51
|
Lazar-Poloczek E, Romuk E, Jacheć W, Stanek W, Stanek B, Szołtysik M, Techmański T, Hasterok M, Wojciechowska C. Levels of TNF-α and Soluble TNF Receptors in Normal-Weight, Overweight and Obese Patients with Dilated Non-Ischemic Cardiomyopathy: Does Anti-TNF Therapy Still Have Potential to Be Used in Heart Failure Depending on BMI? Biomedicines 2022; 10:biomedicines10112959. [PMID: 36428528 PMCID: PMC9687112 DOI: 10.3390/biomedicines10112959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background. We sought to measure the levels of adipokines, TNF-α and soluble receptors (sTNFr1, sTNFr2) in heart failure patients with reduced ejection fraction (HFrEF) due to non-ischemic cardiomyopathy (nDCM). Methods. A total of 123 patients with HFrEF due to nDCM were divided into three groups according to BMI: 34 (27.6%) normal weight, 56 (45.5%) overweight and 33 (26.8%) obese. A six-minute walk test, echocardiography and right heart catheterization were performed. Serum concentrations of adiponectin, leptin, NT-proBNP, blood hemoglobin, sodium, creatinine, ALAT, AspAT, bilirubin, CRP, lipids, TNF-α, sTNFr1 and sTNFr2 receptors were measured. Results. Obese patients had the lowest NT-proBNP concentrations, significantly higher leptin levels and higher leptin/adiponectin ratios. The concentration of sTNFr1 was higher in normal-weight patients. In all groups, TNF-α concentrations correlated positively with sTNFr1 (p < 0.001). Higher levels of sTNFr1 were associated with higher sTNFr2 (p < 0.001) and CRP (p < 0.001). Moreover, the concentration of sTNFr2 positively correlated with CRP (p < 0.05) and adiponectin (p < 0.001). Levels of TNF-α were not associated with elevated CRP. Conclusion: This study demonstrated that changes in the concentrations of TNF and its receptors differ between groups of patients with different BMI. These findings suggest that the effective use of anti-TNF therapy is dependent not only on BMI, but also on concentrations of TNF-α receptors and other laboratory parameters.
Collapse
Affiliation(s)
- Elżbieta Lazar-Poloczek
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
- Correspondence:
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
| | - Wiktoria Stanek
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Bartosz Stanek
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Monika Szołtysik
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Tomasz Techmański
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Maja Hasterok
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
| |
Collapse
|
52
|
Huang S, Li Y, Jiang L, Ren Y, Wang J, Shi K, Yan WF, Qian WL, Yang ZG. Impact of Type 2 Diabetes Mellitus on Epicardial Adipose Tissue and Myocardial Microcirculation by MRI in Postmenopausal Women. J Magn Reson Imaging 2022; 56:1404-1413. [PMID: 35179821 DOI: 10.1002/jmri.28121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) often occurs conjunctly with the menopausal transition in female patients. In addition, epicardial adipose tissue (EAT) has an unfavorable impact on the myocardium and coronary arteries under the influence of metabolic disorders. PURPOSE To investigate the impact of T2DM on EAT and myocardial microvascular function in postmenopausal women. STUDY TYPE Retrospective. POPULATION One-hundred sixty-one postmenopausal women divided into three groups: newly diagnosed (≤5 years) T2DM (n = 56, 58.6 ± 7.7 years), long-term (>5 years) T2DM (n = 57, 61.9 ± 7.9 years), and healthy controls (n = 48, 59.4 ± 7.4 years). FIELD STRENGTH/SEQUENCE 3.0 T; balanced steady-state free precession and inversion recovery prepared echo-planar sequences. ASSESSMENT EAT volume was quantified by delineating the epicardial border and the visceral layer of pericardium on the short-axis cine stacks. Perfusion parameters including upslope, maximum signal intensity (MaxSI) and time to maximum signal intensity (TTM) were derived from the first-pass perfusion signal intensity-time curves. STATISTICAL TESTS One-way analysis of variance, Pearson's and Spearman correlation, and multivariable linear regression. Two-sided P < 0.05 was considered statistically significant. RESULTS EAT volume was significantly increased in diabetic postmenopausal women compared to the controls (48.4 ± 13.4 mL/m2 [newly diagnosed T2DM] vs. 58.4 ± 17.3 mL/m2 [long-term T2DM] vs. 35.8 ± 12.3 mL/m2 [controls]). Regarding perfusion parameters, upslope and MaxSI were significantly reduced (2.6 ± 1.0 [newly diagnosed T2DM] vs. 2.1 ± 0.8 [long-term T2DM] vs. 3.6 ± 1.3 [controls]; and 21.4 ± 6.9 [newly diagnosed T2DM] vs. 18.7 ± 6.4 [long-term T2DM] vs. 28.4 ± 8.6 [controls]), whereas TTM was significantly increased in the T2DM groups compared to the control group (23.6 ± 8.7 [newly diagnosed T2DM] vs. 27.1 ± 9.4 [long-term T2DM] vs. 21.4 ± 6.0 [controls]). Multivariable analysis (adjusted coefficient of determination [R2 ] = 0.489) showed that EAT volume (β = -0.610) and menopausal age (β = 0.433) were independently correlated with decreased perfusion upslope. DATA CONCLUSION Diabetic postmenopausal women had significantly higher EAT volume and more impaired microcirculation compared to the controls. Increased EAT volume and earlier menopausal age were independently associated with microvascular dysfunction in these patients. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
53
|
Sorimachi H, Obokata M, Omote K, Reddy YNV, Takahashi N, Koepp KE, Ng ACT, Rider OJ, Borlaug BA. Long-Term Changes in Cardiac Structure and Function Following Bariatric Surgery. J Am Coll Cardiol 2022; 80:1501-1512. [PMID: 36229085 PMCID: PMC9926898 DOI: 10.1016/j.jacc.2022.08.738] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Studies with short-term follow-up have demonstrated favorable effects of weight loss (WL) on the heart, but little information is available regarding long-term effects or effects of visceral fat reduction. OBJECTIVES The purpose of this study was to evaluate the effects of long-term WL following bariatric surgery on cardiac structure, function, ventricular interaction, and body composition, including epicardial adipose thickness and abdominal visceral adipose tissue (VAT). METHODS A total of 213 obese patients underwent echocardiography before and >180 days following bariatric surgery. Abdominal VAT area was measured by computed tomography in 52 of these patients. RESULTS After 5.3 years (IQR: 2.9-7.9 years), body mass index (BMI) decreased by 22%, with favorable reductions in blood pressure, fasting glucose, and left ventricular (LV) remodeling in the full sample. In the subgroup of patients with abdominal computed tomography, VAT area decreased by 30%. In all subjects, epicardial adipose thickness was reduced by 14% (both P < 0.0001) in tandem with reductions in ventricular interdependence. LV and right ventricular longitudinal strain improved following WL, but left atrial (LA) strain deteriorated, while LA volume and estimated LA pressures increased. In subgroup analysis, LV wall thickness and strain correlated more strongly with VAT than BMI at baseline, and reductions in LV mass following surgery were correlated with decreases in VAT, but not BMI. CONCLUSIONS In this observational study, weight loss following bariatric surgery was associated with epicardial fat reduction, reduced ventricular interaction, LV reverse remodeling, and improved longitudinal biventricular mechanics, but LA myopathy and hemodynamic congestion still progressed. Reduction in visceral fat was associated with favorable cardiac effects, suggesting this might be a key target of WL interventions.
Collapse
Affiliation(s)
- Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naoki Takahashi
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arnold C T Ng
- Department of Cardiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver J Rider
- OCMR, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
54
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
55
|
Riley ED, Kizer JR, Tien PC, Vittinghoff E, Lynch KL, Wu AHB, Coffin PO, Beck-Engeser G, Braun C, Hunt PW. Multiple substance use, inflammation and cardiac stretch in women living with HIV. Drug Alcohol Depend 2022; 238:109564. [PMID: 35872529 PMCID: PMC9924802 DOI: 10.1016/j.drugalcdep.2022.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) and heart failure (HF) are disproportionately high in people living with HIV and differ by sex. Few CVD-related studies focus on drug use, yet it is common in low-income women living with HIV (WLWH) and increases cardiac dysfunction. SETTING We recruited unsheltered and unstably housed WLWH from San Francisco community venues to participate in a six-month cohort study investigating linkages between drug use, inflammation, and cardiac dysfunction. METHODS Adjusting for CVD risk factors, co-infections, medications, and menopause, we examined the effects of toxicology-confirmed drug use and inflammation (C-reactive protein, sCD14, sCD163 and sTNFR2) on levels of NT-proBNP, a biomarker of cardiac stretch and HF. RESULTS Among 74 WLWH, the median age was 53 years and 45 % were Black. At baseline, 72 % of participants had hypertension. Substances used included tobacco (65 %), cannabis (53 %), cocaine (49 %), methamphetamine (31 %), alcohol (28 %), and opioids (20 %). Factors significantly associated with NT-proBNP included cannabis use (Adjusted Relative Effect [ARE]: -39.6 %) and sTNFR2 (ARE: 65.5 %). Adjusting for heart failure and restricting analyses to virally suppressed persons did not diminish effects appreciably. Cannabis use was not significantly associated with sTNFR2 and did not change the association between sTNFR2 and NT-proBNP. CONCLUSIONS Among polysubstance-using WLWH, NT-proBNP levels signaling cardiac stretch were positively associated with sTNFR2, but 40 % lower in people who used cannabis. Whether results suggest that cardiovascular pathways associated with cannabis use mitigate cardiac stress and dysfunction independent of inflammation in WLWH who use multiple substances merits further investigation.
Collapse
Affiliation(s)
- Elise D Riley
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA.
| | - Jorge R Kizer
- San Francisco VA Health Care System, Division of Cardiology, San Francisco, CA, USA; University of California, San Francisco, School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Phyllis C Tien
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA
| | - Eric Vittinghoff
- University of California, San Francisco, School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Kara L Lynch
- University of California, San Francisco, School of Medicine, Department of Laboratory Medicine, San Francisco, CA, USA
| | - Alan H B Wu
- University of California, San Francisco, School of Medicine, Department of Laboratory Medicine, San Francisco, CA, USA
| | - Phillip O Coffin
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA; San Francisco Department of Public Health, San Francisco, CA, USA
| | - Gabriele Beck-Engeser
- University of California, San Francisco, School of Medicine, Department of Experimental Medicine, San Francisco, CA, USA
| | - Carl Braun
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA
| | - Peter W Hunt
- University of California, San Francisco, School of Medicine, Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, San Francisco, CA, USA; University of California, San Francisco, School of Medicine, Department of Experimental Medicine, San Francisco, CA, USA
| |
Collapse
|
56
|
Zhao L, Zierath R, John JE, Claggett BL, Hall ME, Clark D, Butler KR, Correa A, Shah AM. Subclinical Risk Factors for Heart Failure With Preserved and Reduced Ejection Fraction Among Black Adults. JAMA Netw Open 2022; 5:e2231878. [PMID: 36107422 PMCID: PMC9478780 DOI: 10.1001/jamanetworkopen.2022.31878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Importance Sparse data exist regarding the contributions of subclinical impairments in cardiovascular and noncardiovascular function to incident heart failure (HF) with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF) among Black US residents, limiting understanding of the etiology of HF subtypes. Objectives To identify subclinical cardiovascular and noncardiovascular risk factors associated with HFrEF and HFpEF in Black US residents. Design, Setting, and Participants This cohort study used cross-sectional and time-to-event analysis with data from the community-based Jackson Heart Study (JHS), a longitudinal cohort study with baseline data collected from 2000 to 2004 (visit 1) and 10-year follow-up for incident HF. Black US residents from the Jackson, Mississippi, metropolitan area enrolled in JHS; those with prevalent HF, with moderate or greater aortic or mitral valve diseases on visit 1, who died before 2005, and who had missing HF status on follow-up were excluded. The analysis included 4361 participants and was performed between June 2020 to August 2021. Exposures Quantitative measures of cardiovascular (left ventricular mass index [LVMI], left ventricular ejection fraction [LVEF], left atrial [LA] diameter, and pulse pressure) and noncardiovascular (percent predicted forced expiration volume in 1 second [FEV1 (percent predicted)], estimated glomerular filtration rate (eGFR), waist circumference, and hemoglobin A1c [HbA1c] level) organ function. Main Outcomes and Measures Incident HF, HFrEF, and HFpEF over 10-year follow-up. Results The 4361 participants had a mean (SD) age of 54 (13); 2776 (64%) were women; and there were 163 HFpEF and 146 HFrEF events. In multivariable models incorporating measures reflecting each organ system, factors associated with incident HFpEF included greater LA diameter (hazard ratio [HR], 1.23; 95% CI, 1.03-1.47; P = .02), higher pulse pressure (HR, 1.23; 95% CI, 1.05-1.44; P = .009), lower FEV1 (percent predicted) (HR, 1.22; 95% CI, 1.04-1.43; P = .02), lower eGFR (HR, 1.43; 95% CI, 1.19-1.72; P < .001), higher HbA1c level (HR, 1.25; 95% CI, 1.07-1.45; P = .005), and higher waist circumference (HR, 1.41; 95% CI, 1.18-1.69; P < .001). Factors associated with incident HFrEF included greater LVMI (HR, 1.25; 1.07-1.46; P = .005), lower LVEF (HR, 1.65; 95% CI, 1.42-1.91; P < .001), lower FEV1 (percent predicted) (HR, 1.19; 95% CI, 1.00-1.42; P = .047), and lower eGFR (HR, 1.27; 95% CI, 1.04-1.55; P = .02). Conclusions and Relevance In this community-based cohort study of Black US residents, subclinical impairments in cardiovascular and noncardiovascular organ function were differentially associated with risk of incident HFpEF and HFrEF.
