circ Res 2023; 132:690-703. [PMID: 36779349 PMCID: PMC10023460 DOI: 10.1161/circresaha.122.321735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Impaired beta-adrenergic receptor (β1 and β2AR) function following hypoxia underlies ischemic heart failure/stroke. Activation of PI3Kγ (phosphoinositide 3-kinase γ) by beta-adrenergic receptor leads to feedback regulation of the receptor by hindering beta-adrenergic receptor dephosphorylation through inhibition of PP2A (protein phosphatase 2A). However, little is known about PI3Kγ feedback mechanism in regulating hypoxia-mediated β1 and β2AR dysfunction and cardiac remodeling. METHODS Human embryonic kidney 293 cells or mouse adult cardiomyocytes and C57BL/6 (WT) or PI3Kγ knockout (KO) mice were subjected to hypoxia. Cardiac plasma membranes and endosomes were isolated and evaluated for β1 and β2AR density and function, PI3Kγ activity and β1 and β2AR-associated PP2A activity. Metabolic labeling was performed to assess β1 and β2AR phosphorylation and epinephrine/norepinephrine levels measured post-hypoxia. RESULTS Hypoxia increased β1 and β2AR phosphorylation, reduced cAMP, and led to endosomal accumulation of phosphorylated β2ARs in human embryonic kidney 293 cells and WT cardiomyocytes. Acute hypoxia in WT mice resulted in cardiac remodeling and loss of adenylyl cyclase activity associated with increased β1 and β2AR phosphorylation. This was agonist-independent as plasma and cardiac epinephrine and norepinephrine levels were unaltered. Unexpectedly, PI3Kγ activity was selectively increased in the endosomes of human embryonic kidney 293 cells and WT hearts post-hypoxia. Endosomal β1- and β2AR-associated PP2A activity was inhibited upon hypoxia in human embryonic kidney 293 cells and WT hearts showing regulation of beta-adrenergic receptors by PI3Kγ. This was accompanied with phosphorylation of endogenous inhibitor of protein phosphatase 2A whose phosphorylation by PI3Kγ inhibits PP2A. Increased β1 and β2AR-associated PP2A activity, decreased beta-adrenergic receptor phosphorylation, and normalized cardiac function was observed in PI3Kγ KO mice despite hypoxia. Compared to WT, PI3Kγ KO mice had preserved cardiac response to challenge with β1AR-selective agonist dobutamine post-hypoxia. CONCLUSIONS Agonist-independent activation of PI3Kγ underlies hypoxia sensing as its ablation leads to reduction in β1- and β2AR phosphorylation and amelioration of cardiac dysfunction.
Collapse
Affiliation(s)
- Yu Sun
- Departments of Cardiovascular and Metabolic Sciences (Y.S., K.S., M.L.M., M.K.G., S.V., N.P.), Lerner Research Institute, Cleveland Clinic, OH
| | - Kate Stenson
- Departments of Cardiovascular and Metabolic Sciences (Y.S., K.S., M.L.M., M.K.G., S.V., N.P.), Lerner Research Institute, Cleveland Clinic, OH
| | - Maradumane L Mohan
- Departments of Cardiovascular and Metabolic Sciences (Y.S., K.S., M.L.M., M.K.G., S.V., N.P.), Lerner Research Institute, Cleveland Clinic, OH
| | - Manveen K Gupta
- Departments of Cardiovascular and Metabolic Sciences (Y.S., K.S., M.L.M., M.K.G., S.V., N.P.), Lerner Research Institute, Cleveland Clinic, OH
| | - Nick Wanner
- Inflammation and Immunity (N.W., K.A., S.E.), Lerner Research Institute, Cleveland Clinic, OH
| | - Kewal Asosingh
- Inflammation and Immunity (N.W., K.A., S.E.), Lerner Research Institute, Cleveland Clinic, OH
| | - Serpil Erzurum
- Inflammation and Immunity (N.W., K.A., S.E.), Lerner Research Institute, Cleveland Clinic, OH
| | - Sathyamangla V Naga Prasad
- Departments of Cardiovascular and Metabolic Sciences (Y.S., K.S., M.L.M., M.K.G., S.V., N.P.), Lerner Research Institute, Cleveland Clinic, OH
| |
Collapse
|
53
|
Wang YX, Reyes-García J, Di Mise A, Zheng YM. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension. J Gen Physiol 2023; 155:e202213100. [PMID: 36625865 PMCID: PMC9836826 DOI: 10.1085/jgp.202213100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH. More specifically, dissociation of the RyR2-FKBP12.6 complex is a consequence of increased mitochondrial ROS generation mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6 dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad de México, México
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
54
|
Wang F, Yang Z, Li J, Ma Y, Tu Y, Zeng X, Wang Q, Jiang Y, Huang S, Yi Q. The involvement of hypoxia inducible factor-1α on the proportion of three types of haemocytes in Chinese mitten crab under hypoxia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104598. [PMID: 36511346 DOI: 10.1016/j.dci.2022.104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia triggers diverse cell physiological processes, and the hypoxia inducible factors (HIFs) are a family of heterodimeric transcription factors that function as master regulators to respond to hypoxia in different cells. However, the knowledge about the hypoxic responses especially cell alteration mediated by HIFs under hypoxia stress is still limited in crustaceans. In the present study, a hypoxia-inducible factor-1α (HIF-1α) gene was identified (designed as EsHIF-1α). The relative mRNA expression level of EsHIF-1α was highest in hyalinocytes and lowest in granulocytes among three types of haemocytes in crabs. Hypoxia could significantly increase the EsHIF-1α protein expression level in haemocytes. Meanwhile, the proportion of hyalinocytes began to increase from 3 h post hypoxia treatment, and reached the highest level at 24 h. However, the opposite variation in proportion of granulocytes was observed under hypoxia stress. Further investigation showed that the inhibition of EsHIF-1α induced by KC7F2 (HIF-1α inhibitor) could lead to the significant decrease in the proportion of hyalinocytes under hypoxia stress, and also resulted in an increase of granulocytes proportion. While, after EsHIF-1α was activated by IOX4 (HIF-1α activator), the proportion of hyalinocytes was significantly up-regulated and the proportion of granulocytes was significantly down-regulated under post hypoxia treatment. These results collectively suggested that EsHIF-1α was involved in the regulation of proportion of three types of haemocytes induced by hypoxia stress, which provided vital insight into the understanding of the crosstalk between hypoxia and cell development in invertebrates.
Collapse
Affiliation(s)
- Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Tu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xiaorui Zeng
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qingyao Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
55
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
56
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
57
|
Chu M, Gao H, Esparza P, Pajulas A, Wang J, Kharwadkar R, Gao H, Kaplan MH, Tepper RS. Chronic developmental hypoxia alters rat lung immune cell transcriptomes during allergic airway inflammation. Physiol Rep 2023; 11:e15600. [PMID: 36750205 PMCID: PMC9904961 DOI: 10.14814/phy2.15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023] Open
Abstract
Populations that are born and raised at high altitude develop under conditions of chronic developmental hypoxia (CDH), which results in pulmonary adaptations of increased lung volume and diffusion capacity to increase gas exchange. It is not clear how CDH may alter allergic inflammation in the lung. In this study, we sought to characterize the impact of CDH on immune cell populations in the rat lung during a murine model of asthma. Rats were bred and raised in either hypoxic (15% oxygen, CDH) or normobaric room air (20% oxygen). At 3-weeks of age, animals were sensitized to ovalbumin (OVA) or physiologic saline (phosphate-buffered saline [PBS]) as a control, followed by three consecutive days of intra-nasal OVA or PBS at 6-weeks of age. We then assessed airway reactivity and allergic-associated cytokine levels. This was followed by single-cell transcriptomic profiling of lung cell populations. In scRNA-seq analysis, we assessed differentially expressed genes, differentially enriched functional pathways, immune cell exhaustion/activation markers, and immune cell secretory products. Our results show that while OVA heightened airway reactivity, CDH suppressed airway reactivity in OVA-challenged and control animals. Through scRNA-seq analysis, we further demonstrate that CDH alters the transcriptional landscape in the lung and alters transcriptional programs in immune cells. These data define CDH-dependent changes in the lung that impact airway reactivity.
