51
|
Short KW, Head WS, Piston DW. Connexin 36 mediates blood cell flow in mouse pancreatic islets. Am J Physiol Endocrinol Metab 2014; 306:E324-31. [PMID: 24326425 PMCID: PMC3920012 DOI: 10.1152/ajpendo.00523.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/06/2013] [Indexed: 01/12/2023]
Abstract
The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36(-/-)). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36(+/-) and Cx36(-/-) mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology.
Collapse
Affiliation(s)
- Kurt W Short
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | | |
Collapse
|
52
|
Stamper IJ, Jackson E, Wang X. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012719. [PMID: 24580269 PMCID: PMC4172977 DOI: 10.1103/physreve.89.012719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 06/03/2023]
Abstract
In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.
Collapse
Affiliation(s)
- I. J. Stamper
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elais Jackson
- Department of Computer and Information Sciences, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xujing Wang
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
53
|
Pérez-Armendariz EM. Connexin 36, a key element in pancreatic beta cell function. Neuropharmacology 2013; 75:557-66. [PMID: 23973309 DOI: 10.1016/j.neuropharm.2013.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
The prevalence of diabetes at a global scale has markedly increased during the last three decades. Diabetes is a chronic disease that includes a group of metabolic disorders, in which high serum glucose levels is a common factor. Insulin is the only hormone that decreases serum glucose levels. Therefore, it is relevant to deepen our understanding of cell mechanisms that regulate insulin production and release. Insulin is produced in pancreatic islet beta cells. They are excitable cells and most of them are electrically coupled through gap junction channels. Connexin 36 (Cx36) has been identified at junctional membranes of islet beta cells in both rodents and humans. Co-localization of Cx36 with Cx30.2 has been recently identified. Functional studies in Cx36 deficient mice have provided direct evidence that Cx36 gap junction channels are necessary for the synchronization of [Ca(2+)]i oscillations in islet beta cells. The latter allows for the generation of insulin pulses in a single perfused islet. Moreover, Cx36 deficient mice were found to have altered serum insulin pulse dynamics and to be glucose intolerant. In addition, Cx36 has been recently identified as an early gene that is specifically expressed in embryonic beta cells, whose transcript and protein are upregulated in unison with the main wave of beta cell differentiation. In conclusion, Cx36 is critical for endocrine pancreatic function and may represent a molecular target for future prevention and treatment of diabetes. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- E Martha Pérez-Armendariz
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, UNAM, México D.F. 04510, Mexico; Hospital General de México, Hospital General de México/Unidad de Medicina Experimental, Facultad de Medicina, UNAM, Dr Balmis 148, Colonia Doctores, Delegación Cuahutémoc, CP 06726 Ciudad de México, Mexico; Departamento of Biología Celular yTisular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, UNAM, Mexico D.F. 04510, Mexico.
| |
Collapse
|
54
|
Rutter GA, Hodson DJ. Minireview: intraislet regulation of insulin secretion in humans. Mol Endocrinol 2013; 27:1984-95. [PMID: 24243488 PMCID: PMC5426601 DOI: 10.1210/me.2013-1278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022] Open
Abstract
The higher organization of β-cells into spheroid structures termed islets of Langerhans is critical for the proper regulation of insulin secretion. Thus, rodent β-cells form a functional syncytium that integrates and propagates information encoded by secretagogues, producing a "gain-of-function" in hormone release through the generation of coordinated cell-cell activity. By contrast, human islets possess divergent topology, and this may have repercussions for the cell-cell communication pathways that mediate the population dynamics underlying the intraislet regulation of insulin secretion. This is pertinent for type 2 diabetes mellitus pathogenesis, and its study in rodent models, because environmental and genetic factors may converge on these processes in a species-specific manner to precipitate the defective insulin secretion associated with glucose intolerance. The aim of the present minireview is therefore to discuss the structural and functional underpinnings that influence insulin secretion from human islets, and the possibility that dyscoordination between individual β-cells may play an important role in some forms of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Guy A Rutter
- Section Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. ; or Professor Guy A. Rutter, Section of Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. E-mail:
| | | |
Collapse
|
55
|
Silva PN, Green BJ, Altamentova SM, Rocheleau JV. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage. LAB ON A CHIP 2013; 13:4374-4384. [PMID: 24056576 DOI: 10.1039/c3lc50680k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pancreatic islets are heavily vascularized in vivo with fenestrated endothelial cells (ECs) to facilitate blood glucose-sensing and endocrine hormone secretion. The close proximity of insulin secreting beta cells and ECs also plays a critical role in modulating the proliferation and survival of both cell types with the mechanisms governing this interaction poorly understood. Isolated islets lose EC morphology and mass over a period of days in culture prohibiting study of this interaction in vitro. The loss of ECs also limits the efficacy of islet transplant revascularization in the treatment of Type 1 diabetes. We previously showed that microfluidically driven flow positively affects beta-cell function and EC survival in culture due to enhanced transport of media into the tissue. However, holding islets stationary in media flow using a dam-wall design also resulted in reduced glucose-stimulated metabolic and Ca(2+) responses at the periphery of the tissue consistent with shear-induced damage. We have now created a device that traps islets into sequential cup-shaped nozzles. This hydrodynamic trap design limits flow velocity around the perimeter of the islet while enhancing media flow through the tissue. We demonstrate the feasibility of this device to dynamically treat and collect effluent from islets. We further show that treating islets in this device enhances EC morphology without reducing glucose-stimulate Ca(2+) responses. These data reveal a microfluidic device to study EC and endocrine cell interaction that can be further leveraged to prime islets prior to transplantation.
