51
|
Thriemer K, Poespoprodjo JR, Kenangalem E, Douglas NM, Sugiarto P, Anstey NM, Simpson JA, Price RN. The risk of adverse clinical outcomes following treatment of Plasmodium vivax malaria with and without primaquine in Papua, Indonesia. PLoS Negl Trop Dis 2020; 14:e0008838. [PMID: 33175835 PMCID: PMC7657498 DOI: 10.1371/journal.pntd.0008838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
The widespread use of primaquine (PQ) radical cure for P. vivax, is constrained by concerns over its safety. We used routinely collected patient data to compare the overall morbidity and mortality in patients treated with and without PQ without prior testing of Glucose-6-Phosphate-Dehydrogenase (G6PD) deficiency in Papua, Indonesia, where there is a low prevalence of G6PD deficiency. Records were collated from patients older than 1 year, with P. vivax infection, who were treated with an artemisinin combination therapy (ACT). The risks of re-presentation, hospitalization, major fall in haemoglobin and death within 30 days were quantified and compared between patients treated with and without PQ using a Cox regression model. In total 26,216 patients with P. vivax malaria presented to the hospital with malaria during the study period. Overall 27.56% (95% Confidence Interval (95%CI): 26.96-28.16) of 21,344 patients treated with PQ re-presented with any illness within 30 days and 1.69% (1.51-1.88) required admission to hospital. The corresponding risks were higher in the 4,872 patients not treated with PQ; Adjusted Hazard Ratio (AHR) = 0.84 (0.79-0.91; p<0.001) and 0.54 (0.41-0.70; p<0.001) respectively. By day 30, 14.15% (12.45-16.05) of patients who had received PQ had a fall in haemoglobin (Hb) below 7g/dl compared to 20.43% (16.67-24.89) of patients treated without PQ; AHR = 0.66 (0.45-0.97; p = 0.033). A total of 75 (0.3%) patients died within 30 days of treatment with a mortality risk of 0.27% (0.21-0.35) in patients treated with PQ, compared to 0.38% (0.24-0.60) without PQ; AHR = 0.79 (0.43-1.45; p = 0.448). In Papua, Indonesia routine administration of PQ radical cure without prior G6PD testing, was associated with lower risk of all cause hospitalization and other serious adverse clinical outcomes. In areas where G6PD testing is not available or cannot be delivered reliably, the risks of drug induced haemolysis should be balanced against the potential benefits of reducing recurrent P. vivax malaria and its associated morbidity and mortality.
Collapse
Affiliation(s)
- Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | - Jeanne-Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Mimika District Hospital, Timika, Papua, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Mimika District Hospital, Timika, Papua, Indonesia
| | - Nicholas M. Douglas
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Australia
| | | | - Nicholas M. Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Julie Anne Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
52
|
Matlani M, Kojom LP, Mishra N, Dogra V, Singh V. Severe vivax malaria trends in the last two years: a study from a tertiary care centre, Delhi, India. Ann Clin Microbiol Antimicrob 2020; 19:49. [PMID: 33126884 PMCID: PMC7602347 DOI: 10.1186/s12941-020-00393-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax, once considered benign species, is recently being recognised to be causing severe malaria like Plasmodium falciparum. In the present study, the authors report the trends in malaria severity in P. vivax among patients from a Delhi government hospital. The aim of the study was to understand the disease severity and the burden of severe vivax malaria. Methods A hospital based study was carried out from June 2017 to December 2018 at a tertiary care centre from Delhi, India. Patients were tested for malaria using peripheral blood smear (PBS) and/or rapid malaria antigen test (RMAT). The severe and non-severe vivax malaria categorization was done as per the WHO guidelines. Sociodemographic, clinic and paraclinical data were collected from patients and their medical records. Results Of the 205 patients, 177 (86.3%) had P. vivax infection, 22 (10.7%) had P. falciparum infection and six (2.9%) had mixed infection with both the species. Out of 177 P. vivax cases included in this study one or more manifestations of severe malaria was found in 58 cases (32.7%). Severe anaemia (56.9%), jaundice (15%) and significant bleeding (15%) were the most common complications reported in most of patients, along with thrombocytopenia. Conclusions In this study, it is evident that vivax malaria is emerging as the new severe disease in malaria patients, a significant shift in the paradigm of P. vivax pathogenesis. The spectrum of complications and alterations in the laboratory parameters in P. vivax clinical cases also indicate the recent shift in the disease severity.
Collapse
Affiliation(s)
- Monika Matlani
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Loick P Kojom
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Neelangi Mishra
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Vinita Dogra
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
53
|
Clark RL. Teratogen update: Malaria in pregnancy and the use of antimalarial drugs in the first trimester. Birth Defects Res 2020; 112:1403-1449. [PMID: 33079495 DOI: 10.1002/bdr2.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Malaria is a particular problem in pregnancy because of enhanced sensitivity, the possibility of placental malaria, and adverse effects on pregnancy outcome. Artemisinin-containing combination therapies (ACTs) are the most effective antimalarials known. WHO recommends 7-day quinine therapy for uncomplicated Plasmodium falciparum malaria in the first trimester despite the superior tolerability and efficacy of 3-day ACT regimens because artemisinins caused embryolethality and/or cardiovascular malformations at relatively low doses in rats, rabbits, and monkeys. The developmental toxicity of artesunate, artemether, and DHA were similar in rats but artesunate was embryotoxic at lower doses in rabbits (5 mg/kg/day) than artemether (no effect level = 25 mg/kg/day). In clinical studies in Africa, treatment with artemether-lumefantrine in the first trimester was observed to be highly efficacious and the miscarriage rate (≤3.1%) was similar to no antimalarial treatment (2.6%). When data from the first-trimester use of largely artesunate-based therapies in Thailand were pooled together, there was no difference in miscarriage rate compared to quinine. However, individually, artesunate-mefloquine was associated with a higher miscarriage rate (15/71 = 21%) compared to other artemisinin-based therapies including 7-day artesunate + clindamycin (2/50 = 4%) and quinine (92/842 = 11%). Thus, appropriate statistical comparisons of individual ACT groups are needed prior to assuming that they all have the same risk for developmental toxicity. Current limitations in the assessment of the safety of ACTs in the first trimester are a lack of exposures early in gestation (gestational weeks 6-7), limited postnatal evaluation for cardiovascular malformations, and the pooling of all ACTs for the assessment of risk.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, Saint Augustine, Florida, USA
| |
Collapse
|
54
|
Ashley EA, Poespoprodjo JR. Treatment and prevention of malaria in children. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:775-789. [PMID: 32946831 DOI: 10.1016/s2352-4642(20)30127-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 10/23/2022]
Abstract
Malaria disproportionately affects children younger than 5 years. Falciparum malaria is responsible for more than 200 000 child deaths per year in Africa and vivax malaria is well documented as a cause of severe anaemia and excess mortality in children in Asia and Oceania. For the treatment of malaria in children, paediatric dosing recommendations for several agents, including parenteral artesunate and dihydroartemisinin-piperaquine, have belatedly been shown to be suboptimal. Worsening antimalarial resistance in Plasmodium falciparum in the Greater Mekong Subregion threatens to undermine global efforts to control malaria. Triple antimalarial combination therapies are being evaluated to try to impede this threat. The RTS,S/AS01 vaccine gives partial protection against falciparum malaria and is being evaluated in large, pilot studies in Ghana, Malawi, and Kenya as a complementary tool to other preventive measures. Seasonal malaria chemoprevention in west Africa has resulted in declines in malaria incidence and deaths and there is interest in scaling up efforts by expanding the age range of eligible recipients. Preventing relapse in Plasmodium vivax infection with primaquine is challenging because treating children who have G6PD deficiency with primaquine can cause acute haemolytic anaemia. The safety of escalating dose regimens for primaquine is being studied to mitigate this risk.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Jeanne Rini Poespoprodjo
- Timika Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Department of Child Health, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
55
|
Rivera-Correa J, Yasnot-Acosta MF, Tovar NC, Velasco-Pareja MC, Easton A, Rodriguez A. Atypical memory B-cells and autoantibodies correlate with anemia during Plasmodium vivax complicated infections. PLoS Negl Trop Dis 2020; 14:e0008466. [PMID: 32687495 PMCID: PMC7392348 DOI: 10.1371/journal.pntd.0008466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/30/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Malaria caused by Plasmodium vivax is a highly prevalent infection world-wide, that was previously considered mild, but complications such as anemia have been highly reported in the past years. In mice models of malaria, anti-phosphatidylserine (anti-PS) autoantibodies, produced by atypical B-cells, bind to uninfected erythrocytes and contribute to anemia. In human patients with P. falciparum malaria, the levels of anti-PS, atypical B-cells and anemia are strongly correlated to each other. In this study, we focused on assessing the relationship between autoantibodies, different B-cell populations and hemoglobin levels in two different cohorts of P. vivax patients from Colombia, South America. In a first longitudinal cohort, our results show a strong inverse correlation between different IgG autoantibodies tested (anti-PS, anti-DNA and anti-erythrocyte) and atypical memory B-cells (atMBCs) with hemoglobin in both P. vivax and P. falciparum patients over time. In a second cross-sectional cohort, we observed a stronger relation between hemoglobin levels, atMBCs and autoantibodies in complicated P. vivax patients compared to uncomplicated ones. Altogether, these data constitute the first evidence of autoimmunity associating with anemia and complicated P. vivax infections, suggesting a role for its etiology through the expansion of autoantibody-secreting atMBCs. Malaria is one of the top global infections causing high mortality and morbidity every year. Plasmodium vivax is the most prevalent malarial infection, particularly in the region of the Americas. Complications associated with P. vivax, such as anemia, are a growing reported phenomenon, but the mechanisms leading to them are poorly understood. Here, we report the first evidence of autoantibodies and Atypical Memory B-cells correlating with anemia in two different cohorts of P. vivax patients, particularly during complicated infections. These findings point to Atypical Memory B-cells as key pathological players, possibly through the secretion of autoantibodies, and attributes a role for autoimmunity in mediating complications during P. vivax infections.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- New York University School of Medicine, New York, United States of America
- * E-mail: (JRC); (AR)
| | | | - Nubia Catalina Tovar
- New York University School of Medicine, New York, United States of America
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, Colombia
- Universidad del Sinú, Montería, Colombia
- Universidad de Cartagena, Bolívar, Colombia
| | | | - Alice Easton
- New York University School of Medicine, New York, United States of America
| | - Ana Rodriguez
- New York University School of Medicine, New York, United States of America
- * E-mail: (JRC); (AR)
| |
Collapse
|
56
|
Elmardi KA, Adam I, Malik EM, Abdelrahim TA, Elhag MS, Ibrahim AA, Babiker MA, Elhassan AH, Kafy HT, Elshafie AT, Nawai LM, Abdin MS, Kremers S. Prevalence and determinants of anaemia in women of reproductive age in Sudan: analysis of a cross-sectional household survey. BMC Public Health 2020; 20:1125. [PMID: 32680488 PMCID: PMC7367227 DOI: 10.1186/s12889-020-09252-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Anaemia is a global health problem and women in reproductive age (WRA) are amongst the most affected population. Its consequences include low birth weight and maternal mortality. This study aimed to assess the prevalence of anaemia and to identify its determinants in Sudanese women in reproductive age. METHODS A population-based cross-sectional study was conducted in Sudan in 2016. A multi-stage stratified cluster sampling design was executed with consideration of rural population, urban population, and internally displaced persons/refugees camps residents. All women in reproductive age (15-49 years), classified by pregnancy status, in the targeted households were surveyed and personal characteristic data were collected. Their haemoglobin level and malaria infection (using rapid diagnostic test, RDT) were assessed. The World Health Organization (WHO) haemoglobin level cut-off for defining anaemia and severe anaemia in pregnant and non-pregnant women was used. Logistic regression analyses were performed. RESULTS A total of 4271 women (WRA) of which 421 (9.9%) pregnant women (PW) were included in the study. The overall anaemia prevalence in WRA was 35.6%. It was 36.0 and 35.5% in PW and non-pregnant women (NPW), respectively. The average haemoglobin level was found to be 113.9 g/L (SD 16.3) and 123.2 g/L (SD 15.7) for PW and NPW respectively. Severe anaemia prevalence was 1.2% in each group. In the logistic regression model, anaemia was associated with malaria infection in PW (aOR 4.100, 95%CI 1.523-11.039, p = 0.003), NPW (aOR 2.776, 95%CI 1.889-4.080, p < 0.001), and WRA (aOR 2.885, 95%CI 2.021-4.119, p < 0.001). Other identified determinants of anaemia in NPW was living in camps (aOR 1.499, 95%CI 1.115-2.017, p = 0.007) and in WRA was being in the poorest economic class (aOR 1.436, 95%CI 1.065-1.936, p = 0.018). CONCLUSIONS Anaemia is a public health problem in Sudan. The study supported the association between malaria infection and anaemia, but not with low and moderate malaria transmission areas. Resources need to be allocated for all anaemic populations with special attention for the populations in most need and interventions need to be implemented based on local variations. Malaria control interventions, specifically case management, may have a major impact in reducing anaemia prevalence in low to moderate malaria transmission areas.