Collapse
Affiliation(s)
- Michelle Chu
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Huanling Gao
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Patricia Esparza
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Abigail Pajulas
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Jocelyn Wang
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Rakshin Kharwadkar
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
| | - Hongyu Gao
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | - Mark H. Kaplan
- Department of Microbiology and ImmunologyIndiana UniversityIndianapolisIndianaUSA
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Robert S. Tepper
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
58
|
Qiu ZK, Zhang MZ, Zhang WC, Li ZJ, Si LB, Long X, Yu NZ, Wang XJ. Role of HIF-1α in pathogenic mechanisms of keloids. J Cosmet Dermatol 2023; 22:1436-1448. [PMID: 36718786 DOI: 10.1111/jocd.15601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUDS AND OBJECTIVE Keloids are defined as overrepairing products that develop after skin lesions. Keloids are characterized by the proliferation of fibroblasts and the overaccumulation of extracellular matrix components (mainly collagen), leading to a locally hypoxic microenvironment. Hence, this article was aimed to review hypoxia in pathogenesis of keloids. METHODS We reviewed and summarized the relevant published studies. RESULTS Hypoxia results in the accumulation of hypoxia-inducible factor 1α (HIF-1α) in keloids, contributing to overactivation of the fibrotic signaling pathway, epithelial-mesenchymal transition, and changes in metabolism, eventually leading to aggravated fibrosis, infiltrative growth, and radiotherapy resistance. CONCLUSION It is, therefore, essential to understand the role of HIF-1α in the pathogenic mechanisms of keloids in order to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Zi-Kai Qiu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zi Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Chao Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Jin Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lou-Bin Si
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Jun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
59
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
60
|
Zhou W, Liu K, Zeng L, He J, Gao X, Gu X, Chen X, Jing Li J, Wang M, Wu D, Cai Z, Claesson-Welsh L, Ju R, Wang J, Zhang F, Chen Y. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation 2022; 146:1855-1881. [PMID: 36384284 DOI: 10.1161/circulationaha.122.061900] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.
Collapse
Affiliation(s)
- Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jiaqi He
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Minghui Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Duoguang Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, China (Z.C.)
| | - Lena Claesson-Welsh
- Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (L.C.-W.)
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jingfeng Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| |
Collapse
|
61
|
Sallais J, Park C, Alahari S, Porter T, Liu R, Kurt M, Farrell A, Post M, Caniggia I. HIF1 inhibitor acriflavine rescues early-onset preeclampsia phenotype in mice lacking placental prolyl hydroxylase domain protein 2. JCI Insight 2022; 7:158908. [PMID: 36227697 PMCID: PMC9746916 DOI: 10.1172/jci.insight.158908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHDs), specifically PHD2, causes placental hypoxia-inducible factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia, yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy. Conditional deletion of Phd2 in the junctional zone during pregnancy increased placental HIF1 content, resulting in abnormal placentation, impaired remodeling of the uterine spiral arteries, and fetal growth restriction. Pregnant dams developed new-onset hypertension at midgestation (E9.5) in addition to proteinuria and renal and cardiac pathology, hallmarks of severe preeclampsia in humans. Daily injection of acriflavine, a small molecule inhibitor of HIF1, to pregnant Phd2-/- cKO mice from E7.5 (prior to hypertension) or E10.5 (after hypertension had been established) to E14.5 corrected placental dysmorphologies and improved fetal growth. Moreover, it reduced maternal blood pressure and reverted renal and myocardial pathology. Thus, therapeutic targeting of the HIF pathway may improve placental development and function, as well as maternal and fetal health, in preeclampsia.
Collapse
Affiliation(s)
- Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ruizhe Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Merve Kurt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Martin Post
- Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Ontario, Canada
| |
Collapse
|
62
|
Zhang Y, Jing M, Cai C, Zhu S, Zhang C, Wang Q, Zhai Y, Ji X, Wu D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif 2022; 56:e13374. [PMID: 36478328 PMCID: PMC9977675 DOI: 10.1111/cpr.13374] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/β-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Yan‐Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Mi‐Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chun‐Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Shuai‐Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chao‐Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Qi‐Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Yuan‐Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| |
Collapse
|
63
|
Shayan S, Arashkia A, Azadmanesh K. Modifying oncolytic virotherapy to overcome the barrier of the hypoxic tumor microenvironment. Where do we stand? Cancer Cell Int 2022; 22:370. [PMID: 36424577 PMCID: PMC9686061 DOI: 10.1186/s12935-022-02774-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Viruses are completely dependent on host cell machinery for their reproduction. As a result, factors that influence the state of cells, such as signaling pathways and gene expression, could determine the outcome of viral pathogenicity. One of the important factors influencing cells or the outcome of viral infection is the level of oxygen. Recently, oncolytic virotherapy has attracted attention as a promising approach to improving cancer treatment. However, it was shown that tumor cells are mostly less oxygenated compared with their normal counterparts, which might affect the outcome of oncolytic virotherapy. Therefore, knowing how oncolytic viruses could cope with stressful environments, particularly hypoxic environments, might be essential for improving oncolytic virotherapy.
Collapse
Affiliation(s)
- Sara Shayan
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Arash Arashkia
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Kayhan Azadmanesh
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| |
Collapse
|
64
|
Serial Gene Expression Profiling of Neural Stem Cells Shows Transcriptome Switch by Long-Term Physioxia from Metabolic Adaption to Cell Signaling Profile. Stem Cells Int 2022; 2022:6718640. [PMID: 36411871 PMCID: PMC9675612 DOI: 10.1155/2022/6718640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen is an essential factor in the cellular microenvironment with pivotal effects on neural development with a particular sensitivity of midbrain neural stem cells (NSCs) to high atmospheric oxygen tension. However, most experiments are still performed at atmospheric O2 levels (21%, normoxia), whereas mammalian brain tissue is physiologically exposed to substantially lower O2 tensions around 3% (physioxia). We here performed serial Affymetrix gene array analyses to detect expression changes in mouse fetal NSCs from both midbrain and cortical tissues when kept at physioxia compared to normoxia. We identified more than 400 O2-regulated genes involved in cellular metabolism, cell proliferation/differentiation, and various signaling pathways. NSCs from both regions showed a low number but high conformity of regulated genes (9 genes in midbrain vs. 34 in cortical NSCs; 8 concordant expression changes) after short-term physioxia (2 days) with metabolic processes and cellular processes being the most prominent GO categories pointing to cellular adaption to lower oxygen levels. Gene expression profiles changed dramatically after long-term physioxia (13 days) with a higher number of regulated genes and more diverse expression patterns when comparing the two NSC types (338 genes in midbrain vs. 121 in cortical NSCs; 75 concordant changes). Most prominently, we observed a reduction of hits in metabolic processes but an increase in biological regulation and signaling pointing to a switch towards signaling processes and stem cell maintenance. Our data may serve as a basis for identifying potential signaling pathways that maintain stem cell characteristics in cortical versus midbrain physioxic stem cell niches.
Collapse
|
65
|
Solimando AG, Marziliano D, Ribatti D. SARS-CoV-2 and Endothelial Cells: Vascular Changes, Intussusceptive Microvascular Growth and Novel Therapeutic Windows. Biomedicines 2022; 10:2242. [PMID: 36140343 PMCID: PMC9496230 DOI: 10.3390/biomedicines10092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial activation in infectious diseases plays a crucial role in understanding and predicting the outcomes and future treatments of several clinical conditions. COVID-19 is no exception. Moving from basic principles to novel approaches, an evolving view of endothelial activation provides insights into a better knowledge of the upstream actors in COVID-19 as a crucial future direction for managing SARS-CoV-2 and other infections. Assessing the function of resting and damaged endothelial cells in infection, particularly in COVID-19, five critical processes emerged controlling thrombo-resistance: vascular integrity, blood flow regulation, immune cell trafficking, angiogenesis and intussusceptive microvascular growth. Endothelial cell injury is associated with thrombosis, increased vessel contraction and a crucial phenomenon identified as intussusceptive microvascular growth, an unprecedented event of vessel splitting into two lumens through the integration of circulating pro-angiogenic cells. An essential awareness of endothelial cells and their phenotypic changes in COVID-19 inflammation is pivotal to understanding the vascular biology of infections and may offer crucial new therapeutic windows.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Donatello Marziliano
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
66
|
Davanian A, Williamson L, Taylor C, Harrover A, Bollinger K, Chaudhary B, Taskar V, Lee TJ, Liu Y, Chen Q, Marcus DM. Optical coherence tomography angiography and Humphrey visual field in patients with obstructive sleep apnea. J Clin Sleep Med 2022; 18:2133-2142. [PMID: 35532117 PMCID: PMC9435350 DOI: 10.5664/jcsm.10054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To determine if obstructive sleep apnea syndrome (OSAS) predisposes patients to glaucoma and macular disease due to vascular compromise by evaluating retinal and optic nerve vasculature and function using optical coherence tomography angiography and Humphrey visual field testing, respectively. METHODS In this prospective, observational, cross-sectional study 45 patients undergoing polysomnography ordered per standard of care were selected and stratified based on apnea-hypopnea index (AHI). Medical history, visual acuity testing, 24-2 Humphrey visual field, intraocular pressure measurement, and optical coherence tomography angiography studies of the macular and peripapillary retina were obtained. Correlations between polysomnography parameters and imaging data were analyzed. RESULTS The radial peripapillary capillary vascular density demonstrated no relationship to AHI (95% confidence interval [CI] [-0.026,0.038]) or severity of OSAS (95% CI: [-0.772, 3.648]) for moderate OSAS compared to mild/normal and (-1.295, 3.1421) for severe compared to mild/normal. Optical coherence tomography angiography superficial parafoveal vascular density (95% CI: [-0.068,0.011], deep parafoveal vascular density (95% CI: [-0.080,0.009]), and foveal avascular zone (95% CI: [-0.001, 0.001]) showed no statistically significant relationship to AHI or OSAS severity after controlling for confounders. Optical coherence tomography retinal nerve fiber layer thickness increased with AHI (P = .014), but there was no statistically significant correlation with OSAS severity with retinal nerve fiber layer thickness (95% CI: [-12.543, 6.792] for moderate comparing to normal and [-2.883, 16.551] for severe comparing to normal). Visual field parameters were unaffected by OSAS (95% CI: mean deviation [-0.21,0.29], pattern standard deviation: [-0.351, 0.121], visual field index: [-0.166, 0.329]). Optical coherence tomography choroidal thickness showed a statistically significant decrease when OSAS was grouped by severity (P = .0092) but did not correlate with AHI (P = .129, 95% CI: [-1.210, 0.095]). CONCLUSIONS The severity of OSAS did not show a statistically significant effect on parameters associated with glaucoma or macular vascular disease. Larger cohorts may be required to determine the physiologic consequences of OSAS on the macular and optic nerve vasculature, structure, and function. CITATION Davanian A, Williamson L, Taylor C, et al. Optical coherence tomography angiography and Humphrey visual field in patients with obstructive sleep apnea. J Clin Sleep Med 2022;18(9):2133-2142.