Collapse
Affiliation(s)
- Pamuditha N Silva
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada.
| | | | | | | |
Collapse
|
56
|
Hodson DJ, Mitchell RK, Bellomo EA, Sun G, Vinet L, Meda P, Li D, Li WH, Bugliani M, Marchetti P, Bosco D, Piemonti L, Johnson P, Hughes SJ, Rutter GA. Lipotoxicity disrupts incretin-regulated human β cell connectivity. J Clin Invest 2013; 123:4182-94. [PMID: 24018562 PMCID: PMC4382273 DOI: 10.1172/jci68459] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
Pancreatic β cell dysfunction is pathognomonic of type 2 diabetes mellitus (T2DM) and is driven by environmental and genetic factors. β cell responses to glucose and to incretins such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are altered in the disease state. While rodent β cells act as a coordinated syncytium to drive insulin release, this property is unexplored in human islets. In situ imaging approaches were therefore used to monitor in real time the islet dynamics underlying hormone release. We found that GLP-1 and GIP recruit a highly coordinated subnetwork of β cells that are targeted by lipotoxicity to suppress insulin secretion. Donor BMI was negatively correlated with subpopulation responses to GLP-1, suggesting that this action of incretin contributes to functional β cell mass in vivo. Conversely, exposure of mice to a high-fat diet unveiled a role for incretin in maintaining coordinated islet activity, supporting the existence of species-specific strategies to maintain normoglycemia. These findings demonstrate that β cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion and may be perturbed by diabetogenic insults to disrupt glucose homeostasis in humans.
Collapse
Affiliation(s)
- David J. Hodson
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Gao Sun
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Laurent Vinet
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Paolo Meda
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Daliang Li
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Wen-Hong Li
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Marco Bugliani
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Piero Marchetti
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Domenico Bosco
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Lorenzo Piemonti
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul Johnson
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Stephen J. Hughes
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes,
Endocrinology and Metabolism, Department of Medicine, Imperial College London,
London, United Kingdom. Department of Cell Physiology and
Metabolism, University of Geneva School of Medicine, Geneva, Switzerland.
UT Southwestern Medical Center, Dallas, Texas, USA.
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy. Cell Isolation and Transplantation Center, Department
of Surgery, Geneva University Hospitals and University of Geneva, Geneva,
Switzerland. Diabetes Research Institute (HSR-DRI), San Raffaele
Scientific Institute, Milan, Italy. Nuffield Department of Surgical
Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
57
|
Penko D, Rojas-Canales D, Mohanasundaram D, Peiris HS, Sun WY, Drogemuller CJ, Keating DJ, Coates PTH, Bonder CS, Jessup CF. Endothelial progenitor cells enhance islet engraftment, influence β-cell function, and modulate islet connexin 36 expression. Cell Transplant 2013; 24:37-48. [PMID: 24069942 DOI: 10.3727/096368913x673423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic β-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the β-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study.