Collapse
Affiliation(s)
- Khalid Abdelmutalab Elmardi
- Health Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan.
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | | | - Tarig Abdalla Abdelrahim
- Communicable and Non-Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | - Mousab Siddig Elhag
- Communicable and Non-Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | - Abdalla Ahmed Ibrahim
- Communicable and Non-Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | - Mariam Adam Babiker
- Communicable and Non-Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | | | - Hmooda Toto Kafy
- Directorate General of Primary Health Care, Federal Ministry of Health, Khartoum, Sudan
| | - Azza Tageldin Elshafie
- Communicable and Non-Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | - Lubna Mohammed Nawai
- Communicable and Non-Communicable Diseases Control Directorate, Federal Ministry of Health, Khartoum, Sudan
| | - Mujahid Sheikhedin Abdin
- Health Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan
| | - Stef Kremers
- Department of Health Promotion, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht, The Netherlands
| |
Collapse
|
57
|
Nema S, Ghanghoria P, Bharti PK. Malaria Elimination in India: Bridging the Gap Between Control and Elimination. Indian Pediatr 2020; 57:613-617. [PMID: 32727937 PMCID: PMC7387259 DOI: 10.1007/s13312-020-1888-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
India observed a significant reduction in malaria cases in the previous year, reaffirming our trust and efficiency of the existing tools to achieve malaria elimination. On 25 April, 2019, countries around the world marked World Malaria Day under the theme "Zero malaria starts with me". This provides an opportunity to rejoice the success and re-evaluate ongoing challenges in the fight against this preventable and treatable parasitic disease. We highlight the potential gaps in the malaria elimination program, and underscore potential solutions and strategies to implement, improve and intensify the success of the national goal of malaria elimination by 2030.
Collapse
Affiliation(s)
- Shrikant Nema
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Pawan Ghanghoria
- Department of Pediatrics, Netaji Subhash Chandra Bose Medical College; Jabalpur, Madhya Pradesh, India
| | - Praveen Kumar Bharti
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India. Correspondence to: Dr. Praveen Kumar Bharti, Scientist 'E', Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health (NIRTH), DHR, Ministry of Health and Family Welfare, Government of India, Nagpur Road, PO - Garha, Jabalpur 482 003, Madhya Pradesh, India.
| |
Collapse
|
58
|
Sondén K, Rolling T, Wångdahl A, Ydring E, Vygen-Bonnet S, Kobbe R, Douhan J, Hammar U, Duijster J, de Gier B, Freedman J, Gysin N, Stark K, Stevens F, Vestergaard LS, Tegnell A, Färnert A. Malaria in Eritrean migrants newly arrived in seven European countries, 2011 to 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30722809 PMCID: PMC6386211 DOI: 10.2807/1560-7917.es.2019.24.5.1800139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Global migration has resulted in a large number of asylum applications in Europe. In 2014, clusters of Plasmodium vivax cases were reported among newly arrived Eritreans. This study aimed to assess malaria among Eritrean migrants in Europe from 2011 to 2016. We reviewed European migration numbers and malaria surveillance data for seven countries (Denmark, Germany, Netherlands, Norway, Sweden, Switzerland and the United Kingdom) which received 44,050 (94.3%) of 46,730 Eritreans seeking asylum in Europe in 2014. The overall number of malaria cases, predominantly P. vivax, increased significantly in 2014 compared to previous years, with the largest increases in Germany (44 P. vivax cases in 2013 vs 294 in 2014, p < 0.001) and Sweden (18 in 2013 vs 205 in 2014, p < 0.001). Overall, malaria incidence in Eritreans increased from 1-5 to 25 cases per 1,000, and was highest in male teenagers (50 cases/1,000). In conclusion, an exceptional increase of malaria cases occurred in Europe in 2014 and 2015, due to rising numbers of Eritreans with high incidence of P. vivax arriving in Europe. Our results demonstrate potential for rapid changes in imported malaria patterns, highlighting the need for improved awareness, surveillance efforts and timely healthcare in migrants.
Collapse
Affiliation(s)
- Klara Sondén
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Thierry Rolling
- Clinical Research Department, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Wångdahl
- Department of Infectious Diseases, Västmanland Hospital, Västerås, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Elsie Ydring
- Public Health Agency of Sweden, Stockholm, Sweden
| | | | - Robert Kobbe
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johan Douhan
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hammar
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Janneke Duijster
- Department for Early Warning and Surveillance Center for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Brechje de Gier
- Department for Early Warning and Surveillance Center for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Nicole Gysin
- Federal Office of Public Health, Bern, Switzerland
| | | | | | | | | | - Anna Färnert
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
59
|
Dash M, Pande V, Sinha A. Putative circumsporozoite protein (CSP) of Plasmodium vivax is considerably distinct from the well-known CSP and plays a role in the protein ubiquitination pathway. Gene 2020; 721S:100024. [PMID: 32550551 PMCID: PMC7285988 DOI: 10.1016/j.gene.2019.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
Amidst technical challenges which limit successful culture and genetic manipulation of P. vivax parasites, we used a computational approach to identify a critical target with evolutionary significance. The putative circumsporozoite protein on chromosome 13 of P. vivax (PvpuCSP)is distinct from the well-known vaccine candidate PfCSP. The aim of this study was to understand the role of PvpuCSP and its relatedness to the well-known CSP. The study revealed PvpuCSP as a membrane bound E3 ubiquitin ligase involved in ubiquitination. It has a species-specific tetra-peptide unit which is differentially repeated in various P. vivax strains. The PvpuCSP is different from CSP in terms of stage-specific expression and function. Since E3 ubiquitin ligases are known antimalarial drug targets targeting the proteasome pathway, PvpuCSP, with evolutionary connotation and a key role in orchestrating protein degradation in P. vivax, can be explored as a potential drug target. PvpuCSP is predicted as E3 ubiquitin ligase, a part of ubiquitination pathway. Tetra-peptide tandem repeat at C terminal of PvpuCSP is exclusive to P. vivax. Moderately expressed during all parasitic stages in host and vector Partially disordered protein with both structured domains and two distinct IDRs A transmembrane protein with highly conserved functional domain across Apicomplexa
Collapse
Affiliation(s)
- Manoswini Dash
- Division of Epidemiology and Clinical Research, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Abhinav Sinha
- Division of Epidemiology and Clinical Research, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
60
|
Mourão LC, Cardoso-Oliveira GP, Braga ÉM. Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Front Cell Infect Microbiol 2020; 10:262. [PMID: 32596165 PMCID: PMC7300196 DOI: 10.3389/fcimb.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Autoantibodies are frequently reported in patients with malaria, but whether they contribute to protection or to pathology is an issue of debate. A large body of evidence indicates that antibodies against host-self components are associated to malaria clinical outcomes such as cerebral malaria, renal dysfunction and anemia. Nonetheless, self-reactive immunoglobulins induced during an infection can also mediate protection. In light of these controversies, we summarize here the latest findings in our understanding of autoimmune responses in malaria, focusing on Plasmodium falciparum and Plasmodium vivax. We review the main targets of self-antibody responses in malaria as well as the current, but still limited, knowledge of their role in disease pathogenesis or protection.
Collapse
Affiliation(s)
| | | | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
61
|
Foy BH, Gonçalves BP, Higgins JM. Unraveling Disease Pathophysiology with Mathematical Modeling. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:371-394. [PMID: 31977295 DOI: 10.1146/annurev-pathmechdis-012419-032557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modeling has enabled fundamental advances in our understanding of the mechanisms of health and disease for centuries, since at least the time of William Harvey almost 500 years ago. Recent technological advances in molecular methods, computation, and imaging generate optimism that mathematical modeling will enable the biomedical research community to accelerate its efforts in unraveling the molecular, cellular, tissue-, and organ-level processes that maintain health, predispose to disease, and determine response to treatment. In this review, we discuss some of the roles of mathematical modeling in the study of human physiology and pathophysiology and some challenges and opportunities in general and in two specific areas: in vivo modeling of pulmonary function and in vitro modeling of blood cell populations.
Collapse
Affiliation(s)
- Brody H Foy
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bronner P Gonçalves
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - John M Higgins
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
62
|
Wångdahl A, Wyss K, Saduddin D, Bottai M, Ydring E, Vikerfors T, Färnert A. Severity of Plasmodium falciparum and Non-falciparum Malaria in Travelers and Migrants: A Nationwide Observational Study Over 2 Decades in Sweden. J Infect Dis 2020; 220:1335-1345. [PMID: 31175365 PMCID: PMC6743839 DOI: 10.1093/infdis/jiz292] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
Background The aim was to assess factors affecting disease severity in imported P. falciparum and non-falciparum malaria. Methods We reviewed medical records from 2793/3260 (85.7%) of all episodes notified in Sweden between 1995 and 2015 and performed multivariable logistic regression. Results Severe malaria according to WHO 2015 criteria was found in P. falciparum (9.4%), P. vivax (7.7%), P. ovale (5.3%), P. malariae (3.3%), and mixed P. falciparum episodes (21.1%). Factors associated with severe P. falciparum malaria were age <5 years and >40 years, origin in nonendemic country, pregnancy, HIV, region of diagnosis, and health care delay. Moreover, oral treatment of P. falciparum episodes with parasitemia ≥2% without severe signs at presentation was associated with progress to severe malaria with selected criteria. In non-falciparum, age >60 years, health care delay and endemic origin were identified as risk factors for severe disease. Among patients originating in endemic countries, a higher risk for severe malaria, both P. falciparum and non-falciparum, was observed among newly arrived migrants. Conclusions Severe malaria was observed in P. falciparum and non-falciparum episodes. Current WHO criteria for severe malaria may need optimization to better guide the management of malaria of different species in travelers and migrants in nonendemic areas.
