51
|
Han JH, Joung KH, Lee JC, Kim OS, Choung S, Kim JM, Kang YE, Yi HS, Lee JH, Ku BJ, Kim HJ. Comparative Efficacy of Rosuvastatin Monotherapy and Rosuvastatin/Ezetimibe Combination Therapy on Insulin Sensitivity and Vascular Inflammatory Response in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2024; 48:112-121. [PMID: 38173371 PMCID: PMC10850282 DOI: 10.4093/dmj.2022.0402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Type 2 diabetes mellitus (T2DM) induces endothelial dysfunction and inflammation, which are the main factors for atherosclerosis and cardiovascular disease. The present study aimed to compare the effects of rosuvastatin monotherapy and rosuvastatin/ezetimibe combination therapy on lipid profile, insulin sensitivity, and vascular inflammatory response in patients with T2DM. METHODS A total of 101 patients with T2DM and dyslipidemia were randomized to either rosuvastatin monotherapy (5 mg/day, n=47) or rosuvastatin/ezetimibe combination therapy (5 mg/10 mg/day, n=45) and treated for 12 weeks. Serum lipids, glucose, insulin, soluble intercellular adhesion molecule-1 (sICAM-1), and peroxiredoxin 4 (PRDX4) levels were determined before and after 12 weeks of treatment. RESULTS The reduction in low density lipoprotein cholesterol (LDL-C) by more than 50% from baseline after treatment was more in the combination therapy group. The serum sICAM-1 levels increased significantly in both groups, but there was no difference between the two groups. The significant changes in homeostasis model assessment of insulin resistance (HOMA-IR) and PRDX4 were confirmed only in the subgroup in which LDL-C was reduced by 50% or more in the combination therapy group. However, after adjusting for diabetes mellitus duration and hypertension, the changes in HOMA-IR and PRDX4 were not significant between the two groups. CONCLUSION Although rosuvastatin/ezetimibe combination therapy had a greater LDL-C reduction effect than rosuvastatin monotherapy, it had no additional effects on insulin sensitivity and vascular inflammatory response. Further studies are needed on the effect of long-term treatment with ezetimibe on insulin sensitivity and vascular inflammatory response.
Collapse
Affiliation(s)
- Ji Hye Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of International Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Jun Choul Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Ok Soon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sorim Choung
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of International Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Bon Jeong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
52
|
Arumugam S, Suyambulingam A. Association Between Serum Ferritin and the Duration of Type 2 Diabetes Mellitus in a Tertiary Care Hospital in Chennai. Cureus 2024; 16:e53117. [PMID: 38420099 PMCID: PMC10900170 DOI: 10.7759/cureus.53117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Hyperinsulinemia has been linked to increased ferritin production and iron absorption in type 2 diabetes mellitus, ultimately leading to increased iron storage. Glucose intolerance is intimately linked to this issue. Increased oxidative stress from iron decreases insulin's ability to be taken into cells and used for energy. Researchers suggest that increased iron levels in the body play a role in the emergence of insulin resistance, glucose intolerance, and vascular repercussions associated with diabetes. OBJECTIVE The aim of this study is to assess the levels of serum ferritin and fasting plasma glucose in both diabetic and nondiabetic individuals while establishing a relationship between the two. Exploring the connection between serum ferritin levels and the duration of diabetes mellitus in individuals diagnosed with diabetes is our objective. METHODOLOGY In this study, 80 men diagnosed with type 2 diabetes mellitus were included, and they were compared with 70 male volunteers who were in good health. We took blood samples while the subjects fasted, and we analyzed the plasma glucose and serum ferritin levels. RESULTS In the diabetic group, there were notably higher levels of serum ferritin and fasting plasma glucose compared to the nondiabetic subjects. Furthermore, a correlation was observed between the duration of diabetes among participants with diabetes and elevated serum ferritin levels. CONCLUSION The findings suggest that low-grade inflammation and increased body iron stores are positively related to hyperglycemia in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sankar Arumugam
- General Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | | |
Collapse
|
53
|
Agarwal S, Ghosh R, Verma G, Khadgawat R, Guchhait P. Alpha-ketoglutarate supplementation reduces inflammation and thrombosis in type 2 diabetes by suppressing leukocyte and platelet activation. Clin Exp Immunol 2023; 214:197-208. [PMID: 37498307 PMCID: PMC10714189 DOI: 10.1093/cei/uxad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
The interplay between platelets and leukocytes contributes to the pathogenesis of inflammation, thrombosis, and cardiovascular diseases (CVDs) in type 2 diabetes (T2D). Our recent studies described alpha-ketoglutarate (αKG), a Krebs cycle intermediate metabolite as an inhibitor to platelets and leukocytes activation by suppressing phosphorylated-Akt (pAkt) through augmentation of prolyl hydroxylase-2 (PHD2). Dietary supplementation with a pharmacological concentration of αKG significantly inhibited lung inflammation in mice with either SARS-CoV-2 infection or exposed to hypoxia treatment. We therefore investigated if αKG supplementation could suppress hyperactivation of these blood cells and reduce thromboinflammatory complications in T2D. Our study describes that dietary supplementation with αKG (8 mg/100 g body wt. daily) for 7 days significantly reduced the activation of platelets and leukocytes (neutrophils and monocytes), and accumulation of IL1β, TNFα, and IL6 in peripheral blood of T2D mice. αKG also reduced the infiltration of platelets and leukocytes, and accumulation of inflammatory cytokines in lungs by suppressing pAkt and pP65 signaling. In a cross-sectional investigation, our study also described the elevated platelet-leukocyte aggregates and pro-inflammatory cytokines in circulation of T2D patients. T2D platelets and leukocytes showed an increased aggregation and thrombus formation in vitro. Interestingly, a pre-incubation of T2D blood samples with octyl αKG significantly suppressed the activation of these blood cells and ameliorated aggregate/thrombus formation in vitro. Thus, suggesting a potential therapeutic role of αKG against inflammation, thrombosis, and CVDs in T2D.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Garima Verma
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Rajesh Khadgawat
- Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
54
|
Marković M, Petronijević N, Stašević M, Stašević Karličić I, Velimirović M, Stojković T, Ristić S, Stojković M, Milić N, Nikolić T. Decreased Plasma Levels of Kynurenine and Kynurenic Acid in Previously Treated and First-Episode Antipsychotic-Naive Schizophrenia Patients. Cells 2023; 12:2814. [PMID: 38132134 PMCID: PMC10741951 DOI: 10.3390/cells12242814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Tryptophan (TRP) catabolites exert neuroactive effects, with the plethora of evidence suggesting that kynurenic acid (KYNA), a catabolite of the kynurenine pathway (KP), acts as the regulator of glutamate and acetylcholine in the brain, contributing to the schizophrenia pathophysiology. Newer evidence regarding measures of KP metabolites in the blood of schizophrenia patients and from the central nervous system suggest that blood levels of these metabolites by no means could reflect pathological changes of TRP degradation in the brain. The aim of this study was to investigate plasma concentrations of TRP, kynurenine (KYN) and KYNA at the acute phase and remission of schizophrenia in a prospective, case-control study of highly selected and matched schizophrenia patients and healthy individuals. Our study revealed significantly decreased KYN and KYNA in schizophrenia patients (p < 0.001), irrespective of illness state, type of antipsychotic treatment, number of episodes or illness duration and no differences in the KYN/TRP ratio between schizophrenia patients and healthy individuals. These findings could be interpreted as indices that kynurenine pathway might not be dysregulated in the periphery and that other factors contribute to observed disturbances in concentrations, but as our study had certain limitations, we cannot draw definite conclusions. Further studies, especially those exploring other body compartments that participate in kynurenine pathway, are needed.
Collapse
Affiliation(s)
- Miloš Marković
- Clinic for Mental Disorders “Dr Laza Lazarević”, 11000 Belgrade, Serbia; (M.S.); (I.S.K.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (M.V.); (T.S.)
| | - Nataša Petronijević
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (M.V.); (T.S.)
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milena Stašević
- Clinic for Mental Disorders “Dr Laza Lazarević”, 11000 Belgrade, Serbia; (M.S.); (I.S.K.)
| | - Ivana Stašević Karličić
- Clinic for Mental Disorders “Dr Laza Lazarević”, 11000 Belgrade, Serbia; (M.S.); (I.S.K.)
- Faculty of Medicine, University of Priština—Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia
| | - Milica Velimirović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (M.V.); (T.S.)
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tihomir Stojković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (M.V.); (T.S.)
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Slavica Ristić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mina Stojković
- Clinic for Neurology, University Clinical Centre of Niš, 18000 Niš, Serbia;
| | - Nataša Milić
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department for Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tatjana Nikolić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (M.V.); (T.S.)
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
55
|
Lu JL, Shrestha P, Streja E, Kalantar-Zadeh K, Kovesdy CP. Association of long-term aspirin use with kidney disease progression. Front Med (Lausanne) 2023; 10:1283385. [PMID: 38111701 PMCID: PMC10726126 DOI: 10.3389/fmed.2023.1283385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Background Chronic microinflammation contributes to the progression of chronic kidney disease (CKD). Aspirin (ASA) has been used to treat inflammation for centuries. The effects of long-term low-dose ASA on CKD progression are unclear. Methods We examined the association of long-term use of newly initiated low-dose ASA (50-200 mg/day) with all-cause mortality using Cox proportional hazard models; with cardiovascular/cerebrovascular (CV) mortality and with end stage kidney disease (ESKD) using Fine and Gray competing risk regression models; with progression of CKD defined as patients' eGFR slopes steeper than -5 mL/min/1.73m2/year using logistic regression models in a nationwide cohort of US Veterans with incident CKD. Among 831,963 patients, we identified 385,457 who either initiated ASA (N = 21,228) within 1 year of CKD diagnosis or never received ASA (N = 364,229). We used propensity score matching to account for differences in key characteristics, yielding 29,480 patients (14,740 in each group). Results In the matched cohort, over a 4.9-year median follow-up period, 11,846 (40.2%) patients (6,017 vs. 5,829 ASA users vs. non-users) died with 25.8% CV deaths, and 934 (3.2%) patients (476 vs. 458) reached ESKD. ASA users had a higher risk of faster decline of kidney functions, i.e., steeper slopes (OR 1.30 [95%CI: 1.18, 1.44], p < 0.01), but did not have apparent benefits on mortality (HR 0.97 [95%CI: 0.94, 1.01], p = 0.17), CV mortality (Sub-Hazard Ratio [SHR]1.06 [95%CI: 0.99-1.14], p = 0.11), or ESKD (SHR1.00 [95%CI: 0.88, 1.13], p = 0.95). Conclusion Chronic low-dose ASA use was associated with faster kidney function deterioration, and no association was observed with mortality or risk of ESKD.