Collapse
Affiliation(s)
- Li Zhao
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Cardiovascular Medicine, the Sixth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Rani Zierath
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jenine E. John
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Brian Lee Claggett
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Donald Clark
- University of Mississippi Medical Center, Jackson
| | | | | | - Amil M. Shah
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
57
|
Ravera A, Santema BT, de Boer RA, Anker SD, Samani NJ, Lang CC, Ng L, Cleland JGF, Dickstein K, Lam CSP, Van Spall HGC, Filippatos G, van Veldhuisen DJ, Metra M, Voors AA, Sama IE. Distinct pathophysiological pathways in women and men with heart failure. Eur J Heart Fail 2022; 24:1532-1544. [PMID: 35596674 DOI: 10.1002/ejhf.2534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/07/2022] Open
Abstract
AIMS Clinical differences between women and men have been described in heart failure (HF). However, less is known about the underlying pathophysiological mechanisms. In this study, we compared multiple circulating biomarkers to gain better insights into differential HF pathophysiology between women and men. METHODS AND RESULTS In 537 women and 1485 men with HF, we compared differential expression of a panel of 363 biomarkers. Then, we performed a pathway over-representation analysis to identify differential biological pathways in women and men. Findings were validated in an independent HF cohort (575 women, 1123 men). In both cohorts, women were older and had higher left ventricular ejection fraction (LVEF). In the index and validation cohorts respectively, we found 14/363 and 12/363 biomarkers that were relatively up-regulated in women, while 21/363 and 14/363 were up-regulated in men. In both cohorts, the strongest up-regulated biomarkers in women were leptin and fatty acid binding protein-4, compared to matrix metalloproteinase-3 in men. Similar findings were replicated in a subset of patients from both cohorts matched by age and LVEF. Pathway over-representation analysis revealed increased activity of pathways associated with lipid metabolism in women, and neuro-inflammatory response in men (all p < 0.0001). CONCLUSION In two independent cohorts of HF patients, biomarkers associated with lipid metabolic pathways were observed in women, while biomarkers associated with neuro-inflammatory response were more active in men. Differences in inflammatory and metabolic pathways may contribute to sex differences in clinical phenotype observed in HF, and provide useful insights towards development of tailored HF therapies.
Collapse
Affiliation(s)
- Alice Ravera
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.,University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernadet T Santema
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stefan D Anker
- Division of Cardiology and Metabolism, Department of Cardiology (CVK) and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - John G F Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK.,Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK
| | - Kenneth Dickstein
- University of Bergen, Stavanger University Hospital, Stavanger, Norway
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-National University of Singapore, Singapore, Singapore
| | - Harriette G C Van Spall
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Population Health Research Institute, Hamilton, Ontario, Canada
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Adriaan A Voors
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iziah E Sama
- University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
58
|
Kwon SS, Nam BD, Lee MY, Lee MH, Lee J, Park BW, Bang DW, Kwon SH. Increased EAT volume after anthracycline chemotherapy is associated with a low risk of cardiotoxicity in breast cancer. Breast Cancer Res Treat 2022; 196:111-119. [DOI: 10.1007/s10549-022-06696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
59
|
Martínez-Martínez E, Fernández-Irigoyen J, Santamaría E, Nieto ML, Bravo-San Pedro JM, Cachofeiro V. Mitochondrial Oxidative Stress Induces Cardiac Fibrosis in Obese Rats through Modulation of Transthyretin. Int J Mol Sci 2022; 23:ijms23158080. [PMID: 35897655 PMCID: PMC9330867 DOI: 10.3390/ijms23158080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 μM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.
Collapse
Affiliation(s)
- Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913-941-483 (E.M.-M.); +34-913-941-489 (V.C.)
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
| | - Enrique Santamaría
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, 47002 Valladolid, Spain
| | | | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913-941-483 (E.M.-M.); +34-913-941-489 (V.C.)
| |
Collapse
|
60
|
Clemenza F, Citarrella R, Patti A, Rizzo M. Obesity and HFpEF. J Clin Med 2022; 11:jcm11133858. [PMID: 35807143 PMCID: PMC9267384 DOI: 10.3390/jcm11133858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Francesco Clemenza
- Cardiology Department, IRCCS—ISMETT, 90127 Palermo, Italy
- Correspondence:
| | - Roberto Citarrella
- Promise Department, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Angelo Patti
- Promise Department, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
61
|
Kang KW, Ko JY, Lee H, Shin SY, Lee WS, Hong J, Kim SW, Lee SK, Oak MH. Surgically Metabolic Resection of Pericardial Fat to Ameliorate Myocardial Mitochondrial Dysfunction in Acute Myocardial Infarction Obese Rats. J Korean Med Sci 2022; 37:e55. [PMID: 35257523 PMCID: PMC8901878 DOI: 10.3346/jkms.2022.37.e55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pericardial fat (PF) is highly associated with cardiovascular disease but the effectiveness of surgical resection of PF is still unknown for myocardial mitochondrial structure and function in acute myocardial infarction (AMI) with obesity. The aim of this study was to demonstrate the difference in myocardial mitochondrial structure and function between obese AMI with additionally resected PF and those without resected PF. METHODS Obese rats with 12-week high fat diet (45 kcal% fat, n = 21) were randomly assigned into 3 groups: obese control, obese AMI and obese AMI with additionally resected PF. One week after developing AMI and additional resection of PF, echocardiogram, myocardial mitochondrial histomorphology, oxidative phosphorylation system (OXPHOS), anti-oxidative enzyme and sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) in the non-infarcted area were assessed between these groups. RESULTS There was significant improvement of systolic function in AMI with PF resection compared with the AMI group in the echocardiogram. Even though the electron microscopic morphology for the mitochondria seems to be similar between the AMI with PF resection and AMI groups, there was an improved expression of PGC-1α and responsive OXPHOS including NDUFB3, NDUFB5 and SDHB are associated with the ATP levels in the AMI with PF resection compared with those in the AMI group. In addition, the expression levels of antioxidant enzymes (MnSOD) and SERCA2 were improved in the AMI with PF resection compared with those in the AMI group. CONCLUSION Surgical resection of PF might ameliorate myocardial mitochondria dysfunction in obese AMI.
Collapse
Affiliation(s)
- Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea.
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, Muan, Korea
| | - Hyunghee Lee
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Seung Yong Shin
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Wang Soo Lee
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Joonhwa Hong
- Division of Cardiothoracic Surgery, College of Medicine, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Sang-Wook Kim
- Division of Cardiology, College of Medicine, Heart Research Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, Korea
| | - Seong-Kyu Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon, Korea
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Muan, Korea.
| |
Collapse
|
62
|
Conte M, Petraglia L, Poggio P, Valerio V, Cabaro S, Campana P, Comentale G, Attena E, Russo V, Pilato E, Formisano P, Leosco D, Parisi V. Inflammation and Cardiovascular Diseases in the Elderly: The Role of Epicardial Adipose Tissue. Front Med (Lausanne) 2022; 9:844266. [PMID: 35242789 PMCID: PMC8887867 DOI: 10.3389/fmed.2022.844266] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
Human aging is a complex phenomenon characterized by a wide spectrum of biological changes which impact on behavioral and social aspects. Age-related changes are accompanied by a decline in biological function and increased vulnerability leading to frailty, thereby advanced age is identified among the major risk factors of the main chronic human diseases. Aging is characterized by a state of chronic low-grade inflammation, also referred as inflammaging. It recognizes a multifactorial pathogenesis with a prominent role of the innate immune system activation, resulting in tissue degeneration and contributing to adverse outcomes. It is widely recognized that inflammation plays a central role in the development and progression of numerous chronic and cardiovascular diseases. In particular, low-grade inflammation, through an increased risk of atherosclerosis and insulin resistance, promote cardiovascular diseases in the elderly. Low-grade inflammation is also promoted by visceral adiposity, whose accumulation is paralleled by an increased inflammatory status. Aging is associated to increase in epicardial adipose tissue (EAT), the visceral fat depot of the heart. Structural and functional changes in EAT have been shown to be associated with several heart diseases, including coronary artery disease, aortic stenosis, atrial fibrillation, and heart failure. EAT increase is associated with a greater production and secretion of pro-inflammatory mediators and neuro-hormones, so that thickened EAT can pathologically influence, in a paracrine and vasocrine manner, the structure and function of the heart and is associated to a worse cardiovascular outcome. In this review, we will discuss the evidence underlying the interplay between inflammaging, EAT accumulation and cardiovascular diseases. We will examine and discuss the importance of EAT quantification, its characteristics and changes with age and its clinical implication.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Comentale
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Vincenzo Russo
- Department of Medical Translational Sciences, Monaldi Hospital, University of Campania Luigi Vanvitelli, Campania, Italy
| | - Emanuele Pilato
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
63
|
Margolis G, Elbaz-Greener G, Ruskin JN, Roguin A, Amir O, Rozen G. The Impact of Obesity on Sudden Cardiac Death Risk. Curr Cardiol Rep 2022; 24:497-504. [PMID: 35230617 DOI: 10.1007/s11886-022-01671-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We aimed to describe the epidemiology of sudden cardiac death (SCD) in the obese, elaborating on the potential pathophysiological mechanisms linking obesity, SCD, and the outcomes in SCD survivors, as well as looking into the intriguing "obesity paradox" in these patients. RECENT FINDINGS Several studies show increased mortality in patients with BMI > 30 kg/m2 admitted to the hospital following SCD. At the same time, other studies have implied that the "obesity paradox," described in various cardiovascular conditions, applies to patients admitted after SCD, showing lower mortality in the obese compared to normal weight and underweight patients. We found a significant body of evidence to support that while obesity increases the risk for SCD, the outcomes of obese patients post SCD are better. These findings should not be interpreted as supporting weight gain, as it is always better to prevent the "disaster" from happening than to improve your chances of surviving it. Obesity is shown to be significantly associated with increased risk for SCD; however, there is a growing body of evidence, supporting the "obesity paradox" in the survival of SCD victims. Prospectively, well-designed studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Gilad Margolis
- Division of Cardiovascular Medicine, Cardiac Electrophysiology Unit, Hillel Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gabby Elbaz-Greener
- Department of Cardiology, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jeremy N Ruskin
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Ariel Roguin
- Division of Cardiovascular Medicine, Cardiac Electrophysiology Unit, Hillel Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Offer Amir
- Department of Cardiology, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Rozen
- Division of Cardiovascular Medicine, Cardiac Electrophysiology Unit, Hillel Yaffe Medical Center, Hadera, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel. .,Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
64
|
Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, Jones EAV, Kallikourdis M, Lichtman A, Marelli-Berg F, Shah S, Thorp EB, Hill JA. Immunometabolic Mechanisms of Heart Failure with Preserved Ejection Fraction. NATURE CARDIOVASCULAR RESEARCH 2022; 1:211-222. [PMID: 35755006 PMCID: PMC9229992 DOI: 10.1038/s44161-022-00032-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence worldwide, already accounting for at least half of all heart failure (HF). As most patients with HFpEF are obese with metabolic syndrome, metabolic stress has been implicated in syndrome pathogenesis. Recently, compelling evidence for bidirectional crosstalk between metabolic stress and chronic inflammation has emerged, and alterations in systemic and cardiac immune responses are held to participate in HFpEF pathophysiology. Indeed, based on both preclinical and clinical evidence, comorbidity-driven systemic inflammation, coupled with metabolic stress, have been implicated together in HFpEF pathogenesis. As metabolic alterations impact immune function(s) in HFpEF, major changes in immune cell metabolism are also recognized in HFpEF and in HFpEF-predisposing conditions. Both arms of immunity - innate and adaptive - are implicated in the cardiomyocyte response in HFpEF. Indeed, we submit that crosstalk among adipose tissue, the immune system, and the heart represents a critical component of HFpEF pathobiology. Here, we review recent evidence in support of immunometabolic mechanisms as drivers of HFpEF pathogenesis, discuss pivotal biological mechanisms underlying the syndrome, and highlight questions requiring additional inquiry.