Collapse
Affiliation(s)
- Arash Davanian
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
- Vanderbilt Eye Institute, Nashville, Tennessee
| | | | | | - Abigail Harrover
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
| | - Kathryn Bollinger
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
| | | | - Varsha Taskar
- Department of Sleep Medicine, Augusta University Medical Center, Augusta, Georgia
| | - Tae Jin Lee
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
| | - Yuhan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qingxia Chen
- Vanderbilt Eye Institute, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dennis M. Marcus
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
- Southeast Retina Center, PC, Augusta, Georgia
| |
Collapse
|
67
|
Wang J, Guo X, Jiang R, He J, Zhao T, Peng Y, Zheng Y. Research progress in the prevention and treatment of liver fibrosis in Chinese medicine based on miRNAs molecular regulation of angiogenesis. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 4:100151. [DOI: 10.1016/j.prmcm.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
68
|
Flournoy J, Ashkanani S, Chen Y. Mechanical regulation of signal transduction in angiogenesis. Front Cell Dev Biol 2022; 10:933474. [PMID: 36081909 PMCID: PMC9447863 DOI: 10.3389/fcell.2022.933474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Biophysical and biochemical cues work in concert to regulate angiogenesis. These cues guide angiogenesis during development and wound healing. Abnormal cues contribute to pathological angiogenesis during tumor progression. In this review, we summarize the known signaling pathways involved in mechanotransduction important to angiogenesis. We discuss how variation in the mechanical microenvironment, in terms of stiffness, ligand availability, and topography, can modulate the angiogenesis process. We also present an integrated view on how mechanical perturbations, such as stretching and fluid shearing, alter angiogenesis-related signal transduction acutely, leading to downstream gene expression. Tissue engineering-based approaches to study angiogenesis are reviewed too. Future directions to aid the efforts in unveiling the comprehensive picture of angiogenesis are proposed.
Collapse
Affiliation(s)
- Jennifer Flournoy
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
| | - Shahad Ashkanani
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
69
|
Droma Y, Hanaoka M, Kinjo T, Kobayashi N, Yasuo M, Kitaguchi Y, Ota M. The blunted vascular endothelial growth factor-A (VEGF-A) response to high-altitude hypoxia and genetic variants in the promoter region of the VEGFA gene in Sherpa highlanders. PeerJ 2022; 10:e13893. [PMID: 35996666 PMCID: PMC9392454 DOI: 10.7717/peerj.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitudes, which may be achieved by mechanisms promoting microcirculatory blood flow and capillary density at high altitudes for restoring oxygen supply to tissues. Vascular endothelial growth factors (VEGFs) are important signaling proteins involved in vasculogenesis and angiogenesis which are stimulated by hypoxia. We hypothesize that the VEGF-A, the major member of the VEGF family, and the gene encoding VEGF-A (VEGFA) play a part in the adaptation to high-altitude hypoxia in Sherpa highlanders. Methods Fifty-one Sherpa highlanders in Namche Bazaar village at a high altitude of 3,440 meters (m) above sea level and 76 non-Sherpa lowlanders in Kathmandu city at 1,300 m in Nepal were recruited for the study. Venous blood was sampled to obtain plasma and extract DNA from each subject. The plasma VEGF-A concentrations were measured and five single-nucleotide polymorphisms (SNPs, rs699947, rs833061, rs1570360, rs2010963, and rs3025039) in the VEGFA were genotyped. The VEGF-A levels and allelic frequencies of the SNPs were compared between the two populations. Results A significant difference in oxygen saturation (SpO2) was observed between the two ethnic groups locating at different elevations (93.7 ± 0.2% in Sherpas at 3,440 m vs. 96.7 ± 0.2% in non-Sherpas at 1,300 m, P < 0.05). The plasma VEGF-A concentration in the Sherpas at high altitude was on the same level as that in the non-Sherpas at low altitude (262.8 ± 17.9 pg/ml vs. 266.8 ± 21.8 pg/ml, P = 0.88). This result suggested that the plasma VEGF-A concentration in Sherpa highlanders was stable despite a high-altitude hypoxic stimulus and that therefore the Sherpas exhibited a phenotype of blunted response to hypoxic stress. Moreover, the allele frequencies of the SNPs rs699947, rs833061, and rs2010963 in the promoter region of the VEGFA were different between the Sherpa highlanders and non-Sherpa lowlanders (corrected P values = 3.30 ×10-5, 4.95 ×10-4, and 1.19 ×10-7, respectively). Conclusions Sherpa highlanders exhibited a blunted VEGF-A response to hypoxia at high altitudes, which was speculated to be associated with the distinctive genetic variations of the SNPs and haplotype in the promoter region of VEGFA in Sherpa highlanders.
Collapse
Affiliation(s)
- Yunden Droma
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masayuki Hanaoka
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takumi Kinjo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Nobumitsu Kobayashi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masanori Yasuo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yoshiaki Kitaguchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
70
|
SARS-CoV-2 infection- induced growth factors play differential roles in COVID-19 pathogenesis. Life Sci 2022; 304:120703. [PMID: 35700841 PMCID: PMC9188443 DOI: 10.1016/j.lfs.2022.120703] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Aims Biologically active molecules cytokines and growth factors (GFs) are critical regulators of tissue injury/repair and emerge as key players in COVID-19 pathophysiology. However, specific disease stage of GFs dysregulation and, whether these GFs have associations with thromboembolism and tissue injury/repair in COVID-19 remain vague. Main methods GF profiling in hospitalized moderate (non-ICU) and critically ill (ICU) COVID-19 patients was performed through legendPlex assay. Key findings Investigation revealed profound elevation of VEGF, PDGFs, EGF, TGF-α, FGF-basic, and erythropoietin (EPO) in moderate cases and decline or trend of decline with disease advancement. We found strong positive correlations of plasma VEGF, PDGFs, and EPO with endothelial dysfunction markers P-selectin and sCD40L. Interestingly, the HGF and G-CSF were upregulated at the moderate stage and remained elevated at the severe stage of COVID-19. Moreover, strong negative correlations of PDGFs (r2 = 0.238, P = 0.006), EPO (r2 = 0.18, P = 0.01) and EGF (r2 = 0.172, P = 0.02) and positive correlation of angiopoietin-2 (r2 = 0.267, P = 0.003) with D-dimer, a marker of thromboembolism, was observed. Further, plasma PDGFs (r2 = 0.199, P = 0.01), EPO (r2 = 0.115, P = 0.02), and EGF (r2 = 0.108, P = 0.07) exhibited negative correlations with tissue injury marker, myoglobin. Significance Taken together, unlike cytokines, most of the assessed GFs were upregulated at the moderate stage of COVID-19. The induction of GFs likely occurs due to endothelial dysfunction and may counter the adverse effects of cytokine storms which is reflected by inverse correlations of PDGFs, EPO, and EGF with thromboembolism and tissue injury markers. The findings suggest that the assessed GFs play differential roles in the pathogenesis of COVID-19.
Collapse
|
71
|
Jaskiewicz M, Moszynska A, Serocki M, Króliczewski J, Bartoszewska S, Collawn JF, Bartoszewski R. Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia. EXCLI JOURNAL 2022; 21:454-469. [PMID: 35391921 PMCID: PMC8983852 DOI: 10.17179/excli2021-4622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression. Two of the three HIFs isoforms present in mammals, HIF-1 and HIF-2, are well characterized and have overlapping functions that promote cell survival, whereas HIF-3's role remains less clear. The HIF-3 response is complicated because the HIF3A gene can utilize different promotors and alternate splicing sites that result in a number of different HIF-3α isoforms. Here, using human umbilical vein endothelial cells (HUVECs), we demonstrate that one of the isoforms of HIF-3α, isoform 2 (HIF-3α2) accumulates at a late stage of hypoxia and induces the expression of DNA damage inducible transcript 3 (DDIT4), a gene known to promote apoptosis. We also demonstrate that caspase 3/7 activity is elevated, supporting that the role of the HIF-3α2 isoform is to promote apoptosis. Furthermore, we provide evidence that HIF-3α2 is also expressed in seven other primary endothelial cell types, suggesting that this may be a common feature of HIF-3α2 in endothelial cells.