Collapse
Affiliation(s)
- Jun Ling Lu
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Prabin Shrestha
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Elani Streja
- VA Connecticut Healthcare System, West Haven VA Medical Center, West Haven, CT, United States
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Chronic Disease Research and Epidemiology, Division of Nephrology, Hypertension and Transplantation, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Csaba P. Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Nephrology, Memphis VA Medical Center, Memphis, TN, United States
| |
Collapse
|
56
|
Van JAD, Luo Y, Danska JS, Dai F, Alexeeff SE, Gunderson EP, Rost H, Wheeler MB. Postpartum defects in inflammatory response after gestational diabetes precede progression to type 2 diabetes: a nested case-control study within the SWIFT study. Metabolism 2023; 149:155695. [PMID: 37802200 DOI: 10.1016/j.metabol.2023.155695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Gestational diabetes (GDM) is a distinctive form of diabetes that first presents in pregnancy. While most women return to normoglycemia after delivery, they are nearly ten times more likely to develop type 2 diabetes than women with uncomplicated pregnancies. Current prevention strategies remain limited due to our incomplete understanding of the early underpinnings of progression. AIM To comprehensively characterize the postpartum profiles of women shortly after a GDM pregnancy and identify key mechanisms responsible for the progression to overt type 2 diabetes using multi-dimensional approaches. METHODS We conducted a nested case-control study of 200 women from the Study of Women, Infant Feeding and Type 2 Diabetes After GDM Pregnancy (SWIFT) to examine biochemical, proteomic, metabolomic, and lipidomic profiles at 6-9 weeks postpartum (baseline) after a GDM pregnancy. At baseline and annually up to two years, SWIFT administered research 2-hour 75-gram oral glucose tolerance tests. Women who developed incident type 2 diabetes within four years of delivery (incident case group, n = 100) were pair-matched by age, race, and pre-pregnancy body mass index to those who remained free of diabetes for at least 8 years (control group, n = 100). Correlation analyses were used to assess and integrate relationships across profiling platforms. RESULTS At baseline, all 200 women were free of diabetes. The case group was more likely to present with dysglycemia (e.g., impaired fasting glucose levels, glucose tolerance, or both). We also detected differences between groups across all omic platforms. Notably, protein profiles revealed an underlying inflammatory response with perturbations in protease inhibitors, coagulation components, extracellular matrix components, and lipoproteins, whereas metabolite and lipid profiles implicated disturbances in amino acids and triglycerides at individual and class levels with future progression. We identified significant correlations between profile features and fasting plasma insulin levels, but not with fasting glucose levels. Additionally, specific cross-omic relationships, particularly among proteins and lipids, were accentuated or activated in the case group but not the control group. CONCLUSIONS Overall, we applied orthogonal, complementary profiling techniques to uncover an inflammatory response linked to elevated triglyceride levels shortly after a GDM pregnancy, which is more pronounced in women who progress to overt diabetes.
Collapse
Affiliation(s)
- Julie A D Van
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Metabolism Research Group, Division of Advanced Diagnostics, Toronto General Research Institute, Toronto, Ontario, Canada.
| | - Yihan Luo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Metabolism Research Group, Division of Advanced Diagnostics, Toronto General Research Institute, Toronto, Ontario, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Feihan Dai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, United States of America
| | - Hannes Rost
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Metabolism Research Group, Division of Advanced Diagnostics, Toronto General Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
57
|
Bey G, Pike J, Palta P, Zannas A, Xiao Q, Love SA, Heiss G. Biological Age Mediates the Effects of Perceived Neighborhood Problems on Heart Failure Risk Among Black Persons. J Racial Ethn Health Disparities 2023; 10:3018-3030. [PMID: 36469285 PMCID: PMC10322228 DOI: 10.1007/s40615-022-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE We assessed whether biological age, measured by the epigenetic clock GrimAge, mediates the association of objective and subjective neighborhood disadvantage with incident HF among Black persons. METHODS Participants were 1448 self-reported Black adults (mean age (standard deviation, SD) = 64.3 (5.5)) dually enrolled in two community-based cohorts in Jackson, Mississippi, the ARIC and JHS cohorts, who were free of HF as of January 1, 2000. Incident HF events leading to hospitalization through December 31, 2017, were classified using ICD-9 discharge codes of HF. Multilevel age- and sex-adjusted Cox causal mediation models were used to examine whether biological age (at the person and neighborhood level) mediated the effects of objective (the National Area Deprivation Index, ADI) and subjective (perceived neighborhood problems) neighborhood disadvantage on incident HF. RESULTS A total of 334 incident hospitalized HF events occurred over a median follow-up of 18.0 years. The total effect of the ADI and perceived neighborhood problems (SD units) on HF was hazard ration (HR) = 1.26 and 95% confidence interval (CI) 0.98-1.56 and HR = 1.26 and 95% CI 1.10-1.41, respectively. GrimAge mediated a majority of the effect of perceived neighborhood problems on HF (person-level indirect effect HR = 1.07; 95% CI 1.02-1.12 and neighborhood-level indirect effect HR = 1.18; 95% CI 1.03-1.34), with the combined indirect effect explaining 94.8% of the relationship. The combined indirect effect of ADI on incident HF was comparable but not statistically significant. CONCLUSIONS Subjective neighborhood disadvantage may confer an increased risk of HF among Black populations.
Collapse
Affiliation(s)
- Ganga Bey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - James Pike
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priya Palta
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony Zannas
- Departments of Psychiatry and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qian Xiao
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Shelly-Ann Love
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
58
|
Mehdi S, Wani SUD, Krishna K, Kinattingal N, Roohi TF. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem Biophys Rep 2023; 36:101571. [PMID: 37965066 PMCID: PMC10641573 DOI: 10.1016/j.bbrep.2023.101571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/16/2023] Open
Abstract
Stress is a disturbance in homeostasis caused by psychological, physiological, or environmental factors. Prolonged reactions to chronic stress can be detrimental, resulting in various metabolic abnormalities, referred to as metabolic syndrome (MS). There is a reciprocal increased risk between MS and major depressive disorder. Recent studies established an association between inflammation and insulin signaling in type 2 diabetes mellitus with depression. In the present review, we discuss chronic low-grade inflammation, pathways of insulin resistance, and brain glucose metabolism in the context of neuroinflammation and depression. Specific attention is given to psychotropic drugs such as bupropion, mirtazapine, and nefazodone, anti-inflammatory drugs like Celecoxib (COX-2 inhibitor), Etanercept, adalimumab, IL-4Ra antagonist, Anti-IL- 17A antibody (Ixekizumab) and lifestyle modifications including exercise, dietary changes, and sleep hygiene. These therapeutic solutions offer potential in treating depression by targeting metabolic conditions like insulin resistance and inflammatory pathways. The article further explains the significance of a nutrition and antioxidants-rich diet, emphasizing the role of omega-3 fatty acids, vitamin D, zinc, and polyphenols, to improve immunity and activate anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - K.L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| | - Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| |
Collapse
|
59
|
Bey GS, Pike JR, Palta P. Distinct moderating pathways for psychosocial risk and resilience in the association of neighborhood disadvantage with incident heart failure among Black persons. SSM Popul Health 2023; 24:101475. [PMID: 37736261 PMCID: PMC10509709 DOI: 10.1016/j.ssmph.2023.101475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023] Open
Abstract
Objective To assess whether psychosocial factors moderate the associations between neighborhood disadvantage and incident heart failure (HF). Methods Among 1448 Non-Hispanic (NH) Black persons dually enrolled in two community-based cohorts in Jackson, Mississippi who were free of HF as of January 1, 2000, 336 HF events classified by reviewer panel accrued through December 31, 2017. Multilevel, multivariable Cox regression models were used to examine whether optimism and negative affect moderated the associations of two measures of neighborhood characteristics (the national Area Deprivation Index (ADI) and perceived neighborhood problems) on incident hospitalized HF. Results Optimism moderated the association of the ADI with incident HF. Compared to participants reporting the lowest tertile of optimism, those in the highest tertile of optimism had a 29% lower rate of HF associated with increasing ADI in fully adjusted models. We found no evidence for a moderating effect of negative affect. Conclusions This study supports optimism as a source of resilience to the detrimental effects of neighborhood disadvantage on HF risk. Population-level strategies to promote sociocultural antecedents to optimism may serve as a viable method of reducing the disproportionate burden of HF among NH Black persons.
Collapse
Affiliation(s)
- Ganga S. Bey
- University of North Carolina at Chapel Hill, Department of Epidemiology, USA
| | - James R. Pike
- Johns Hopkins University Bloomberg School of Public Health, USA
| | - Priya Palta
- University of North Carolina School of Medicine, Department of Neurology, USA
| |
Collapse
|
60
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
61
|
Zamanian MY, Sadeghi Ivraghi M, Khachatryan LG, Vadiyan DE, Bali HY, Golmohammadi M. A review of experimental and clinical studies on the therapeutic effects of pomegranate ( Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation. Food Sci Nutr 2023; 11:7485-7503. [PMID: 38107091 PMCID: PMC10724645 DOI: 10.1002/fsn3.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Diana E. Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and OrthodonticsI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | | | | |
Collapse
|
62
|
Padrón‐Monedero A. A pathological convergence theory for non-communicable diseases. Aging Med (Milton) 2023; 6:328-337. [PMID: 38239708 PMCID: PMC10792334 DOI: 10.1002/agm2.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024] Open
Abstract
The current paradigm considers the study of non-communicable diseases (NCDs), which are the main causes of mortality, as individual disorders. Nevertheless, this conception is being solidly challenged by numerous remarkable studies. The clear fact that the mortality, by virtually all NCDs, tends to cluster at old ages (with the exception of congenital malformations and certain types of cancer, among a few others); makes us intuitive to assume that the common convergence mechanism that exponentially increases mortality by almost all NCDs in older ages is cell aging. Moreover, when we study NCDs, we are not analyzing which disorders cause the mortality of the populations, rather that which disorders kill us before others do, because the aging of the individuals causes inevitably their death by one cause or another. This is not a defeatist perspective, but a challenging and efficient one. These intuitive assumptions have been supported by studies from the pathophysiologic, epidemiologic, and genetic fields, leading to the affirmation that, as NCDs share genetic and pathophysiological mechanisms (derived from mostly the same risk factors), they should no longer be considered independently. Those studies should make us reconsider our current conceptions of studying NCDs as individual disorders, and to hypothesize about a paradigm that would consider most NCDs (cancer, neurological pathologies, cardiovascular diseases, type II diabetes mellitus, chronic respiratory diseases, osteoarthritis, and osteoporosis, among others) different manifestations of the same process: the cell aging.
Collapse
|
63
|
Poursharifi P, Schmitt C, Chenier I, Leung YH, Oppong AK, Bai Y, Klein LL, Al-Mass A, Lussier R, Abu-Farha M, Abubaker J, Al-Mulla F, Peyot ML, Madiraju SRM, Prentki M. ABHD6 suppression promotes anti-inflammatory polarization of adipose tissue macrophages via 2-monoacylglycerol/PPAR signaling in obese mice. Mol Metab 2023; 78:101822. [PMID: 37838014 PMCID: PMC10622714 DOI: 10.1016/j.molmet.2023.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
OBJECTIVE Pro-inflammatory polarization of adipose tissue macrophages (ATMs) plays a critical role in the pathogenesis of obesity-associated chronic inflammation. However, little is known about the role of lipids in the regulation of ATMs polarity and inflammation in response to metabolic stress. Deletion of α/β-hydrolase domain-containing 6 (ABHD6), a monoacylglycerol (MAG) hydrolase, has been shown to protect against diet-induced obesity and insulin resistance. METHODS Here we investigated the immunometabolic role of macrophage ABHD6 in response to nutrient excess using whole-body ABHD6-KO mice and human and murine macrophage cell-lines treated with KT203, a selective and potent pharmacological ABHD6 inhibitor. RESULTS KO mice on high-fat diet showed lower susceptibility to systemic diet-induced inflammation. Moreover, in the setting of overnutrition, stromal vascular cells from gonadal fat of KO vs. control mice contained lower number of M1 macrophages and exhibited enhanced levels of metabolically activated macrophages (MMe) and M2 markers, oxygen consumption, and interleukin-6 (IL-6) release. Likewise, under in vitro nutri-stress condition, inhibition of ABHD6 in MMe-polarized macrophages attenuated the expression and release of pro-inflammatory cytokines and M1 markers and induced the upregulation of lipid metabolism genes. ABHD6-inhibited MMe macrophages showed elevated levels of peroxisome proliferator-activated receptors (PPARs) and 2-MAG species. Notably, among different MAG species, only 2-MAG treatment led to increased levels of PPAR target genes in MMe macrophages. CONCLUSIONS Collectively, our findings identify ABHD6 as a key component of pro-inflammatory macrophage activation in response to excess nutrition and implicate an endogenous macrophage lipolysis/ABHD6/2-MAG/PPARs cascade, as a lipid signaling and immunometabolic pathway, which favors the anti-inflammatory polarization of ATMs in obesity.