Collapse
Affiliation(s)
- Gabriele G. Schiattarella
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gianluigi Condorelli
- Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Italy,Cardio Center, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Thomas G. Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands,Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth A. V. Jones
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands,Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marinos Kallikourdis
- Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Italy,Adaptive Immunity Lab, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Andrew Lichtman
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sanjiv Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Edward B. Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
65
|
Maevskaya M, Kotovskaya Y, Ivashkin V, Tkacheva O, Troshina E, Shestakova M, Breder V, Geyvandova N, Doschitsin V, Dudinskaya E, Ershova E, Kodzoeva K, Komshilova K, Korochanskaya N, Mayorov A, Mishina E, Nadinskaya M, Nikitin I, Pogosova N, Tarzimanova A, Shamkhalova M. The National Consensus statement on the management of adult patients with non-alcoholic fatty liver disease and main comorbidities. TERAPEVT ARKH 2022; 94:216-253. [DOI: 10.26442/00403660.2022.02.201363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The National Consensus was prepared with the participation of the National Medical Association for the Study of the Multimorbidity, Russian Scientific Liver Society, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians, National Society for Preventive Cardiology, Professional Foundation for the Promotion of Medicine Fund PROFMEDFORUM.
The aim of the multidisciplinary consensus is a detailed analysis of the course of non-alcoholic fatty liver disease (NAFLD) and the main associated conditions. The definition of NAFLD is given, its prevalence is described, methods for diagnosing its components such as steatosis, inflammation and fibrosis are described.
The association of NAFLD with a number of cardio-metabolic diseases (arterial hypertension, atherosclerosis, thrombotic complications, type 2 diabetes mellitus (T2DM), obesity, dyslipidemia, etc.), chronic kidney disease (CKD) and the risk of developing hepatocellular cancer (HCC) were analyzed. The review of non-drug methods of treatment of NAFLD and modern opportunities of pharmacotherapy are presented.
The possibilities of new molecules in the treatment of NAFLD are considered: agonists of nuclear receptors, antagonists of pro-inflammatory molecules, etc. The positive properties and disadvantages of currently used drugs (vitamin E, thiazolidinediones, etc.) are described. Special attention is paid to the multi-target ursodeoxycholic acid (UDCA) molecule in the complex treatment of NAFLD as a multifactorial disease. Its anti-inflammatory, anti-oxidant and cytoprotective properties, the ability to reduce steatosis an independent risk factor for the development of cardiovascular pathology, reduce inflammation and hepatic fibrosis through the modulation of autophagy are considered.
The ability of UDCA to influence glucose and lipid homeostasis and to have an anticarcinogenic effect has been demonstrated. The Consensus statement has advanced provisions for practitioners to optimize the diagnosis and treatment of NAFLD and related common pathogenetic links of cardio-metabolic diseases.
Collapse
|
66
|
Lorenzo-Almorós A, Cepeda-Rodrigo J, Lorenzo Ó. Diabetic cardiomyopathy. Rev Clin Esp 2022; 222:100-111. [DOI: 10.1016/j.rceng.2019.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
|
67
|
Berezin AA, Fushtey IM, Berezin AE. Discriminative Utility of Apelin-to-NT-Pro-Brain Natriuretic Peptide Ratio for Heart Failure with Preserved Ejection Fraction among Type 2 Diabetes Mellitus Patients. J Cardiovasc Dev Dis 2022; 9:23. [PMID: 35050233 PMCID: PMC8779441 DOI: 10.3390/jcdd9010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Apelin is a regulatory vasoactive peptide, which plays a pivotal role in adverse cardiac remodeling and heart failure (HF) with reduced ejection fraction. The purpose of the study was to investigate whether serum levels of apelin is associated with HF with preserved election fraction (HFpEF) in patients with T2DM. METHODS The study retrospectively involved 101 T2DM patients aged 41 to 62 years (48 patients with HFpEF and 28 non-HFpEF patients). The healthy control group consisted of 25 individuals with matched age and sex. Data collection included demographic and anthropometric information, hemodynamic performances and biomarkers of the disease. Transthoracic B-mode echocardiography, Doppler and TDI were performed at baseline. Serum levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) and apelin were measured by ELISA in all patients at the study entry. RESULTS Unadjusted multivariate logistic model yielded the only apelin to NT-proBNP ratio (OR = 1.44; p = 0.001), BMI > 34 кг/м2 (OR = 1.07; p = 0.036), NT-proBNP > 458 pmol/mL (OR = 1.17; p = 0.042), LAVI > 34 mL/m2 (OR = 1.06; p = 0.042) and E/e' > 11 (OR = 1.04; p = 0.044) remained to be strong predictors for HFpEF. After obesity adjustment, multivariate logistic regression showed that the apelin to NT-proBNP ratio < 0.82 × 10-2 units remained sole independent predictor for HFpEF (OR = 1.44; 95% CI: 1.18-2.77; p = 0.001) HFpEF in T2DM patients. In conclusion, we found that apelin to NT-proBNP ratio < 0.82 × 10-2 units better predicted HFpEF in T2DM patients than apelin and NT-proBNP alone. This finding could open new approach for CV risk stratification of T2DM at higher risk of HF.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Postgraduate Education, 69096 Zaporozhye, Ukraine; (A.A.B.); (I.M.F.)
| | - Ivan M. Fushtey
- Internal Medicine Department, Medical Academy of Postgraduate Education, 69096 Zaporozhye, Ukraine; (A.A.B.); (I.M.F.)
| | - Alexander E. Berezin
- Internal Medicine Department, State Medical University, 69096 Zaporozhye, Ukraine
| |
Collapse
|
68
|
Hassanin A, Hassanein M, Lanier GM, Sadaka M, Rifaat M, Sanhoury M. Prevalence of obesity and its association with cardiometabolic risk factors, heart failure phenotype and mortality among patients hospitalized for heart failure in Egypt. Egypt Heart J 2022; 74:1. [PMID: 34978627 PMCID: PMC8724509 DOI: 10.1186/s43044-021-00232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is an established risk factor for cardiometabolic disease and heart failure (HF). Nevertheless, the relationship between obesity and HF mortality remains controversial. RESULTS The goal of this study was to describe the prevalence of obesity in patients hospitalized for HF in Egypt and investigate the relationship of obesity to cardiometabolic risk factors, HF phenotype and mortality. Between 2011 and 2014, 1661 patients hospitalized for HF across Egypt were enrolled as part of the European Society of Cardiology HF Long-term Registry. Obese patients, defined by a BMI ≥ 30 kg/m2, were compared to non-obese patients. Factors associated with mortality on univariate analysis were entered into a logistic regression model to identify whether obesity was an independent predictor of mortality during hospitalization and at one-year follow-up. The prevalence of obesity was 46.5% and was higher in females compared to males. Obese as compared to non-obese patients had a higher prevalence of diabetes mellitus (47.0% vs 40.2%, p = 0.031), hypertension (51.3% vs 33.0%, p < 0.001) and history of myocardial infarction (69.2% vs 62.8% p = 0.005). Obese patients as compared to non-obese patient were more likely to have acute coronary syndrome on admission (24.8% vs 14.2%, p < < 0.001). The dominant HF phenotype in obese and non-obese patients was HF with reduced ejection fraction (EF); however, obese patients as compared to non-obese patient had higher prevalence of HF with preserved EF (22.3% vs 12.4%, p < 0.001). Multivariable analysis demonstrated that obesity was associated with an independent survival benefit during hospitalization, (OR for mortality 0.52 [95% CI 0.29-0.92]). Every point increase in BMI was associated with an OR = 0.93 [95% CI 0.89-0.98] for mortality during hospitalization. The survival benefit was not maintained at one-year follow-up. CONCLUSIONS Obesity was highly prevalent among the study cohort and was associated with higher prevalence of cardiometabolic risk factors as compared to non-obese patients. Obesity was associated with an independent "protective effect" from in-hospital mortality but was not a predictor of mortality at 1-year follow-up.
Collapse
Affiliation(s)
- Ahmed Hassanin
- Westchester Medical Center/New York Medical College, Valhalla, USA
| | | | - Gregg M. Lanier
- Westchester Medical Center/New York Medical College, Valhalla, USA
| | | | | | | |
Collapse
|
69
|
de Ávila DX, Villacorta H, de Andrade Martins W, Tinoco Mesquita E. High-output Cardiac Failure: A Forgotten Phenotype in Clinical Practice. Curr Cardiol Rev 2022; 18:e050821195319. [PMID: 34353268 PMCID: PMC9241123 DOI: 10.2174/1573403x17666210805142010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The knowledge on High-Output Cardiac Failure (HOCF) has greatly improved in the last two decades. One of the advances was the identification of a new phenotype of HOCF, characterized by the absence of ventricular dilation, already associated with liver disease, Arteriovenous Fistulas (AVF), lung disease, myelodysplastic syndromes, and obesity. However, it has been noted that any aetiology can present with one of the two phenotypes, depending on the evolution. OBJECTIVE The study aims to describe, through an integrative review, the physiopathology and aetiologies of HOCF and to discuss phenotypes associated with this condition. METHODS Revisions, guidelines, case-controls, cohort studies and clinical studies were searched in MEDLINE and LILACS, using the connectives in the "cardiac output, high" database (MeSH Terms) OR "high cardiac output" (All Fields). DISCUSSION Two distinct phenotypes are currently described in the HOCF, regardless of the aetiology: 1) one with enlarged cardiac chambers; and 2) with normal heart chambers. The mechanisms related to HOCF are vasodilation, arteriovenous shunts that cause increased microvascular density, Reduced Systemic Vascular Resistance (RSVR), and high metabolism. These mechanisms lead to activation of the renin-angiotensin-aldosterone system, sodium and water retention, activation of neprilysin, of the sodium-glucose-2 transporter, which promote interstitial fibrosis, ventricular remodeling and a consequent increase in cardiac output >8L/min. CONCLUSION Many aetiologies of HOCF have been described, and some of them are potentially curable. Prompt recognition of this condition and proper treatment may lead to better outcomes.