Collapse
Affiliation(s)
- Andreas Wångdahl
- Division of Infectious Diseases, Department of Medicine Solna, Stockholm.,Department of Infectious Diseases, Västerås Hospital, Västerås
| | - Katja Wyss
- Division of Infectious Diseases, Department of Medicine Solna, Stockholm.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm
| | - Dashti Saduddin
- Division of Infectious Diseases, Department of Medicine Solna, Stockholm
| | - Matteo Bottai
- Unit of Biostatistics, Institute for Environmental Medicine, Karolinska Institutet, Stockholm
| | | | - Tomas Vikerfors
- Department of Infectious Diseases, Västerås Hospital, Västerås
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Stockholm.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm
| |
Collapse
|
63
|
Taylor WRJ, Kheng S, Muth S, Tor P, Kim S, Bjorge S, Topps N, Kosal K, Sothea K, Souy P, Char CM, Vanna C, Ly P, Khieu V, Christophel E, Kerleguer A, Pantaleo A, Mukaka M, Menard D, Baird JK. Hemolytic Dynamics of Weekly Primaquine Antirelapse Therapy Among Cambodians With Acute Plasmodium vivax Malaria With or Without Glucose-6-Phosphate Dehydrogenase Deficiency. J Infect Dis 2020; 220:1750-1760. [PMID: 31549159 PMCID: PMC6804333 DOI: 10.1093/infdis/jiz313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background Hemoglobin (Hb) data are limited in Southeast Asian glucose-6-phosphate dehydrogenase (G6PD) deficient (G6PD−) patients treated weekly with the World Health Organization–recommended primaquine regimen (ie, 0.75 mg/kg/week for 8 weeks [PQ 0.75]). Methods We treated Cambodians who had acute Plasmodium vivax infection with PQ0.75 and a 3-day course of dihydroartemisinin/piperaquine and determined the Hb level, reticulocyte count, G6PD genotype, and Hb type. Results Seventy-five patients (male sex, 63) aged 5–63 years (median, 24 years) were enrolled. Eighteen were G6PD deficient (including 17 with G6PD Viangchan) and 57 were not G6PD deficient; 26 had HbE (of whom 25 were heterozygous), and 6 had α-/β-thalassemia. Mean Hb concentrations at baseline (ie, day 0) were similar between G6PD deficient and G6PD normal patients (12.9 g/dL [range, 9‒16.3 g/dL] and 13.26 g/dL [range, 9.6‒16 g/dL], respectively; P = .46). G6PD deficiency (P = <.001), higher Hb concentration at baseline (P = <.001), higher parasitemia level at baseline (P = .02), and thalassemia (P = .027) influenced the initial decrease in Hb level, calculated as the nadir level minus the baseline level (range, −5.8–0 g/dL; mean, −1.88 g/dL). By day 14, the mean difference from the day 7 level (calculated as the day 14 level minus the day 7 level) was 0.03 g/dL (range, −0.25‒0.32 g/dL). Reticulocyte counts decreased from days 1 to 3, peaking on day 7 (in the G6PD normal group) and day 14 (in the G6PD deficient group); reticulocytemia at baseline (P = .001), G6PD deficiency (P = <.001), and female sex (P = .034) correlated with higher counts. One symptomatic, G6PD-deficient, anemic male patient was transfused on day 4. Conclusions The first PQ0.75 exposure was associated with the greatest decrease in Hb level and 1 blood transfusion, followed by clinically insignificant decreases in Hb levels. PQ0.75 requires monitoring during the week after treatment. Safer antirelapse regimens are needed in Southeast Asia. Clinical Trials Registration ACTRN12613000003774.
Collapse
Affiliation(s)
- Walter R J Taylor
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia.,Service de Médecine Tropicale et Humanitaire, Hôpitaux Universitaires de Genève, Switzerland.,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Sim Kheng
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Pety Tor
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven Bjorge
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Narann Topps
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Khem Kosal
- Pailin Referral Hospital, Pailin, Cambodia
| | | | - Phum Souy
- Anlong Veng Referral Hospital, Anlong Venh, Cambodia
| | - Chuor Meng Char
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Chan Vanna
- Pramoy Health Center, Veal Veng, Cambodia
| | - Po Ly
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Virak Khieu
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Eva Christophel
- WHO Western Pacific Regional Office, Manila, the Philippines
| | | | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Didier Menard
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Genetics and Resistance Group, Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - J Kevin Baird
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Eijkman Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
64
|
Barber BE, Grigg MJ, Piera K, Amante FH, William T, Boyle MJ, Minigo G, Dondorp AM, McCarthy JS, Anstey NM. Antiphosphatidylserine Immunoglobulin M and Immunoglobulin G Antibodies Are Higher in Vivax Than Falciparum Malaria, and Associated With Early Anemia in Both Species. J Infect Dis 2020; 220:1435-1443. [PMID: 31250022 DOI: 10.1093/infdis/jiz334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Anemia is a major complication of vivax malaria. Antiphosphatidylserine (PS) antibodies generated during falciparum malaria mediate phagocytosis of uninfected red blood cells that expose PS and have been linked to late malarial anemia. However, their role in anemia from non-falciparum Plasmodium species is not known, nor their role in early anemia from falciparum malaria. METHODS We measured PS immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in Malaysian patients with vivax, falciparum, knowlesi, and malariae malaria, and in healthy controls, and correlated antibody titres with hemoglobin. PS antibodies were also measured in volunteers experimentally infected with Plasmodium vivax and Plasmodium falciparum. RESULTS PS IgM and IgG antibodies were elevated in patients with vivax, falciparum, knowlesi, and malariae malaria (P < .0001 for all comparisons with controls) and were highest in vivax malaria. In vivax and falciparum malaria, PS IgM and IgG on admission correlated inversely with admission and nadir hemoglobin, controlling for parasitemia and fever duration. PS IgM and IgG were also increased in volunteers infected with blood-stage P. vivax and P. falciparum, and were higher in P. vivax infection. CONCLUSIONS PS antibodies are higher in vivax than falciparum malaria, correlate inversely with hemoglobin, and may contribute to the early loss of uninfected red blood cells found in malarial anemia from both species.
Collapse
Affiliation(s)
- Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Timothy William
- Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Michelle J Boyle
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
65
|
The Human Spleen in Malaria: Filter or Shelter? Trends Parasitol 2020; 36:435-446. [PMID: 32298631 DOI: 10.1016/j.pt.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
The human spleen is an immune sentinel and controls red blood cell (RBC) quality. By mechanically retaining subsets of infected RBCs, the spleen may reduce the pace at which the parasite biomass increases before the adaptive immune response operates. Conversely, the spleen may contribute to malaria pathogenesis, particularly anemia that is associated with splenomegaly. Large spleens may also shelter parasites in chronic carriers. Upon treatment with artemisinins, the spleen clears circulating parasites by pitting and releases 'once-infected' RBCs in circulation. This triggers postartesunate delayed hemolysis and explains the long post-treatment positivity of histidine-rich protein 2 (HRP2)-based dipsticks. Importantly, splenic retention of RBCs also applies to gametocytes, the clearance of which may be enhanced by stiffening them with drugs, a potential way to block malaria transmission.
Collapse
|
66
|
Dini S, Douglas NM, Poespoprodjo JR, Kenangalem E, Sugiarto P, Plumb ID, Price RN, Simpson JA. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: a retrospective cohort study. BMC Med 2020; 18:28. [PMID: 32075649 PMCID: PMC7031957 DOI: 10.1186/s12916-020-1497-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND An acute episode of malaria can be followed by multiple recurrent episodes either due to re-infection, recrudescence of a partially treated parasite or, in the case of Plasmodium vivax or P. ovale, relapse from the dormant liver stage of the parasite. The aim of this study was to quantify the impact of recurrent malaria episodes on morbidity and mortality in Papua, Indonesia. METHODS We undertook a retrospective analysis of routinely collected data from malaria patients attending the primary referral hospital in Papua, Indonesia, between April 2004 and December 2013. Multi-state modelling was used to estimate the effect of recurring malaria episodes on re-presentation and admission to hospital and death. The risks of early (≤ 14 days) and late (15 to 365 days) hospital admission and death were estimated separately in our study to distinguish between the direct and indirect effects of malaria recurrence on adverse outcomes. RESULTS A total of 68,361 patients were included in the analysis, of whom 37,168 (54.4%) presented initially with P. falciparum, 22,209 (32.5%) with P. vivax, and 8984 (13.1%) with other species. During 12 months of follow-up after each of the first four malaria episodes, 10,868 (15.9%) patients were admitted to hospital and 897 (1.3%) died. The risk of re-presenting to the hospital with malaria increased from 34.7% (95% CI 34.4%, 35.1%) at first episode to 58.6% (57.5%, 59.6%) following the third episode of malaria. After adjusting for co-factors, infection with P. vivax was a significant risk factor for re-presentation (hazard ratio (HR) = 1.48 (95% CI 1.44, 1.51)) and late admission to hospital (HR = 1.17 (1.11, 1.22)). Patients infected with P. falciparum had a greater overall rate of mortality within 14 days (HR = 1.54 (1.25, 1.92)), but after multiple episodes of malaria, there was a trend towards a higher rate of early death in patients infected with P. vivax compared to P. falciparum (HR = 1.91 (0.73, 4.97)). CONCLUSIONS Compared to patients initially infected with P. falciparum, those infected with P. vivax had significantly more re-presentations to hospital with malaria, and this contributed to a high risk of inpatient admission and death. These findings highlight the importance of radical cure of P. vivax to eliminate the dormant liver stages that trigger relapses.
Collapse
Affiliation(s)
- Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas M Douglas
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jeanne Rini Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia.,Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia.,Mimika District Health Authority, Timika, Papua, Indonesia
| | | | - Ian D Plumb
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
67
|
Douglas NM, Kenangalem E, Hasanuddin A, Anstey NM, Sugiarto P, Price RN, Poespoprodjo JR. Malaria-related hospitalization during childhood in Papua, Indonesia: A retrospective cohort study. PLoS One 2020; 15:e0228018. [PMID: 31995581 PMCID: PMC6988973 DOI: 10.1371/journal.pone.0228018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/05/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In endemic regions, the age distribution of malaria varies according to the infecting Plasmodium species. We aimed to delineate the pattern of malaria-related hospitalization from birth in Timika, Papua-an area co-endemic for P. falciparum and P. vivax. METHODS Between April 2004 and December 2013, infants born at Mitra Masyarakat Hospital, or presenting within the first 7 days of life, were enrolled retrospectively into a cohort study and followed passively using routinely-collected hospital surveillance data. Outcomes were stratified by the presence or absence of Plasmodium parasitemia and included re-presentation to hospital, requirement for hospital admission and death. RESULTS Overall, 11,408 infants were enrolled into the cohort. Median follow-up was 4.3 (maximum 9.7) years. In total, 7,847 (68.9%) infants made 90,766 re-presentations to hospital, 18,105 (19.9%) of which were associated with Plasmodium parasitemia. The incidence of re-presentations with malaria during the first year of life was 213 per 1,000 person-years (py) for P. vivax and 79 per 1,000py for P. falciparum (Incidence Rate Ratio (IRR) = 2.69, 95% Confidence Interval (95%CI): 2.48-2.92). After the age of 5 years, the incidence of P. vivax had fallen to 77/1,000py and the incidence of P. falciparum had risen to 95/1,000py (IRR = 0.80, 95%CI: 0.73-0.88). Overall, 79.7% (14,431/18,105) of malaria re-presentations were recurrences rather than initial infections. Malaria accounted for 31.7% (2,126/3,120) of all hospital admissions. The infant mortality rate in this study was 52 deaths per 1,000 live births. Beyond the early neonatal period, 13.4% of deaths were associated with Plasmodium parasitemia. CONCLUSIONS In Papua, Indonesia, malaria is a major cause of hospital presentation and admission in early life. The initial predominance of P. vivax over P. falciparum inverts after five years of age. Malaria is directly associated with nearly one in seven deaths after the early neonatal period.