Collapse
Affiliation(s)
- P Poursharifi
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| | - C Schmitt
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - I Chenier
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Y H Leung
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - A K Oppong
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Y Bai
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - L-L Klein
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - A Al-Mass
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - R Lussier
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - M Abu-Farha
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - J Abubaker
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - F Al-Mulla
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - M-L Peyot
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - S R M Madiraju
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - M Prentki
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| |
Collapse
|
64
|
Alluri K, Srinivas B, Belmadani S, Matrougui K. Plasmacytoid dendritic cells contribute to vascular endothelial dysfunction in type 2 diabetes. Front Cardiovasc Med 2023; 10:1222243. [PMID: 38094119 PMCID: PMC10716216 DOI: 10.3389/fcvm.2023.1222243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
Objective Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease due to macro- and microvascular dysfunction. This study aimed to investigate the potential involvement of plasmacytoid dendritic cells (pDCs) in T2D-related vascular dysfunction. Approach and results pDCs were isolated from db/db and control mice. It was found that pDCs from db/db mice impaired endothelial cell eNOS phosphorylation in response to ATP and decreased vascular endothelium-dependent relaxation compared to pDCs from control mice. Moreover, isolated CD4+ cells from control mice, when stimulated overnight with high glucose and lipids, and isolated pDCs from db/db mice, display elevated levels of ER stress, inflammation, and apoptosis markers. Flow cytometry revealed that pDC frequency was higher in db/db mice than in controls. In vivo, the reduction of pDCs using anti-PDCA-1 antibodies in male and female db/db mice for 4 weeks significantly improved vascular endothelial function and eNOS phosphorylation. Conclusion pDCs may contribute to vascular dysfunction in T2D by impairing endothelial cell function. Targeting pDCs with anti-PDCA-1 antibodies may represent a promising therapeutic strategy for improving vascular endothelial function in T2D patients. This study provides new insights into the pathogenesis of T2D-related vascular dysfunction and highlights the potential of immunomodulatory therapies for treating this complication. Further studies are warranted to explore the clinical potential of this approach.
Collapse
Affiliation(s)
| | | | | | - K. Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA, United States
| |
Collapse
|
65
|
Klima ML, Kruger KA, Goldstein N, Pulido S, Low AYT, Assenmacher CA, Alhadeff AL, Betley JN. Anti-inflammatory effects of hunger are transmitted to the periphery via projection-specific AgRP circuits. Cell Rep 2023; 42:113338. [PMID: 37910501 DOI: 10.1016/j.celrep.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Caloric restriction has anti-inflammatory effects. However, the coordinated physiological actions that lead to reduced inflammation in a state of caloric deficit (hunger) are largely unknown. Using a mouse model of injury-induced peripheral inflammation, we find that food deprivation reduces edema, temperature, and cytokine responses that occur after injury. The magnitude of the anti-inflammatory effect that occurs during hunger is more robust than that of non-steroidal anti-inflammatory drugs. The effects of hunger are recapitulated centrally by activity in nutrient-sensing hypothalamic agouti-related protein (AgRP)-expressing neurons. We find that AgRP neurons projecting to the paraventricular nucleus of the hypothalamus rapidly and robustly reduce inflammation and mediate the majority of hunger's anti-inflammatory effects. Intact vagal efferent signaling is required for the anti-inflammatory action of hunger, revealing a brain-to-periphery pathway for this reduction in inflammation. Taken together, these data begin to unravel a potent anti-inflammatory pathway engaged by hypothalamic AgRP neurons to reduce inflammation.
Collapse
Affiliation(s)
- Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayla A Kruger
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Pulido
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Amber L Alhadeff
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
66
|
McCall KD, Walter D, Patton A, Thuma JR, Courreges MC, Palczewski G, Goetz DJ, Bergmeier S, Schwartz FL. Anti-Inflammatory and Therapeutic Effects of a Novel Small-Molecule Inhibitor of Inflammation in a Male C57BL/6J Mouse Model of Obesity-Induced NAFLD/MAFLD. J Inflamm Res 2023; 16:5339-5366. [PMID: 38026235 PMCID: PMC10658948 DOI: 10.2147/jir.s413565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic (dysfunction) associated fatty liver disease (MAFLD), is the most common chronic liver disease in the United States. Presently, there is an intense and ongoing effort to identify and develop novel therapeutics for this disease. In this study, we explored the anti-inflammatory activity of a new compound, termed IOI-214, and its therapeutic potential to ameliorate NAFLD/MAFLD in male C57BL/6J mice fed a high fat (HF) diet. Methods Murine macrophages and hepatocytes in culture were treated with lipopolysaccharide (LPS) ± IOI-214 or DMSO (vehicle), and RT-qPCR analyses of inflammatory cytokine gene expression were used to assess IOI-214's anti-inflammatory properties in vitro. Male C57BL/6J mice were also placed on a HF diet and treated once daily with IOI-214 or DMSO for 16 weeks. Tissues were collected and analyzed to determine the effects of IOI-214 on HF diet-induced NAFL D/MAFLD. Measurements such as weight, blood glucose, serum cholesterol, liver/serum triglyceride, insulin, and glucose tolerance tests, ELISAs, metabolomics, Western blots, histology, gut microbiome, and serum LPS binding protein analyses were conducted. Results IOI-214 inhibited LPS-induced inflammation in macrophages and hepatocytes in culture and abrogated HF diet-induced mesenteric fat accumulation, hepatic inflammation and steatosis/hepatocellular ballooning, as well as fasting hyperglycemia without affecting insulin resistance or fasting insulin, cholesterol or TG levels despite overall obesity in vivo in male C57BL/6J mice. IOI-214 also decreased systemic inflammation in vivo and improved gut microbiota dysbiosis and leaky gut. Conclusion Combined, these data indicate that IOI-214 works at multiple levels in parallel to inhibit the inflammation that drives HF diet-induced NAFLD/MAFLD, suggesting that it may have therapeutic potential for NAFLD/MAFLD.
Collapse
Affiliation(s)
- Kelly D McCall
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Debra Walter
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Ashley Patton
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Jean R Thuma
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | - Maria C Courreges
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | | | - Douglas J Goetz
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemical & Biomolecular Engineering, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Stephen Bergmeier
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemistry & Biochemistry, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Frank L Schwartz
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| |
Collapse
|
67
|
Khairy EY, Saad A. Relationship between the thrombospondin-1/Toll-like receptor 4 (TSP1/TLR4) pathway and vitamin D levels in obese and normal weight subjects with different metabolic phenotypes. J Physiol Sci 2023; 73:29. [PMID: 37964189 DOI: 10.1186/s12576-023-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Thrombospondin-1 (TSP1) contributes to obesity-associated inflammation via activating Toll-like receptor 4 (TLR4). The regulatory role of vitamin D on this pathway has been suggested. This study aimed to investigate the relationship between TSP1/TLR4 pathway and vitamin D in obese and normal weight subjects with different metabolic phenotypes. Thirty obese and thirty normal weight men were selected. Anthropometric parameters and serum TSP1, TLR4, TNF-α, vitamin D, and metabolic profile were determined. Metabolic phenotypes of obese and normal weight subjects were determined. Findings revealed enhanced TSP1/TLR4/TNF-α levels and reduced 25(OH)D levels in obese compared to normal weight subjects and metabolically unhealthy compared to metabolically healthy subjects. TSP1 correlated positively with parameters of unhealthy metabolic profile. TSP1, TLR4 and TNF-α levels significantly negatively correlated with vitamin D levels. In conclusion, vitamin D might exert a regulatory role on TSP1/TLR4 pathway, providing a potential mechanism that links hypovitaminosis D with risk of metabolic dysfunction.
Collapse
Affiliation(s)
- Eman Y Khairy
- Department of Physiology, Medical Research Institute, Alexandria University, 165, Horreya Avenue, Hadara, Alexandria, Egypt.
| | - Azza Saad
- Department of Physiology, Medical Research Institute, Alexandria University, 165, Horreya Avenue, Hadara, Alexandria, Egypt
| |
Collapse
|
68
|
Schiffmann N, Liang Y, Nemcovsky CE, Almogy M, Halperin-Sternfeld M, Gianneschi NC, Adler-Abramovich L, Rosen E. Enzyme-Responsive Nanoparticles for Dexamethasone Targeted Delivery to Treat Inflammation in Diabetes. Adv Healthc Mater 2023; 12:e2301053. [PMID: 37498238 DOI: 10.1002/adhm.202301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Diabetes is a global epidemic accompanied by impaired wound healing and increased risk of persistent infections and resistance to standard treatments. Therefore, there is an immense need to develop novel methods to specifically target therapeutics to affected tissues and improve treatment efficacy. This study aims to use enzyme-responsive nanoparticles for the targeted delivery of an anti-inflammatory drug, dexamethasone, to treat inflammation in diabetes. These nanoparticles are assembled from fluorescently-labeled, dexamethasone-loaded peptide-polymer amphiphiles. The nanoparticles are injected in vivo, adjacent to labeled collagen membranes sub-periosteally implanted on the calvaria of diabetic rats. Following their implantation, collagen membrane resorption is linked to inflammation, especially in hyperglycemic individuals. The nanoparticles show strong and prolonged accumulation in inflamed tissue after undergoing a morphological switch into microscale aggregates. Significantly higher remaining collagen membrane area and less inflammatory cell infiltration are observed in responsive nanoparticles-treated rats, compared to control groups injected with free dexamethasone and non-responsive nanoparticles. These factors indicate improved therapeutic efficacy in inflammation reduction. These results demonstrate the potential use of enzyme-responsive nanoparticles as targeted delivery vehicles for the treatment of diabetic and other inflammatory wounds.
Collapse
Affiliation(s)
- Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Carlos E Nemcovsky
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Almogy
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eyal Rosen
- Department of Endodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
69
|
Danciu AM, Ghitea TC, Bungau AF, Vesa CM. The Relationship Between Oxidative Stress, Selenium, and Cumulative Risk in Metabolic Syndrome. In Vivo 2023; 37:2877-2887. [PMID: 37905638 PMCID: PMC10621440 DOI: 10.21873/invivo.13406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Oxidative stress in association with metabolic syndrome represents a complex disease entity that has emerged as a significant public health challenge, and it is closely linked to an elevated risk of cardiovascular disease, type 2 diabetes, and even cancer. The objective of this study was to investigate the effectiveness of selenium supplementation in managing oxidative stress while considering a well-balanced diet based on a healthy lifestyle and diet therapy. PATIENTS AND METHODS The study included a total of 206 participants divided into three groups: the control group consisting of 35 individuals (17.0%) named LC, the diet therapy group comprising 119 individuals (57.8%) named LD, and the diet therapy group supplemented with selenium consisting of 52 individuals (25.2%) named LD+Se. Various clinical parameters such as body mass index (BMI), weight status, fat mass, visceral fat, and sarcopenia index, as well as paraclinical parameters including the HOMA index, cholesterol, triglycerides, C-reactive protein, and HGZ, were evaluated. Additionally, oxidative stress parameters using the FORD, FORT and MIXT tests were measured. RESULTS Selenium supplementation, along with FORD and FORT tests, demonstrated effectiveness in individuals with chronic venous disease, with a significantly greater decrease observed in those with chronic venous disease in the LD+Se group. CONCLUSION Physiological aging has an important role in triggering or aggravating oxidative stress, and the use of antioxidant products such as selenium can reduce this process.