Collapse
Affiliation(s)
- Diane Xavier de Ávila
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Amyloidosis Center, Complexo Hospitalar de Niterói - DASA, Rio de Janeiro, Brazil
| | - Humberto Villacorta
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Wolney de Andrade Martins
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Amyloidosis Center, Complexo Hospitalar de Niterói - DASA, Rio de Janeiro, Brazil
| | - Evandro Tinoco Mesquita
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Amyloidosis Center, Complexo Hospitalar de Niterói - DASA, Rio de Janeiro, Brazil
| |
Collapse
|
70
|
Ye LF, Li XL, Wang SM, Wang YF, Zheng YR, Wang LH. Body Mass Index: An Effective Predictor of Ejection Fraction Improvement in Heart Failure. Front Cardiovasc Med 2021; 8:586240. [PMID: 34926594 PMCID: PMC8671453 DOI: 10.3389/fcvm.2021.586240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Heart failure patients with higher body mass index (BMI) exhibit better clinical outcomes. Therefore, we assessed whether the BMI can predict left ventricular ejection fraction (EF) improvement following heart failure. Methods and Results: We included 184 patients newly diagnosed with dilated cardiomyopathy and reduced EF in our center and who underwent follow-up examination of EF via echocardiography after 6 months. The EF improved at 6 months in 88 participants, who were included in the heart failure with recovered EF (HFrecEF) subgroup. Patients in whom the EF remained reduced were included in the heart failure with persistently reduced EF (persistent HFrEF) subgroup. Our analyses revealed that EF increase correlated with age (r = −0.254, P = 0.001), left ventricular diastolic dimension (LVDD; r = −0.210, P = 0.004), diabetes (P = 0.034), brain natriuretic peptide (r = −0.199, P = 0.007), and BMI grade (P = 0.000). BMI grade was significantly associated with elevated EF after adjustment for other variables (P = 0.001). On multivariable analysis, compared to patients with persistent HFrEF, those with HFrecEF had higher BMI [odds ratio (OR) = 2.342 per one standard deviation increase; P = 0.001] and lower LVDD (OR = 0.466 per one standard deviation increase; P = 0.001). ROC-curve analysis data showed that BMI > 22.66 kg/m2 (sensitivity 84.1%, specificity 59.4%, AUC 0.745, P = 0.000) indicate high probability of EF recovery in 6 months. Conclusions: Our data suggest that higher BMI is strongly correlated with the recovered EF and that BMI is an effective predictor of EF improvement in patients with heart failure and reduced EF.
Collapse
Affiliation(s)
- Li-Fang Ye
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xue-Ling Li
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shao-Mei Wang
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yun-Fan Wang
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ya-Ru Zheng
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li-Hong Wang
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
71
|
Verdonschot JA, Ferreira JP, Pizard A, Pellicori P, La Rocca HPB, Clark AL, Cosmi F, Cuthbert J, Girerd N, Waring OJ, Henkens MH, Mariottoni B, Petutschnigg J, Rossignol P, Hazebroek MR, Cleland JG, Zannad F, Heymans SR. The effect of spironolactone in patients with obesity at risk for heart failure: proteomic insights from the HOMAGE trial. J Card Fail 2021; 28:778-786. [DOI: 10.1016/j.cardfail.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/27/2022]
|
72
|
Weight changes in heart failure with preserved ejection fraction: findings from TOPCAT. Clin Res Cardiol 2021; 111:451-459. [PMID: 34757487 DOI: 10.1007/s00392-021-01962-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Weight loss has been associated with poor outcomes in patients with heart failure (HF). However, few data are available for patients with heart failure with preserved ejection fraction (HFpEF). The impact of weight gain on outcomes has not been frequently reported either. AIMS To study post-randomization weight changes and how these could impact outcomes and the effect of spironolactone in patients with HFpEF enrolled in the TOPCAT-Americas trial (N = 1767). METHODS Mixed-effects regressions and time-updated Cox models to assess the factors associated with weight changes and their impact on subsequent outcomes. RESULTS Over a median follow-up of 3 years, 824 (47%) patients experienced weight loss ≥ 5% and 390 (22%) experienced weight loss ≥ 10%. Patients experiencing weight loss were older and more frequently women with severe HF symptoms. Spironolactone slightly reduced body weight before 12 months of follow-up: β = - 0.55 (- 0.82 to - 0.29) kg, without effect on weight afterwards: β = 0.01 (- 0.66 to 0.68) kg; treatment-by-time interaction P = 0.0015. Spironolactone did not increase the odds of weight loss but reduced the odds of weight gain. Weight loss ≥ 5% was associated with a higher risk of cardiovascular and all-cause death irrespective of baseline body mass index: HR = 1.47, 95%CI = 1.07-2.01 and HR = 1.84, 95%CI = 1.46-2.31, respectively. Weight gain was not associated with an increased risk of any outcome. CONCLUSION Weight loss ≥ 5% was frequent and independently associated with an increased risk of subsequent mortality. Spironolactone induced only slight body weight reductions early after its introduction and up to a maximum of 8-12 months of follow-up. Association between body weight changes and subsequent death. Legend: HR, hazard ratio from time-updated Cox models. Model adjusted on age, sex, race, NYHA class, systolic blood pressure, diabetes, atrial fibrillation, previous myocardial infarction, previous heart failure hospitalization, estimated glomerular filtration rate, diuretic use, and baseline weight.
Collapse
|
73
|
Liu X, Patel KP, Zheng H. Role of Renal Sympathetic Nerves in GLP-1 (Glucagon-Like Peptide-1) Receptor Agonist Exendin-4-Mediated Diuresis and Natriuresis in Diet-Induced Obese Rats. J Am Heart Assoc 2021; 10:e022542. [PMID: 34713714 PMCID: PMC8751817 DOI: 10.1161/jaha.121.022542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The gut‐derived hormone GLP‐1 (glucagon‐like peptide‐1) exerts beneficial effects against established risk factors for chronic kidney disease. GLP‐1 influences renal function by stimulating diuresis and natriuresis and thus lowering arterial blood pressure. The role of the sympathetic nervous system has been implicated as an important link between obesity with elevated arterial pressure and chronic kidney disease. The primary aim of this study was to determine the contribution of renal sympathetic nerves on intrapelvic GLP‐1‐mediated diuresis and natriuresis in high‐fat diet (HFD)‐induced obese rats. Methods and Results Obesity was induced in rats by HFD for 12 weeks, followed by either surgical bilateral renal denervation or chronic subcutaneous endopeptidase neprilysin inhibition by sacubitril for a week. Diuretic and natriuretic responses to intrapelvic administration of the GLP‐1R (GLP‐1 receptor) agonist exendin‐4 were monitored in anesthetized control and HFD rats. Renal GLP‐1R expression and neprilysin expression and activity were measured. The effects of norepinephrine on the expression of GLP‐1R and neprilysin in kidney epithelial LLC‐PK1 cells were also examined. We found that diuretic and natriuretic responses to exendin‐4 were significantly reduced in the HFD obese rats compared with the control rats (cumulative urine flow at 40 minutes, 387±32 versus 650±65 µL/gkw; cumulative sodium excretion at 40 minutes, 42±5 versus 75±10 µEq/gkw, P<0.05). These responses in the HFD rats were restored after ablation of renal nerves (cumulative urine flow at 40 minutes, 625±62 versus 387±32 µL/gkw; cumulative sodium excretion at 40 minutes, 70±9 versus 42±5 µEq/gkw, P<0.05). Renal denervation induced significant reductions in arterial pressure and heart rate responses to intrapelvic GLP‐1 in the HFD rats. Renal denervation also significantly increased the GLP‐1R expression and reduced neprilysin expression and activity in renal tissues from the HFD rats. Chronic subcutaneous neprilysin inhibition by sacubitril increased GLP‐1–induced diuretic and natriuretic effects in the HFD rats. Finally, exposure of the renal epithelial cells to norepinephrine in vitro led to downregulation of GLP‐1R expression but upregulation of neprilysin expression and activity. Conclusions These results suggest that renal sympathetic nerve activation contributes to the blunted diuretic and natriuretic effects of GLP‐1 in HFD obese rats. This study provides significant novel insight into the potential renal nerve–neprilysin–GLP‐1 pathway involved in renal dysfunction during obesity that leads to hypertension.
Collapse
Affiliation(s)
- Xuefei Liu
- Division of Basic Biomedical Sciences Sanford School of Medicine of the University of South Dakota Vermillion SD
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology University of Nebraska Medical Center Omaha NE
| | - Hong Zheng
- Division of Basic Biomedical Sciences Sanford School of Medicine of the University of South Dakota Vermillion SD
| |
Collapse
|
74
|
Puchałowicz K, Kłoda K, Dziedziejko V, Rać M, Wojtarowicz A, Chlubek D, Safranow K. Association of Adiponectin, Leptin and Resistin Plasma Concentrations with Echocardiographic Parameters in Patients with Coronary Artery Disease. Diagnostics (Basel) 2021; 11:diagnostics11101774. [PMID: 34679472 PMCID: PMC8534895 DOI: 10.3390/diagnostics11101774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
The imbalanced network of adipokines may contribute to the development of systemic low-grade inflammation, metabolic diseases and coronary artery disease (CAD). In the last decade, three classic adipokines—adiponectin, leptin and resistin—have been of particular interest in studies of patients with CAD due to their numerous properties in relation to the cardiovascular system. This has directed our attention to the association of adipokines with cardiac structure and function and the development of heart failure (HF), a common end effect of CAD. Thus, the purpose of this study was to analyse the associations of plasma concentrations of adiponectin, leptin and resistin with parameters assessed in the echocardiographic examinations of CAD patients. The presented study enrolled 167 Caucasian patients (133 male; 34 female) with CAD. Anthropometric, echocardiographic and basic biochemical measurements, together with plasma concentrations of adiponectin, leptin and resistin assays, were performed in each patient. Adiponectin concentrations were negatively associated with left ventricular ejection fraction (LVEF) and shortening fraction (LVSF), and positively associated with mitral valve E/A ratio (E/A), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter LVESD, and left atrium diameter (LAD). Resistin concentrations were negatively associated with E/A. Leptin concentrations, although correlated with HF severity assessed by the New York Heart Association (NYHA) Functional Classification, were not independently associated with the echocardiographic parameters of cardiac structure or function. In conclusion, adiponectin and resistin, but not leptin, are associated with the echocardiographic parameters of cardiac remodelling and dysfunction. These associations suggest that adiponectin and resistin might be involved in mechanisms of cardiac remodelling or compensative response. We also suggest the possible benefits of adiponectin and resistin level measurements in the monitoring of patients with CAD.
Collapse
Affiliation(s)
- Kamila Puchałowicz
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
- Correspondence: ; Tel.: +48-91-4661515; Fax: +48-91-4661516
| | | | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| | - Monika Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| | - Andrzej Wojtarowicz
- Department of Cardiology, Pomeranian Medical University, 70111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| |
Collapse
|
75
|
Sato R, Okada K, Akiyama E, Konishi M, Matsuzawa Y, Nakahashi H, Minamimoto Y, Kimura Y, Maejima N, Iwahashi N, Hibi K, Kosuge M, Ebina T, Tamura K, Kimura K. Impact of sarcopenic obesity on long-term clinical outcomes after ST-segment elevation myocardial infarction. Atherosclerosis 2021; 335:135-141. [PMID: 34517989 DOI: 10.1016/j.atherosclerosis.2021.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Both low appendicular skeletal muscle index (ASMI) and specific abdominal fat composition [i.e., increased visceral to subcutaneous (V/S) fat ratio] have been associated with cardiovascular events. However, the combined impact of these 2 components on long-term outcomes remains unclear, especially in patients with ST-segment elevation myocardial infarction (STEMI). METHODS In 303 patients with STEMI, ASMI and V/S fat ratio were assessed using dual-energy X-ray absorptiometry and abdominal computed tomography. Based on the criteria of the Asian Working Group for Sarcopenia and median of V/S fat ratio, sarcopenic obesity (SO) pattern was defined as low ASMI with high V/S fat ratio. The primary endpoint was composite outcomes of all-cause death, myocardial infarction, ischemic stroke, hospitalization for heart failure and unplanned revascularization. RESULTS During a median follow-up of 3.9 years, primary endpoint occurred in 67 patients. Patients with an SO pattern showed significantly lower event-free survival rate compared with those without (p=0.006 by log-rank). Notably, when stratified by median age (67 years), this trend was particularly prominent in the younger-age group (p <0.001), but not significant in the older-age group (p=0.38). In the younger-age group, the multivariate analysis revealed that patients with SO pattern had a 2.97 (1.10-7.53) fold higher risk for primary endpoints compared with those without. CONCLUSIONS Low ASMI with high V/S fat ratio, or so-called sarcopenic obesity, was associated with poor prognosis after STEMI, particularly in younger-age patients. The combined assessment of skeletal muscle with abdominal fat distribution may help stratify the risk among patients with STEMI, rather than each component alone.