Collapse
Affiliation(s)
- Nicholas M. Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Division of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia
- * E-mail:
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Mimika District Health Authority, Timika, Papua, Indonesia
| | - Afdhal Hasanuddin
- Department of Paediatrics, Rumah Sakit Mitra Masyarakat, Timika, Papua, Indonesia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Division of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia
| | - Paulus Sugiarto
- Department of Paediatrics, Rumah Sakit Mitra Masyarakat, Timika, Papua, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jeanne Rini Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Paediatrics, Rumah Sakit Umum Daerah, Kabupaten Mimika, Timika, Papua, Indonesia
| |
Collapse
|
68
|
Devine A, Pasaribu AP, Teferi T, Pham HT, Awab GR, Contantia F, Nguyen TN, Ngo VT, Tran TH, Hailu A, Gilchrist K, Green JA, Koh GCKW, Thriemer K, Taylor WRJ, Day NPJ, Price RN, Lubell Y. Provider and household costs of Plasmodium vivax malaria episodes: a multicountry comparative analysis of primary trial data. Bull World Health Organ 2019; 97:828-836. [PMID: 31819291 PMCID: PMC6883272 DOI: 10.2471/blt.18.226688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To determine household and health-care provider costs associated with Plasmodium vivax infection across a range of endemic settings. METHODS We collected cost data alongside three multicentre clinical trials of P. vivax treatment in Afghanistan, Brazil, Colombia, Ethiopia, Indonesia, Philippines, Peru, Thailand and Viet Nam conducted between April 2014 to December 2017. We derived household costs from trial participant surveys administered at enrolment and again 2 weeks later to determine the costs of treatment and transportation, and the number of days that patients and their household caregivers were unable to undertake their usual activities. We determined costs of routine care by health-care providers by micro-costing the resources used to diagnose and treat P. vivax at the study sites. FINDINGS The mean total household costs ranged from 8.7 United States dollars (US$; standard deviation, SD: 4.3) in Afghanistan to US$ 254.7 (SD: 148.4) in Colombia. Across all countries, productivity losses were the largest household cost component, resulting in mean indirect costs ranging from US$ 5.3 (SD: 3.0) to US$ 220.8 (SD: 158.40). The range of health-care provider costs for routine care was US$ 3.6-6.6. The cost of administering a glucose-6-phosphate-dehydrogenase rapid diagnostic test, ranged from US$ 0.9 to 13.5, consistently lower than the costs of the widely-used fluorescent spot test (US$ 6.3 to 17.4). CONCLUSION An episode of P. vivax malaria results in high costs to households. The costs of diagnosing and treating P. vivax are important inputs for future cost-effectiveness analyses to ensure optimal allocation of resources for malaria elimination.
Collapse
Affiliation(s)
- Angela Devine
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Northern Territory 0811, Australia
| | | | | | - Huong-Thu Pham
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Viet-Thanh Ngo
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - Tinh-Hien Tran
- Oxford University Clinical Research Unit, University of Oxford, Oxford, England
| | - Asrat Hailu
- School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kim Gilchrist
- GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Justin A Green
- GlaxoSmithKline Research & Development, Uxbridge, England
| | - Gavin CKW Koh
- GlaxoSmithKline Research & Development, Uxbridge, England
| | - Kamala Thriemer
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Northern Territory 0811, Australia
| | - Walter RJ Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Northern Territory 0811, Australia
| | - Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
69
|
Patriani D, Arguni E, Kenangalem E, Dini S, Sugiarto P, Hasanuddin A, Lampah DA, Douglas NM, Anstey NM, Simpson JA, Price RN, Poespoprodjo JR. Early and late mortality after malaria in young children in Papua, Indonesia. BMC Infect Dis 2019; 19:922. [PMID: 31666012 PMCID: PMC6820991 DOI: 10.1186/s12879-019-4497-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In southern Papua, Indonesia, malaria is highly prevalent in young children and is a significant cause of morbidity and early mortality. The association between malaria and delayed mortality is unknown. METHODS Routinely-collected hospital surveillance data from southern Papua, Indonesia, were used to assess the risk of recurrent malaria and mortality within 12 months of an initial presentation with malaria in all children younger than 5 years old attending the local hospital. Analysis was primarily by Kaplan Meier and Cox regression methods. RESULTS In total 15,716 children presenting with malaria between April 2004 and December 2013 were included in the analysis; 6184 (39.3%) with Plasmodium falciparum, 7499 (47.7%) with P. vivax, 203 (1.3%) with P. malariae, 3 with P. ovale and 1827 (11.6%) with mixed infections. Within 1 year, 48.4% (7620/15,716) of children represented a total of 16,957 times with malaria (range 1 to 11 episodes), with the incidence of malaria being greater in patients initially presenting with P. vivax infection (1334 [95%CI 1307-1361] per 1000 patient years) compared to those with P. falciparum infection (920 [896-944]). In total 266 (1.7%) children died within 1 year of their initial presentation, 129 (48.5%) within 30 days and 137 (51.5%) between 31 and 365 days. There was no significant difference in the mortality risk in patients infected with P. vivax versus P. falciparum either before 30 days (Hazard Ratio (HR) 1.02 [0.69,1.49]) or between 31 and 365 days (HR = 1.30 [0.90,1.88]). Children who died had a greater incidence of malaria, 2280 [95%CI 1946-2671] per 1000 patient years preceding their death, compared to 1141 [95%CI 1124-1158] per 1000 patient years in those surviving. CONCLUSIONS Children under-5 years old with P. vivax malaria, are at significant risk of multiple representations with malaria and of dying within 1 year of their initial presentation. Preventing recurrent malaria must be a public health priority in this vulnerable population.
Collapse
Affiliation(s)
- Dewi Patriani
- grid.8570.aDepartment of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Kesehatan no.1, Sekip, Yogyakarta, 55284 Indonesia
| | - Eggi Arguni
- grid.8570.aDepartment of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Kesehatan no.1, Sekip, Yogyakarta, 55284 Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Jl. SP2-SP5, RSMM Area, Timika, Papua 99910 Indonesia ,Mimika District Hospital, Jl. Yos Sudarso, Timika, Papua 99910 Indonesia
| | - Saber Dini
- 0000 0001 2179 088Xgrid.1008.9Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, 207 Bouverie Street, The University of Melbourne, Melbourne, Victoria 3010 Australia
| | - Paulus Sugiarto
- Mitra Masyarakat Hospital, Jl. SP2-SP5-Charitas, Timika, 99910 Indonesia
| | - Afdhal Hasanuddin
- Mitra Masyarakat Hospital, Jl. SP2-SP5-Charitas, Timika, 99910 Indonesia
| | - Daniel Adrian Lampah
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Jl. SP2-SP5, RSMM Area, Timika, Papua 99910 Indonesia
| | - Nicholas M. Douglas
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT 0811 Australia
| | - Nicholas M. Anstey
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT 0811 Australia ,grid.240634.7Division of Medicine, Royal Darwin Hospital, Darwin, NT 0810 Australia
| | - Julie Anne Simpson
- Mitra Masyarakat Hospital, Jl. SP2-SP5-Charitas, Timika, 99910 Indonesia
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT 0811 Australia ,0000 0004 1936 8948grid.4991.5Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, OX37LJ, Oxford, United Kingdom ,0000 0004 1937 0490grid.10223.32Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jeanne Rini Poespoprodjo
- grid.8570.aDepartment of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Kesehatan no.1, Sekip, Yogyakarta, 55284 Indonesia ,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Jl. SP2-SP5, RSMM Area, Timika, Papua 99910 Indonesia ,Mimika District Hospital, Jl. Yos Sudarso, Timika, Papua 99910 Indonesia
| |
Collapse
|
70
|
Humoral immunity prevents clinical malaria during Plasmodium relapses without eliminating gametocytes. PLoS Pathog 2019; 15:e1007974. [PMID: 31536608 PMCID: PMC6752766 DOI: 10.1371/journal.ppat.1007974] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify ‘bona fide’ relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi–rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes. Plasmodium vivax contributes significantly to global malaria morbidity and remains a major obstacle for malaria elimination due to its ability to form dormant stages in the liver. These forms can become activated to cause relapsing blood-stage infections. Relapses remain poorly understood because it is difficult to verify whether P. vivax blood-stage infections in patients are due to new infections or relapses in most cases. Here, we use a nonhuman primate model of Plasmodium vivax malaria in concert with state-of-the-art immunological and molecular techniques to assess pathogenesis, host responses, and circulating gametocyte levels during relapses. We found that relapses were clinically silent compared to initial infections, and they were associated with a robust memory B cell response. This response resulted in the production of antibodies that were able to mediate clearance of asexual parasites. Despite this rapid immune protection, the sexual-stage gametocytes continued to circulate. Our study provides mechanistic insights into the host-parasite interface during Plasmodium relapse infections and demonstrates that clinically silent relapses can harbor gametocytes that may be infectious to mosquitoes.
Collapse
|
71
|
Oyong DA, Loughland JR, SheelaNair A, Andrew D, Rivera FDL, Piera KA, William T, Grigg MJ, Barber BE, Haque A, Engwerda CR, McCarthy JS, Anstey NM, Boyle MJ. Loss of complement regulatory proteins on red blood cells in mild malarial anaemia and in Plasmodium falciparum induced blood-stage infection. Malar J 2019; 18:312. [PMID: 31533836 PMCID: PMC6749675 DOI: 10.1186/s12936-019-2962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Anaemia is a major consequence of malaria, caused by the removal of both infected and uninfected red blood cells (RBCs) from the circulation. Complement activation and reduced expression of complement regulatory proteins (CRPs) on RBCs are an important pathogenic mechanism in severe malarial anaemia in both Plasmodium falciparum and Plasmodium vivax infection. However, little is known about loss of CRPs on RBCs during mild malarial anaemia and in low-density infection. Methods The expression of CRP CR1, CD55, CD59, and the phagocytic regulator CD47, on uninfected normocytes and reticulocytes were assessed in individuals from two study populations: (1) P. falciparum and P. vivax-infected patients from a low transmission setting in Sabah, Malaysia; and, (2) malaria-naïve volunteers undergoing P. falciparum induced blood-stage malaria (IBSM). For clinical infections, individuals were categorized into anaemia severity categories based on haemoglobin levels. For IBSM, associations between CRPs and haemoglobin level were investigated. Results CRP expression on RBC was lower in Malaysian individuals with P. falciparum and P. vivax mild malarial anaemia compared to healthy controls. CRP expression was also reduced on RBCs from volunteers during IBSM. Reduction occurred on normocytes and reticulocytes. However, there was no significant association between reduced CRPs and haemoglobin during IBSM. Conclusions Removal of CRPs occurs on both RBCs and reticulocytes during Plasmodium infection even in mild malarial anaemia and at low levels of parasitaemia.