Collapse
Affiliation(s)
- Daniella Penko
- School of Medicine, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chowdhury UR, Holman BH, Fautsch MP. ATP-sensitive potassium (K(ATP)) channel openers diazoxide and nicorandil lower intraocular pressure in vivo. Invest Ophthalmol Vis Sci 2013; 54:4892-9. [PMID: 23778875 DOI: 10.1167/iovs.13-11872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To evaluate the expression of ATP-sensitive potassium (K(ATP)) channel subunits and study the effect of K(ATP) channel openers diazoxide and nicorandil on intraocular pressure (IOP) in an in vivo mouse model. METHODS Expression of K(ATP) channel subunits in normal C57BL/6 mouse eyes was studied by immunohistochemistry and confocal microscopy. Wild-type C57BL/6 mice were treated with K(ATP) channel openers diazoxide (n = 10) and nicorandil (n = 10) for 14 days. Similar treatments with diazoxide were performed on K(ir)6.2((-/-)) mice (n = 10). IOP was recorded with a handheld tonometer 1 hour, 4 hours, and 23 hours following daily treatment. Posttreatment histology was examined by light and transmission electron microscopy. RESULTS The K(ATP) channel subunits SUR2B, K(ir)6.1, and K(ir)6.2 were identified in all tissues within mouse eyes. Treatment with diazoxide in wild-type mice decreased IOP by 21.5 ± 3.2% with an absolute IOP reduction of 3.9 ± 0.6 mm Hg (P = 0.002). Nicorandil also decreased IOP (18.9 ± 1.8%) with an absolute IOP reduction of 3.4 ± 0.4 mm Hg (P = 0.002). Treatment with diazoxide in K(ir)6.2((-/-)) mice had no effect on IOP. No morphological abnormalities were observed in diazoxide- or nicorandil-treated eyes. CONCLUSIONS K(ATP) channel openers diazoxide and nicorandil are effective regulators of IOP in mouse eyes. K(ir)6.2 appears to be a major K(ATP) channel subunit through which IOP is lowered following treatment with diazoxide.
Collapse
Affiliation(s)
- Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
59
|
Wang J, Li Z, Feng M, Ren K, Shen G, Zhao C, Jin X, Jiang K. Opening of astrocytic mitochondrial ATP-sensitive potassium channels upregulates electrical coupling between hippocampal astrocytes in rat brain slices. PLoS One 2013; 8:e56605. [PMID: 23418587 PMCID: PMC3572089 DOI: 10.1371/journal.pone.0056605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/15/2013] [Indexed: 01/10/2023] Open
Abstract
Astrocytes form extensive intercellular networks through gap junctions to support both biochemical and electrical coupling between adjacent cells. ATP-sensitive K(+) (K(ATP)) channels couple cell metabolic state to membrane excitability and are enriched in glial cells. Activation of astrocytic mitochondrial K(ATP) (mitoK(ATP)) channel regulates certain astrocytic functions. However, less is known about its impact on electrical coupling between directly coupled astrocytes ex vivo. By using dual patch clamp recording, we found that activation of mitoK(ATP) channel increased the electrical coupling ratio in brain slices. The electrical coupling ratio started to increase 3 min after exposure to Diazoxide, a mitoK(ATP) channel activator, peaked at 5 min, and maintained its level with little adaptation until the end of the 10-min treatment. Blocking the mitoK(ATP) channel with 5-hydroxydecanoate, inhibited electrical coupling immediately, and by 10-min, the ratio dropped by 71% of the initial level. Activation of mitoK(ATP) channel also decreased the latency time of the transjunctional currents by 50%. The increase in the coupling ratio resulting from the activation of the mitoK(ATP) channel in a single astrocyte was further potentiated by the concurrent inhibiting of the channel on the recipient astrocyte. Furthermore, Meclofenamic acid, a gap-junction inhibitor which completely blocked the tracer coupling, hardly reversed the impact of mitoK(ATP) channel's activation on electrical coupling (by 7%). The level of mitochondrial Connexin43, a gap junctional subunit, significantly increased by 70% in astrocytes after 10-min Diazoxide treatment. Phospho-ERK signals were detected in Connexin43 immunoprecipitates in the Diazoxide-treated astrocytes, but not untreated control samples. Finally, inhibiting ERK could attenuate the effects of Diazoxide on electrical coupling by 61%. These findings demonstrate that activation of astrocytic mitoK(ATP) channel upregulates electrical coupling between hippocampal astrocytes ex vivo. In addition, this effect is mainly via up-regulation of the Connexin43-constituted gap junction coupling by an ERK-dependent mechanism in the mitochondria.