Collapse
Affiliation(s)
- Adrian Marius Danciu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Timea Claudia Ghitea
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania;
| | - Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, Oradea, Romania;
| | - Cosmin Mihai Vesa
- Medicine Department, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
70
|
Nagy N, Kaber G, Sunkari VG, Marshall PL, Hargil A, Kuipers HF, Ishak HD, Bogdani M, Hull RL, Grandoch M, Fischer JW, McLaughlin TL, Wight TN, Bollyky PL. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol 2023; 123:34-47. [PMID: 37783236 PMCID: PMC10841470 DOI: 10.1016/j.matbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Pancreatic β-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of β-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on β-cells such that caspase 3 activation did not result in β-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate β-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Vivekananda G Sunkari
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Heather D Ishak
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | | | - Rebecca L Hull
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Maria Grandoch
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tracey L McLaughlin
- Department of Medicine, Medicine - Endocrinology, Endocrine Clinic, Stanford School of Medicine, Stanford, CA, USA
| | | | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA.
| |
Collapse
|
71
|
Kollányi Z, Bálint L, Susovits K, Csépe P, Kovács K. Inequalities in Diabetes Mortality Between Microregions in Hungary. Int J Public Health 2023; 68:1606161. [PMID: 38024213 PMCID: PMC10643225 DOI: 10.3389/ijph.2023.1606161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives: Regional differences in diabetes mortality are high in Hungary. In our cross-sectional study, we aim to reveal the drivers of the inequalities in diabetes mortality across the 197 microregions of Hungary. To account for the influence of changes in healthcare and social conditions, we compared two periods (2009-12 and 2013-16). Methods: Traditional and re-conceptualized deprivation- and healthcare provison measures were used in OLS regression models. Results: Microregions with a high proportion of population living in "service deserts," especially in regard to the lack of grocery stores, suffer the highest rates of diabetes mortality. Alcohol-related mortality has been proven to be a similarly and surprisingly strong predictor of diabetes mortality. Conclusion: Food provision should be supported in areas characterized by low service density, and alcohol policy should be strengthened and targeted.
Collapse
Affiliation(s)
- Zsófia Kollányi
- Faculty of Social Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Lajos Bálint
- Hungarian Demographic Research Institute (HDRI), Budapest, Hungary
- Department of Sociology, Faculty of Humanities and Social Sciences, University of Pécs, Pécs, Hungary
| | - Kitti Susovits
- National Institute of Pharmacy and Nutrition (Hungary), Budapest, Hungary
| | - Péter Csépe
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Kovács
- Hungarian Demographic Research Institute (HDRI), Budapest, Hungary
| |
Collapse
|
72
|
Wang H, Akbari-Alavijeh S, Parhar RS, Gaugler R, Hashmi S. Partners in diabetes epidemic: A global perspective. World J Diabetes 2023; 14:1463-1477. [PMID: 37970124 PMCID: PMC10642420 DOI: 10.4239/wjd.v14.i10.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023] Open
Abstract
There is a recent increase in the worldwide prevalence of both obesity and diabetes. In this review we assessed insulin signaling, genetics, environment, lipid metabolism dysfunction and mitochondria as the major determinants in diabetes and to identify the potential mechanism of gut microbiota in diabetes diseases. We searched relevant articles, which have key information from laboratory experiments, epidemiological evidence, clinical trials, experimental models, meta-analysis and review articles, in PubMed, MEDLINE, EMBASE, Google scholars and Cochrane Controlled Trial Database. We selected 144 full-length articles that met our inclusion and exclusion criteria for complete assessment. We have briefly discussed these associations, challenges, and the need for further research to manage and treat diabetes more efficiently. Diabetes involves the complex network of physiological dysfunction that can be attributed to insulin signaling, genetics, environment, obesity, mitochondria and stress. In recent years, there are intriguing findings regarding gut microbiome as the important regulator of diabetes. Valid approaches are necessary for speeding medical advances but we should find a solution sooner given the burden of the metabolic disorder - What we need is a collaborative venture that may involve laboratories both in academia and industries for the scientific progress and its application for the diabetes control.
Collapse
Affiliation(s)
- Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Safoura Akbari-Alavijeh
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ranjit S Parhar
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Randy Gaugler
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Sarwar Hashmi
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Research and Diagnostics, Ghazala and Sanya Hashmi Foundation, Holmdel, NJ 07733, United States
| |
Collapse
|
73
|
Zheng R, Zhang W, Song J, Zhong Y, Zhu R. Cordycepin from Cordyceps militaris ameliorates diabetic nephropathy via the miR-193b-5p/MCL-1 axis. Chin Med 2023; 18:134. [PMID: 37833817 PMCID: PMC10576278 DOI: 10.1186/s13020-023-00842-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a chronic kidney disease that develops in patients with diabetes mellitus. Cordycepin (CRD), a secondary metabolite produced by Cordyceps militaris, has a variety of bioactive properties. In this study, DN mice and high glucose (HG)-treated HK-2 were used to evaluate the diagnostic value of CRD. METHODS Quantitative real-time PCR (qRT-PCR), western blotting, immunofluorescence analysis, and immunohistochemical staining were used to assess changes in mRNA and protein expression. Oxidative stress was evaluated by detecting the production of reactive oxygen species (ROS) and the activity of antioxidant enzymes. Cell apoptosis was detected by the TUNEL and flow cytometric methods. The interaction of miR-193b-5p and myeloid leukemia 1 (MCL-1) was examined by bioinformatics analysis and luciferase reporter assay. The protective effects of CRD on DN mice were evaluated by examining DN related biochemical indicators and renal histopathology. RESULTS In response to HG, the level of miR-193b-5p was elevated, whilst the level of MCL-1 was downregulated, and CRD therapy reversed this behavior. MCL-1 was further identified to be miR-193b-5p target. CRD attenuated HG-induced cell damage, inflammation and abnormal energy metabolism. Mechanistic investigations on in vitro models confirmed that protective effect of CRD against HG challenge to HK-2 cells is mediated through the regulation of expression of miR-193b-5p/MCL-1 axis. By examining DN related biochemical markers and renal histopathology, the protective effects of CRD on DN mice was assessed. CONCLUSIONS In summary, CRD decreased oxidative stress and inflammation by increasing miR-193b-5p and inactivating downstream MCL-1 in DN, hinting the pivotal values of CRD and miR-193b-5p in the management of DN.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Weijie Zhang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Jufang Song
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| | - Rong Zhu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| |
Collapse
|
74
|
Bakhtiyari A, Bakhtiyari S, Peymani M, Haghani K, Norozi S. Association of fatty acid binding protein-4 (FABP-4) T87C and rs8192688 gene polymorphisms and FABP-4 level with cardiovascular disease susceptibility in type 2 diabetic patients. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:427-440. [PMID: 37814502 DOI: 10.1080/15257770.2023.2265943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Type 2 Diabetes Mellitus (T2DM) is known to cause dyslipidemia and increase the risk of cardiovascular disease (CVD). Fatty acid binding protein (FABP)-4 plays a significant role in various stages of T2DM and CVD. Although it has been demonstrated that genetic variations of the FABP-4 gene can affect insulin sensitivity, the results obtained so far are controversial. The aim of this study was to investigate the possible association between T87C and rs8192688 polymorphisms and serum levels of FABP-4 with CVD susceptibility in T2DM patients. The study included 70 healthy controls, 70 individuals with T2DM, and 70 T2DM patients with CVD. Genomic DNA was extracted, and FABP-4 T87C and rs8192688 gene polymorphic sites were amplified using the ARMS-PCR method. Lipid profile and FABP-4 serum levels were significantly higher in T2DM patients with CVD compared to those with only T2DM (p < 0.05). Additionally, FABP-4 T87C gene polymorphism (TC genotypes) and dominant model (TT vs. TC + CC) were significantly associated with a decreased risk of both T2DM and T2DM with CVD patients (p < 0.05). Patients carrying TC + CC genotypes had significantly lower levels of triglyceride and FABP-4 compared to those carrying the TT genotype (p < 0.05). There was no significant association between FABP-4 rs8192688 polymorphism and either T2DM or CVD disease. It appears that FABP-4 T87C polymorphism decreases FABP-4 levels leading to decreased serum TG levels. Since both T2DM and CVD have inflammatory backgrounds, reducing inflammation can improve insulin sensitivity and lower TG levels in these patients.
Collapse
Affiliation(s)
- Amin Bakhtiyari
- Department of Biology, Islamic Azad University, Shahrekord, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago, IL, USA
| | - Maryam Peymani
- Department of Biology, Islamic Azad University, Shahrekord, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Siros Norozi
- Department of Cardiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
75
|
Zhou C, She X, Gu C, Hu Y, Ma M, Qiu Q, Sun T, Xu X, Chen H, Zheng Z. FTO fuels diabetes-induced vascular endothelial dysfunction associated with inflammation by erasing m6A methylation of TNIP1. J Clin Invest 2023; 133:e160517. [PMID: 37781923 PMCID: PMC10541204 DOI: 10.1172/jci160517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
Endothelial dysfunction is a critical and initiating factor of the vascular complications of diabetes. Inflammation plays an important role in endothelial dysfunction regulated by epigenetic modifications. N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications in eukaryotic cells. In this research, we identified an m6A demethylase, fat mass and obesity-associated protein (FTO), as an essential epitranscriptomic regulator in diabetes-induced vascular endothelial dysfunction. We showed that enhanced FTO reduced the global level of m6A in hyperglycemia. FTO knockdown in endothelial cells (ECs) resulted in less inflammation and compromised ability of migration and tube formation. Compared with EC Ftofl/fl diabetic mice, EC-specific Fto-deficient (EC FtoΔ/Δ) diabetic mice displayed less retinal vascular leakage and acellular capillary formation. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) combined with RNA-Seq indicated that Tnip1 served as a downstream target of FTO. Luciferase activity assays and RNA pull-down demonstrated that FTO repressed TNIP1 mRNA expression by erasing its m6A methylation. In addition, TNIP1 depletion activated NF-κB and other inflammatory factors, which aggravated retinal vascular leakage and acellular capillary formation, while sustained expression of Tnip1 by intravitreal injection of adeno-associated virus alleviated endothelial impairments. These findings suggest that the FTO-TNIP1-NF-κB network provides potential targets to treat diabetic vascular complications.
Collapse
Affiliation(s)
- Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xinping She
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yanan Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tao Sun
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
76
|
Klabunde B, Wesener A, Bertrams W, Beinborn I, Paczia N, Surmann K, Blankenburg S, Wilhelm J, Serrania J, Knoops K, Elsayed EM, Laakmann K, Jung AL, Kirschbaum A, Hammerschmidt S, Alshaar B, Gisch N, Abu Mraheil M, Becker A, Völker U, Vollmeister E, Benedikter BJ, Schmeck B. NAD + metabolism is a key modulator of bacterial respiratory epithelial infections. Nat Commun 2023; 14:5818. [PMID: 37783679 PMCID: PMC10545792 DOI: 10.1038/s41467-023-41372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.
Collapse
Affiliation(s)
- Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - André Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Blankenburg
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Gießen and Marburg (UKGM), Marburg, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Belal Alshaar
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience, Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany.
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-Universität Marburg, Marburg, Germany.