Collapse
Affiliation(s)
- Ryosuke Sato
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kozo Okada
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan.
| | - Eiichi Akiyama
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaaki Konishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Hidefumi Nakahashi
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Yugo Minamimoto
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuichiro Kimura
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Nobuhiko Maejima
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Noriaki Iwahashi
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Toshiaki Ebina
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| |
Collapse
|
76
|
Effect of diabetes mellitus on the development of left ventricular contractile dysfunction in women with heart failure and preserved ejection fraction. Cardiovasc Diabetol 2021; 20:185. [PMID: 34521391 PMCID: PMC8442278 DOI: 10.1186/s12933-021-01379-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with sex-specific pathophysiology. Estrogen deficiency is believed to be responsible for the development of HFpEF in women. However, estrogen deficiency does not seem to be completely responsible for the differences in HFpEF prevalence between sexes. While diabetes mellitus (DM) frequently coexists with HFpEF in women and is associated with worse outcomes, the changes in myocardial contractility among women with HFpEF and the DM phenotype is yet unknown. Therefore, we aimed to investigate sex-related differences in left ventricular (LV) contractility dysfunction in HFpEF comorbid with DM. Methods A total of 224 patients who underwent cardiac cine MRI were included in this study. Sex-specific differences in LV structure and function in the context of DM were determined. LV systolic strains (global longitudinal strain [GLS], circumferential strain [GCS] and radial strain [GRS]) were measured using cine MRI. The determinants of impaired myocardial strain for women and men were assessed. Results The prevalence of DM did not differ between sexes (p > 0.05). Despite a similar LV ejection fraction, women with DM demonstrated a greater LV mass index than women without DM (p = 0.023). The prevalence of LV geometry patterns by sex did not differ in the non-DM subgroup, but there was a trend toward a more abnormal LV geometry in women with DM (p = 0.072). The magnitudes of systolic strains were similar between sexes in the non-DM group (p > 0.05). Nevertheless, in the DM subgroup, there was significant impairment in women in systolic strains compared with men (p < 0.05). In the multivariable analysis, DM was associated with impaired systolic strains in women (GLS [β = 0.26; p = 0.007], GCS [β = 0.31; p < 0.001], and GRS [β = −0.24; p = 0.016]), whereas obesity and coronary artery disease were associated with impaired systolic strains in men (p < 0.05). Conclusions Women with DM demonstrated greater LV contractile dysfunction, which indicates that women with HFpEF comorbid with DM have a high-risk phenotype of cardiac failure that may require more aggressive and personalized medical treatment.
Collapse
|
77
|
Brinkley DM, Guglin ME, Bennett MK, Redfield MM, Abraham WT, Brett ME, Dirckx N, Adamson PB, Stevenson LW. Pulmonary Artery Pressure Monitoring Effectively Guides Management to Reduce Heart Failure Hospitalizations in Obesity. JACC-HEART FAILURE 2021; 9:784-794. [PMID: 34509410 DOI: 10.1016/j.jchf.2021.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study sought to determine the impact of therapy guided by pulmonary artery (PA) pressure monitoring in patients with heart failure (HF) and obesity. BACKGROUND Obesity is prevalent in HF and associated with volume retention, but it complicates clinical assessment of congestion. METHODS The CardioMEMS Post Approval Study was a prospective, multicenter, open-label trial in 1,200 patients with New York Heart Association functional class III HF and prior HF hospitalization (HFH) within 12 months. Patients with a body mass index (BMI) >35 kg/m2 were required to have a chest circumference <65 inches. Therapy was guided by PA pressure monitoring at sites, and HFHs were adjudicated 1 year before implantation and throughout follow-up. This analysis stratified patients according to ejection fraction (EF) <40% or ≥40% and by BMI <35 kg/m2 or ≥35 kg/m2. RESULTS Baseline PA diastolic pressure was higher in patients with BMI ≥35 kg/m2 regardless of EF, but all PA pressures were reduced at 12 months in each cohort (P < 0.0001). HFH rate was reduced by >50% in both cohorts for EF <40% (BMI <35 kg/m2 [HR: 0.48; 95% CI: 0.41-0.55] and ≥35 kg/m2 [HR: 0.40; 95% CI: 0.31-0.53]) and EF ≥40% (BMI <35 kg/m2 [HR: 0.42; 95% CI: 0.35-0.52] and ≥35 kg/m2 [HR: 0.34; 95% CI: 0.25-0.45]; P < 0.0001). There was a nonsignificant trend toward greater reduction with more obesity. The all-cause hospitalization rate was also significantly reduced during monitoring (P < 0.01). CONCLUSIONS Management guided by PA pressure monitoring effectively reduced pressures, HFH, and all-cause hospitalization in patients with obesity regardless of EF. (CardioMEMS HF System Post Approval Study; NCT02279888).
Collapse
Affiliation(s)
- D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Maya E Guglin
- Indiana University School of Medicine, Krannert Institute of Cardiology, Avon, Indiana, USA
| | - Mosi K Bennett
- Minneapolis Heart Institute, Minneapolis, Minnesota, USA
| | | | - William T Abraham
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Lynne W Stevenson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
78
|
Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, Mengozzi A, Virdis A, Nesti L, Taddei S, Flammer A, Borlaug BA, Ruschitzka F, Masi S. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail 2021; 23:1858-1871. [PMID: 34427016 DOI: 10.1002/ejhf.2337] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS We evaluated the impact of echocardiographic epicardial adipose tissue (EAT) on cardiovascular haemodynamics, metabolic profile and prognosis in heart failure (HF) using combined cardiopulmonary-echocardiography exercise stress. METHODS AND RESULTS We analysed EAT thickness of HF patients with reduced (HFrEF, n = 205) and preserved (HFpEF, n = 188) ejection fraction, including 44 controls. HFpEF patients displayed the highest EAT, while HFrEF patients had lower values than controls. EAT showed an inverse correlation with natriuretic peptides, troponin T and C-reactive protein in HFrEF, while having a direct association with troponin T and C-reactive protein in HFpEF. EAT was independently associated with peak oxygen consumption (VO2 ) and peripheral extraction (AVO2 diff), regardless of body mass index. EAT was inversely correlated with peak VO2 and AVO2 diff in HFpEF, while a direct association was observed in HFrEF, where lower EAT values were associated with worse left ventricular systolic dysfunction. In HFpEF, increased EAT was related to right ventriculo-arterial (tricuspid annular plane systolic excursion/systolic pulmonary artery pressure) uncoupling. After 21 months of follow-up, 146 HF hospitalizations and 34 cardiovascular deaths were recorded in the HF population. Cox multivariable analysis supported an independent differential role of EAT in HF cohorts (interaction P = 0.01): higher risk of adverse events for increasing EAT in HFpEF [hazard ratio (HR) 1.12, 95% confidence interval (CI) 1.04-1.37] and for decreasing EAT in HFrEF (HR 0.75, 95% CI 0.54-0.91). CONCLUSION In HFpEF, EAT accumulation is associated with worse haemodynamic and metabolic profile, also affecting survival. Conversely, lower EAT values imply higher left ventricular dysfunction, global functional impairment and adverse prognosis in HFrEF.
Collapse
Affiliation(s)
- Nicola R Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Matteo Mazzola
- Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lavinia Del Punta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luna Gargani
- Institute of Clinical Physiology - CNR, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Barry A Borlaug
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
79
|
Packer M. Differential Pathophysiological Mechanisms in Heart Failure With a Reduced or Preserved Ejection Fraction in Diabetes. JACC-HEART FAILURE 2021; 9:535-549. [PMID: 34325884 DOI: 10.1016/j.jchf.2021.05.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Diabetes promotes the development of both heart failure with a reduced ejection fraction and heart failure with a preserved ejection fraction through diverse mechanisms, which are likely mediated through hyperinsulinemia rather than hyperglycemia. Diabetes promotes nutrient surplus signaling (through Akt and mammalian target of rapamycin complex 1) and inhibits nutrient deprivation signaling (through sirtuin-1 and its downstream effectors); this suppresses autophagy and promotes endoplasmic reticulum and oxidative stress and mitochondrial dysfunction, thereby undermining the health of diabetic cardiomyocytes. The hyperinsulinemia of diabetes may also activate sodium-hydrogen exchangers in cardiomyocytes (leading to injury and loss) and in the proximal renal tubules (leading to sodium retention). Diabetes may cause epicardial adipose tissue expansion, and the resulting secretion of proinflammatory adipocytokines onto the adjoining myocardium can lead to coronary microcirculatory dysfunction and myocardial inflammation and fibrosis. Interestingly, sodium-glucose cotransporter 2 (SGLT2) inhibitors-the only class of antidiabetic medication that reduces serious heart failure events-may act to mitigate each of these mechanisms. SGLT2 inhibitors up-regulate sirtuin-1 and its downstream effectors and autophagic flux, thus explaining the actions of these drugs to reduce oxidative stress, normalize mitochondrial structure and function, and mute proinflammatory pathways in the stressed myocardium. Inhibition of SGLT2 may also lead to a reduction in the activity of sodium-hydrogen exchangers in the kidney (leading to diuresis) and in the heart (attenuating the development of cardiac hypertrophy and systolic dysfunction). Finally, SGLT2 inhibitors reduce the mass and mute the adverse biology of epicardial adipose tissue (and reduce the secretion of leptin), thus explaining the capacity of these drugs to mitigate myocardial inflammation, microcirculatory dysfunction, and fibrosis, and improve ventricular filling dynamics. The pathophysiological mechanisms by which SGLT2 inhibitors may benefit heart failure likely differ depending on ejection fraction, but each represents interference with distinct pathways by which hyperinsulinemia may adversely affect cardiac structure and function.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College, London, United Kingdom.
| |
Collapse
|
80
|
Vergaro G, Gentile F, Meems LMG, Aimo A, Januzzi JL, Richards AM, Lam CSP, Latini R, Staszewsky L, Anand IS, Cohn JN, Ueland T, Gullestad L, Aukrust P, Brunner-La Rocca HP, Bayes-Genis A, Lupón J, Yoshihisa A, Takeishi Y, Egstrup M, Gustafsson I, Gaggin HK, Eggers KM, Huber K, Gamble GD, Ling LH, Leong KTG, Yeo PSD, Ong HY, Jaufeerally F, Ng TP, Troughton R, Doughty RN, Devlin G, Lund M, Giannoni A, Passino C, de Boer RA, Emdin M. NT-proBNP for Risk Prediction in Heart Failure: Identification of Optimal Cutoffs Across Body Mass Index Categories. JACC-HEART FAILURE 2021; 9:653-663. [PMID: 34246607 DOI: 10.1016/j.jchf.2021.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The goal of this study was to assess the predictive power of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and the decision cutoffs in heart failure (HF) across body mass index (BMI) categories. BACKGROUND Concentrations of NT-proBNP predict outcome in HF. Although the influence of BMI to reduce levels of NT-proBNP is known, the impact of obesity on prognostic value remains uncertain. METHODS Individual data from the BIOS (Biomarkers In Heart Failure Outpatient Study) consortium were analyzed. Patients with stable HF were classified as underweight (BMI <18.5 kg/m2), normal weight (BMI 18.5-24.9 kg/m2), overweight (BMI 25-29.9 kg/m2), and mildly (BMI 30-34.9 kg/m2), moderately (BMI 35-39.9 kg/m2), or severely (BMI ≥40 kg/m2) obese. The prognostic role of NT-proBNP was tested for the endpoints of all-cause and cardiac death. RESULTS The study population included 12,763 patients (mean age 66 ± 12 years; 25% women; mean left ventricular ejection fraction 33% ± 13%). Most patients were overweight (n = 5,176), followed by normal weight (n = 4,299), mildly obese (n = 2,157), moderately obese (n = 612), severely obese (n = 314), and underweight (n = 205). NT-proBNP inversely correlated with BMI (β = -0.174 for 1 kg/m2; P < 0.001). Adding NT-proBNP to clinical models improved risk prediction across BMI categories, with the exception of severely obese patients. The best cutoffs of NT-proBNP for 5-year all-cause death prediction were lower as BMI increased (3,785 ng/L, 2,193 ng/L, 1,554 ng/L, 1,045 ng/L, 755 ng/L, and 879 ng/L, for underweight, normal weight, overweight, and mildly, moderately, and severely obese patients, respectively) and were higher in women than in men. CONCLUSIONS NT-proBNP maintains its independent prognostic value up to 40 kg/m2 BMI, and lower optimal risk-prediction cutoffs are observed in overweight and obese patients.