Collapse
Affiliation(s)
- Maciej Jaskiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Moszynska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA, Birmingham, AL 35233
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
72
|
Chung MS, Han SJ. Endometriosis-Associated Angiogenesis and Anti-angiogenic Therapy for Endometriosis. Front Glob Womens Health 2022; 3:856316. [PMID: 35449709 PMCID: PMC9016174 DOI: 10.3389/fgwh.2022.856316] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Endometriosis is a known estrogen-dependent inflammatory disease affecting reproductive-aged women. Common symptoms include pelvic pain, dysmenorrhea, dyspareunia, heavy menstrual bleeding, and infertility. The exact etiology of endometriosis is largely unknown, and, thus, the diagnosis and treatment of endometriosis are challenging. A complex interplay of many molecular mechanisms is thought to aid in the progression of endometriosis, most notably angiogenesis. This mini-review examines our current knowledge of the molecular etiology of endometriosis-associated angiogenesis and discusses anti-angiogenic therapy, in the blockade of endometriosis-associated angiogenesis, as potential non-hormonal therapy for the treatment of endometriosis.
Collapse
Affiliation(s)
- Monica S. Chung
- Division of Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Baylor College of Medicine, Houston, TX, United States
| | - Sang Jun Han
- Laboratory of Dan L. Duncan Cancer Center and Reproductive Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Sang Jun Han
| |
Collapse
|
73
|
Laitinen P, Väänänen MA, Kolari IL, Mäkinen PI, Kaikkonen MU, Weinberg MS, Morris KV, Korhonen P, Malm T, Ylä-Herttuala S, Roberts TC, Turunen MP, Turunen TA. Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS One 2022; 17:e0265948. [PMID: 35358280 PMCID: PMC8975276 DOI: 10.1371/journal.pone.0265948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are well characterized in their role in silencing gene expression by targeting 3´-UTR of mRNAs in cytoplasm. However, recent studies have shown that miRNAs have a role in the regulation of genes in the nucleus, where they are abundantly located. We show here that in mouse endothelial cell line (C166), nuclear microRNA miR-466c participates in the regulation of vascular endothelial growth factor a (Vegfa) gene expression in hypoxia. Upregulation of Vegfa expression in response to hypoxia was significantly compromised after removal of miR-466c with CRISPR-Cas9 genomic deletion. We identified a promoter-associated long non-coding RNA on mouse Vegfa promoter and show that miR-466c directly binds to this transcript to modulate Vegfa expression. Collectively, these observations suggest that miR-466c regulates Vegfa gene transcription in the nucleus by targeting the promoter, and expands on our understanding of the role of miRNAs well beyond their canonical role.
Collapse
Affiliation(s)
- Pia Laitinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ida-Liisa Kolari
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri I. Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marc S. Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwaterstrand, Witwaterstrand, South Africa
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope–Beckman Research Institute at the City of Hope, Duarte, California, United States of America
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Queensland, Australia
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Thomas C. Roberts
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MDUK Oxford Neuromuscular Centre, Oxford, United Kingdom
| | - Mikko P. Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
- * E-mail:
| | - Tiia A. Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
| |
Collapse
|
74
|
Bone Marrow Mesenchymal Stem Cells and Their Derived Extracellular Vesicles Attenuate Non-Alcoholic Steatohepatitis-Induced Cardiotoxicity via Modulating Cardiac Mechanisms. Life (Basel) 2022; 12:life12030355. [PMID: 35330106 PMCID: PMC8952775 DOI: 10.3390/life12030355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular-disease (CVD)-related mortality has been fueled by the upsurge of non-alcoholic steatohepatitis (NASH). Mesenchymal stem cells (MSCs) were extensively studied for their reparative power in ameliorating different CVDs via direct and paracrine effects. Several reports pointed to the importance of bone marrow mesenchymal stem cells (BM-MSCs) as a reliable therapeutic approach for several CVDs. Nevertheless, their therapeutic potential has not yet been investigated in the cardiotoxic state that is induced by NASH. Thus, this study sought to investigate the molecular mechanisms associated with cardiotoxicity that accompany NASH. Besides, we aimed to comparatively study the therapeutic effects of bone-marrow mesenchymal-stem-cell-derived extracellular vesicles (BM-MSCs-EV) and BM-MSCs in a cardiotoxic model that is induced by NASH in rats. Rats were fed with high-fat diet (HFD) for 12 weeks. At the seventh week, BM-MSCs-EV were given a dose of 120 µg/kg i.v., twice a week for six weeks (12 doses per 6 weeks). Another group was treated with BM-MSCs at a dose of 1 × 106 cell i.v., per rat once every 2 weeks for 6 weeks (3 doses per 6 weeks). BM-MSCs-EV demonstrated superior cardioprotective effects through decreasing serum cardiotoxic markers, cardiac hypoxic state (HIF-1) and cardiac inflammation (NF-κB p65, TNF-α, IL-6). This was accompanied by increased vascular endothelial growth factor (VEGF) and improved cardiac histopathological alterations. Both BM-MSCs-EV and BM-MSCs restored the mitochondrial antioxidant state through the upregulation of UCP2 and MnSOD genes. Besides, mitochondrial Parkin-dependent and -independent mitophagies were regained through the upregulation of (Parkin, PINK1, ULK1, BNIP3L, FUNDC1) and (LC3B). These effects were mediated through the regulation of pAKT, PI3K, Hypoxia, VEGF and NF-κB signaling pathways by an array of secreted microRNAs (miRNAs). Our findings unravel the potential ameliorative effects of BM-MSCs-EV as a comparable new avenue for BM-MSCs for modulating cardiotoxicity that is induced by NASH.
Collapse
|
75
|
Nava RC, McKenna Z, Fennel Z, Berkemeier Q, Ducharme J, de Castro Magalhães F, Amorim FT, Mermier C. Repeated sprint exercise in hypoxia stimulates HIF-1-dependent gene expression in skeletal muscle. Eur J Appl Physiol 2022; 122:1097-1107. [PMID: 35190865 DOI: 10.1007/s00421-022-04909-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Our aim was to determine the effect of repeated sprint exercise in hypoxia on HIF-1 and HIF-1-regulated genes involved in glycolysis, mitochondrial turnover and oxygen transport. We also determined whether genes upregulated by exercise in hypoxia were dependent on the activation of HIF-1 in an in vitro model of exercise in hypoxia. METHODS Eight endurance athletes performed bouts of repeated sprint exercise in control and hypoxic conditions. Skeletal muscle was sampled pre, post and 3 h post-exercise. HIF-1α protein and HIF1A, PDK1, GLUT4, VEGFA, BNIP3, PINK1 and PGC1A mRNA were measured. C2C12 myotubes were exposed to hypoxia and muscle contraction following treatment with a HIF-1α inhibitor to determine whether hypoxia-sensitive gene expression was dependent on HIF-1α. RESULTS Sprint exercise in hypoxia increased HIF-1α protein expression immediately post-exercise [fold change (FC) = 3.5 ± 2.0]. Gene expression of PDK1 (FC = 2.1 ± 1.2), BNIP3 (FC = 2.4 ± 1.4) and VEGFA (FC = 2.7 ± 1.7) increased 3 h post-exercise in hypoxia but not control. PGC1A mRNA increased 3 h post-exercise in control (FC = 5.16) and hypoxia (FC = 5.7 ± 4.1) but there was no difference between the trials. Results from the in vitro experiment showed that hypoxia plus contraction also increased PDK1, BNIP3, and VEGFA gene expression. These responses were inhibited when HIF-1 protein activity was suppressed. CONCLUSION Repeated sprint exercise in hypoxia upregulates some genes involved in glycolytic metabolism, mitochondrial turnover, and oxygen transport. HIF-1α is necessary for the expression of these genes in skeletal muscle cells.
Collapse
Affiliation(s)
- Roberto Carlos Nava
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA.
- Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Zachary McKenna
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Zachary Fennel
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Quint Berkemeier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jeremy Ducharme
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Flávio de Castro Magalhães
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Physical Education, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
76
|
Lerche CJ, Schwartz F, Pries-Heje MM, Fosbøl EL, Iversen K, Jensen PØ, Høiby N, Hyldegaard O, Bundgaard H, Moser C. Potential Advances of Adjunctive Hyperbaric Oxygen Therapy in Infective Endocarditis. Front Cell Infect Microbiol 2022; 12:805964. [PMID: 35186793 PMCID: PMC8851036 DOI: 10.3389/fcimb.2022.805964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Patients with infective endocarditis (IE) form a heterogeneous group by age, co-morbidities and severity ranging from stable patients to patients with life-threatening complications with need for intensive care. A large proportion need surgical intervention. In-hospital mortality is 15-20%. The concept of using hyperbaric oxygen therapy (HBOT) in other severe bacterial infections has been used for many decades supported by various preclinical and clinical studies. However, the availability and capacity of HBOT may be limited for clinical practice and we still lack well-designed studies documenting clinical efficacy. In the present review we highlight the potential beneficial aspects of adjunctive HBOT in patients with IE. Based on the pathogenesis and pathophysiological conditions of IE, we here summarize some of the important mechanisms and effects by HBOT in relation to infection and inflammation in general. In details, we elaborate on the aspects and impact of HBOT in relation to the host response, tissue hypoxia, biofilm, antibiotics and pathogens. Two preclinical (animal) studies have shown beneficial effect of HBOT in IE, but so far, no clinical study has evaluated the feasibility of HBOT in IE. New therapeutic options in IE are much needed and adjunctive HBOT might be a therapeutic option in certain IE patients to decrease morbidity and mortality and improve the long-term outcome of this severe disease.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Virus and Microbiology Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Christian Johann Lerche,
| | - Franziska Schwartz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
77
|
Mirzaei Bavil F, Karimi-Sales E, Alihemmati A, Alipour MR. Effect of ghrelin on hypoxia-related cardiac angiogenesis: involvement of miR-210 signalling pathway. Arch Physiol Biochem 2022; 128:270-275. [PMID: 31596148 DOI: 10.1080/13813455.2019.1675712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypoxia is the main stimulus for angiogenesis. Hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and miR-210 are involved in the hypoxia-induced angiogenesis. This study examined the effects of hypoxia and/or ghrelin on miR-210, HIF-1α, and VEGF levels in the heart of rats. METHODS Wistar rats were randomly divided into 4 groups (n = 6): control; ghrelin, received daily intraperitoneal injections of ghrelin; hypoxia, was exposed to hypoxic condition; hypoxia + ghrelin, was exposed to hypoxic condition and received intraperitoneal injections of ghrelin, for 2 weeks. Myocardial angiogenesis, the expression level of miR-210, and protein levels of HIF-1α and VEGF were assayed in the heart samples. RESULTS Hypoxia increased myocardial angiogenesis and cardiac levels of miR-210, HIF-1α, and VEGF. However, ghrelin inhibited these hypoxia-induced changes. Interestingly, ghrelin had no significant effect on miR-210, HIF-1α, and VEGF levels in normoxic condition. CONCLUSION Ghrelin may be useful as an anti-angiogenic factor.
Collapse
Affiliation(s)
- Fariba Mirzaei Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
78
|
Wei SY, Chen TH, Kao FS, Hsu YJ, Chen YC. Strategy for improving cell-mediated vascularized soft tissue formation in a hydrogen peroxide-triggered chemically-crosslinked hydrogel. J Tissue Eng 2022; 13:20417314221084096. [PMID: 35296029 PMCID: PMC8918759 DOI: 10.1177/20417314221084096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/13/2022] [Indexed: 12/03/2022] Open
Abstract
The physically-crosslinked collagen hydrogels can provide suitable microenvironments for cell-based functional vascular network formation due to their biodegradability, biocompatibility, and good diffusion properties. However, encapsulation of cells into collagen hydrogels results in extensive contraction and rapid degradation of hydrogels, an effect known from their utilization as a pre-vascularized graft in vivo. Various types of chemically-crosslinked collagen-based hydrogels have been successfully synthesized to decrease volume contraction, retard the degradation rate, and increase mechanical tunability. However, these hydrogels failed to form vascularized tissues with uniformly distributed microvessels in vivo. Here, the enzymatically chemically-crosslinked collagen-Phenolic hydrogel was used as a model to determine and overcome the difficulties in engineering vascular networks. Results showed that a longer duration of inflammation and excessive levels of hydrogen peroxide limited the capability for blood vessel forming cells-mediated vasculature formation in vivo. Lowering the unreacted amount of crosslinkers reduced the densities of infiltrating host myeloid cells by half on days 2-4 after implantation, but blood vessels remained at low density and were mainly located on the edge of the implanted constructs. Co-implantation of a designed spacer with cell-laden hydrogel maintained the structural integrity of the hydrogel and increased the degree of hypoxia in embedded cells. These effects resulted in a two-fold increase in the density of perfused blood vessels in the hydrogel. Results agreed with computer-based simulations. Collectively, our findings suggest that simultaneous reduction of the crosslinker-induced host immune response and increase in hypoxia in hydrogen peroxide-triggered chemically-crosslinked hydrogels can effectively improve the formation of cell-mediated functional vascular networks.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng-Sheng Kao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Jung Hsu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
79
|
Medeiros PJ, Pascetta SA, Kirsh SM, Al-Khazraji BK, Uniacke J. Expression of hypoxia inducible factor-dependent Neuropeptide Y Receptors Y1 and Y5 sensitizes hypoxic cells to NPY stimulation. J Biol Chem 2022; 298:101645. [PMID: 35093384 PMCID: PMC8861119 DOI: 10.1016/j.jbc.2022.101645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropeptide Y (NPY) is an abundant neurohormone in the central and peripheral nervous system involved in feeding behavior, energy balance, nociception, and anxiety. Several NPY receptor (NPYR) subtypes display elevated expression in many cancers including in breast tumors where it is exploited for imaging and diagnosis. Here, we address how hypoxia, a common feature of the tumor microenvironment, influences the expression of the NPYRs. We show that NPY1R and NPY5R mRNA abundance is induced by hypoxia in a hypoxia inducible factor (HIF)-dependent manner in breast cancer cell lines MCF7 and MDA-MB-231. We demonstrate that HIFs bind to several genomic regions upstream of the NPY1R and NPY5R transcription start sites. In addition, the MAPK/ERK pathway is activated more rapidly upon NPY5R stimulation in hypoxic cells compared with normoxic cells. This pathway requires insulin-like growth factor 1 receptor (IGF1R) activity in normoxia, but not in hypoxic cells, which display resistance to the radiosensitizer and IGF1R inhibitor AG1024. Furthermore, hypoxic cells proliferate and migrate more when stimulated with NPY relative to normoxic cells and exhibit a more robust response to a Y5-specific agonist. Our data suggest that hypoxia-induced NPYRs render hypoxic cells more sensitive to NPY stimulation. Considering that breast tissue receives a constant supply of NPY, hypoxic breast tumors are the perfect storm for hyperactive NPYR. This study not only highlights a new relationship between the HIFs and NPYR expression and activity but may inform the use of chemotherapeutics targeting NPYRs and hypoxic cells.
Collapse
Affiliation(s)
- Philip J Medeiros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sydney A Pascetta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah M Kirsh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
80
|
Ryan AR, Cleaver O. Plumbing our organs: Lessons from vascular development to instruct lab generated tissues. Curr Top Dev Biol 2022; 148:165-194. [DOI: 10.1016/bs.ctdb.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
81
|
Tombor LS, Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol 2022; 117:35. [PMID: 35834003 PMCID: PMC9283358 DOI: 10.1007/s00395-022-00941-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Myocardial injury as induced by myocardial infarction results in tissue ischemia, which critically incepts cardiomyocyte death. Endothelial cells play a crucial role in restoring oxygen and nutrient supply to the heart. Latest advances in single-cell multi-omics, together with genetic lineage tracing, reveal a transcriptional and phenotypical adaptation to the injured microenvironment, which includes alterations in metabolic, mesenchymal, hematopoietic and pro-inflammatory signatures. The extent of transition in mesenchymal or hematopoietic cell lineages is still debated, but it is clear that several of the adaptive phenotypical changes are transient and endothelial cells revert back to a naïve cell state after resolution of injury responses. This resilience of endothelial cells to acute stress responses is important for preventing chronic dysfunction. Here, we summarize how endothelial cells adjust to injury and how this dynamic response contributes to repair and regeneration. We will highlight intrinsic and microenvironmental factors that contribute to endothelial cell resilience and may be targetable to maintain a functionally active, healthy microcirculation.
Collapse
Affiliation(s)
- Lukas S. Tombor
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany ,Faculty for Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany ,Faculty for Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
82
|
Blaszczak W, Swietach P. What do cellular responses to acidity tell us about cancer? Cancer Metastasis Rev 2021; 40:1159-1176. [PMID: 34850320 PMCID: PMC8825410 DOI: 10.1007/s10555-021-10005-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
The notion that invasive cancer is a product of somatic evolution is a well-established theory that can be modelled mathematically and demonstrated empirically from therapeutic responses. Somatic evolution is by no means deterministic, and ample opportunities exist to steer its trajectory towards cancer cell extinction. One such strategy is to alter the chemical microenvironment shared between host and cancer cells in a way that no longer favours the latter. Ever since the first description of the Warburg effect, acidosis has been recognised as a key chemical signature of the tumour microenvironment. Recent findings have suggested that responses to acidosis, arising through a process of selection and adaptation, give cancer cells a competitive advantage over the host. A surge of research efforts has attempted to understand the basis of this advantage and seek ways of exploiting it therapeutically. Here, we review key findings and place these in the context of a mathematical framework. Looking ahead, we highlight areas relating to cellular adaptation, selection, and heterogeneity that merit more research efforts in order to close in on the goal of exploiting tumour acidity in future therapies.