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany.
| |
Collapse
|
77
|
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tissue Res 2023; 394:33-53. [PMID: 37462786 PMCID: PMC10558386 DOI: 10.1007/s00441-023-03801-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Type 2 diabetes (T2D), associated with obesity, represents a state of metabolic inflammation and oxidative stress leading to insulin resistance and progressive insulin deficiency. Adipose-derived stem cells (ASCs) are adult mesenchymal stem/stromal cells identified within the stromal vascular fraction of adipose tissue. These cells can regulate the immune system and possess anti-inflammatory properties. ASCs are a potential therapeutic modality for inflammatory diseases including T2D. Patient-derived (autologous) rather than allogeneic ASCs may be a relatively safer approach in clinical perspectives, to avoid occasional anti-donor immune responses. However, patient characteristics such as body mass index (BMI), inflammatory status, and disease duration and severity may limit the therapeutic utility of ASCs. The current review presents human ASC (hASC) immunoregulatory mechanisms with special emphasis on those related to T lymphocytes, hASC implications in T2D treatment, and the impact of T2D and obesity on hASC immunoregulatory potential. hASCs can modulate the proliferation, activation, and functions of diverse innate and adaptive immune cells via direct cell-to-cell contact and secretion of paracrine mediators and extracellular vesicles. Preclinical studies recommend the therapeutic potential of hASCs to improve inflammation and metabolic indices in a high-fat diet (HFD)-induced T2D disease model. Discordant data have been reported to unravel intact or detrimentally affected immunomodulatory functions of ASCs, isolated from patients with obesity and/or T2D patients, in vitro and in vivo. Numerous preconditioning strategies have been introduced to potentiate hASC immunomodulation; they are also discussed here as possible options to potentiate the immunoregulatory functions of hASCs isolated from patients with obesity and T2D.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
78
|
Li ZM, Kong CY, Mao YQ, Chen HL, Zhang SL, Huang JT, Yao JQ, Cai PR, Xie N, Han B, Wang LS. Host ALDH2 deficiency aggravates nonalcoholic steatohepatitis through gut-liver axis. Pharmacol Res 2023; 196:106902. [PMID: 37657657 DOI: 10.1016/j.phrs.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the major cause of liver dysfunction. Animal and population studies have shown that mitochondrial aldehyde dehydrogenase (ALDH2) is implicated in fatty liver disease. However, the role of ALDH2 in NASH and the underlying mechanisms remains unclear. To address this issue, ALDH2 knockout (ALDH2-/-) mice and wild-type littermate mice were fed a methionine-and choline-deficient (MCD) diet to induce a NASH model. Fecal, serum, and liver samples were collected and analyzed to investigate the impact of the gut microbiota and bile acids on this process. We found that MCD-fed ALDH2-/- mice exhibited increased serum pro-inflammation cytokines, hepatic inflammation and fat accumulation than their wild-type littermates. MCD-fed ALDH2-/- mice exhibited worsened MCD-induced intestinal inflammation and barrier damage, and gut microbiota disorder. Furthermore, mice receiving microbiota from MCD-fed ALDH2-/- mice had increased severity of NASH compared to those receiving microbiota from MCD-fed wild-type mice. Notably, the intestinal Lactobacillus was significantly reduced in MCD-fed ALDH2-/- mice, and gavage with Lactobacillus cocktail significantly improved MCD-induced NASH. Finally, we found that ALDH2-/- mice had reduced levels of bile salt hydrolase and specific bile acids, especially lithocholic acid (LCA), accompanied by downregulated expression of the intestinal FXR-FGF15 pathway. Supplementation of LCA in ALDH2-/- mice upregulated intestinal FXR-FGF15 pathway and alleviated NASH. In summary, ALDH2 plays a critical role in the development of NASH through modulation of gut microbiota and bile acid. The findings suggest that supplementing with Lactobacillus or LCA could be a promising therapeutic approach for treating NASH exacerbated by ALDH2 deficiency.
Collapse
Affiliation(s)
- Zhan-Ming Li
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Chao-Yue Kong
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Yu-Qin Mao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Hui-Ling Chen
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Shi-Long Zhang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jia-Ting Huang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Jin-Qing Yao
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Pei-Ran Cai
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Nuo Xie
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Bing Han
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| | - Li-Shun Wang
- Center for traditional Chinese medicine and gut microbiota, Minhang Hospital, Fudan University, 201199 Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 201199 Shanghai, China.
| |
Collapse
|
79
|
Li S, Zhang D, Wang Z, Song W, Chen W, Hu G, Han L, Zhou J. Anti-obesity effects exerted by Dioscorea opposita Thunb. polysaccharides in diet-induced obese mice. Food Sci Nutr 2023; 11:6459-6469. [PMID: 37823169 PMCID: PMC10563686 DOI: 10.1002/fsn3.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Obesity is characterized by chronic inflammation, insulin resistance, and gut microbiota dysbiosis. Dioscorea opposita Thunb. is a traditional food and medicine homolog from China. In the present study, polysaccharides isolated from a water extract of Dioscorea opposita Thunb. (DOTPs) were prepared. We showed that DOTPs reduced body weight, accumulation of fat tissues, insulin resistance, and inflammation in high-fat diet (HFD)-fed mice. Further experiments showed that DOTPs could regulate the composition of the gut microbiota in HFD mice. DOTPs supplementation in HFD-fed mice resulted in the reduction of the Firmicutes-to-Bacteroidetes ratio. We further demonstrated that DOTPs supplementation enhanced bacterial levels of Akkermansia and reduced levels of Ruminiclostridium_9. A significant reduction of glycolysis metabolism related to obesity and gut microbiota dysbiosis was also observed upon administration of DOTPs. Our results suggest that DOTPs can produce significant anti-obesity effects, by inhibiting systematic inflammation and ameliorating gut microbiota dysbiosis in diet-induced obese mice.
Collapse
Affiliation(s)
- Sheng‐Nan Li
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | | | - Zhen‐Hui Wang
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Wen‐Ting Song
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Wen‐Bo Chen
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Ge‐Li Hu
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | - Lu‐Ying Han
- School of MedicineHenan Polytechnic UniversityJiaozuoChina
| | | |
Collapse
|
80
|
Wang Z, Zhu P, Liao B, You H, Cai Y. Effects and action mechanisms of individual cytokines contained in PRP on osteoarthritis. J Orthop Surg Res 2023; 18:713. [PMID: 37735688 PMCID: PMC10515001 DOI: 10.1186/s13018-023-04119-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Osteoarthritis (OA) is defined as a degenerative joint disease that can affect all tissues of the joint, including the articular cartilage, subchondral bone, ligaments capsule, and synovial membrane. The conventional nonoperative treatments are ineffective for cartilage repair and induce only symptomatic relief. Platelet-rich plasma (PRP) is a platelet concentrate derived from autologous whole blood with a high concentration of platelets, which can exert anti-inflammatory and regenerative effects by releasing multiple growth factors and cytokines. Recent studies have shown that PRP exhibits clinical benefits in patients with OA. However, high operational and equipment requirements greatly limit the application of PRP to OA treatment. Past studies have indicated that high-concentration PRP growth factors and cytokines may be applied as a commercial replacement for PRP. We reviewed the relevant articles to summarize the feasibility and mechanisms of PRP-based growth factors in OA. The available evidence suggests that transforming growth factor-α and β, platelet-derived growth factors, epidermal growth factor, insulin-like growth factor-1, and connective tissue growth factors might benefit OA, while vascular endothelial growth factor, tumor necrosis factor-α, angiopoietin-1, and stromal cell derived factor-1α might induce negative effects on OA. The effects of fibroblast growth factor, hepatocyte growth factor, platelet factor 4, and keratinocyte growth factor on OA remain uncertain. Thus, it can be concluded that not all cytokines released by PRP are beneficial, although the therapeutic action of PRP has a valuable potential to improve.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Orthopedics, Wuhan Fourth Hospital, Wuhan, China
| | - Pengfei Zhu
- Department of Cardiovascular, Wuhan Fourth Hospital, Wuhan, China
- Department of Cardiovascular, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bokai Liao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University and Technology, Jiefang Avenue No.1095, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Hanzheng Street No.473, Qiaokou District, Wuhan, 430000, Hubei Province, China.
| |
Collapse
|
81
|
Sim BC, Kang YE, You SK, Lee SE, Nga HT, Lee HY, Nguyen TL, Moon JS, Tian J, Jang HJ, Lee JE, Yi HS. Hepatic T-cell senescence and exhaustion are implicated in the progression of fatty liver disease in patients with type 2 diabetes and mouse model with nonalcoholic steatohepatitis. Cell Death Dis 2023; 14:618. [PMID: 37735474 PMCID: PMC10514041 DOI: 10.1038/s41419-023-06146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Immunosenescence and exhaustion are involved in the development and progression of type 2 diabetes (T2D) and metabolic liver diseases, including fatty liver, fibrosis, and cirrhosis, in humans. However, the relationships of the senescence and exhaustion of T cells with insulin resistance-associated liver diseases remain incompletely understood. To better define the relationship of T2D with nonalcoholic fatty liver disease, 59 patients (mean age 58.7 ± 11.0 years; 47.5% male) with T2D were studied. To characterize their systemic immunophenotypes, peripheral blood mononuclear cells were analyzed using flow cytometry. Magnetic resonance imaging (MRI)-based proton density fat fraction and MRI-based elastography were performed using an open-bore, vertical-field 3.0 T scanner to quantify liver fat and fibrosis, respectively. The participants with insulin resistance had a significantly larger population of CD28 - CD57+ senescent T cells among the CD4+ and CD8 + T cells than those with lower Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) values. The abundances of senescent CD4+ and CD8 + T cells and the HOMA-IR positively correlated with the severity of liver fibrosis, assessed using MRI-based elastography. Interleukin 15 from hepatic monocytes was found to be an inducer of bystander activation of T cells, which is associated with progression of liver disease in the participants with T2D. Furthermore, high expression of genes related to senescence and exhaustion was identified in CD4+ and CD8 + T cells from the participants with nonalcoholic steatohepatitis or liver cirrhosis. Finally, we have also demonstrated that hepatic T-cell senescence and exhaustion are induced in a diet or chemical-induced mouse model with nonalcoholic steatohepatitis. In conclusion, we have shown that T-cell senescence is associated with insulin resistance and metabolic liver disease in patients with T2D.
Collapse
Affiliation(s)
- Byeong Chang Sim
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sun Kyoung You
- Department of Radiology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seong Eun Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jeong Eun Lee
- Department of Radiology, Chungnam National University Hospital, Daejeon, Republic of Korea.
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
82
|
Du H, Xu F, Liu J, Zhang J, Qin Y, Xu Y, Li N. Long-term aspirin administration suppresses inflammation in diabetic cystopathy. Aging (Albany NY) 2023; 15:9128-9143. [PMID: 37702622 PMCID: PMC10522387 DOI: 10.18632/aging.205021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Diabetic cystopathy (DCP) is one of the most common and troublesome urologic complications of diabetes mellitus, characterized by chronic low-grade inflammatory response. However, the correlation between inflammation and disease progression remains ambiguous and effective drugs interventions remain deficient. Herein, during 12-week study, 48 male Sprague-Dawley rats were randomly assigned to four groups: negative control (NC), NC treated with aspirin (NC+Aspirin), DCP, and DCP treated with aspirin (DCP+Aspirin). Type 1 diabetes mellitus was established by intraperitoneal injection of streptozotocin (65 mg/kg). After 2 weeks modeling, the rats in treatment groups received daily oral aspirin (100 mg/kg/d). After 10 weeks of treatment, aspirin ameliorated pathological weight loss and bladder weight increase in diabetic rats, accompanied by a 16.5% decrease in blood glucose concentrations. H&E, Masson, immunohistochemistry and transmission electron microscopy revealed that a dilated bladder with thickened detrusor smooth muscle (DSM) layer, inflammatory infiltration, fibrosis and ultrastructural damage were observed in diabetic rats, which were obviously ameliorated by aspirin. The dynamic investigations at 4, 7 and 10 weeks revealed inflammation gradually increased as the disease progresses. After 10 weeks of treatment, the expression of TNF-α, IL-1β, IL-6, and NF-κB has been decreased to 78%, 39.7%, 44.1%, 33.3% at mRNA level and 67.6%, 76.7%, 71.4%, 67.1% at protein level, respectively (DCP+Aspirin vs. DCP, p < 0.01). Aspirin partially restored the increased expression of inflammatory mediators in bladder DSM of diabetic rats. The study provided insight into long-term medication therapies, indicating that aspirin might serve as a potential strategy for DCP treatment.