Collapse
Affiliation(s)
- Giuseppe Vergaro
- Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana G. Monasterio, Pisa, Italy.
| | | | - Laura M G Meems
- University Medical Centre Groningen, Groningen, the Netherlands
| | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | | | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore
| | - Roberto Latini
- IRCCS-Istituto di Ricerche Farmacologiche-"Mario Negri," IRCCS Milano, Italy
| | - Lidia Staszewsky
- IRCCS-Istituto di Ricerche Farmacologiche-"Mario Negri," IRCCS Milano, Italy
| | - Inder S Anand
- University of Minnesota, Minneapolis, Minnesota, USA; VA Medical Centre, Minneapolis, Minnesota, USA
| | - Jay N Cohn
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Thor Ueland
- Oslo University Hospital, Ullevål, Oslo, Norway; Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway; University of Tromsø, Tromsø, Norway
| | - Lars Gullestad
- KG Jebsen Center for Cardiac Research, University of Oslo, and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | | | - Antoni Bayes-Genis
- Hospital Universitari Germans Trias i Pujol, Badalona (Barcelona) and CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Lupón
- Hospital Universitari Germans Trias i Pujol, Badalona (Barcelona) and CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Michael Egstrup
- Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ida Gustafsson
- Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanna K Gaggin
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kurt Huber
- Wilhelminenspital and Sigmund Freud University Medical School, Vienna, Austria
| | | | - Lieng H Ling
- National University Heart Centre and National University of Singapore, Singapore
| | | | | | | | | | - Tze P Ng
- National University Heart Centre and National University of Singapore, Singapore
| | - Richard Troughton
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | | | | | | | - Alberto Giannoni
- Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Claudio Passino
- Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana G. Monasterio, Pisa, Italy
| | | | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
81
|
Kresoja KP, Rommel KP, Wachter R, Henger S, Besler C, Klöting N, Schnelle M, Hoffmann A, Büttner P, Ceglarek U, Thiele H, Scholz M, Edelmann F, Blüher M, Lurz P. Proteomics to improve phenotyping in obese patients with heart failure with preserved ejection fraction. Eur J Heart Fail 2021; 23:1633-1644. [PMID: 34231954 DOI: 10.1002/ejhf.2291] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Recent evidence points towards a distinct obese phenotype among patients with heart failure with preserved ejection fraction (HFpEF). We aimed to identify differentially expressed circulating biomarkers in obese HFpEF patients and link them to disease severity and outcomes. METHODS AND RESULTS From the LIFE-Heart study, 999 patients with HFpEF and 999 patients without heart failure (no-HF) were selected and 92 circulating serum biomarkers were measured using a proximity extension assay. Elevation of identified biomarkers was validated in 220 patients from the Aldo-DHF trial with diagnosed HFpEF. HFpEF patients were older and had more comorbidities including coronary artery disease and type 2 diabetes as compared to no-HF patients (P < 0.05 for all). After adjusting for covariates, adrenomedullin (ADM), galectin-9 (Gal-9), thrombospondin-2 (THBS-2), CD4, and tumour necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) were significantly higher in obese HFpEF patients [body mass index (BMI) ≥30 kg/m2 , n = 464] as compared to lean HFpEF (BMI <30 kg/m2 , n = 535) and obese no-HF patients (BMI ≥30 kg/m2 , n = 387) (P < 0.001 for both); these findings were verified in the Aldo-DHF validation cohort (P < 0.001). Except for CD4 these proteins were associated with increased estimates of left atrial pressure in a linear fashion. Importantly, ADM and CD4 were associated with increased mortality in obese HFpEF patients after adjusting for covariates. CONCLUSION Obese HFpEF patients exhibit higher circulating biomarkers of volume expansion (ADM), myocardial fibrosis (THBS-2) and systemic inflammation (Gal-9, CD4) compared to obese non-HFpEF or lean HFpEF patients. These findings support the clinical definition of a distinct obese HFpEF phenotype and might merit further investigation.
Collapse
Affiliation(s)
- Karl-Patrik Kresoja
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Karl-Philipp Rommel
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Rolf Wachter
- Clinic and Policlinic for Cardiology, University Hospital, Leipzig, Germany
| | - Sylvia Henger
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Christian Besler
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Nora Klöting
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Moritz Schnelle
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Anne Hoffmann
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, partner site Berlin, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| |
Collapse
|
82
|
Zhu H, Liu M, Li H, Guan T, Zhang Q, Chen Y, Liu Y, Hartmann RR, Yin L, Hu Q. Design, synthesis and biological evaluation of pyridyl substituted benzoxazepinones as potent and selective inhibitors of aldosterone synthase. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
83
|
Shen Q, Hiebert JB, Rahman FK, Krueger KJ, Gupta B, Pierce JD. Understanding Obesity-Related High Output Heart Failure and Its Implications. INTERNATIONAL JOURNAL OF HEART FAILURE 2021; 3:160-171. [PMID: 36262639 PMCID: PMC9536652 DOI: 10.36628/ijhf.2020.0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Morbid obesity remains most common cause of high output failure. The prevalence of the obesity is growing when two-thirds of American adults already are overweight or obese. Obesity is the risk factor for heart disease and eventually leads to heart failure. High output heart failure is common in obese patients and is characterized by high cardiac output, decreased systemic vascular resistance, and increased oxygen consumption. It often occurs in patients with chronic severe anemia, hyperthyroidism, pregnancy, arterial-venous fistulas, and liver disease. However, the pathogenesis of obesity-related high output heart failure is not fully understood. The clinical management of obesity-related high output heart failure follows conventional heart failure regimens due to lack of specific clinical recommendations. This article reviews the possible pathophysiological mechanisms and causes that contribute to obesity-related high output heart failure. This review also focuses on the implications for clinical practice and future research involved with omics technologies to explore possible molecular pathways associated with obesity-related high output heart failure.
Collapse
Affiliation(s)
- Qiuhua Shen
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - John B. Hiebert
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - Faith K. Rahman
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - Kathryn J. Krueger
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| | - Bhanu Gupta
- Department of Cardiovascular Medicine, The University of Kansas Health System, Kansas City, KS, USA
| | - Janet D. Pierce
- University of Kansas Medical Center, School of Nursing, Kansas City, KS, USA
| |
Collapse
|
84
|
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than one-half of patients with heart failure. Effective treatment of HFpEF has not been established, largely because of the complexities and heterogeneity in the phenotypes of HFpEF. Categorizing patients based on clinical and pathophysiologic phenotype may provide more targeted and efficacious therapies. Despite this clinical need, there is no consensus on how to categorize patients with HFpEF into phenogroups. Possible metrics include the presence or absence of specific comorbidities that influence pathophysiology, imaging, hemodynamics, or other biomarkers. This article describes currently recognized phenotypes of HFpEF and potential treatment strategies.
Collapse
|
85
|
Jang AY, Scherer PE, Kim JY, Lim S, Koh KK. Adiponectin and cardiometabolic trait and mortality: where do we go? Cardiovasc Res 2021; 118:2074-2084. [PMID: 34117867 DOI: 10.1093/cvr/cvab199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Adiponectin is an adipocyte-derived cytokine known for its cardioprotective effects in preclinical studies. Early epidemiologic studies replicated these findings and drew great interest. Subsequent large-scale prospective cohorts, however, showed that adiponectin levels seemed not to relate to incident coronary artery disease (CAD). Even more surprisingly, a paradoxical increase of all-cause and cardiovascular (CV) mortality with increased adiponectin levels was reported. The adiponectin-mortality paradox has been explained by some groups asserting that adiponectin secretion is promoted by elevated natriuretic peptides (NP). Other groups have proposed that adiponectin is elevated due to adiponectin resistance in subjects with metabolic syndrome or heart failure (HF). However, there is no unifying theory that can clearly explain this paradox. In patients with HF with reduced ejection fraction (HFrEF), stretched cardiomyocytes secrete NPs, which further promote release of adiponectin from adipose tissue, leading to adiponectin resistance. On the other hand, adiponectin biology may differ in patients with heart failure with preserved ejection fraction (HFpEF), which constitutes 50% of all of HF. Most HFpEF patients are obese, which exerts inflammation and myocardial stiffness, that is likely to prevent myocardial stretch and subsequent NP release. This segment of the patient population may display a different adiponectin biology from its HFrEF counterpart. Dissecting the adiponectin-mortality relation in terms of different HF subtypes may help to comprehensively understand this paradox. Mendelian Randomization (MR) analyses claimed that adiponectin levels are not causally related to CAD or metabolic syndrome. Results from MR studies, however, should be interpreted with great caution because the underlying history of CAD or CHF were not taken into account in these analyses, an issue that may substantially confound the results. Here, we discuss many aspects of adiponectin; cardiometabolic traits, therapeutic interventions, and the ongoing debate about the adiponectin paradox, which were recently described in basic, epidemiologic, and clinical studies.
Collapse
Affiliation(s)
- Albert Youngwoo Jang
- Division of Cardiovascular Disease, Gachon University Gil Hospital, Incheon, Korea, Gachon Cardiovascular Research Institute, Incheon, Korea
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, ., Dallas, TX, 75390-8549, USA
| | - Jang Young Kim
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwang Kon Koh
- Division of Cardiovascular Disease, Gachon University Gil Hospital, Incheon, Korea, Gachon Cardiovascular Research Institute, Incheon, Korea
| |
Collapse
|
86
|
Myhre PL, Lyngbakken MN, Berge T, Røysland R, Aagaard EN, Pervez O, Kvisvik B, Brynildsen J, Norseth J, Tveit A, Steine K, Omland T, Røsjø H. Diagnostic Thresholds for Pre-Diabetes Mellitus and Diabetes Mellitus and Subclinical Cardiac Disease in the General Population: Data From the ACE 1950 Study. J Am Heart Assoc 2021; 10:e020447. [PMID: 33998259 PMCID: PMC8483542 DOI: 10.1161/jaha.120.020447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Diabetes mellitus (DM) is associated with left ventricular remodeling and incident heart failure, but the association between glycated hemoglobin A1c (HbA1c) and subclinical cardiac disease is not established. We aimed to determine the associations between HbA1c and (1) echocardiographic measures of left ventricular structure and function, and (2) cardiovascular biomarkers: cardiac troponin T, NT-proBNP (N-terminal pro-B-type natriuretic peptide), and CRP (C-reactive protein). Methods and Results Participants (n=3688) born in 1950 from the population-based ACE (Akershus Cardiac Examination) 1950 Study were classified as DM (HbA1c≥6.5% or self-reported DM), pre-DM (HbA1c 5.7%-6.5%), and no-DM (HbA1c<5.7%). DM, pre-DM, and no-DM were classified in 380 (10%), 1630 (44%), and 1678 (46%) participants, respectively. Mean age was 63.9±0.7 years, mean body mass index was 27.2±4.4 kg/m2, and 49% were women. Higher HbA1c was associated with worse left ventricular systolic (ejection fraction and global longitudinal strain) and diastolic (E/e'-ratio) function, myocardial injury (cardiac troponin T), inflammation (CRP), and impaired neurohormonal homeostasis (NT-proBNP) (P<0.001 in unadjusted and P<0.01 in adjusted analysis for all). The associations between HbA1c and cardiovascular biomarkers were independent of the echocardiographic variables, and vice versa. Associations were nonlinear (P<0.05 for nonlinearity) and appeared stronger in the pre-DM range of HbA1c than the no-DM and DM range. Conclusions HbA1c was associated with indexes of subclinical cardiovascular disease, and this was more pronounced in pre-DM. Our results suggest that cardiovascular preventive measures should be considered also in subjects with hyperglycemia and HbA1c below the established DM cutoff. Registration clinicaltrials.gov. Identifier: NCT01555411.