Collapse
Affiliation(s)
- Damian A Oyong
- Menzies School of Health Research, Darwin, NT, Australia.,Charles Darwin University, Darwin, NT, Australia
| | | | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Kim A Piera
- Menzies School of Health Research, Darwin, NT, Australia
| | - Timothy William
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,Gleneagles Medical Centre, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Darwin, NT, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, NT, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Michelle J Boyle
- Menzies School of Health Research, Darwin, NT, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Burnet Institute, Melbourne, VIC, Australia.
| |
Collapse
|
72
|
Kotepui M, Kotepui KU. Prevalence and laboratory analysis of malaria and dengue co-infection: a systematic review and meta-analysis. BMC Public Health 2019; 19:1148. [PMID: 31522680 PMCID: PMC6745805 DOI: 10.1186/s12889-019-7488-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022] Open
Abstract
Background A clear understanding of the epidemiology of malaria and dengue co-infection is essential for informed decisions on appropriate control strategies for dengue and malaria. This systematic review synthesized evidence on the relationship of malaria and dengue co-infection and related it to alterations in platelet, hemoglobin, hematocrit, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels when compared to malaria mono-infection. Methods A systematic review in accordance with PRISMA guidelines was conducted. All published articles available in PubMed and Web of Science (ISI) databases before October 21, 2017 were recruited. All epidemiological studies except case reports on the prevalence or incidence of malaria and dengue co-infection among patients visiting hospitals with febrile illness were included. Studies that involved conference abstracts, protocols, systematic reviews, only mono-dengue or mono-malaria infections, and only animal or in vitro studies were excluded after screening the titles, abstracts, and body texts. Studies were additionally excluded after full text review when they lacked epidemiologic data on malaria and dengue co-infection. Two reviewers independently screened, reviewed, and assessed all the studies. Cochrane Q (Chi-square) and Moran’s I2 were used to assess heterogeneity, and the funnel plot was used to examine publication bias. The summary odds ratio (OR) and 95% confidence intervals (CI) were estimated using a fixed-effects model. Thirteen cross-sectional and two retrospective studies were eligible to be included in the systematic review and meta-analysis. Results Out of the 2269 citations screened, 15 articles were eligible to be included in the systematic review and meta-analysis. The 15 studies involved 13,798 (10,373 cases with malaria and 3425 with dengue) patients in 9 countries. Thirteen studies compared the incidence and odds of Plasmodium sp. infection, five studies compared the odds of mean platelet, three studies compared Plasmodium parasite density, and four studies compared the odds of hemoglobin, hematocrit, AST, and ALT levels among co-infected groups and single-malaria-infected groups. Conclusions This study showed that dengue and malaria co-infection was associated with decreased odds of malaria infection, malaria parasitemia, AST, and ALT levels when compared to malaria mono-infection. However, malaria and dengue co-infection was associated with increased odds of platelet and hemoglobin levels when compared to malaria mono-infection. Electronic supplementary material The online version of this article (10.1186/s12889-019-7488-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manas Kotepui
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand.
| | - Kwuntida Uthaisar Kotepui
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
73
|
Epelboin L, Rapp C, Faucher JF, Méchaï F, Bottieau E, Matheron S, Malvy D, Caumes E. Management and treatment of uncomplicated imported malaria in adults. Update of the French malaria clinical guidelines. Med Mal Infect 2019; 50:194-212. [PMID: 31493957 DOI: 10.1016/j.medmal.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- L Epelboin
- Unité des maladies infectieuses et tropicales, centre hospitalier Andrée Rosemon, avenue des Flamboyants, 97300 Cayenne, French Guiana.
| | - C Rapp
- Hôpital Américain de Paris, 63, boulevard Victor Hugo, 92200 Neuilly, France; Hôpital d'instruction des armées Bégin, 69, avenue de Paris, 94163 Saint-Mandé, France
| | - J F Faucher
- Service des maladies infectieuses et tropicales and UMR 1094, CHU Dupuytren 2, 87042 Limoges, France
| | - F Méchaï
- Service des maladies infectieuses et tropicales, hôpital Avicenne, 93000 Bobigny, France
| | - E Bottieau
- Institute of tropical medicine, Antwerp, Belgium
| | - S Matheron
- Service des maladies infectieuses et tropicales, CHU Bichat - Claude Bernard, 75018 Paris, France
| | - D Malvy
- Service des maladies infectieuses et tropicales, CHU Bordeaux, 33000 Bordeaux France
| | - E Caumes
- Hôpital Pitié-Salpêtrière, 43-87, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
74
|
Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, Alemu SG, Añez A, Anstey NM, Aseffa A, Assefa A, Awab GR, Baird JK, Barber BE, Borghini-Fuhrer I, D'Alessandro U, Dahal P, Daher A, de Vries PJ, Erhart A, Gomes MSM, Grigg MJ, Hwang J, Kager PA, Ketema T, Khan WA, Lacerda MVG, Leslie T, Ley B, Lidia K, Monteiro WM, Pereira DB, Phan GT, Phyo AP, Rowland M, Saravu K, Sibley CH, Siqueira AM, Stepniewska K, Taylor WRJ, Thwaites G, Tran BQ, Hien TT, Vieira JLF, Wangchuk S, Watson J, William T, Woodrow CJ, Nosten F, Guerin PJ, White NJ, Price RN. The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis. BMC Med 2019; 17:151. [PMID: 31366382 PMCID: PMC6670141 DOI: 10.1186/s12916-019-1386-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax. METHODS A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model. RESULTS In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p < 0.001). On day 42, patients with recurrent parasitaemia had a mean haemoglobin concentration - 0.72 g/dL [- 0.90, - 0.54] lower than patients without recurrence (p < 0.001). Seven days after starting primaquine, G6PD normal patients had a 0.3% (1/389) risk of clinically significant haemolysis (fall in haemoglobin > 25% to < 7 g/dL) and a 1% (4/389) risk of a fall in haemoglobin > 5 g/dL. CONCLUSIONS Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals. TRIAL REGISTRATION This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia. .,WorldWide Antimalarial Resistance Network (WWARN), Clinical Module, Darwin, Northern Territory, Australia.
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas M Douglas
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Sisay G Alemu
- Addis Ababa University, Addis Ababa, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Arletta Añez
- Departamento de Salud Pública, Universidad de Barcelona, Barcelona, Spain.,Organización Panamericana de Salud, Oficina de País Bolivia, La Paz, Bolivia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ghulam R Awab
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | | | | | - Prabin Dahal
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - André Daher
- Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Vice-presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Peter J de Vries
- Department of Internal Medicine, Tergooi Hospital, Hilversum, the Netherlands
| | - Annette Erhart
- Medical Research Council Unit The Gambia at LSTMH, Fajara, The Gambia
| | - Margarete S M Gomes
- Superintendência de Vigilância em Saúde do Estado do Amapá - SVS/AP, Macapá, Amapá, Brazil.,Universidade Federal do Amapá - UNIFAP, Macapá, Amapá, Brazil
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, USA.,Global Health Group, University of California San Francisco, San Francisco, USA
| | - Piet A Kager
- Centre for Infection and Immunity Amsterdam (CINEMA), Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, Amsterdam, the Netherlands
| | - Tsige Ketema
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Biology, Jimma University, Jimma, Ethiopia
| | - Wasif A Khan
- International Centre for Diarrheal Diseases and Research, Dhaka, Bangladesh
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Manaus, Brazil
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,HealthNet-TPO, Kabul, Afghanistan
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kartini Lidia
- The Department of Pharmacology and Therapy, Faculty of Medicine, Nusa Cendana University, Kupang, Indonesia
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Universidade do Estado do Amazonas, Manaus, Brazil
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, Rondônia, Brazil.,Universidade Federal de Rondônia (UNIR), Porto Velho, Rondônia, Brazil
| | - Giao T Phan
- Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, Amsterdam, the Netherlands.,Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Aung P Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mark Rowland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kavitha Saravu
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka, India.,Manipal McGill Center for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Carol H Sibley
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Department of Genome Sciences, University of Washington, Seattle, USA
| | - André M Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Walter R J Taylor
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Guy Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Binh Q Tran
- Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran T Hien
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - José Luiz F Vieira
- Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Pará, Brazil
| | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - James Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.,Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia. .,WorldWide Antimalarial Resistance Network (WWARN), Clinical Module, Darwin, Northern Territory, Australia. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. .,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
75
|
Hockham C, Ekwattanakit S, Bhatt S, Penman BS, Gupta S, Viprakasit V, Piel FB. Estimating the burden of α-thalassaemia in Thailand using a comprehensive prevalence database for Southeast Asia. eLife 2019; 8:40580. [PMID: 31120421 PMCID: PMC6533055 DOI: 10.7554/elife.40580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Severe forms of α-thalassaemia, haemoglobin H disease and haemoglobin Bart’s hydrops fetalis, are an important public health concern in Southeast Asia. Yet information on the prevalence, genetic diversity and health burden of α-thalassaemia in the region remains limited. We compiled a geodatabase of α-thalassaemia prevalence and genetic diversity surveys and, using geostatistical modelling methods, generated the first continuous maps of α-thalassaemia mutations in Thailand and sub-national estimates of the number of newborns with severe forms in 2020. We also summarised the current evidence-base for α-thalassaemia prevalence and diversity for the region. We estimate that 3595 (95% credible interval 1,717–6,199) newborns will be born with severe α-thalassaemia in Thailand in 2020, which is considerably higher than previous estimates. Accurate, fine-scale epidemiological data are necessary to guide sustainable national and regional health policies for α-thalassaemia management. Our maps and newborn estimates are an important first step towards this aim. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Carinna Hockham
- The George Institute for Global Health, Sydney, Australia.,Evolutionary Ecology of Infectious Disease Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Supachai Ekwattanakit
- Thalassaemia Centre, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, United Kingdom
| | - Bridget S Penman
- Warwick Infectious Disease Epidemiology Research, School of Life Sciences, Warwick University, Coventry, United Kingdom
| | - Sunetra Gupta
- Evolutionary Ecology of Infectious Disease Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Vip Viprakasit
- Thalassaemia Centre, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Paediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Frédéric B Piel
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
76
|
Aderibigbe B, Mhlwatika Z, Nwamadi M, Balogun M, Matshe W. Synthesis, characterization and in vitro analysis of polymer-based conjugates containing dihydrofolate reductase inhibitors. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
77
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
78
|
Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA, Hay SI, Gething PW, Battle KE, Howes RE. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis 2019; 13:e0007140. [PMID: 30703083 PMCID: PMC6372205 DOI: 10.1371/journal.pntd.0007140] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 01/07/2019] [Indexed: 01/12/2023] Open
Abstract
Effective malaria control strategies require an accurate understanding of the epidemiology of locally transmitted Plasmodium species. Compared to Plasmodium falciparum infection, Plasmodium vivax has a lower asexual parasitaemia, forms dormant liver-stages (hypnozoites), and is more transmissible. Hence, treatment and diagnostic policies aimed exclusively at P. falciparum are far less efficient against endemic P. vivax. Within sub-Saharan Africa, malaria control programmes justly focus on reducing the morbidity and mortality associated with P. falciparum. However, the recent emphasis on malaria elimination and increased accessibility of more sensitive diagnostic tools have revealed greater intricacies in malaria epidemiology across the continent. Since 2010, the number of studies identifying P. vivax endemic to Africa has expanded considerably, with 88 new scientific reports published since a review of evidence in 2015, approximately doubling the available data. There is evidence of P. vivax in all regions of Africa, apparent from infected vectors, clinical cases, serological indicators, parasite prevalence, exported infections, and P. vivax-infected Duffy-negative individuals. Where the prevalence of microscopic parasitaemia is low, a greater proportion of P. vivax infections were observed relative to P. falciparum. This evidence highlights an underlying widespread presence of P. vivax across all malaria-endemic regions of Africa, further complicating the current practical understanding of malaria epidemiology in this region. Thus, ultimate elimination of malaria in Africa will require national malaria control programmes to adopt policy and practice aimed at all human species of malaria.
Collapse
Affiliation(s)
- Katherine A. Twohig
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,* E-mail: (KAT); (REH)
| | - Daniel A. Pfeffer
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter A. Zimmerman
- The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Peter W. Gething
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine E. Battle
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rosalind E. Howes
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,* E-mail: (KAT); (REH)
| |
Collapse
|
79
|
Gebreyesus SH, Endris BS, Beyene GT, Farah AM, Elias F, Bekele HN. Anaemia among adolescent girls in three districts in Ethiopia. BMC Public Health 2019; 19:92. [PMID: 30665390 PMCID: PMC6341533 DOI: 10.1186/s12889-019-6422-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adolescence is characterized by rapid growth and development with a significantly increased need for macro and micronutrients. However, there is little empirical evidence on the burden of anaemia among adolescent girls in developing countries such as Ethiopia. This study aims to address this gap by evaluating the magnitude of anaemia with an aim to guide design of intervention modalities to address anaemia among adolescent girls. METHODS The study employed a community based cross sectional design. The study was conducted on weekends to capture both in school and out of school adolescent girls. Data was collected from a total 1323 adolescent girls. From each district, we randomly selected villages and ensured that the sampled households had a range geographical spread (lowlands, highlands) within the larger category of rural and urban. We performed anaemia testing using HemoCue B-Haemoglobin analyser. We applied a complex survey data analysis method to estimate the level of anaemia. The hemoglobin level was adjusted for altitude and smoking status. We ran a logistic regression model to evaluate predictors of anaemia. RESULTS The overall anaemia prevalence ranged from 24 to 38%, with an average rate of 29%. Less than half of the girls heard the term anaemia, and about one third knew the relationship between anaemia and the intake of iron rich foods. The risk of anaemia is higher among adolescent girls in their early adolescence period (10-14 years) (Adjusted Odds Ratio (AOR); 1.98; 95% CI; 1.03, 3.82] and among adolescent girls who lived in moderately food insecure households (AOR 1.48; 95% CI; 1.05-2.09). However, knowing the term "anaemia" was found to be protective against the risk of anaemia. CONCLUSIONS The risk of anaemia was particularly high among adolescent girls in their early age and among those living in food insecure households. The prevalence of anaemia among adolescent girls is a moderate public health problem. According to the WHO set criteria, the districts could be candidates for intermittent iron and Folic acid supplementation program.