Collapse
Affiliation(s)
- Huifang Du
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Feihong Xu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jingxuan Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Jiakui Zhang
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Yinhua Qin
- Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Youqian Xu
- Department of Anatomy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
83
|
Powell SB, Swerdlow NR. The Relevance of Animal Models of Social Isolation and Social Motivation for Understanding Schizophrenia: Review and Future Directions. Schizophr Bull 2023; 49:1112-1126. [PMID: 37527471 PMCID: PMC10483472 DOI: 10.1093/schbul/sbad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND HYPOTHESES Social dysfunction in schizophrenia includes symptoms of withdrawal and deficits in social skills, social cognition, and social motivation. Based on the course of illness, with social withdrawal occurring prior to psychosis onset, it is likely that the severity of social withdrawal/isolation contributes to schizophrenia neuropathology. STUDY DESIGN We review the current literature on social isolation in rodent models and provide a conceptual framework for its relationship to social withdrawal and neural circuit dysfunction in schizophrenia. We next review preclinical tasks of social behavior used in schizophrenia-relevant models and discuss strengths and limitations of existing approaches. Lastly, we consider new effort-based tasks of social motivation and their potential for translational studies in schizophrenia. STUDY RESULTS Social isolation rearing in rats produces profound differences in behavior, pharmacologic sensitivity, and neurochemistry compared to socially reared rats. Rodent models relevant to schizophrenia exhibit deficits in social behavior as measured by social interaction and social preference tests. Newer tasks of effort-based social motivation are being developed in rodents to better model social motivation deficits in neuropsychiatric disorders. CONCLUSIONS While experimenter-imposed social isolation provides a viable experimental model for understanding some biological mechanisms linking social dysfunction to clinical and neural pathology in schizophrenia, it bypasses critical antecedents to social isolation in schizophrenia, notably deficits in social reward and social motivation. Recent efforts at modeling social motivation using effort-based tasks in rodents have the potential to quantify these antecedents, identify models (eg, developmental, genetic) that produce deficits, and advance pharmacological treatments for social motivation.
Collapse
Affiliation(s)
- Susan B Powell
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| | - Neal R Swerdlow
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| |
Collapse
|
84
|
Di Lorenzo M, Cacciapuoti N, Lonardo MS, Nasti G, Gautiero C, Belfiore A, Guida B, Chiurazzi M. Pathophysiology and Nutritional Approaches in Polycystic Ovary Syndrome (PCOS): A Comprehensive Review. Curr Nutr Rep 2023; 12:527-544. [PMID: 37213054 PMCID: PMC10444658 DOI: 10.1007/s13668-023-00479-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of reproductive age worldwide. This disease causes menstrual, metabolic, and biochemical abnormalities such as hyperandrogenism, oligo-anovulatory menstrual cycles, polycystic ovary, hyperleptinemia, insulin resistance (IR), and cardiometabolic disorders, often associated with overweight or obesity and visceral adiposity. RECENT FINDINGS The etiology and pathophysiology of PCOS are not yet fully understood, but insulin seems to play a key role in this disease. PCOS shares an inflammatory state with other chronic diseases such as obesity, type II diabetes, and cardiovascular diseases; however, recent studies have shown that a healthy nutritional approach can improve IR and metabolic and reproductive functions, representing a valid therapeutic strategy to ameliorate PCOS symptomatology. This review aimed to summarize and collect evidence about different nutritional approaches such as the Mediterranean diet (MedDiet) and the ketogenic diet (KD), as well as bariatric surgery and nutraceutical supplementation as probiotics, prebiotics, and synbiotics, among the others, used in patients with PCOS.
Collapse
Affiliation(s)
- M Di Lorenzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Infectious Diseases and Gender Medicine Unit, Cotugno Hospital, AO Dei Colli, Naples, Italy
| | - N Cacciapuoti
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - M S Lonardo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - G Nasti
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - C Gautiero
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - A Belfiore
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - B Guida
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - M Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
- Department of Medical Oncology, AO "A. Cardarelli", Naples, Italy.
| |
Collapse
|
85
|
Morena da Silva F, Esser KA, Murach KA, Greene NP. Inflammation o'clock: interactions of circadian rhythms with inflammation-induced skeletal muscle atrophy. J Physiol 2023:10.1113/JP284808. [PMID: 37563881 PMCID: PMC10858298 DOI: 10.1113/jp284808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Circadian rhythms are ∼24 h cycles evident in behaviour, physiology and metabolism. The molecular mechanism directing circadian rhythms is the circadian clock, which is composed of an interactive network of transcription-translation feedback loops. The core clock genes include Bmal1, Clock, Rev-erbα/β, Per and Cry. In addition to keeping time, the core clock regulates a daily programme of gene expression that is important for overall cell homeostasis. The circadian clock mechanism is present in all cells, including skeletal muscle fibres, and disruption of the muscle clock is associated with changes in muscle phenotype and function. Skeletal muscle atrophy is largely associated with a lower quality of life, frailty and reduced lifespan. Physiological and genetic modification of the core clock mechanism yields immune dysfunction, alters inflammatory factor expression and secretion and is associated with skeletal muscle atrophy in multiple conditions, such as ageing and cancer cachexia. Here, we summarize the possible interplay between the circadian clock modulation of immune cells, systemic inflammatory status and skeletal muscle atrophy in chronic inflammatory conditions. Although there is a clear disruption of circadian clocks in various models of atrophy, the mechanism behind such alterations remains unknown. Understanding the modulatory potential of muscle and immune circadian clocks in inflammation and skeletal muscle health is essential for the development of therapeutic strategies to protect skeletal muscle mass and function of patients with chronic inflammation.
Collapse
Affiliation(s)
- Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Karyn A Esser
- Department of Physiology and Ageing, College of Medicine, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
86
|
Chen X, Chen C, Fu X. Dendrobium officinale Polysaccharide Alleviates Type 2 Diabetes Mellitus by Restoring Gut Microbiota and Repairing Intestinal Barrier via the LPS/TLR4/TRIF/NF-kB Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11929-11940. [PMID: 37526282 DOI: 10.1021/acs.jafc.3c02429] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dendrobium officinale polysaccharide (DOP), the main active component, has a variety of bioactivities. In this study, a type 2 diabetes mellitus (T2DM) and antibiotic-induced pseudo-germ-free mouse models were used to investigate the hypoglycemic mechanisms of DOP. The findings showed that DOP ameliorated dysfunctional glucolipid metabolism, lipopolysaccharide (LPS) leakage, and metabolic inflammation levels in T2DM mice. Furthermore, DOP significantly upregulated the mRNA expression of tight junction proteins Claudin-1, Occludin, and ZO-1 and reduced intestinal inflammation and oxidative stress damage through the LPS/TLR4/TRIF/NF-κB axis to repair the intestinal barrier. Interestingly, pseudo-germ-free mouse experiments confirmed that the above beneficial effects of DOP were dependent on gut microbiota. 16S rRNA analysis showed that DOP strongly inhibited the harmful bacterium Helicobacter by 94.57% and facilitated the proliferation of probiotics Allobaculum, Bifidobacterium, and Lactobacillus by 34.96, 139.41, and 88.95%, respectively. Therefore, DOP is capable of rebuilding certain specific intestinal microbiota to restore intestinal barrier injury, which supports the utilization of DOP as a new type of prebiotic in functional foods for T2DM.
Collapse
Affiliation(s)
- Xiaoxia Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chun Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
87
|
Li L, Li Y, Wang P. Regulatory Effects Mediated by Enteromorpha prolifera Polysaccharide and Its Zn(II) Complex on Hypoglycemic Activity in High-Sugar High-Fat Diet-Fed Mice. Foods 2023; 12:2854. [PMID: 37569125 PMCID: PMC10417851 DOI: 10.3390/foods12152854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In order to investigate and develop functional foods of marine origin with hypoglycemic activity, Enteromorpha prolifera polysaccharide-Zn(II) (EZ) complex was first prepared by marine resourced E. prolifera polysaccharide (EP) and ZnSO4 and their anti-diabetes activities against high-sugar and high-fat-induced diabetic mice were evaluated. The detailed structural characterization of EZ was elucidated by UV-Vis spectroscopy, infrared spectroscopy, and monosaccharide composition determination. The pharmacological research suggests that EZ has a potent hypoglycemic effect on high-sugar and high-fat-induced diabetic mice by inhibiting insulin resistance, improving dyslipidemia, decreasing inflammatory status, repairing pancreas damage, as well as activating the IRS/PI3K/AKT signaling pathway and regulating GLUT2 gene expression. At the same time, microbiota analysis indicates that a high dose of EZ could enhance the abundance of dominant species, such as Staphylococcaceae, Planococcaceae, Muribaculaceae, Aerococcaceae, and Lacrobacillaceae, in intestinal microbiota distribution. Thus, EZ could be considered as a potential candidate for developing an ingredient of functional foods for Zn(II) supplements with hypoglycemic activity.
Collapse
Affiliation(s)
- Liyan Li
- Medical School, Huanghe Science and Technology College, Zhengzhou 450063, China;
| | - Yuanyuan Li
- Food Science and Engineering College, Ocean University of China, Qingdao 266003, China;
| | - Peng Wang
- Food Science and Engineering College, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
88
|
Lu S, Liu J, Xu M, Xu F. Horticultural therapy for stress reduction: A systematic review and meta-analysis. Front Psychol 2023; 14:1086121. [PMID: 37564307 PMCID: PMC10411738 DOI: 10.3389/fpsyg.2023.1086121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/01/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Horticultural therapy has been increasingly accepted as a non-pharmacological stress reduction treatment. Previous studies have demonstrated its therapeutic effects, with the effect varying according to the populations, settings, and interventions of horticultural therapy. This study aimed to provide a comprehensive review of the current literature regarding the effectiveness of horticultural therapy in reducing stress. Methods We selected databases including PubMed, Cochrane Library, Embase, Web of Science, China National Knowledge Infrastructure, and VIP Data as our data source, and the original search was completed in January 2023. Results Our results showed significantly increased effects of horticultural therapy on psychological indicators compared to a control group, but an insignificant effect on physiology indicators. The result of the subgroup analysis demonstrated that the stress-reducing effects of horticultural therapy were related to the characteristics of the population and indoor and virtual areas were the most effective setting for horticultural therapy. At the same time, a total duration of 100-500 minutes provided better effects of stress reduction. Discussion We also developed a theoretical framework based on a "Participants-Settings-Interventions" structure for horticulture therapy in terms of its stress-reduction effects, to provide a reference for future horticultural therapy activities.
Collapse
Affiliation(s)
- Shan Lu
- Department of Landscape Architecture, College of Horticulture, China Agricultural University, Beijing, China
| | - Jianjiao Liu
- Faculty of Architecture, Building and Planning, Melbourne School of Design, University of Melbourne, Parkville, VIC, Australia
| | - Meijing Xu
- Department of Landscape Architecture, College of Horticulture, China Agricultural University, Beijing, China
| | - Feng Xu
- Department of Landscape Architecture, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
89
|
Pierce DR, McDonald M, Merone L, Becker L, Thompson F, Lewis C, Ryan RYM, Hii SF, Zendejas-Heredia PA, Traub RJ, Field MA, Rahman T, Croese J, Loukas A, McDermott R, Giacomin PR. Effect of experimental hookworm infection on insulin resistance in people at risk of type 2 diabetes. Nat Commun 2023; 14:4503. [PMID: 37495576 PMCID: PMC10372076 DOI: 10.1038/s41467-023-40263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
The reduced prevalence of insulin resistance and type 2 diabetes in countries with endemic parasitic worm infections suggests a protective role for worms against metabolic disorders, however clinical evidence has been non-existent. This 2-year randomised, double-blinded clinical trial in Australia of hookworm infection in 40 male and female adults at risk of type 2 diabetes assessed the safety and potential metabolic benefits of treatment with either 20 (n = 14) or 40 (n = 13) Necator americanus larvae (L3) or Placebo (n = 13) (Registration ACTRN12617000818336). Primary outcome was safety defined by adverse events and completion rate. Homoeostatic model assessment of insulin resistance, fasting blood glucose and body mass were key secondary outcomes. Adverse events were more frequent in hookworm-treated participants, where 44% experienced expected gastrointestinal symptoms, but completion rates were comparable to Placebo. Fasting glucose and insulin resistance were lowered in both hookworm-treated groups at 1 year, and body mass was reduced after L3-20 treatment at 2 years. This study suggests hookworm infection is safe in people at risk of type 2 diabetes and associated with improved insulin resistance, warranting further exploration of the benefits of hookworms on metabolic health.