Collapse
Affiliation(s)
- Jiangping Wang
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Rehabilitation, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongxia Li
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mei Feng
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Keming Ren
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoxia Shen
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congying Zhao
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoming Jin
- Stark Neurosciences Research Institute Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kewen Jiang
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Laboratory, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
60
|
Jellyman JK, Allen VL, Holdstock NB, Fowden AL. Glucocorticoid overexposure in neonatal life alters pancreatic beta-cell function in newborn foals1. J Anim Sci 2013; 91:104-10. [DOI: 10.2527/jas.2012-5475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- J. K. Jellyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - V. L. Allen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - N. B. Holdstock
- Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge CB2 3EG, UK
| | - A. L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
61
|
Le Marchand SJ, Piston DW. Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells. PLoS One 2012; 7:e47084. [PMID: 23077547 PMCID: PMC3471958 DOI: 10.1371/journal.pone.0047084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca2+]i) and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca2+]i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on KATP channel activity but not on tetrodotoxin-sensitive Na+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca2+]i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by KATP channel activity or reduction in α-cell [Ca2+]i. Our results demonstrate that glucose uncouples the positive relationship between [Ca2+]i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.
Collapse
Affiliation(s)
- Sylvain J. Le Marchand
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David W. Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
62
|
Head WS, Orseth ML, Nunemaker CS, Satin LS, Piston DW, Benninger RK. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 2012; 61:1700-7. [PMID: 22511206 PMCID: PMC3379660 DOI: 10.2337/db11-1312] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/06/2012] [Indexed: 12/30/2022]
Abstract
Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.
Collapse
Affiliation(s)
- W. Steven Head
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Meredith L. Orseth
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Craig S. Nunemaker
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Leslie S. Satin
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan, Ann Arbor, Michigan
| | - David W. Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Richard K.P. Benninger
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Bioengineering and Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
63
|
Yao XC, Cui WX, Li YC, Zhang W, Lu RW, Thompson A, Amthor F, Wang XJ. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals. JOURNAL OF MODERN OPTICS 2012; 59:10.1080/09500340.2012.674564. [PMID: 24363496 PMCID: PMC3867949 DOI: 10.1080/09500340.2012.674564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75mM) and high-dose (5.5mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.
Collapse
Affiliation(s)
- Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Corresponding author.
| | - Wan-Xing Cui
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Zhang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anthony Thompson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Franklin Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xu-Jing Wang
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
64
|
Benninger RKP, Head WS, Zhang M, Satin LS, Piston DW. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet. J Physiol 2011; 589:5453-66. [PMID: 21930600 PMCID: PMC3240884 DOI: 10.1113/jphysiol.2011.218909] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/13/2011] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.
Collapse
Affiliation(s)
- R K P Benninger
- Molecular Physiology & Biophysics, Vanderbilt University Medical Centre, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
65
|
Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, Hadzovic-Dzuvo A, Mornjacovic Z, Meda P. Connexin-dependent signaling in neuro-hormonal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1919-36. [PMID: 22001400 DOI: 10.1016/j.bbamem.2011.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023]
Abstract
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Ilaria Potolicchio
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
67
|
Sankar KS, Green BJ, Crocker AR, Verity JE, Altamentova SM, Rocheleau JV. Culturing pancreatic islets in microfluidic flow enhances morphology of the associated endothelial cells. PLoS One 2011; 6:e24904. [PMID: 21961048 PMCID: PMC3178551 DOI: 10.1371/journal.pone.0024904] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/19/2011] [Indexed: 11/24/2022] Open
Abstract
Pancreatic islets are heavily vascularized in vivo with each insulin secreting beta-cell associated with at least one endothelial cell (EC). This structure is maintained immediately post-isolation; however, in culture the ECs slowly deteriorate, losing density and branched morphology. We postulate that this deterioration occurs in the absence of blood flow due to limited diffusion of media inside the tissue. To improve exchange of media inside the tissue, we created a microfluidic device to culture islets in a range of flow-rates. Culturing the islets from C57BL6 mice in this device with media flowing between 1 and 7 ml/24 hr resulted in twice the EC-density and -connected length compared to classically cultured islets. Media containing fluorescent dextran reached the center of islets in the device in a flow-rate-dependant manner consistent with improved penetration. We also observed deterioration of EC morphology using serum free media that was rescued by addition of bovine serum albumin, a known anti-apoptotic signal with limited diffusion in tissue. We further examined the effect of flow on beta-cells showing dampened glucose-stimulated Ca2+-response from cells at the periphery of the islet where fluid shear-stress is greatest. However, we observed normal two-photon NAD(P)H response and insulin secretion from the remainder of the islet. These data reveal the deterioration of islet EC-morphology is in part due to restricted diffusion of serum albumin within the tissue. These data further reveal microfluidic devices as unique platforms to optimize islet culture by introducing intercellular flow to overcome the restricted diffusion of media components.