Collapse
Affiliation(s)
- Seifu Hagos Gebreyesus
- Department of Reproductive Health and Health Service Management, School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bilal Shikur Endris
- Department of Reproductive Health and Health Service Management, School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getahun Teka Beyene
- World Health Organization (WHO) Ethiopia Country office, Addis Ababa, Ethiopia
| | - Alinoor Mohamed Farah
- School of Public Health, College of Health Sciences, Sodo University, Sodo, Ethiopia
| | - Fekadu Elias
- Department of Public Health, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia
| | | |
Collapse
|
80
|
Oyong DA, Kenangalem E, Poespoprodjo JR, Beeson JG, Anstey NM, Price RN, Boyle MJ. Loss of complement regulatory proteins on uninfected erythrocytes in vivax and falciparum malaria anemia. JCI Insight 2018; 3:124854. [PMID: 30429373 PMCID: PMC6303009 DOI: 10.1172/jci.insight.124854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
Anemia is a major complication of malaria, driven largely by loss of uninfected RBCs during infection. RBC clearance through loss of complement regulatory proteins (CRPs) is a significant contributor to anemia in Plasmodium falciparum infection, but its role in Plasmodium vivax infection is unknown. CRP loss increases RBC susceptibility to macrophage clearance, a process that is also regulated by CD47. We compared CRPs and CD47 expression on infected and uninfected RBCs in adult patients with vivax and falciparum malaria and different anemia severities from Papua, Indonesia. Complement activation and parasite-specific complement-fixing antibodies were measured by ELISA. Levels of CR1 and CD55 were reduced in severe anemia in both falciparum and vivax malaria. Loss of CRPs and CD47 was restricted to uninfected RBCs, with infected RBCs having higher expression. There was no association among complement-fixing antibodies, complement activation, and CRP loss. Our findings demonstrate that CRP loss is a pan-species, age-independent mechanism of malarial anemia. Higher levels of CRP and CD47 expression on infected RBCs suggest that parasites are protected from complement-mediated destruction and macrophage clearance. Lack of associations between protective antibodies and CRP loss highlight that complement pathogenic and protective pathways are distinct mechanisms during infection.
Collapse
Affiliation(s)
- Damian A. Oyong
- Menzies School of Health Research and,Charles Darwin University, Darwin, North Territory, Australia
| | - Enny Kenangalem
- Mimika District Health Authority and,Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Jeanne R. Poespoprodjo
- Mimika District Health Authority and,Papuan Health and Community Development Foundation, Timika, Papua, Indonesia.,Department of Paediatrics, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Central Java, Indonesia
| | - James G. Beeson
- Burnet Institute, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Microbiology and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Ric N. Price
- Menzies School of Health Research and,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Michelle J. Boyle
- Menzies School of Health Research and,Burnet Institute, Melbourne, Victoria, Australia
| |
Collapse
|
81
|
Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vector Borne Dis 2018; 55:1-8. [PMID: 29916441 DOI: 10.4103/0972-9062.234620] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Malaria, caused by the protozoan parasites of the genus Plasmodium, is a major health problem in many countries of the world. Five parasite species namely, Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, cause malaria in humans. Of these, P. falciparum and P. vivax are the most prevalent and account for the majority of the global malaria cases. In most areas of Africa, P. vivax infection is essentially absent because of the inherited lack of Duffy antigen receptor for chemokines on the surface of red blood cells that is involved in the parasite invasion of erythrocytes. Therefore, in Africa, most malaria infections are by P. falciparum and the highest burden of P. vivax infection is in Southeast Asia and South America. Plasmodium falciparum is the most virulent and as such, it is responsible for the majority of malarial mortality, particularly in Africa. Although, P. vivax infection has long been considered to be benign, recent studies have reported life-threatening consequences, including acute respiratory distress syndrome, cerebral malaria, multi-organ failure, dyserythropoiesis and anaemia. Despite exhibiting low parasite biomass in infected people due to parasite's specificity to infect only reticulocytes, P. vivax infection triggers higher inflammatory responses and exacerbated clinical symptoms than P. falciparum, such as fever and chills. Another characteristic feature of P. vivax infection, compared to P. falciparum infection, is persistence of the parasite as dormant liver-stage hypnozoites, causing recurrent episodes of malaria. This review article summarizes the published information on P. vivax epidemiology, drug resistance and pathophysiology.
Collapse
Affiliation(s)
- Kiran K Dayananda
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE University, Mangaluru, Karnataka, India
| | - Rajeshwara N Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Karnataka, India
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
82
|
Abstract
Malaria is a major cause of anaemia in tropical areas. Malaria infection causes haemolysis of infected and uninfected erythrocytes and bone marrow dyserythropoiesis which compromises rapid recovery from anaemia. In areas of high malaria transmission malaria nearly all infants and young children, and many older children and adults have a reduced haemoglobin concentration as a result. In these areas severe life-threatening malarial anaemia requiring blood transfusion in young children is a major cause of hospital admission, particularly during the rainy season months when malaria transmission is highest. In severe malaria, the mortality rises steeply below an admission haemoglobin of 3 g/dL, but it also increases with higher haemoglobin concentrations approaching the normal range. In the management of severe malaria transfusion thresholds remain uncertain. Prevention of malaria by vector control, deployment of insecticide-treated bed nets, prompt and accurate diagnosis of illness and appropriate use of effective anti-malarial drugs substantially reduces the burden of anaemia in tropical countries.
Collapse
Affiliation(s)
- Nicholas J White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
83
|
Kondrashin AV, Morozova LF, Stepanova EV, Turbabina NA, Maksimova MS, Morozov EN. On the epidemiology of Plasmodium vivax malaria: past and present with special reference to the former USSR. Malar J 2018; 17:346. [PMID: 30286752 PMCID: PMC6172834 DOI: 10.1186/s12936-018-2495-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022] Open
Abstract
Presently, many malaria-endemic countries in the world are transitioning towards malaria elimination. Out of the 105 countries with ongoing malaria transmission, 10 countries are classified as being in the pre-elimination phase of malaria control, and 9 countries are in the malaria elimination stage, whereas 7 countries are classified as being in the prevention of introduction phase. Between 2000 and 2015, 17 countries eliminated malaria (i.e., attained zero indigenous cases for 3 years or more). Seven countries were certified by the WHO as having successfully eliminated malaria. The purpose of this review was to analyse the epidemiological characteristics of vivax malaria during the various stages of malaria eradication (elimination) programmes in different countries in the past and present. Experiences of the republics of the former USSR with malaria are interesting, particularly since the data overwhelmingly were published in Russian and might not be known to western readers. Among the most important characteristics of Plasmodium vivax epidemiology at present are changes in the ratio of the short-incubation P. vivax to long-incubation P. vivax, the incidence of severe P. vivax cases, the increased numbers of asymptomatic P. vivax cases, the reduced response to anti-malarials and a few others. Various factors contributing towards the peculiarities of P. vivax epidemiology are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeny N Morozov
- Sechenov University, Moscow, Russian Federation.
- Department of Tropical, Parasitic Diseases and Disinfectology, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation.
| |
Collapse
|
84
|
Mhlwatika Z, Aderibigbe BA. Polymeric Nanocarriers for the Delivery of Antimalarials. Molecules 2018; 23:E2527. [PMID: 30279405 PMCID: PMC6222303 DOI: 10.3390/molecules23102527] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/15/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Malaria is an infectious disease caused by a protozoan parasite which is transmitted by female Anopheles mosquitoes around tropical and sub-tropical regions. Half of the world's population is at risk of being infected by malaria. This mainly includes children, pregnant women and people living with chronic diseases. The main factor that has contributed to the spread of this disease is the increase in the number of drug-resistant parasites. To overcome drug resistance, researchers have developed drug delivery systems from biodegradable polymers for the loading of antimalarials. The drug delivery systems were characterized by distinct features such as good biocompatibility, high percentage drug encapsulation, reduced drug toxicity and targeted drug delivery. In this review article, we highlight the various types of drug delivery systems developed from polymeric nanocarriers used for the delivery of antimalarials.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
85
|
Microscopic malaria parasitemia diagnosis and grading on benchmark datasets. Microsc Res Tech 2018; 81:1042-1058. [DOI: 10.1002/jemt.23071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/23/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
|
86
|
Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules 2018; 23:E2205. [PMID: 30200314 PMCID: PMC6225509 DOI: 10.3390/molecules23092205] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Dendrimers are drug delivery systems that are characterized by a three-dimensional, star-shaped, branched macromolecular network. They possess ideal properties such as low polydispersity index, biocompatibility and good water solubility. They are made up of the interior and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency, reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance, toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers for the treatment of viral and parasitic infections.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
87
|
Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, Piera K, Wilkes CS, Patel K, Chandna A, Drakeley CJ, Yeo TW, Anstey NM. Age-Related Clinical Spectrum of Plasmodium knowlesi Malaria and Predictors of Severity. Clin Infect Dis 2018; 67:350-359. [PMID: 29873683 PMCID: PMC6051457 DOI: 10.1093/cid/ciy065] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking. Methods Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia. Results Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults). Conclusions Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.
Collapse
Affiliation(s)
- Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Jayaram Menon
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- Sabah Department of Health, Kota Kinabalu, Malaysia
| | - Emma Schimann
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Christopher S Wilkes
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Kaajal Patel
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | - Arjun Chandna
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| | | | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah–Menzies School of Health Research Clinical Research Unit, Malaysia
| |
Collapse
|
88
|
Paleopathological Considerations on Malaria Infection in Korea before the 20th Century. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8516785. [PMID: 29854798 PMCID: PMC5966694 DOI: 10.1155/2018/8516785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
Malaria, one of the deadliest diseases in human history, still infects many people worldwide. Among the species of the genus Plasmodium, P. vivax is commonly found in temperate-zone countries including South Korea. In this article, we first review the history of malarial infection in Korea by means of studies on Joseon documents and the related scientific data on the evolutionary history of P. vivax in Asia. According to the historical records, malarial infection was not unusual in pre-20th-century Korean society. We also found that certain behaviors of the Joseon people might have affected the host-vector-pathogen relationship, which could explain why malarial infection prevalence was so high in Korea at that time. In our review of genetic studies on P. vivax, we identified substantial geographic differentiation among continents and even between neighboring countries. Based on these, we were able to formulate a strategy for future analysis of ancient Plasmodium strains in Korea.