Collapse
Affiliation(s)
- Peder L Myhre
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Magnus N Lyngbakken
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Trygve Berge
- Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway.,Division for Research and InnovationAkershus University Hospital Lørenskog Norway
| | - Ragnhild Røysland
- Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway.,Institute for Clinical MedicineUniversity of Oslo Norway
| | - Erika N Aagaard
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Osman Pervez
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Brede Kvisvik
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Jon Brynildsen
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Jon Norseth
- Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway.,Department of Medical ResearchVestre Viken Hospital Trust Bærum Norway
| | - Arnljot Tveit
- Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway.,Division for Research and InnovationAkershus University Hospital Lørenskog Norway
| | - Kjetil Steine
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Torbjørn Omland
- Department of CardiologyAkershus University Hospital Lørenskog Norway.,Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway
| | - Helge Røsjø
- Department of Multidisciplinary Laboratory Medicine and Medical BiochemistryAkershus University Hospital Lørenskog Norway.,Department of Laboratory MedicineVestre Viken Hospital Trust Bærum Norway
| |
Collapse
|
87
|
Abstract
Background Recent studies have reported circular RNA (circRNA) expression profiles in various tissue types; however, circRNA expression profile in human epicardial adipose tissue (EAT) remains undefined. This work aimed to compare circRNA expression patterns in EAT between the heart failure (HF) and non-HF groups. Methods RNA-sequencing was carried out to compare circRNA expression patterns in EAT specimens from coronary artery disease cases between the HF and non-HF groups. Quantitative real-time polymerase chain reaction was performed for validation. Comparisons of patient characteristics between the two groups were using t test, Mann-Whitney U test, and Chi-squared test. Results A total of 141 circRNAs substantially different between the HF and non-HF groups (P < 0.05; fold change >2) were detected, including 56 up-regulated and 85 down-regulated. Among them, hsa_circ_0005565 stood out, for it had the highest fold change and was significantly increased in HF patients in quantitative real-time polymerase chain reaction validation. The top highly expressed EAT circRNAs corresponded to genes involved in cell proliferation and inflammatory response, including GSE1, RHOBTB3, HIPK3, UBXN7, PCMTD1, N4BP2L2, CFLAR, EPB41L2, FCHO2, FNDC3B, and SPECC1. The top enriched Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway were positive regulation of metabolic processes and insulin resistance, respectively. Conclusion These data indicate EAT circRNAs may contribute to the pathogenesis of metabolic disorders causing HF.
Collapse
|
88
|
Dadarlat-Pop A, Pop D, Procopciuc L, Sitar-Taut A, Zdrenghea D, Bodizs G, Tomoaia R, Gurzau D, Fringu F, Susca-Hojda S, Buzoianu AD. Leptin, Galectin-3 and Angiotensin II Type 1 Receptor Polymorphism in Overweight and Obese Patients with Heart Failure - Role and Functional Interplay. Int J Gen Med 2021; 14:1727-1737. [PMID: 33994803 PMCID: PMC8114101 DOI: 10.2147/ijgm.s301285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aims Leptin, one of the best-known adipocytes, together with the renin-angiotensin-aldosterone system and galectin-3 are important players in inflammation, arterial hypertension and heart failure pathophysiology. Moreover, uninucleotide A1166C polymorphism is associated with hypertension and poor prognosis in heart failure. The aim of the study was to investigate a possible relationship between leptin serum values, specific heart failure biomarkers and the presence of AT1 receptor A1166C polymorphism in overweight and obese heart failure patients. Methods The study included 88 consecutive overweight and obese patients admitted for decompensated heart failure. NT-proBNP, MR-proANP, galectin-3 and leptin levels were determined on the arrival day. Genotyping of the A1166C allele – AT1 receptor gene was performed in all patients in order to find variants. Results We found a strong positive correlation (r = 0.347, p = 0.001) between leptin serum concentrations and BMI. Leptin levels were not correlated with heart failure biomarkers (NT-proBNP, MR-proANP and galectin-3). All homozygote CC variants were hypertensive, but we registered no significant difference in genetic AC and AA variants distribution between hypertensive and normotensive. Leptin was not significantly modified by the presence of potentially pathogenic A1166C–AT 1 receptor genotypes (AC + CC). But, galectin-3 was found in higher concentrations in patients with heterozygous and homozygous A1166C mutations. Conclusion Overweight and obese patients with heart failure display high leptin serum levels. Leptin does not offer incremental prognostic value in heart failure overweight and obese patients. But, galectin-3 was found in higher concentrations in patients with heterozygous and homozygous A1166C mutations, suggesting a worse prognosis probably due to more advanced cardiac fibrosis.
Collapse
Affiliation(s)
- Alexandra Dadarlat-Pop
- Department of Cardiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Pop
- Department of Cardiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Cardiology, Clinical Rehabilitation Hospital, Cluj-Napoca, 400347, Romania
| | - Lucia Procopciuc
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adela Sitar-Taut
- 4th Medical Clinic, Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dumitru Zdrenghea
- Department of Cardiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Cardiology, Clinical Rehabilitation Hospital, Cluj-Napoca, 400347, Romania
| | - Gyorgy Bodizs
- Department of Cardiology, Clinical Rehabilitation Hospital, Cluj-Napoca, 400347, Romania
| | - Raluca Tomoaia
- Department of Cardiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gurzau
- Department of Cardiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florina Fringu
- Department of Cardiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Silvana Susca-Hojda
- Department of Cardiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca D Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
89
|
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med 2021; 8:650278. [PMID: 34026868 PMCID: PMC8131678 DOI: 10.3389/fcvm.2021.650278] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
90
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
91
|
Elkholey K, Papadimitriou L, Butler J, Thadani U, Stavrakis S. Effect of Obesity on Response to Spironolactone in Patients With Heart Failure With Preserved Ejection Fraction. Am J Cardiol 2021; 146:36-47. [PMID: 33529620 DOI: 10.1016/j.amjcard.2021.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Obesity is common in heart failure with preserved ejection fraction (HFpEF). Whether obesity modifies the response to spironolactone in patients with HFpEF remains unclear. We aimed to investigate the effect of obesity, defined by body mass index (BMI) and waist circumference (WC), on response to spironolactone in patients with HFpEF enrolled in Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. This was a post-hoc, exploratory analysis of the Americas cohort of Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. BMI≥30 kg/m2 was used to define the obese group and WC≥102 cm in men and ≥88 cm in women were defined as high WC. In separate analyses, BMI and WC were treated as continuous variables. The effect of spironolactone versus placebo on outcomes was calculated by BMI and WC using Cox proportional hazard models. Obese patients were younger and had more co-morbidities. In multivariate analysis, spironolactone use was associated with a significant reduction in the primary end point, compared with placebo in obese [hazard ratio (HR = 0.618, 95% CI 0.460 to 0.831, p = 0.001), but not in nonobese subjects (HR = 0.946, 95% CI 0.623 to 1.437, p = 0.796; p for interaction = 0.056). There was a linear association between continuous BMI and the effect of spironolactone, with the effect becoming significant at 33kg/m2. Similar results were obtained for the WC-based analysis. In conclusion, use of spironolactone in obese patients with HFpEF was associated with a decreased risk of the primary end point, cardiovascular death and HF hospitalizations, compared with placebo. Further prospective randomized studies in obese subjects are required.
Collapse
Affiliation(s)
- Khaled Elkholey
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Javed Butler
- University of Mississippi Medical Center, Jackson, Mississippi
| | - Udho Thadani
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
92
|
Sorimachi H, Obokata M, Takahashi N, Reddy YNV, Jain CC, Verbrugge FH, Koepp KE, Khosla S, Jensen MD, Borlaug BA. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction. Eur Heart J 2021; 42:1595-1605. [PMID: 33227126 PMCID: PMC8060057 DOI: 10.1093/eurheartj/ehaa823] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023] Open
Abstract
AIMS Central obesity is a major risk factor for heart failure with preserved ejection fraction (HFpEF), particularly in women, but the mechanisms remain unclear. We hypothesized that sex-specific differences in visceral adipose tissue (VAT) content would differentially relate to haemodynamic severity of HFpEF in women and men. METHODS AND RESULTS Abdominal computed tomography (CT) and invasive haemodynamic exercise testing were performed in 105 subjects with HFpEF (63 women) and 105 age-, sex-, and body mass index-matched controls. Visceral adipose tissue area was quantified by CT. As compared with control women, VAT area was 34% higher in women with HFpEF (186 ± 112 vs. 139 ± 72 cm2, P = 0.006), while VAT area was not significantly different in men with or without HFpEF (294 ± 158 vs. 252 ± 92 cm2, P = 0.1). During exercise, pulmonary capillary wedge pressure (PCWP) increased markedly and to similar extent in both men and women with HFpEF. Women with increased VAT area displayed 33% higher PCWP during exercise compared with women with normal VAT area (28 ± 10 vs. 21 ± 10 mmHg, P = 0.001), whereas exercise PCWP was similar in men with or without excess VAT (24 ± 9 vs. 25 ± 6, P = 0.89). In women, each 100 cm2 increase in VAT area was associated with a 4.0 mmHg higher PCWP (95% CI 2.1, 6.0 mmHg; P < 0.0001), but there was no such relationship in men (interaction P = 0.009). CONCLUSIONS These data suggest that accumulation of excess VAT plays a distinct and important role in the pathophysiology of HFpEF preferentially in women. Further research is needed to better understand the mechanisms and treatment implications for visceral fat in HFpEF.
Collapse
Affiliation(s)
- Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Naoki Takahashi
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Christopher C Jain
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Frederik H Verbrugge
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Medicine, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, BE3500 Hasselt, Belgium
| | - Katlyn E Koepp
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Department of Medicine, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael D Jensen
- Division of Endocrinology, Department of Medicine, Diabetes, Metabolism, and Nutrition, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
93
|
Triposkiadis F, Xanthopoulos A, Starling RC, Iliodromitis E. Obesity, inflammation, and heart failure: links and misconceptions. Heart Fail Rev 2021; 27:407-418. [PMID: 33829388 DOI: 10.1007/s10741-021-10103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Obesity has been linked with heart failure (HF) with preserved left ventricular (LV) ejection fraction (HFpEF). This link has been attributed to obesity-induced metabolic and inflammatory disturbances leading to HFpEF. However, HF is a syndrome in which disease evolvement is associated with a dynamic unraveling of functional and structural changes leading to unique disease trajectories, creating a spectrum of phenotypes with overlapping distinct characteristics extending beyond the LV ejection fraction (LVEF). In this regard, despite quantitative differences between the two extremes (HFpEF and HF with reduced LVEF, HFrEF), there is important overlap between the phenotypes along the entire spectrum. In this paper, we describe the systemic pro-inflammatory state that is present throughout the HF spectrum and emphasize that obesity intertwines with HF beyond the LVEF construct.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, Larissa University General Hospital, Larissa, Greece
| | - Randall C Starling
- Heart, Vascular, and Thoracic Institute, Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, OH, Cleveland, USA
| | - Efstathios Iliodromitis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Athens, Greece
| |
Collapse
|
94
|
Nonn O, Fischer C, Geisberger S, El-Heliebi A, Kroneis T, Forstner D, Desoye G, Staff AC, Sugulle M, Dechend R, Pecks U, Kollmann M, Stern C, Cartwright JE, Whitley GS, Thilaganathan B, Wadsack C, Huppertz B, Herse F, Gauster M. Maternal Angiotensin Increases Placental Leptin in Early Gestation via an Alternative Renin-Angiotensin System Pathway: Suggesting a Link to Preeclampsia. Hypertension 2021; 77:1723-1736. [PMID: 33775117 DOI: 10.1161/hypertensionaha.120.16425] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Olivia Nonn
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Cornelius Fischer
- Berlin Institute of Systems Biology, Max Delbrueck Centre for Molecular Medicine in the Helmholtz Association, Germany (C.F., S.G.)
| | - Sabrina Geisberger
- Berlin Institute of Systems Biology, Max Delbrueck Centre for Molecular Medicine in the Helmholtz Association, Germany (C.F., S.G.).,Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany (S.G., R.D., F.H.).,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (S.G.).,Berlin Institute of Health (BIH), Berlin, Germany (S.G.)
| | - Amin El-Heliebi
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Thomas Kroneis
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Désirée Forstner
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Gernot Desoye
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Anne Cathrine Staff
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.C.S., M.S.).,Division of Obstetrics and Gynecology, Oslo University Hospital, Norway (A.C.S., M.S.)
| | - Meryam Sugulle
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.C.S., M.S.).,Division of Obstetrics and Gynecology, Oslo University Hospital, Norway (A.C.S., M.S.)
| | - Ralf Dechend
- Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany (S.G., R.D., F.H.)