Collapse
Affiliation(s)
- Krishana S. Sankar
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alana R. Crocker
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyne E. Verity
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Jonathan V. Rocheleau
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
68
|
Godwin LA, Pilkerton ME, Deal KS, Wanders D, Judd RL, Easley CJ. Passively operated microfluidic device for stimulation and secretion sampling of single pancreatic islets. Anal Chem 2011; 83:7166-72. [PMID: 21806019 PMCID: PMC4980096 DOI: 10.1021/ac201598b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A passively operated polydimethylsiloxane (PDMS) microfluidic device was designed for sampling of hormone secretions from eight individual murine pancreatic islets in parallel. Flow control was achieved using a single hand-held syringe and by exploiting inherent fluidic resistances of the microchannels (R(sampling) = 700 ± 20 kPa s mm(-3) at 37 °C). Basal (3 mM) or stimulatory (11 mM) glucose levels were applied to islets, with stimulation timing (t(stim)) minimized to 15 ± 2 s using modified reservoirs. Using enzyme-linked immunosorbent assays (ELISA) for postsampling analyses, we measured statistically equal levels of 1 h insulin secretion (1.26 ± 0.26 and 6.55 ± 1.00 pg islet(-1) min(-1), basal and stimulated; 62 islets) compared to standard, bulk sampling methods (1.01 ± 0.224 and 6.04 ± 1.53 pg islet(-1) min(-1), basal and stimulated; 200 islets). Importantly, the microfluidic platform revealed novel information on single-islet variability. Islet volume measurements with confocal reflectance microscopy revealed that insulin secretion had only limited correlation to islet volume, suggesting a more significant role for cellular architecture and paracrine signaling within the tissue. Compared to other methods using syringe pumps or electroosmotic flow control, this approach provides significant advantages in ease-of-use and device disposability, easing the burden on nonexperts.
Collapse
Affiliation(s)
- Leah A. Godwin
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Meagan E. Pilkerton
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Kennon S. Deal
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Desiree Wanders
- Department of Anatomy Physiology and Pharmacology, Auburn University, 219 Greene Hall, Auburn, Alabama 36849, United States
| | - Robert L. Judd
- Department of Anatomy Physiology and Pharmacology, Auburn University, 219 Greene Hall, Auburn, Alabama 36849, United States
| | - Christopher J. Easley
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
69
|
Chowdhury UR, Bahler CK, Hann CR, Chang M, Resch ZT, Romero MF, Fautsch MP. ATP-sensitive potassium (KATP) channel activation decreases intraocular pressure in the anterior chamber of the eye. Invest Ophthalmol Vis Sci 2011; 52:6435-42. [PMID: 21743021 DOI: 10.1167/iovs.11-7523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. ATP-sensitive potassium channel (K(ATP)) openers target key cellular events, many of which have been implicated in glaucoma. The authors sought to determine whether K(ATP) channel openers influence outflow facility in human anterior segment culture and intraocular pressure (IOP) in vivo. METHODS. Anterior segments from human eyes were placed in perfusion organ culture and treated with the K(ATP) channel openers diazoxide, nicorandil, and P1075 or the K(ATP) channel closer glyburide (glibenclamide). The presence, functionality, and specificity of K(ATP) channels were determined by RT-PCR, immunohistochemistry, and inside-out patch clamp in human trabecular meshwork (TM) tissue or primary cultures of normal human trabecular meshwork (NTM) cells. The effect of diazoxide on IOP in anesthetized Brown Norway rats was measured with a rebound tonometer. RESULTS. K(ATP) channel openers increased outflow facility in human anterior segments (0.14 ± 0.02 to 0.26 ± 0.09 μL/min/mm Hg; P < 0.001) compared with fellow control eyes (0.22 ± 0.11 to 0.21 ± 0.11 μL/min/mm Hg; P > 0.5). The effect was reversible, with outflow facility returning to baseline after drug removal. The addition of glyburide inhibited diazoxide from increasing outflow facility. Electrophysiology confirmed the presence and specificity of functional K(ATP) channels. K(ATP) channel subunits K(ir)6.1, K(ir)6.2, SUR2A, and SUR2B were expressed in TM and NTM cells. In vivo, diazoxide significantly lowered IOP in Brown Norway rats. CONCLUSIONS. Functional K(ATP) channels are present in the trabecular meshwork. When activated by K(ATP) channel openers, these channels increase outflow facility through the trabecular outflow pathway in human anterior segment organ culture and decrease IOP in Brown Norway rat eyes.