Collapse
|
89
|
Inhibition of ex vivo erythropoiesis by secreted and haemozoin-associated Plasmodium falciparum products. Parasitology 2018; 145:1865-1875. [PMID: 29739485 DOI: 10.1017/s0031182018000653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been estimated that up to a third of global malaria deaths may be attributable to malarial anaemia, with children and pregnant women being those most severely affected. An inefficient erythropoietic response to the destruction of both infected and uninfected erythrocytes in infections with Plasmodium spp. contributes significantly to the development and persistence of such anaemia. The underlying mechanisms, which could involve both direct inhibition of erythropoiesis by parasite-derived factors and indirect inhibition as a result of modulation of the immune response, remain poorly understood. We found parasite-derived factors in conditioned medium (CM) of blood-stage Plasmodium falciparum and crude isolates of parasite haemozoin directly to inhibit erythropoiesis in an ex vivo model based on peripheral blood haematopoietic stem cells. Erythropoiesis-inhibiting activity was detected in a fraction of CM that was sensitive to heat inactivation and protease digestion. Erythropoiesis was also inhibited by crude parasite haemozoin but not by detergent-treated, heat-inactivated or protease-digested haemozoin. These results suggest that the erythropoiesis-inhibiting activity in both cases is mediated by proteins or protein-containing biomolecules and may offer new leads to the treatment of malarial anaemia.
Collapse
|
90
|
Zhong D, Lo E, Wang X, Yewhalaw D, Zhou G, Atieli HE, Githeko A, Hemming-Schroeder E, Lee MC, Afrane Y, Yan G. Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malar J 2018; 17:185. [PMID: 29720181 PMCID: PMC5932820 DOI: 10.1186/s12936-018-2337-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Methods Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. Results A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44–65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. Conclusions The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections. Electronic supplementary material The online version of this article (10.1186/s12936-018-2337-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Harrysone E Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| |
Collapse
|
91
|
Tatura SNN, Wowor EC, Mandei JM, Wilar R, Warouw SM, Rompis J, Kalensang P, Tuda J. Case Report: Severe Plasmodium vivax Malaria Mimicking Sepsis in a Neonate. Am J Trop Med Hyg 2018; 98:656-659. [PMID: 29313481 PMCID: PMC5930913 DOI: 10.4269/ajtmh.17-0739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/19/2017] [Indexed: 11/07/2022] Open
Abstract
Severe congenital malaria associated with Plasmodium vivax is uncommon. In Indonesia, most congenital malaria cases are due to Plasmodium falciparum infections. Most cases of congenital or neonatal malaria in endemic areas are diagnosed from peripheral smear as part of routine sepsis workup. Differentiating congenital and acquired neonatal malaria is very difficult. The case presented in this study describes severe P. vivax malaria with cholestatic jaundice and sepsis-like signs and symptoms in neonates. The mother was asymptomatic and the neonate was successfully treated with intravenous artesunate. Severe P. vivax malaria with cholestatic jaundice in neonates is an uncommon condition that should be included in the differential diagnosis of infants displaying hemolytic anemia, thrombocytopenia, cholestatic jaundice, and hepatosplenomegaly in malaria-endemic zones. Early diagnosis can prevent the use of unnecessary antibiotics and mortality of neonates.
Collapse
Affiliation(s)
- Suryadi N. N. Tatura
- Pediatric Infectious and Tropical Disease Division, Department of Pediatrics, Faculty of Medicine, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
- Infectious and Tropical Disease Division, Faculty of Medicine, Department of Pediatrics, Sam Ratulangi University, Manado, Indonesia
- Indonesian National Expert Committee of Malaria, Ministry of Health, Jakarta, Republic of Indonesia
| | - Elizabeth Clarissa Wowor
- Pediatric Infectious and Tropical Disease Division, Department of Pediatrics, Faculty of Medicine, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
| | - Jose M. Mandei
- Emergency and Intensive Care Division, Department of Pediatrics, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
| | - Rocky Wilar
- Neonatology Division, Department of Pediatrics, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
| | - Sarah M. Warouw
- Gastroenterology and Hepatology Division, Department of Pediatrics, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
| | - Johnny Rompis
- Neonatology Division, Department of Pediatrics, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
| | - Priscilla Kalensang
- Pediatric Infectious and Tropical Disease Division, Department of Pediatrics, Faculty of Medicine, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
| | - Joseph Tuda
- Department of Clinical Parasitology, Faculty of Medicine, Prof. Dr. R. D. Kandou General Hospital, Manado, Indonesia
| |
Collapse
|
92
|
Tang Y, Joyner CJ, Cabrera-Mora M, Saney CL, Lapp SA, Nural MV, Pakala SB, DeBarry JD, Soderberg S, Kissinger JC, Lamb TJ, Galinski MR, Styczynski MP. Integrative analysis associates monocytes with insufficient erythropoiesis during acute Plasmodium cynomolgi malaria in rhesus macaques. Malar J 2017; 16:384. [PMID: 28938907 PMCID: PMC5610412 DOI: 10.1186/s12936-017-2029-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background Mild to severe anaemia is a common complication of malaria that is caused in part by insufficient erythropoiesis in the bone marrow. This study used systems biology to evaluate the transcriptional and alterations in cell populations in the bone marrow during Plasmodium cynomolgi infection of rhesus macaques (a model of Plasmodium vivax malaria) that may affect erythropoiesis. Results An appropriate erythropoietic response did not occur to compensate for anaemia during acute cynomolgi malaria despite an increase in erythropoietin levels. During this period, there were significant perturbations in the bone marrow transcriptome. In contrast, relapses did not induce anaemia and minimal changes in the bone marrow transcriptome were detected. The differentially expressed genes during acute infection were primarily related to ongoing inflammatory responses with significant contributions from Type I and Type II Interferon transcriptional signatures. These were associated with increased frequency of intermediate and non-classical monocytes. Recruitment and/or expansion of these populations was correlated with a decrease in the erythroid progenitor population during acute infection, suggesting that monocyte-associated inflammation may have contributed to anaemia. The decrease in erythroid progenitors was associated with downregulation of genes regulated by GATA1 and GATA2, two master regulators of erythropoiesis, providing a potential molecular basis for these findings. Conclusions These data suggest the possibility that malarial anaemia may be driven by monocyte-associated disruption of GATA1/GATA2 function in erythroid progenitors resulting in insufficient erythropoiesis during acute infection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2029-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Tang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Chester J Joyner
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Monica Cabrera-Mora
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Celia L Saney
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Stacey A Lapp
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mustafa V Nural
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA.,Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Suman B Pakala
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jeremy D DeBarry
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Stephanie Soderberg
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jessica C Kissinger
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA.,Department of Genetics, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Tracey J Lamb
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
93
|
Birhanu Z, Yihdego YYE, Emana D, Feyissa D, Kenate S, Kebede E, Getahun K, Yewhalaw D. Relationship between exposure to malaria and haemoglobin level of children 2-9 years old in low malaria transmission settings. Acta Trop 2017; 173:1-10. [PMID: 28522274 DOI: 10.1016/j.actatropica.2017.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 11/29/2022]
Abstract
In the context of reduced transmission of malaria, it is essential to examine the association between exposure to malaria and haemoglobin level. This study measured the Haemoglobin level of children 2-9 years of age and examined its association with malariometric indices. A cross sectional study was conducted, during June 2016, on 763 children 2-9 years old, recruited from ten sites representing different malaria transmission settings in Ethiopia. Haemoglobin concentration was determined using HemoCue analyzer. Malariometric indices (splenomegaly rate, parasite rate and serological marker) were measured. The overall prevalence of anaemia was 17.3% (95% CI: 14.6-19.9) in the study population. Mild, moderate and severe anaemia accounted for 7.3%, 7.2% and 2.8% respectively. Of the children with anaemia (132), only 7 (5.3%) had malaria parasitaemia. The prevalence of malaria parasitaemia was 3.6% (2/56), 9.1% (5/55) and 0.0% (0/21) among children with mild, moderate and severe anaemia, respectively. Malaria reactive antibody and anaemia co-occurred in 3.13% (21/672) of the samples. Seroprevalence and parasitaemia did not have significant association with anaemia (p>0.05). However, splenomegaly was significantly associated with increased risk of anaemia (AOR=14.93; p=0.001). Anaemia was significantly higher among children 2-4 years old (22.2%), and children living in households without any insecticide treated bed net (34.0%). The prevalence of anaemia was lower by 55.0% among children living in households with at least one net (AOR=0.45, 95% CI: 0.21-0.96). Repeated exposure to malaria infections (seropositive) and parasitaemia was less likely to contribute to development of anaemia among children 2-9 years in this study setting. Thus, in low malaria endemic settings, anaemia prevention and control program required to reconsider the historical evidence that suggests malaria is one of the major risk factor for anaemia.
Collapse
Affiliation(s)
- Zewdie Birhanu
- Department of Health Education and Behavioral Sciences, Institute of Health, Jimma University, P.O. Box 378, Ethiopia.
| | | | - Daniel Emana
- Department of Medical Laboratory Sciences and Pathology, Institute of Health, Jimma University, Ethiopia.
| | - Damtew Feyissa
- Oromia Regional Health Bureau, Jimma Zone Health Department, Jimma, Ethiopia.
| | - Silashi Kenate
- Oromia Regional Health Bureau, Jimma Zone Health Department, Jimma, Ethiopia.
| | - Estifanos Kebede
- Department of Medical Laboratory Sciences and Pathology, Institute of Health, Jimma University, Ethiopia.
| | - Kefelegn Getahun
- College of Social Sciences and Humanities, Jimma University, Ethiopia.
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia.
| |
Collapse
|
94
|
Douglas NM, Poespoprodjo JR, Patriani D, Malloy MJ, Kenangalem E, Sugiarto P, Simpson JA, Soenarto Y, Anstey NM, Price RN. Unsupervised primaquine for the treatment of Plasmodium vivax malaria relapses in southern Papua: A hospital-based cohort study. PLoS Med 2017; 14:e1002379. [PMID: 28850568 PMCID: PMC5574534 DOI: 10.1371/journal.pmed.1002379] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Primaquine is the only licensed drug for eradicating Plasmodium vivax hypnozoites and, therefore, preventing relapses of vivax malaria. It is a vital component of global malaria elimination efforts. Primaquine is efficacious when supervised in clinical trials, but its effectiveness in real-world settings is unknown. We aimed to determine whether unsupervised primaquine was effective for preventing re-presentation to hospital with vivax malaria in southern Papua, Indonesia. METHODS AND FINDINGS Routinely-collected hospital surveillance data were used to undertake a pragmatic comparison of the risk of re-presentation to hospital with vivax malaria in patients prescribed dihydroartemisinin-piperaquine (DHP) combined with primaquine versus those patients prescribed DHP alone. The omission of primaquine was predominantly due to 3 stock outages. Individual clinical, pharmacy, and laboratory data were merged using individual hospital identification numbers and the date of presentation to hospital. Between April 2004 and December 2013, there were 86,797 documented episodes of vivax malaria, of which 62,492 (72.0%) were included in the analysis. The risk of re-presentation with vivax malaria within 1 year was 33.8% (95% confidence Interval [CI] 33.1%-34.5%) after initial monoinfection with P. vivax and 29.2% (95% CI 28.1%-30.4%) after mixed-species infection. The risk of re-presentation with P. vivax malaria was higher in children 1 to <5 years of age (49.6% [95% CI 48.4%-50.9%]) compared to patients 15 years of age or older (24.2% [95% CI 23.4-24.9%]); Adjusted Hazard Ratio (AHR) = 2.23 (95% CI 2.15-2.31), p < 0.001. Overall, the risk of re-presentation was 37.2% (95% CI 35.6%-38.8%) in patients who were prescribed no primaquine compared to 31.6% (95% CI 30.9%-32.3%) in those prescribed either a low (≥1.5 mg/kg and <5 mg/kg) or high (≥5 mg/kg) dose of primaquine (AHR = 0.90 [95% CI 0.86-0.95, p < 0.001]). Limiting the comparison to high dose versus no primaquine in the period during and 12 months before and after a large stock outage resulted in minimal change in the estimated clinical effectiveness of primaquine (AHR 0.91, 95% CI 0.85-0.97, p = 0.003). Our pragmatic study avoided the clinical influences associated with prospective study involvement but was subject to attrition bias caused by passive follow-up. CONCLUSIONS Unsupervised primaquine for vivax malaria, prescribed according to the current World Health Organization guidelines, was associated with a minimal reduction in the risk of clinical recurrence within 1 year in Papua, Indonesia. New strategies for the effective radical cure of vivax malaria are needed in resource-poor settings.