Collapse
Affiliation(s)
- Wiktoria Blaszczak
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford, OX1 3PT, England
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford, OX1 3PT, England.
| |
Collapse
|
83
|
McQueen CF, Groves JT. Toxicity of the iron siderophore mycobactin J in mouse macrophages: Evidence for a hypoxia response. J Inorg Biochem 2021; 227:111669. [PMID: 34864292 DOI: 10.1016/j.jinorgbio.2021.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an obligate intracellular pathogen that lives within the phagosome of macrophages. Here we demonstrate that the siderophore mycobactin J, produced by the closely related intracellular pathogen Mycobacterium paratuberculosis, is toxic to murine macrophage cells. Its median lethal dose, 10 μM, is lower than that of the iron chelators desferrioxamine B and TrenCAM, an enterobactin analog. To determine the source of this toxicity, we conducted microarray, ELISA, and metabolite profiling experiments. The primary response is hypoxia-like, which implies iron starvation as the underlying cause of the toxicity. This observation is consistent with our recent finding that mycobactin J is a stronger iron chelator than had been inferred from previous studies. Mycobactin J is known to partition into cell membranes and hydrophobic organelles indicating that enhanced membrane penetration is also a likely factor. Thus, mycobactin J is shown to be toxic, eliciting a hypoxia-like response under physiological conditions.
Collapse
Affiliation(s)
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
84
|
David BT, Curtin JJ, Brown JL, Coutts DJC, Boles NC, Hill CE. Treatment with hypoxia-mimetics protects cultured rat Schwann cells against oxidative stress-induced cell death. Glia 2021; 69:2215-2234. [PMID: 34019306 PMCID: PMC11848739 DOI: 10.1002/glia.24019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Schwann cell (SC) grafts promote axon regeneration in the injured spinal cord, but transplant efficacy is diminished by a high death rate in the first 2-3 days postimplantation. Both hypoxic preconditioning and pharmacological induction of the cellular hypoxic response can drive cellular adaptations and improve transplant survival in a number of disease/injury models. Hypoxia-inducible factor 1 alpha (HIF-1α), a regulator of the cellular response to hypoxia, is implicated in preconditioning-associated protection. HIF-1α cellular levels are regulated by the HIF-prolyl hydroxylases (HIF-PHDs). Pharmacological inhibition of the HIF-PHDs mimics hypoxic preconditioning and provides a method to induce adaptive hypoxic responses without direct exposure to hypoxia. In this study, we show that hypoxia-mimetics, deferoxamine (DFO) and adaptaquin (AQ), enhance HIF-1α stability and HIF-1α target gene expression. Expression profiling of hypoxia-related genes demonstrates that HIF-dependent and HIF-independent expression changes occur. Analyses of transcription factor binding sites identify several candidate transcriptional co-regulators that vary in SCs along with HIF-1α. Using an in vitro model system, we show that hypoxia-mimetics are potent blockers of oxidative stress-induced death in SCs. In contrast, traditional hypoxic preconditioning was not protective. The robust protection induced by pharmacological preconditioning, particularly with DFO, indicates that pharmacological induction of hypoxic adaptations could be useful for promoting transplanted SC survival. These agents may also be more broadly useful for protecting SCs, as oxidative stress is a major pathway that drives cellular damage in the context of neurological injury and disease, including demyelinating diseases and peripheral neuropathies.
Collapse
Affiliation(s)
- Brian T. David
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - Jessica J. Curtin
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - Jennifer L. Brown
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | - David J. C. Coutts
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
| | | | - Caitlin E. Hill
- Burke Neurological Institute, White Plains, New York
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York
- Neural Stem Cell Institute, Rensselaer, New York
| |
Collapse
|
85
|
Liu YH, Guo C, Sun YQ, Li Q. Polymorphisms in HIF-1a gene are not associated with diabetic retinopathy in China. World J Diabetes 2021; 12:1304-1311. [PMID: 34512895 PMCID: PMC8394233 DOI: 10.4239/wjd.v12.i8.1304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has been reported that vascular endothelial growth factor (VEGF) is a susceptibility gene for both type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR). In response to hypoxia, VEGF mRNA levels are increased, which is mainly mediated by the binding of hypoxia-inducible factor-1 (HIF-1) and hypoxia response element upstream of the transcriptional start site of VEGF. Therefore, HIF-1a is supposed to be involved in pathology of DR.
AIM To investigate whether the polymorphisms in HIF-1a gene are associated with DR.
METHODS Two hundred and ninety-nine type 2 diabetic patients (128 males and 171 females) and 144 healthy volunteers were recruited. Mean age was 56.04 ± 21.05 years. According to the results of fundus fluorescein angiography and examination of ophthalmoscopy, patients were divided into two groups, DNR group (diabetes without retinopathy) and DR group (diabetes with retinopathy). There are 150 cases in DNR group and 149 cases in DR group. Two single nucleotide polymorphisms (SNP) of the HIF-1a gene were tested using matrix-assisted laser desorption/Ionization time of flight mass spectrometry. The frequency of genotypes and alleles, and odds ratio were measured.
RESULTS The mean age of the cases with diabetes was 55.84 ± 3.66 years, the mean age of the cases with DR was 55.97 ± 4.66 years and that of controls was 56.32 ± 4.70 years. Two variations were found in 76 patients. Rs11549465 is the change of C-T base, rs11549467 is the change of G-A base. The rs11549467 G/A genotype was 5.33% in diabetes and 6.04% in DR patients, respectively. The rs11549465 C/T genotype was 10% and 12.75% in patients with diabetes and DR. The rs11549467 A allele frequencies and rs11549465 T frequencies was similar to that of controls. Paired SNP linkage disequilibrium analysis indicated that rs11549467 was in linkage disequilibrium with rs11549465. Haplotype association analysis denoted that the haplotype association exhibited similar distribution in the patients compared to the normal controls.
CONCLUSION This study suggests that there is no relationship between the genetic variations of HIF1a and diabetes or DR.
Collapse
Affiliation(s)
- Yue-Hong Liu
- Department of Endocrinology, Hainan Cancer Hospital, Haikou 570312, Hainan Province, China
| | - Chang Guo
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen 518055,Guangdong Province, China
| | - Yi-Qiong Sun
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen 518055,Guangdong Province, China
| | - Qiang Li
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen 518055,Guangdong Province, China
| |
Collapse
|
86
|
Akizawa T, Nangaku M, Yamaguchi T, Koretomo R, Maeda K, Yamada O, Hirakata H. Two long-term phase 3 studies of enarodustat (JTZ-951) in Japanese anemic patients with chronic kidney disease not on dialysis or on maintenance hemodialysis: SYMPHONY ND-Long and HD-Long studies. Ther Apher Dial 2021; 26:345-356. [PMID: 34390314 PMCID: PMC9290460 DOI: 10.1111/1744-9987.13724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022]
Abstract
Enarodustat (JTZ‐951) is an oral hypoxia‐inducible factor prolyl hydroxylase inhibitor developed for treating anemia in chronic kidney disease. Two open‐label, uncontrolled phase 3 studies evaluated the 52‐week safety and efficacy of enarodustat in Japanese anemic patients with chronic kidney disease not on dialysis (n = 132) [SYMPHONY ND‐Long study] or on maintenance hemodialysis (n = 136) [SYMPHONY HD‐Long study]. The most frequent adverse events were viral upper respiratory tract infection (25.8%) followed by chronic kidney disease (8.3%) in the SYMPHONY ND‐Long study, and viral upper respiratory tract infection (49.3%) followed by contusion (16.9%) and diarrhea (16.9%) in the SYMPHONY HD‐Long study. The incidence of any adverse events did not increase over time. Mean hemoglobin levels and 95% confidence intervals were maintained within the target range (10.0–12.0 g/dl) over 52 weeks in both studies. The long‐term safety and efficacy of enarodustat were confirmed in Japanese anemic patients with chronic kidney disease.