| | - Ulrich Pecks
- Division of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany (U.P.)
| | - Martina Kollmann
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Christina Stern
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Judith E Cartwright
- Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom (J.E.C., G.S.W.)
| | - Guy S Whitley
- Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom (J.E.C., G.S.W.)
| | - Basky Thilaganathan
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.T.)
| | - Christian Wadsack
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Berthold Huppertz
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Florian Herse
- Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany (S.G., R.D., F.H.)
| | - Martin Gauster
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| |
Collapse
|
95
|
Aguilar M, Rose RA, Takawale A, Nattel S, Reilly S. New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation. Cardiovasc Res 2021; 117:1645-1661. [PMID: 33723575 PMCID: PMC8208746 DOI: 10.1093/cvr/cvab080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Hormones are potent endo-, para-, and autocrine endogenous regulators of the function of multiple organs, including the heart. Endocrine dysfunction promotes a number of cardiovascular diseases, including atrial fibrillation (AF). While the heart is a target for endocrine regulation, it is also an active endocrine organ itself, secreting a number of important bioactive hormones that convey significant endocrine effects, but also through para-/autocrine actions, actively participate in cardiac self-regulation. The hormones regulating heart-function work in concert to support myocardial performance. AF is a serious clinical problem associated with increased morbidity and mortality, mainly due to stroke and heart failure. Current therapies for AF remain inadequate. AF is characterized by altered atrial function and structure, including electrical and profibrotic remodelling in the atria and ventricles, which facilitates AF progression and hampers its treatment. Although features of this remodelling are well-established and its mechanisms are partly understood, important pathways pertinent to AF arrhythmogenesis are still unidentified. The discovery of these missing pathways has the potential to lead to therapeutic breakthroughs. Endocrine dysfunction is well-recognized to lead to AF. In this review, we discuss endocrine and cardiocrine signalling systems that directly, or as a consequence of an underlying cardiac pathology, contribute to AF pathogenesis. More specifically, we consider the roles of products from the hypothalamic-pituitary axis, the adrenal glands, adipose tissue, the renin–angiotensin system, atrial cardiomyocytes, and the thyroid gland in controlling atrial electrical and structural properties. The influence of endocrine/paracrine dysfunction on AF risk and mechanisms is evaluated and discussed. We focus on the most recent findings and reflect on the potential of translating them into clinical application.
Collapse
Affiliation(s)
- Martin Aguilar
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, Health Research Innovation Center, University of Calgary, AB, Canada
| | - Abhijit Takawale
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Faculty of Medicine, Department of Pharmacology and Physiology, and Research Centre, Montreal Heart Institute and University of Montreal, Montreal, QC, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
96
|
The influence of sex and body mass index on the association between soluble neprilysin and risk of heart failure hospitalizations. Sci Rep 2021; 11:5940. [PMID: 33723360 PMCID: PMC7960699 DOI: 10.1038/s41598-021-85490-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
A higher neprilysin activity has been suggested in women. In this retrospective analysis, we evaluated the association of sex and body mass index (BMI) with soluble neprilysin (sNEP) and recurrent admissions among 1021 consecutive HF outpatients. The primary and secondary endpoints were the number of HF hospitalizations and all-cause mortality, respectively. The association between sNEP with either endpoint was evaluated across sex and BMI categories (≥ 25 kg/m2 vs. < 25 kg/m2). Bivariate count regression (Poisson) was used, and risk estimates were expressed as incidence rates ratio (IRR). During a median follow-up of 6.65 years (percentile 25%-percentile 75%:2.83–10.25), 702 (68.76%) patients died, and 406 (40%) had at least 1 HF hospitalization. Median values of sNEP and BMI were 0.64 ng/mL (0.39–1.22), and 26.9 kg/m2 (24.3–30.4), respectively. Left ventricle ejection fraction was < 40% in 78.9% of patients, and 28% were women. In multivariable analysis, sNEP (main effect) was positively associated with HF hospitalizations (p = 0.001) but not with mortality (p = 0.241). The predictive value of sNEP for HF hospitalizations varied non-linearly across sex and BMI categories (p-value for interaction = 0.003), with significant and positive effect only on women with BMI ≥ 25 kg/m2 (p = 0.039). For instance, compared to men, women with sNEP of 1.22 ng/mL (percentile 75%) showed a significantly increased risk (IRRs: 1.26; 95% CI: 1.05–1.53). The interaction analysis for mortality did not support a differential prognostic effect for sNEP (p = 0.072). In conclusion, higher sNEP levels in overweight women better predicted an increased risk of HF hospitalization.
Collapse
|
97
|
Gutiérrez-Cuevas J, Sandoval-Rodriguez A, Meza-Rios A, Monroy-Ramírez HC, Galicia-Moreno M, García-Bañuelos J, Santos A, Armendariz-Borunda J. Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells 2021; 10:cells10030629. [PMID: 33809061 PMCID: PMC8000147 DOI: 10.3390/cells10030629] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Jalisco 44340, Mexico; (J.G.-C.); (A.S.-R.); (H.C.M.-R.); (M.G.-M.); (J.G.-B.)
- Tecnologico de Monterrey, Campus Guadalajara, Zapopan, School of Medicine and Health Sciences, Jalisco 45201, Mexico; (A.M.-R.); (A.S.)
- Correspondence: ; Tel.: +52-333-677-8741
| |
Collapse
|
98
|
Yoon S, Kim M, Lee H, Kang G, Bedi K, Margulies KB, Jain R, Nam KI, Kook H, Eom GH. S-Nitrosylation of Histone Deacetylase 2 by Neuronal Nitric Oxide Synthase as a Mechanism of Diastolic Dysfunction. Circulation 2021; 143:1912-1925. [PMID: 33715387 DOI: 10.1161/circulationaha.119.043578] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although the clinical importance of heart failure with preserved ejection fraction has been extensively explored, most therapeutic regimens, including nitric oxide (NO) donors, lack therapeutic benefit. Although the clinical characteristics of heart failure with preserved ejection fraction are somewhat heterogeneous, diastolic dysfunction (DD) is one of the most important features. Here we report that neuronal NO synthase (nNOS) induces DD by S-nitrosylation of HDAC2 (histone deacetylase 2). METHODS Two animal models of DD-SAUNA (SAlty drinking water/Unilateral Nephrectomy/Aldosterone) and mild transverse aortic constriction mice-as well as human heart samples from patients with left ventricular hypertrophy were used. Genetically modified mice that were either nNOS-ablated or HDAC2 S-nitrosylation-resistant were also challenged. N(ω)-propyl-L-arginine, an nNOS selective inhibitor, and dimethyl fumarate, an NRF2 (nuclear factor erythroid 2-related factor 2) inducer, were used. Molecular events were further checked in human left ventricle specimens. RESULTS SAUNA or mild transverse aortic constriction stress impaired diastolic function and exercise tolerance without overt systolic failure. Among the posttranslational modifications tested, S-nitrosylation was most dramatically increased in both models. Utilizing heart samples from both mice and humans, we observed increases in nNOS expression and NO production. N(ω)-propyl-L-arginine alleviated the development of DD in vivo. Similarly, nNOS knockout mice were resistant to SAUNA stress. nNOS-induced S-nitrosylation of HDAC2 was relayed by transnitrosylation of GAPDH. HDAC2 S-nitrosylation was confirmed in both DD mouse and human left ventricular hypertrophy. S-nitrosylation of HDAC2 took place at C262 and C274. When DD was induced, HDAC2 S-nitrosylation was detected in wild-type mouse, but not in HDAC2 knock-in mouse heart that expressed HDAC2 C262A/C274A. In addition, HDAC2 C262A/C274A mice maintained normal diastolic function under DD stimuli. Gene delivery with adenovirus-associated virus 9 (AAV9)-NRF2, a putative denitrosylase of HDAC2, or pharmacological intervention by dimethyl fumarate successfully induced HDAC2 denitrosylation and mitigated DD in vivo. CONCLUSIONS Our observations are the first to demonstrate a new mechanism underlying DD pathophysiology. Our results provide theoretical and experimental evidence to explain the ineffectiveness of conventional NO enhancement trials for improving DD with heart failure symptoms. More important, our results suggest that reduction of NO or denitrosylation of HDAC2 may provide a new therapeutic platform for the treatment of refractory heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Mira Kim
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Hangyeol Lee
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju, Korea (G.K.)
| | - Kenneth Bedi
- Cardiovascular Institute, Department of Medicine (K.B., K.B.M., R.J), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Kenneth B Margulies
- Cardiovascular Institute, Department of Medicine (K.B., K.B.M., R.J), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Rajan Jain
- Cardiovascular Institute, Department of Medicine (K.B., K.B.M., R.J), University of Pennsylvania, Perelman School of Medicine, Philadelphia.,Penn Epigenetic Institute, Department of Cell and Developmental Biology (R.J.), University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Kwang-Il Nam
- Department of Anatomy (K.-I.N.), Chonnam National University Medical School, Hwasun, Korea
| | - Hyun Kook
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology (S.Y., M.K., H.L., H.K., G.H.E.), Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
99
|
Henke C, Haufe S, Ziehl D, Bornstein SR, Schulz-Menger J, Heni M, Engeli S, Jordan J, Birkenfeld AL. Low-fat hypocaloric diet reduces neprilysin in overweight and obese human subjects. ESC Heart Fail 2021; 8:938-942. [PMID: 33638612 PMCID: PMC8006681 DOI: 10.1002/ehf2.13220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/04/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Neprilysin (NEP), a zinc metallopeptidase, degrades a variety of bioactive peptides including natriuretic peptides terminating their biological action on arterial blood pressure and natriuresis. Pharmacological inhibition of NEP reduces mortality in patients with heart failure with reduced ejection fraction. Physiological interventions reducing NEP levels are unknown in humans. Because obesity leads to increased NEP levels and increases the risk for heart failure, we hypothesized that weight loss reduces NEP concentrations in plasma and tissue. METHODS AND RESULTS We randomized overweight to obese human subjects to a low-fat or low-carbohydrate hypocaloric 6 month weight loss intervention. Soluble NEP was determined in plasma, and NEP mRNA was analysed from subcutaneous adipose tissue before and after diet. Low-fat diet-induced weight loss reduced soluble NEP levels from 0.83 ± 0.18 to 0.72 ± 0.18 μg/L (P = 0.038), while subcutaneous adipose tissue NEP mRNA expression was reduced by both dietary interventions [21% (P = 0.0057) by low-fat diet and 16% (P = 0.048) by low-carbohydrate diet]. We also analysed the polymorphisms of the gene coding for NEP, rs9827586 and rs701109, known to be associated with plasma NEP levels. For both single-nucleotide polymorphisms, minor allele carriers (A/A) had higher baseline plasma NEP levels (rs9827586: β = 0.53 ± 0.23, P < 0.0001; rs701109: β = 0.43 ± 0.22, P = 0.0016), and minor allele carriers of rs9827586 responded to weight loss with a larger NEP reduction (rs9827586: P = 0.0048). CONCLUSIONS Our study identifies weight loss via a hypocaloric low-fat diet as the first physiological intervention in humans to reduce NEP in plasma and adipose tissue. Specific single-nucleotide polymorphisms further contribute to the decrease. Our findings may help to explain the beneficial effect of weight loss on cardiac function in patients with heart failure.
Collapse
Affiliation(s)
- Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sven Haufe
- Institute of Sports Medicine, Hannover Medical School, Hanover, Germany
| | - Doreen Ziehl
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Jeanette Schulz-Menger
- Experimental and Clinical Research Center (ECRC), a joint collaboration between Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Section of Internal Medicine IV, Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Ottfriet-Müller-Str. 10, Tübingen, 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Stefan Engeli
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Jens Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany.,Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK.,Section of Internal Medicine IV, Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Ottfriet-Müller-Str. 10, Tübingen, 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
100
|
Cooper LB, Cotugno A, deFilippi C. Efficacy of Neprilysin Inhibition in Women With HFpEF: Beyond Phenotypes and Natriuretic Peptides. Circulation 2021; 143:618-620. [PMID: 33587665 DOI: 10.1161/circulationaha.120.046634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lauren B Cooper
- Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, VA
| | - Annunziata Cotugno
- Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, VA
| | | |
Collapse
|