Collapse
Affiliation(s)
- Nicholas M. Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Division of Infectious Diseases, Christchurch Hospital, Christchurch, New Zealand
| | - Jeanne Rini Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Patriani
- Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Michael J. Malloy
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Cytology Service Ltd., Melbourne, Victoria, Australia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Mimika District Hospital, Timika, Papua, Indonesia
| | | | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yati Soenarto
- Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
95
|
Keita Alassane S, Nicolau-Travers ML, Menard S, Andreoletti O, Cambus JP, Gaudre N, Wlodarczyk M, Blanchard N, Berry A, Abbes S, Colongo D, Faye B, Augereau JM, Lacroux C, Iriart X, Benoit-Vical F. Young Sprague Dawley rats infected by Plasmodium berghei: A relevant experimental model to study cerebral malaria. PLoS One 2017; 12:e0181300. [PMID: 28742109 PMCID: PMC5524346 DOI: 10.1371/journal.pone.0181300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cerebral malaria (CM) is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173) infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM) symptoms while the majority (55%) of the remaining rats developed severe anemia and hyperparasitemia (NoECM). These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC) count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.
Collapse
Affiliation(s)
- Sokhna Keita Alassane
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Marie-Laure Nicolau-Travers
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sandie Menard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Jean-Pierre Cambus
- Laboratoire Hématologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Noémie Gaudre
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Myriam Wlodarczyk
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Nicolas Blanchard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Sarah Abbes
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | | | - Babacar Faye
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Jean-Michel Augereau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Xavier Iriart
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| |
Collapse
|
96
|
Ray S, Patel SK, Venkatesh A, Chatterjee G, Ansari NN, Gogtay NJ, Thatte UM, Gandhe P, Varma SG, Patankar S, Srivastava S. Quantitative Proteomics Analysis of Plasmodium vivax Induced Alterations in Human Serum during the Acute and Convalescent Phases of Infection. Sci Rep 2017; 7:4400. [PMID: 28667326 PMCID: PMC5493610 DOI: 10.1038/s41598-017-04447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/15/2017] [Indexed: 12/23/2022] Open
Abstract
The radial distribution of Plasmodium vivax malaria burden has evoked enormous concern among the global research community. In this study, we have investigated the serum proteome alterations in non-severe vivax malaria patients before and during patient recuperation starting from the early febrile to the defervescence and convalescent stages of the infection. We have also performed an extensive quantitative proteomics analysis to compare the serum proteome profiles of vivax malaria patients with low (LPVM) and moderately-high (MPVM) parasitemia with healthy community controls. Interestingly, some of the serum proteins such as Serum amyloid A, Apolipoprotein A1, C-reactive protein, Titin and Haptoglobin, were found to be sequentially altered with respect to increased parasite counts. Analysis of a longitudinal cohort of malaria patients indicated reversible alterations in serum levels of some proteins such as Haptoglobin, Apolipoprotein E, Apolipoprotein A1, Carbonic anhydrase 1, and Hemoglobin subunit alpha upon treatment; however, the levels of a few other proteins did not return to the baseline even during the convalescent phase of the infection. Here we present the first comprehensive serum proteomics analysis of vivax malaria patients with different levels of parasitemia and during the acute and convalescent phases of the infection.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.,Department of Clinical Biochemistry, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Sandip K Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gangadhar Chatterjee
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Naziya N Ansari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Nithya J Gogtay
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Urmila M Thatte
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Prajakta Gandhe
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Santosh G Varma
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
97
|
Devine A, Parmiter M, Chu CS, Bancone G, Nosten F, Price RN, Lubell Y, Yeung S. Using G6PD tests to enable the safe treatment of Plasmodium vivax infections with primaquine on the Thailand-Myanmar border: A cost-effectiveness analysis. PLoS Negl Trop Dis 2017; 11:e0005602. [PMID: 28542194 PMCID: PMC5460895 DOI: 10.1371/journal.pntd.0005602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/06/2017] [Accepted: 04/26/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Primaquine is the only licensed antimalarial for the radical cure of Plasmodium vivax infections. Many countries, however, do not administer primaquine due to fear of hemolysis in those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In other settings, primaquine is given without G6PD testing, putting patients at risk of hemolysis. New rapid diagnostic tests (RDTs) offer the opportunity to screen for G6PD deficiency prior to treatment with primaquine. Here we assessed the cost-effectiveness of using G6PD RDTs on the Thailand-Myanmar border and provide the model as an online tool for use in other settings. METHODS/PRINCIPAL FINDINGS Decision tree models for the management of P. vivax malaria evaluated the costs and disability-adjusted life-years (DALYs) associated with recurrences and primaquine-induced hemolysis from a health care provider perspective. Screening with G6PD RDTs before primaquine use was compared to (1) giving chloroquine alone and (2) giving primaquine without screening. Data were taken from a recent study on the impact of primaquine on P. vivax recurrences and a literature review. Compared to the use of chloroquine alone, the screening strategy had similar costs while averting 0.026 and 0.024 DALYs per primary infection in males and females respectively. Compared to primaquine administered without screening, the screening strategy provided modest cost savings while averting 0.011 and 0.004 DALYs in males and females respectively. The probabilistic sensitivity analyses resulted in a greater than 75% certainty that the screening strategy was cost-effective at a willingness to pay threshold of US$500, which is well below the common benchmark of per capita gross domestic product for Myanmar. CONCLUSIONS/SIGNIFICANCE In this setting G6PD RDTs could avert DALYs by reducing recurrences and reducing hemolytic risk in G6PD deficient patients at low costs or cost savings. The model results are limited by the paucity of data available in the literature for some parameter values, including the mortality rates for both primaquine-induced hemolysis and P. vivax. The online model provides an opportunity to use different parameter estimates to examine the validity of these findings in other settings.
Collapse
Affiliation(s)
- Angela Devine
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Minnie Parmiter
- Boyd Orr Centre, University of Glasgow, Glasgow, United Kingdom
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Ric N. Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shunmay Yeung
- Faculty of Infectious and Tropical Disease, The London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
98
|
Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group. Malar J 2017; 16:141. [PMID: 28381261 PMCID: PMC5382417 DOI: 10.1186/s12936-017-1784-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 03/18/2017] [Indexed: 01/12/2023] Open
Abstract
The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
Collapse
|
99
|
Howes RE, Chan ER, Rakotomanga TA, Schulte S, Gibson J, Zikursh M, Franchard T, Ramiranirina B, Ratsimbasoa A, Zimmerman PA. Prevalence and genetic variants of G6PD deficiency among two Malagasy populations living in Plasmodium vivax-endemic areas. Malar J 2017; 16:139. [PMID: 28376871 PMCID: PMC5381087 DOI: 10.1186/s12936-017-1771-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The prevalence and variants of G6PD deficiency in the Plasmodium vivax-endemic zones of Madagascar remain unknown. The admixed African-Austronesian origins of the Malagasy population make it probable that a heterogeneous mix of genetic variants with a spectrum of clinical severity will be circulating. This would have implications for the widespread use of P. vivax radical cure therapy. Two study populations in the P. vivax-endemic western foothills region of Madagascar were selected for G6PD screening. Both the qualitative fluorescent spot test and G6PD genotyping were used to screen all participants. RESULTS A total of 365 unrelated male volunteers from the Tsiroanomandidy, Mandoto, and Miandrivazo districts of Madagascar were screened and 12.9% were found to be phenotypically G6PD deficient. Full gene sequencing of 95 samples identified 16 single nucleotide polymorphisms, which were integrated into a genotyping assay. Genotyping (n = 291) found one individual diagnosed with the severe G6PD Mediterranean C563T mutation, while the remaining G6PD deficient samples had mutations of African origin, G6PD A- and G6PD A. CONCLUSIONS Deployment of P. vivax radical cure in Madagascar must be considerate of the risks presented by the observed prevalence of G6PDd prevalence. The potential morbidity associated with cumulative episodes of P. vivax clinical relapses requires a strategy for increasing access to safe radical cure. The observed dominance of African G6PDd haplotypes is surprising given the known mixed African-Austronesian origins of the Malagasy population; more widespread surveying of G6PDd epidemiology across the island would be required to characterize the distribution of G6PD haplotypes across Madagascar.
Collapse
Affiliation(s)
- Rosalind E Howes
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA. .,Nuffield Department of Medicine, Oxford Big Data Institute, University of Oxford, Oxford, UK.
| | - Ernest R Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Tovonahary Angelo Rakotomanga
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Seth Schulte
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - John Gibson
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Melinda Zikursh
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Thierry Franchard
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Brune Ramiranirina
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar
| | - Arsène Ratsimbasoa
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,University of Antananarivo, Antananarivo, Madagascar
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
100
|
Commons R, Thriemer K, Humphreys G, Suay I, Sibley C, Guerin P, Price R. The Vivax Surveyor: Online mapping database for Plasmodium vivax clinical trials. Int J Parasitol Drugs Drug Resist 2017; 7:181-190. [PMID: 28384505 PMCID: PMC5382033 DOI: 10.1016/j.ijpddr.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recurrent P. vivax infections are associated with significant morbidity and mortality. Although radical cure can reduce recurrent infection, it is confounded by antimalarial resistance and the lack of safe and effective hypnozoitocidal treatment. This study documents the available literature of published clinical trials of P. vivax, providing an up to date, online, open access tool to view and download available information. METHODS A systematic review was conducted according to PRISMA guidelines to identify prospective P. vivax therapeutic clinical trials with at least 28 days follow-up published between 1st January 1960 and 12th October 2016. Treatment arms and evidence of chloroquine resistance were mapped to trial sites. RESULTS Since 1960, a total of 1152 antimalarial clinical trials with a minimum 28 days follow-up have been published, of which 230 (20.0%) enrolled patients with P. vivax and were included. Trials were conducted in 38 countries: 168 (73.0%) in the Asia-Pacific, 13 (5.7%) in Africa and 43 (18.7%) in the Americas. The proportion of antimalarial trials assessing P. vivax rose from 10.7% (12/112) in 1991-1995, to 24.9% (56/225) in 2011-2015. Overall, 188 (81.7%) P. vivax trials included a chloroquine treatment arm, either alone or in combination with primaquine, and 107 (46.5%) trials included a chloroquine treatment arm with early primaquine to assess radical cure. There has been a recent increase in treatment arms with artemisinin derivatives. Of the 131 sites in which chloroquine resistance could be quantified, resistance was present in 59 (45.0%) sites in 15 endemic countries. CONCLUSIONS Over the last 20 years there has been a substantial increase in clinical research on the treatment of P. vivax, which has generated a greater awareness of the global extent of chloroquine resistance. The WWARN open access, online interactive map provides up to date information of areas where drug resistant P. vivax is emerging.
Collapse
Affiliation(s)
- R.J. Commons
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia,WorldWide Antimalarial Resistance Network, UK,Corresponding author. Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT 0811, Australia.Global and Tropical Health DivisionMenzies School of Health ResearchCharles Darwin UniversityPO Box 41096CasuarinaNT0811Australia
| | - K. Thriemer
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - G. Humphreys
- WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - I. Suay
- WorldWide Antimalarial Resistance Network, UK
| | - C.H. Sibley
- WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK,Department of Genome Sciences, University of Washington, Seattle, USA
| | - P.J. Guerin
- WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - R.N. Price
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia,WorldWide Antimalarial Resistance Network, UK,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|