Collapse
Affiliation(s)
- Tadao Akizawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Kazuo Maeda
- Pharmaceutical Division, Japan Tobacco Inc., Tokyo, Japan
| | - Osamu Yamada
- Pharmaceutical Division, Japan Tobacco Inc., Tokyo, Japan
| | | |
Collapse
|
87
|
Abstract
Exploiting hypoxia in solid malignancies to restrict expression of chimeric antigen receptors (CARs) on engineered T cells to the tumor microenvironment overcomes the risk of on-target off-tumor toxicity and minimizes tonic signaling, which promotes CAR T cell exhaustion. This protocol summarizes the synthetic biology underlying the development of a stringent oxygen-sensitive CAR for in vitro and in vivo preclinical characterization. For complete details on the use and execution of this protocol, please refer to Kosti et al. (2021). Hypoxia can be exploited as a selective signal for tumor-specific CAR expression A protocol to enable stringent hypoxia-dependent CAR expression A dual oxygen-sensing expression system that is both dynamic and tunable An approach to provide a safety switch for non-tumor selective CAR targets
Collapse
|
88
|
Pitkänen A, Paananen T, Kyyriäinen J, Das Gupta S, Heiskanen M, Vuokila N, Bañuelos-Cabrera I, Lapinlampi N, Kajevu N, Andrade P, Ciszek R, Lara-Valderrábano L, Ekolle Ndode-Ekane X, Puhakka N. Biomarkers for posttraumatic epilepsy. Epilepsy Behav 2021; 121:107080. [PMID: 32317161 DOI: 10.1016/j.yebeh.2020.107080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools). The seven BEST biomarker categories include the following: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. We hypothesize some potential overlap between the reported biomarkers of traumatic brain injury (TBI), epilepsy, and posttraumatic epilepsy (PTE). Here, we tested this hypothesis by reviewing studies focusing on biomarker discovery for posttraumatic epileptogenesis and epilepsy. The biomarker modalities reviewed here include plasma/serum and cerebrospinal fluid molecular biomarkers, imaging biomarkers, and electrophysiologic biomarkers. Most of the reported biomarkers have an area under the receiver operating characteristic curve greater than 0.800, suggesting both high sensitivity and high specificity. Our results revealed little overlap in the biomarker candidates between TBI, epilepsy, and PTE. In addition to using single parameters as biomarkers, machine learning approaches have highlighted the potential for utilizing patterns of markers as biomarkers. Although published data suggest the possibility of identifying biomarkers for PTE, we are still in the early phase of the development curve. Many of the seven biomarker categories lack PTE-related biomarkers. Thus, further exploration using proper, statistically powered, and standardized study designs with validation cohorts, and by developing and applying novel analytical methods, is needed for PTE biomarker discovery.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jenni Kyyriäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Ivette Bañuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Natallie Kajevu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Leonardo Lara-Valderrábano
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
89
|
Wörsdörfer P, Ergün S. The Impact of Oxygen Availability and Multilineage Communication on Organoid Maturation. Antioxid Redox Signal 2021; 35:217-233. [PMID: 33334234 DOI: 10.1089/ars.2020.8195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: An optimal supply with oxygen is of high importance during embryogenesis and a prerequisite for proper organ development. Different tissues require varying amounts of oxygen, and even within single organs, different phases of development go alongside with either physiological hypoxia or the need for sufficient oxygen supply. Recent Advances: Human induced pluripotent stem cell-derived organoid models are state of the art cell culture platforms for the investigation of developmental processes, disease modeling, and drug testing. Organoids modeling the development of multiple tissues were developed within the past years. Critical Issues: Until now, optimization of oxygen supply and its role during organoid growth, differentiation, and maturation have only rarely been addressed. Recent publications indicate that hypoxia-induced processes play an important role in three-dimensional tissue cultures, triggering multilineage communication between mesenchymal cells, the endothelium, as well as organotypic cells. Later in culture, a sufficient supply with oxygen is of high importance to allow larger organoid sizes. Moreover, cellular stress is reduced and tissue maturation is improved. Therefore, a functional blood vessel network is required. Future Directions: In this review, we will briefly summarize aspects of the role of oxygen during embryonic development and organogenesis, present an update on novel organoid models with a special focus on organoid vascularization, and discuss the importance of complex organoids involving parenchymal cells, mesenchymal cells, inflammatory cells, and functional blood vessels for the generation of mature and fully functional tissues in vitro. Antioxid. Redox Signal. 35, 217-233.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
90
|
Ullah K, Wu R. Hypoxia-Inducible Factor Regulates Endothelial Metabolism in Cardiovascular Disease. Front Physiol 2021; 12:670653. [PMID: 34290616 PMCID: PMC8287728 DOI: 10.3389/fphys.2021.670653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) form a physical barrier between the lumens and vascular walls of arteries, veins, capillaries, and lymph vessels; thus, they regulate the extravasation of nutrients and oxygen from the circulation into the perivascular space and participate in mechanisms that maintain cardiovascular homeostasis and promote tissue growth and repair. Notably, their role in tissue repair is facilitated, at least in part, by their dependence on glycolysis for energy production, which enables them to resist hypoxic damage and promote angiogenesis in ischemic regions. ECs are also equipped with a network of oxygen-sensitive molecules that collectively activate the response to hypoxic injury, and the master regulators of the hypoxia response pathway are hypoxia-inducible factors (HIFs). HIFs reinforce the glycolytic dependence of ECs under hypoxic conditions, but whether HIF activity attenuates or exacerbates the progression and severity of cardiovascular dysfunction varies depending on the disease setting. This review summarizes how HIF regulates the metabolic and angiogenic activity of ECs under both normal and hypoxic conditions and in a variety of diseases that are associated with cardiovascular complications.
Collapse
Affiliation(s)
- Karim Ullah
- Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rongxue Wu
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
91
|
Raacke M, Kerr A, Dörpinghaus M, Brehmer J, Wu Y, Lorenzen S, Fink C, Jacobs T, Roeder T, Sellau J, Bachmann A, Metwally NG, Bruchhaus I. Altered Cytokine Response of Human Brain Endothelial Cells after Stimulation with Malaria Patient Plasma. Cells 2021; 10:cells10071656. [PMID: 34359826 PMCID: PMC8303479 DOI: 10.3390/cells10071656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Infections with the deadliest malaria parasite, Plasmodium falciparum, are accompanied by a strong immunological response of the human host. To date, more than 30 cytokines have been detected in elevated levels in plasma of malaria patients compared to healthy controls. Endothelial cells (ECs) are a potential source of these cytokines, but so far it is not known if their cytokine secretion depends on the direct contact of the P. falciparum-infected erythrocytes (IEs) with ECs in terms of cytoadhesion. Culturing ECs with plasma from malaria patients (27 returning travellers) resulted in significantly increased secretion of IL-11, CXCL5, CXCL8, CXCL10, vascular endothelial growth factor (VEGF) and angiopoietin-like protein 4 (ANGPTL4) if compared to matching controls (22 healthy individuals). The accompanying transcriptome study of the ECs identified 43 genes that were significantly increased in expression (≥1.7 fold) after co-incubation with malaria patient plasma, including cxcl5 and angptl4. Further bioinformatic analyses revealed that biological processes such as cell migration, cell proliferation and tube development were particularly affected in these ECs. It can thus be postulated that not only the cytoadhesion of IEs, but also molecules in the plasma of malaria patients exerts an influence on ECs, and that not only the immunological response but also other processes, such as angiogenesis, are altered.
Collapse
Affiliation(s)
- Michaela Raacke
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Amy Kerr
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Michael Dörpinghaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Yifan Wu
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Christine Fink
- Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; (C.F.); (T.R.)
| | - Thomas Jacobs
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Thomas Roeder
- Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; (C.F.); (T.R.)
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
- Department of Biology, University of Hamburg, 20148 Hamburg, Germany
- Correspondence: ; Tel.: +49-404-281-8472
| |
Collapse
|
92
|
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021; 41:2489-2564. [PMID: 33948974 PMCID: PMC8252000 DOI: 10.1002/med.21802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-β, Wnt/β-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Ruizhe Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou
| | - Zhouyurong Tan
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | | | - Tao Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Reproduction and Development, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong
- Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive MedicineThe Chinese University of Hong KongHong Kong
| |
Collapse
|
93
|
Patel JC, Singh A, Tulswani R, Sharma YK, Khurana P, Ragumani S. Identification of VEGFA-centric temporal hypoxia-responsive dynamic cardiopulmonary network biomarkers. Life Sci 2021; 281:119718. [PMID: 34147483 DOI: 10.1016/j.lfs.2021.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
AIMS Hypoxia, a pathophysiological condition, is profound in several cardiopulmonary diseases (CPD). Every individual's lethality to a hypoxia state differs in terms of hypoxia exposure time, dosage units and dependent on the individual's genetic makeup. Most of the proposed markers for CPD were generally aim to distinguish disease samples from normal samples. Although, as per the 2018 GOLD guidelines, clinically useful biomarkers for several cardio pulmonary disease patients in stable condition have yet to be identified. We attempt to address these key issues through the identification of Dynamic Network Biomarkers (DNB) to detect hypoxia induced early warning signals of CPD before the catastrophic deterioration. MATERIALS AND METHODS The human microvascular endothelial tissues microarray datasets (GSE11341) of lung and cardiac expose to hypoxia (1% O2) for 3, 24 and 48 h were retrieved from the public repository. The time dependent differentially expressed genes were subjected to tissue specificity and promoter analysis to filtrate the noise levels in the networks and to dissect the tissue specific hypoxia induced genes. These filtered out genes were used to construct the dynamic segmentation networks. The hypoxia induced dynamic differentially expressed genes were validated in the lung and heart tissues of male rats. These rats were exposed to hypobaric hypoxia (simulated altitude of 25,000 or PO2 - 282 mm of Hg) progressively for 3, 24 and 48 h. KEY FINDINGS To identify the temporal key genes regulated in hypoxia, we ranked the dominant genes based on their consolidated topological features from tissue specific networks, time dependent networks and dynamic networks. Overall topological ranking described VEGFA as a single node dynamic hub and strongly communicated with tissue specific genes to carry forward their tissue specific information. We named this type of VEGFAcentric dynamic networks as "V-DNBs". As a proof of principle, our methodology helped us to identify the V-DNBs specific for lung and cardiac tissues namely V-DNBL and V-DNBC respectively. SIGNIFICANCE Our experimental studies identified VEGFA, SLC2A3, ADM and ENO2 as the minimum and sufficient candidates of V-DNBL. The dynamic expression patterns could be readily exploited to capture the pre disease state of hypoxia induced pulmonary vascular remodelling. Whereas in V-DNBC the minimum and sufficient candidates are VEGFA, SCL2A3, ADM, NDRG1, ENO2 and BHLHE40. The time dependent single node expansion indicates V-DNBC could also be the pre disease state pathological hallmark for hypoxia-associated cardiovascular remodelling. The network cross-talk and expression pattern between V-DNBL and V-DNBC are completely distinct. On the other hand, the great clinical advantage of V-DNBs for pre disease predictions, a set of samples during the healthy condition should suffice. Future clinical studies might further shed light on the predictive power of V-DNBs as prognostic and diagnostic biomarkers for CPD.