Collapse
Affiliation(s)
- Doris R Pierce
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Malcolm McDonald
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Lea Merone
- College of Health Sciences, James Cook University, Cairns, QLD, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fintan Thompson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- University of South Australia, Adelaide, SA, Australia
| | - Chris Lewis
- College of Health Sciences, James Cook University, Cairns, QLD, Australia
| | - Rachael Y M Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Sze Fui Hii
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Patsy A Zendejas-Heredia
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Matthew A Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Public Health, Medical & Vet Sciences, James Cook University, Cairns, QLD, Australia
- Immunogenomics Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Tony Rahman
- The Department of Gastroenterology and Hepatology, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - John Croese
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Robyn McDermott
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- University of South Australia, Adelaide, SA, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| |
Collapse
|
90
|
Sasanfar B, Emrani AS, Zademohammadi F, Forootani B, Emamgholipour S, Jambarsang S, Khayyatzadeh SS, Pourrajab F, Yasini Ardakani SA, Esmaillzadeh A, Salehi-Abarghouei A. The impact of a blend of Pistacia atlantica seed and canola oil compared with a blend of corn-canola oil with synthetic antioxidant and corn-canola oil without synthetic antioxidant on oxidative stress markers in patients with metabolic syndrome: protocol for a triple-blind, randomized, three-way cross-over clinical trial. Trials 2023; 24:473. [PMID: 37488571 PMCID: PMC10367258 DOI: 10.1186/s13063-023-07269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/21/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is regarded as a complex metabolic disorder. Recently, the role of dietary antioxidants in the underlying pathogenesis and complications of MetS has come into focus. Pistacia atlantica oil is known as a high antioxidant oil which might improve the antioxidant status of dietary oils and also oxidative stress markers. On the other hand, tert-Butylhydroquinone (TBHQ) is an approved food-grade synthetic antioxidant that acts both as an inducer and inhibitor of carcinogenesis. The current trial will explore the possible effect of a blend of Pistacia atlantica seed-canola oils, corn-canola oils with TBHQ, and corn-canola oil without TBHQ on oxidative stress markers in patients with MetS. METHODS We will conduct a single-center, triple-blind, three-way randomized cross-over clinical trial (RCT) among 72 patients with MetS. After a 1-month run-in period, eligible participants will consume the intervention oils as their regularly consumed oils in a random order. Each intervention period will last 8 weeks separated by 4-week washout periods. Anthropometric indices, body composition, physical activity, blood pressure, and 24-h dietary food recall measurements will be assessed at the beginning and the end of each intervention period. The primary outcome will be oxidative stress markers including serum total antioxidant capacity, total oxidant status, malondialdehyde, nitric oxide, and the enzyme activity of myeloperoxidase, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. The secondary outcomes will be changes in MetS components including blood pressure, fasting blood glucose, triglyceride, high-density lipoprotein cholesterol, and anthropometric measurements. DISCUSSION Pistacia atlantica seed oil is high in antioxidants. An intervention with this oil could offer an option for oxidative stress prevention among patients with metabolic syndrome. The present clinical trial will be the first one assessing the impact of Pistacia atlantica oil on human oxidative stress markers. TRIAL REGISTRATION Iranian Registry of Clinical trials IRCT20130223012571N8 . Registered on 4 March 2022.
Collapse
Affiliation(s)
- Bahareh Sasanfar
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Sadat Emrani
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Zademohammadi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bita Forootani
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Jambarsang
- Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Pourrajab
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, P.O. Box 14155-6117, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Salehi-Abarghouei
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
91
|
Mintoff D, Agius R, Fava S, Pace NP. Investigating Adiposity-Related Metabolic Health Phenotypes in Patients with Hidradenitis Suppurativa: A Cross-Sectional Study. J Clin Med 2023; 12:4847. [PMID: 37510962 PMCID: PMC10381271 DOI: 10.3390/jcm12144847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Obesity and hidradenitis suppurativa (HS) are related through meta-inflammation and are both associated with increased cardiometabolic risk. Notwithstanding, cardiometabolic pathology is not uniform in obesity and a subset of individuals with excess adiposity exhibit a healthy metabolic profile. Whilst the incidence of cardiometabolic endpoints and transitions across different adiposity-related body composition phenotypes within several populations and across different ethnicities have been investigated, data regarding metabolic health (MetH) and body composition phenotypes in individuals with HS are lacking. The objective of this study was to evaluate the relationship between different body composition phenotypes in individuals with HS. METHODS This was a cross-sectional study of 632 individuals with and without HS from a population with a high prevalence of both obesity and HS. A total of four body composition phenotypes were generated based on BMI and metabolic status (defined using either the metabolic syndrome definition or the homeostasis model of insulin resistance (HOMA-IR)): metabolically healthy overweight/obese (MHOWOB), metabolically unhealthy overweight/obese (MUOWOB), metabolically healthy normal weight (MHNW), and metabolically unhealthy normal weight (MUNW). RESULTS Generally, subjects with HS exhibited a worse metabolic profile with higher levels of indices of central adiposity measures (including Visceral Adiposity Index and waist circumference), systolic blood pressure and markers of insulin resistance, as well as a higher prevalence of the metabolic syndrome. Moreover, when sub-stratified into the different body composition phenotypes, individuals with HS typically also demonstrated adverse metabolic characteristics relative to controls matched for both adiposity and metabolic health, particularly in the normal weight category and despite being classified as metabolically healthy. Being metabolically unhealthy in addition to being overweight/obese increases an individual's risk of HS. CONCLUSIONS Metabolic risk-assessment should be prioritized in the clinical management of individuals with HS even in those who are lean. Patients attending HS clinics provide a valuable opportunity for targeted cardiovascular risk reduction with respect to the management of both obesity and metabolic health.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Dermatology, Mater Dei Hospital, MSD2090 Msida, Malta
| | - Rachel Agius
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Medicine, Mater Dei Hospital, MSD2090 Msida, Malta
| | - Stephen Fava
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Medicine, Mater Dei Hospital, MSD2090 Msida, Malta
| | - Nikolai P Pace
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta
| |
Collapse
|
92
|
Zhong J, Zhao G, Edwards S, Tran J, Rajagopalan S, Rao X. Particulate air pollution exaggerates diet-induced insulin resistance through NLRP3 inflammasome in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121603. [PMID: 37062408 PMCID: PMC10164710 DOI: 10.1016/j.envpol.2023.121603] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Air particulate matter 2.5 (PM2.5) has been demonstrated to exaggerate insulin resistance in both human and animal studies. However, the exact molecular mechanisms remain elusive. This study sought to assess the role of NLRP3 inflammasome in PM2.5 exposure-induced insulin resistance and explore the underlying mechanisms. Wild-type (WT), Nlrp3-/-, Tlr4Lps-d, or Nrf2-/- mice, on a normal diet or high-fat diet (HFD), were exposed to PM2.5 or filtered air (FA) in a whole-body exposure facility. Priming (first signal) and assembly (second signal) of NLRP3 inflammasome activation were assessed by measuring the transcription of Nlrp3/Il-1β and detecting the activity of caspase-1 and secretion of IL-1β. We found PM2.5 exposure exaggerated insulin resistance and increased IL-1β production in the HFD-fed WT mice, but not Nlrp3-/- mice. Gene expressions of Nlrp3 and Il-1β in the lungs and peritoneal macrophages were upregulated in WT mice exposed to PM2.5. When stimulated with LPS (first signal) or monosodium urate (second signal), PM2.5 exposure was able to enhance the activity of caspase-1 and IL-1β secretion, suggesting that PM2.5 may serve as a stimulus of either the first or second signal for NLRP3 inflammasome activation. Effects of PM2.5 on caspase-1 activation and IL-1β secretion were partially blocked in Tlr4Lps-d mice. Reactive oxygen species (ROS), co-localization of NLRP3 and mitochondria, and secondary lysosomes in macrophages were increased after PM2.5 exposure, while deficiency of antioxidant gene Nrf2 in mice significantly enhanced PM2.5-induced secretion of IL-1β. Imaging flow cytometry and transmission electron microscopy demonstrated an engulfment of PM2.5 particles by macrophages, while suppression of phagocytosis by cytochalasin D abolished PM2.5-induced transcription of Nlrp3/Il-1β. Our results demonstrated a critical role of NLRP3 inflammasome in PM2.5 exaggerated insulin resistance, and multiple pathways in the first and second signals of NLRP3 inflammasome activation may be involved.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Gang Zhao
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Sabrina Edwards
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Joanne Tran
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Pacific Northwest University of Health Science, Yakima, WA, 98901, United States
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, 44106, United States; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
93
|
Vaváková M, Hofwimmer K, Laurencikiene J, Göransson O. Mechanism of TNFα-induced downregulation of salt-inducible kinase 2 in adipocytes. Sci Rep 2023; 13:10559. [PMID: 37386070 PMCID: PMC10310826 DOI: 10.1038/s41598-023-37340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Salt-inducible kinase 2 (SIK2) is highly expressed in white adipocytes, but downregulated in individuals with obesity and insulin resistance. These conditions are often associated with a low-grade inflammation in adipose tissue. We and others have previously shown that SIK2 is downregulated by tumor necrosis factor α (TNFα), however, involvement of other pro-inflammatory cytokines, or the mechanisms underlying TNFα-induced SIK2 downregulation, remain to be elucidated. In this study we have shown that TNFα downregulates SIK2 protein expression not only in 3T3L1- but also in human in vitro differentiated adipocytes. Furthermore, monocyte chemoattractant protein-1 and interleukin (IL)-1β, but not IL-6, might also contribute to SIK2 downregulation during inflammation. We observed that TNFα-induced SIK2 downregulation occurred also in the presence of pharmacological inhibitors against several kinases involved in inflammation, namely c-Jun N-terminal kinase, mitogen activated protein kinase kinase 1, p38 mitogen activated protein kinase or inhibitor of nuclear factor kappa-B kinase (IKK). However, IKK may be involved in SIK2 regulation as we detected an increase of SIK2 when inhibiting IKK in the absence of TNFα. Increased knowledge about inflammation-induced downregulation of SIK2 could ultimately be used to develop strategies for the reinstalment of SIK2 expression in insulin resistance.
Collapse
Affiliation(s)
- Magdaléna Vaváková
- Protein Phosphorylation Research Group, Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, Biomedical Centre C11, Klinikgatan 28, 221 84, Lund, Sweden
| | - Kaisa Hofwimmer
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Jurga Laurencikiene
- Lipid Laboratory, Unit of Endocrinology, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Olga Göransson
- Protein Phosphorylation Research Group, Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, Biomedical Centre C11, Klinikgatan 28, 221 84, Lund, Sweden.
| |
Collapse
|
94
|
Abstract
Obesity, which has currently reached pandemic dimensions, is usually accompanied by diabetes mellitus type 2 (T2DM). These two conditions share common pathophysiological mechanisms. Adipose tissue secretes cytokines which are involved in inflammation and various endocrine functions. As for T2DM, it is characterized also by inflammation, mitochondrial dysfunction, and hyperinsulinemia. These conditions occur also in other diseases related to obesity and T2DM, like cardiovascular disease (CVD) and nonalcoholic fatty liver disease (NAFLD). Thus, management of obesity-related complications with lifestyle modification, anti-obesity drugs, and bariatric surgery, all contribute to improvement in any of these conditions. This review provides an overview of the literature addressing the association between obesity and T2DM, briefly discussing the pathophysiological mechanisms linking these conditions and outlining the management approach at the overlap of obesity and T2DM.