Collapse
Affiliation(s)
- Jai Chand Patel
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Ajeet Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Rajkumar Tulswani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Yogendra Kumar Sharma
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Sugadev Ragumani
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
94
|
Bersanelli M, Porta C. Impact of SARS-CoV-2 Pandemic on Kidney Cancer Management. KIDNEY CANCER 2021. [DOI: 10.3233/kca-210112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The SARS-CoV-2 pandemic still has a huge impact on the management of many chronic diseases such as cancer. Few data are presently available reagarding how the management of renal cell carcinoma (RCC) has changed due to this unprecedented situation. OBJECTIVE: To discuss the challenges and issues of the diagnosis and treatment of RCC in the COVID-19 era, and to provide recommendations based on the collected literature and our personal experience. METHODS: Systematic review of the available Literature regarding the management of RCC during the SARS-CoV-2 pandemic. RESULTS: Our review showed a prevalence of narrative publications, raising the issue of the real relevance of the evidence retrieved. Indeed, the only original data about RCC and COVID-19 found were a small retrospective case series and two surveys, providing either patients’ or physicians’ viewpoints. CONCLUSIONS: The expected delayed diagnosis of RCC could lead to an increase of advanced/metastatic cases; thus, proper therapeutic choices for patients with small renal masses should be carefully evaluated case by case, in order to avoid negative effects on long-term survival rates. The controversial interaction between immune checkpoint blockade and COVID-19 pathogenesis is more hypothetical than evidence-based, and thus immunotherapy should not be denied, whenever appropriate. To avoid treatments which won’t have an impact on patients’ survival, a honest and accurate evaluation of the cost/benefit ratio of each treatment option should be always performed. Finally, SARS-CoV-2 swab positivity should not prevent the continuation of ongoing active treatments in asymptomatic cases, or or after symptoms’ resolution.
Collapse
Affiliation(s)
- Melissa Bersanelli
- Medicine and Surgery Department, University of Parma and Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘A. Moro’ and Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
95
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
96
|
An evidence update on the protective mechanism of tangeretin against neuroinflammation based on network pharmacology prediction and transcriptomic analysis. Eur J Pharmacol 2021; 906:174094. [PMID: 34087222 DOI: 10.1016/j.ejphar.2021.174094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
Although the protective effects of tangeretin on neuroinflammation have been proven in cell and animal experiments, few studies explore its underlying molecular mechanism. In this study, we used the network pharmacology method combined with the transcriptome approach to investigate its underlying anti-inflammatory mechanism in human microglial cells. Based on network pharmacology analysis, four putative target proteins and ten potential pathways were identified. Among them, vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR) and the related phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), the mitogen-activated protein kinase (MAPK), mechanistic target of rapamycin (mTOR) signaling pathway were well-supported by transcriptome data. Meanwhile, transcriptome analysis supplemented two crucial targets: the insulin receptor (InsR) and insulin-like growth factor-I (IGF-1) receptor. Subsequently, VEGFA, EGFR, IGF-1 receptor, and InsR were further verified on the protein level. Taken together, we assumed that tangeretin could exert protective effects on neuroinflammation by decreasing the expression of VEGFA, EGFR, InsR, and IGF-1 receptor in the PI3K-AKT, MAPK, mTOR signaling pathway. More importantly, it is for the first time to show that the anti-neuroinflammatory effects of tangeretin through VEGFA, EGFR, IGF-1 receptor, InsR, and mTOR signaling pathway. These works offer new insight into the anti-neuroinflammatory functions of tangeretin and propose novel information on further anti-inflammatory mechanism studies.
Collapse
|
97
|
Snake venom vascular endothelial growth factors (svVEGFs): Unravelling their molecular structure, functions, and research potential. Cytokine Growth Factor Rev 2021; 60:133-143. [PMID: 34090786 DOI: 10.1016/j.cytogfr.2021.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, a physiological process characterized by the formation of new vessels from a preexisting endothelium. VEGF has also been implicated in pathologic states, such as neoplasias, intraocular neovascular disorders, among other conditions. VEGFs are distributed in seven different families: VEGF-A, B, C, D, and PIGF (placental growth factor), which are identified in mammals; VEGF-E, which are encountered in viruses; and VEGF-F or svVEGF (snake venom VEGF) described in snake venoms. This is the pioneer review of svVEGF family, exploring its distribution among the snake venoms, molecular structure, main functions, and potential applications.
Collapse
|
98
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
99
|
Zheng Z, Lei X, Yang Y, Tan X, Cheng B, Huang W. Changes in Human Fat Injected Alongside Hyaluronic Acid in the Backs of Nude Mice. Aesthet Surg J 2021; 41:NP631-NP642. [PMID: 33326559 DOI: 10.1093/asj/sjaa351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cross-linked hyaluronic acid (HA) is an active anti-aging cosmetic filler. The combination of cross-linked HA and preadipocytes or adipose-derived stem cells has been previously investigated, but the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts remain unclear. OBJECTIVES The aim of this study was to explore the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts. METHODS The backs of nude mice were divided into 4 regions that received different treatments: nothing (control group), agglomerated Biohyalux (HA group), agglomerated fat (FAT group), and lumps formed by the sequential injection of Biohyalux and fat (HA/FAT group). Samples were collected after 1 month for weighing and hematoxylin and eosin staining, immunohistochemistry, image analysis, and Western blotting. RESULTS The weight of fat and the mean number of adipocytes in the HA/FAT group did not significantly differ from those in the FAT group. No living tissue was found in agglomerated HA. Some tiny HA particles were surrounded by tissue rich in blood vessels. The expression levels of CD31 and vascular endothelial growth factor (VEGF) in the HA/FAT group were higher than those in the FAT group, but the difference was only significant for VEGF expression. CONCLUSIONS Cross-linked HA had minimal effect on the early retention rate of surrounding fat grafts, but enhanced their vascularization. Fat grafts should be not injected into lumps of cross-linked HA. Therefore, agglomerated cross-linked HA should be dissolved before fat transplantation.
Collapse
Affiliation(s)
- Zhifang Zheng
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Lei
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yu Yang
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xi Tan
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Biao Cheng
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
100
|
Akizawa T, Nangaku M, Yamaguchi T, Koretomo R, Maeda K, Miyazawa Y, Hirakata H. A Phase 3 Study of Enarodustat in Anemic Patients with CKD not Requiring Dialysis: The SYMPHONY ND Study. Kidney Int Rep 2021; 6:1840-1849. [PMID: 34307978 PMCID: PMC8258589 DOI: 10.1016/j.ekir.2021.04.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Enarodustat (JTZ-951) is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor that might be a new therapeutic approach for managing anemia in patients with chronic kidney disease (CKD). We evaluated the efficacy (noninferiority to darbepoetin alfa [DA]) and safety of enarodustat in Japanese anemic patients with CKD not requiring dialysis. Methods Erythropoiesis-stimulating agent (ESA)-naïve patients and ESA-treated patients were randomized at a 1:1 ratio to receive enarodustat orally once daily or DA subcutaneously every 2 or 4 weeks for 24 weeks, respectively. Subjects in each arm had dose adjustments every 4 weeks to maintain their hemoglobin (Hb) level within the target range (10 to 12 g/dl). The primary endpoint was the difference in the mean Hb level between arms during the evaluation period defined as weeks 20 to 24 (noninferiority margin: -0.75 g/dl). Results The mean Hb level during the evaluation period in the enarodustat arm was 10.96 g/dl (95% confidence interval [CI]: 10.84 to 11.07 g/dl) with a difference of 0.09 g/dl (95% CI: -0.07 to 0.26 g/dl) between arms, establishing its noninferiority to DA. Nearly 90% of subjects in both arms maintained a mean Hb level within the target range. Compared with DA, enarodustat was associated with decreased hepcidin and ferritin, and increased total iron-binding capacity. There were no apparent differences in the incidence of adverse events between arms (65.4% [enarodustat], 82.6% [DA]). Conclusions The efficacy of enarodustat was comparable to DA in anemic patients with CKD not requiring dialysis. No new safety concerns were identified compared with DA.
Collapse
Affiliation(s)
- Tadao Akizawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Kazuo Maeda
- Pharmaceutical Division, Japan Tobacco Inc., Tokyo, Japan
| | - Yuya Miyazawa
- Pharmaceutical Division, Japan Tobacco Inc., Tokyo, Japan
| | | |
Collapse
|