Collapse
Affiliation(s)
- Chrysoula Boutari
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
95
|
Queiroga LDL, Pitta RM, Trevisani MDF, Montenegro CGDSP, Bugano DDG, Figueira Junior AJ, Baker JS, Bocalini DS, Matos LDNJD. Is physical inactivity and sedentary behavior associated with tumor stage in breast cancer patients? A cross-sectional study of Brazilian women. EINSTEIN-SAO PAULO 2023; 21:eAO0215. [PMID: 37341217 DOI: 10.31744/einstein_journal/2023ao0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE A comparative analysis of the association between sedentary behavior versus physical activity levels and tumor staging in women with breast cancer. METHODS The present research adopted a cross-sectional study design to recruit a total of 55 adult and elderly women newly diagnosed with breast cancer for data collection and analysis. Inclusion criteria involved patients in procession of a formal approval for participation in the study by the treating physician and those not hitherto subjected to the first cycle of chemotherapy. RESULTS Physical activity levels did not influence the pathological stage of breast cancer (p=0.26) or histological tumor grade (p=0.07) in the analyzed subjects. However, there was a significant association between physical activity levels and responsiveness to hormones (epidermal growth factor receptor (HER2), p<0.05) in the analyzed subjects. Significant difference was detected in the histological tumor grade in relation to the mean time spent sitting during the weekend (p<0.05). However, sedentary behavior had no influence on the tumor stage (p>0.05). CONCLUSION Physical activity levels did not influence the tumor stage and histological tumor grade. Sedentary behavior had a significant influence on the histological tumor grade.
Collapse
|
96
|
Moser C, Gosselé KA, Balaz M, Balazova L, Horvath C, Künzle P, Okreglicka KM, Li F, Blüher M, Stierstorfer B, Hess E, Lamla T, Hamilton B, Klein H, Neubauer H, Wolfrum C, Wolfrum S. FAM3D: A gut secreted protein and its potential in the regulation of glucose metabolism. Peptides 2023:171047. [PMID: 37328068 DOI: 10.1016/j.peptides.2023.171047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
The number of diabetic patients is rising globally and concomitantly so do the diabetes associated complications. The gut secretes a variety of proteins to control blood glucose levels and/or food intake. As the drug class of GLP-1 agonists is based on a gut secreted peptide and the positive metabolic effects of bariatric surgery are at least partially mediated by gut peptides, we were interested in other gut secreted proteins which have yet to be explored. In this respect we identified the gut secreted protein FAM3D by analyzing sequencing data from L- and epithelial cells of VSG and sham operated as well as chow and HFD fed mice. FAM3D was overexpressed in diet induced obese mice via an adeno-associated virus (AAV), which resulted in a significant improvement of fasting blood glucose levels, glucose tolerance and insulin sensitivity. The liver lipid deposition was reduced, and the steatosis morphology was improved. Hyperinsulinemic clamps indicated that FAM3D is a global insulin sensitizer and increases glucose uptake into various tissues. In conclusion, the current study demonstrated that FAM3D controls blood glucose levels by acting as an insulin sensitizing protein and improves hepatic lipid deposition.
Collapse
Affiliation(s)
- Caroline Moser
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Katherine A Gosselé
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Lucia Balazova
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Carla Horvath
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Patricia Künzle
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Katarzyna Maria Okreglicka
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Matthias Blüher
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Birgit Stierstorfer
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Eva Hess
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Thorsten Lamla
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Bradford Hamilton
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Heike Neubauer
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland.
| | - Susanne Wolfrum
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
97
|
Bungau AF, Radu AF, Bungau SG, Vesa CM, Tit DM, Endres LM. Oxidative stress and metabolic syndrome in acne vulgaris: Pathogenetic connections and potential role of dietary supplements and phytochemicals. Biomed Pharmacother 2023; 164:115003. [PMID: 37315434 DOI: 10.1016/j.biopha.2023.115003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Acne vulgaris is a highly prevalent skin condition caused by androgen-induced elevated sebum secretion, abnormal keratinization, bacterial colonization, and inflammation. Current research indicates a link between acne vulgaris and the metabolic syndrome, a group of disorders that includes obesity, insulin resistance, hypertension, and dyslipidemia. This link is thought to be modulated by excessive concentrations of oxidative stress markers and chronic inflammation, which are included in the pathophysiological mechanisms shared by both conditions. Excessive generation of reactive oxygen species damages cellular components and initiates an inflammatory response, hence promoting the development of both disorders. The current narrative review focuses on the molecular implications of inflammatory, hormonal, and environmental factors in the acne-metabolic syndrome correlation. Furthermore, it outlines the current state of knowledge related to the phyto-therapeutic approach to these conditions as an adjuvant strategy to allopathic treatment, but future multicenter and larger-scale research studies are needed establish new algorithms to be included in the future management of patients with these conditions.
Collapse
Affiliation(s)
- Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Laura Maria Endres
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
98
|
Noor J, Chaudhry A, Batool S, Noor R, Fatima G. Exploring the Impact of the Gut Microbiome on Obesity and Weight Loss: A Review Article. Cureus 2023; 15:e40948. [PMID: 37503494 PMCID: PMC10368799 DOI: 10.7759/cureus.40948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
The global obesity pandemic has prompted efforts to search for novel intervention options, including maximizing the health benefits of certain gut microbes and their metabolic byproducts. Our increased understanding of gut microbiota can potentially lead to revolutionary advancements in weight management and general well-being. We studied the association between gut microbiota and obesity, as well as the possible benefits of probiotics, prebiotics, and synbiotics in the prevention and management of obesity in this review. We observed a relationship between the metabolism of nutrients, energy consumption, and gut flora. Numerous mechanisms, including the synthesis of short-chain fatty acids, hormone stimulation, and persistent low-grade inflammation, have been postulated to explain the role of gut bacteria in the etiology of obesity. It has been discovered that the diversity and composition of the intestinal microbiome vary in response to various forms of obesity therapy, which raises concerns about the potential impact of these changes on weight loss. According to research, probiotics, prebiotics, and synbiotics may alter the release of hormones, neurotransmitters, and inflammatory factors, thereby diminishing the stimuli of food consumption that lead to weight gain. More clinical research is required to determine the optimal probiotic, prebiotic, and synbiotic supplementation dosages, formulations, and regimens for long-term weight management and to determine how different gastrointestinal microbiome bacterial species may influence weight gain.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| | - Riwad Noor
- Medicine/Public Health, Nishtar Hospital, Multan, PAK
| | - Ghulam Fatima
- Internal Medicine, Abbasi Shaheed Hospital, Karachi, PAK
| |
Collapse
|
99
|
Jandari S, Rezvani R, Yousefian S, Mosalmanzadeh N, Bagherniya M, Soleimani D, Mousavian SZ, Shivappa N, Hébert JR, Jafarzadeh Esfahani A, Akhgari A, Jarahi L, Safarian M. The effect of low dietary inflammatory index score formula on inflammatory, metabolic, and clinical outcomes in critically ill traumatic brain injury patients: A single-blind randomized controlled pilot study. Food Sci Nutr 2023; 11:3365-3375. [PMID: 37324871 PMCID: PMC10261799 DOI: 10.1002/fsn3.3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 06/17/2023] Open
Abstract
In traumatic brain injury (TBI) patients, a complex cascade of inflammatory responses are frequently observed following trauma. Numerous dietary agents have long been found to have potential in modulating inflammatory responses. This pilot study, designed an enteral formula with low inflammatory properties based on the dietary inflammatory index (DII®) and evaluated its effect on inflammatory and metabolic factors in critically ill TBI patients. This single-blind randomized controlled pilot study was conducted at the Neurosurgical ICU of Shahid Kamyab Hospital (Mashhad, Iran). A total of 20 TBI patients were randomly assigned to receive either low-DII score or standard formula at the intensive care unit (ICU). The primary outcomes of the study included clinical status, inflammatory biomarkers, APACHE II, SAPS II, SOFA, and NUTRIC scores. The trial groups did not differ significantly in baseline values. Following 14 days of intervention, there was a statistically significant decrease in the APACHE II, SAPS II, and NUTRIC scores and a significant increase in the GCS score in the low-DII score formula group compared to the standard formula group. Over 2 weeks, high sensitivity C-reactive protein (hs-CRP) values of -2.73 (95% CI: -3.67, -1.79) mg/dL in the low-DII score formula group versus 0.65 (95% CI: -0.29, 1.58) mg/dL in controls were obtained. Moreover, the length of hospital stay was longer for the standard formula group than for the low-DII score formula group. The low-DII score formula improves inflammatory factors (serum hs-CRP) and metabolic biomarkers (LDL-c and FBS). Furthermore, clinical outcomes, including the length of hospital stay and disease severity, appear to be enhanced.
Collapse
Affiliation(s)
- Sajedeh Jandari
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Reza Rezvani
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sajedeh Yousefian
- Department of Nutrition SciencesVarastegan Institute for Medical SciencesMashhadIran
| | - Negin Mosalmanzadeh
- Department of Nutrition SciencesVarastegan Institute for Medical SciencesMashhadIran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutritional SciencesKermanshah University of Medical SciencesKermanshahIran
| | - Seyedeh Zeynab Mousavian
- Department of Nutritional Sciences, School of Nutritional SciencesKermanshah University of Medical SciencesKermanshahIran
| | - Nitin Shivappa
- Cancer Prevention and Control ProgramUniversity of South CarolinaColumbiaSouth CarolinaUSA
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
- Connecting Health Innovations LLCColumbiaSouth CarolinaUSA
| | - James R. Hébert
- Cancer Prevention and Control ProgramUniversity of South CarolinaColumbiaSouth CarolinaUSA
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Ali Jafarzadeh Esfahani
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Abass Akhgari
- Targeted Drug Delivery Research CenterPharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutics, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Lida Jarahi
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Safarian
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
100
|
Dallatana A, Cremonesi L, Trombetta M, Fracasso G, Nocini R, Giacomello L, Innamorati G. G Protein-Coupled Receptors and the Rise of Type 2 Diabetes in Children. Biomedicines 2023; 11:1576. [PMID: 37371671 DOI: 10.3390/biomedicines11061576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The human genome counts hundreds of GPCRs specialized to sense thousands of different extracellular cues, including light, odorants and nutrients in addition to hormones. Primordial GPCRs were likely glucose transporters that became sensors to monitor the abundance of nutrients and direct the cell to switch from aerobic metabolism to fermentation. Human β cells express multiple GPCRs that contribute to regulate glucose homeostasis, cooperating with many others expressed by a variety of cell types and tissues. These GPCRs are intensely studied as pharmacological targets to treat type 2 diabetes in adults. The dramatic rise of type 2 diabetes incidence in pediatric age is likely correlated to the rapidly evolving lifestyle of children and adolescents of the new century. Current pharmacological treatments are based on therapies designed for adults, while youth and puberty are characterized by a different hormonal balance related to glucose metabolism. This review focuses on GPCRs functional traits that are relevant for β cells function, with an emphasis on aspects that could help to differentiate new treatments specifically addressed to young type 2 diabetes patients.
Collapse
Affiliation(s)
- Alessia Dallatana
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Linda Cremonesi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Maddalena Trombetta
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37124 Verona, Italy
| | - Giulio Fracasso
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Luca Giacomello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| |
Collapse
|