Collapse
|
70
|
Benninger RKP, Remedi MS, Head WS, Ustione A, Piston DW, Nichols CG. Defects in beta cell Ca²+ signalling, glucose metabolism and insulin secretion in a murine model of K(ATP) channel-induced neonatal diabetes mellitus. Diabetologia 2011; 54:1087-97. [PMID: 21271337 PMCID: PMC3245714 DOI: 10.1007/s00125-010-2039-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS Mutations that render ATP-sensitive potassium (K(ATP)) channels insensitive to ATP inhibition cause neonatal diabetes mellitus. In mice, these mutations cause insulin secretion to be lost initially and, as the disease progresses, beta cell mass and insulin content also disappear. We investigated whether defects in calcium signalling alone are sufficient to explain short-term and long-term islet dysfunction. METHODS We examined the metabolic, electrical and insulin secretion response in islets from mice that become diabetic after induction of ATP-insensitive Kir6.2 expression. To separate direct effects of K(ATP) overactivity on beta cell function from indirect effects of prolonged hyperglycaemia, normal glycaemia was maintained by protective exogenous islet transplantation. RESULTS In endogenous islets from protected animals, glucose-dependent elevations of intracellular free-calcium activity ([Ca(2+)](i)) were severely blunted. Insulin content of these islets was normal, and sulfonylureas and KCl stimulated increased [Ca(2+)](i). In the absence of transplant protection, [Ca(2+)](i) responses were similar, but glucose metabolism and redox state were dramatically altered; sulfonylurea- and KCl-stimulated insulin secretion was also lost, because of systemic effects induced by long-term hyperglycaemia and/or hypoinsulinaemia. In both cases, [Ca(2+)](i) dynamics were synchronous across the islet. After reduction of gap-junction coupling, glucose-dependent [Ca(2+)](i) and insulin secretion was partially restored, indicating that excitability of weakly expressing cells is suppressed by cells expressing mutants, via gap-junctions. CONCLUSIONS/INTERPRETATION The primary defect in K(ATP)-induced neonatal diabetes mellitus is failure of glucose metabolism to elevate [Ca(2+)](i), which suppresses insulin secretion and mildly alters islet glucose metabolism. Loss of insulin content and mitochondrial dysfunction are secondary to the long-term hyperglycaemia and/or hypoinsulinaemia that result from the absence of glucose-dependent insulin secretion.
Collapse
Affiliation(s)
- R K P Benninger
- Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
71
|
Jiang K, Wang J, Zhao C, Feng M, Shen Z, Yu Z, Xia Z. Regulation of gap junctional communication by astrocytic mitochondrial K(ATP) channels following neurotoxin administration in in vitro and in vivo models. Neurosignals 2011; 19:63-74. [PMID: 21474909 DOI: 10.1159/000323575] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022] Open
Abstract
It is known that neuronal ATP-sensitive potassium (K(ATP)) channels and astrocytic gap junctions (GJs) are involved in the mechanism underlying neurodisorders. The K(ATP) channels exist also in glial cells, and the objective of this study was to determine whether the astrocytic K(ATP) channels exert their effect on neurotoxin-induced neurodysfunction through regulating the astrocytic GJ function. The results showed that diazoxide, a selective mitochondrial K(ATP) (mitoK(ATP)) channel opener, enhanced the GJ coupling, but 5-hydroxydecanoate, a selective mitoK(ATP) channel blocker that significantly inhibits GJ coupling in vitro did not. Activation of astrocytic mitoK(ATP) channels alleviated kainic acid-induced dysfunction of GJ intercellular communication. Finally, activation of mitoK(ATP) channels improved the astrocytic GJ coupling in the hippocampus after seizures due to the colabeling of GJ subunit connexin 43 and connexin 45 with glial marker and was increased substantially by the administration of diazoxide. Western blot demonstrated that the mitoK(ATP) channels regulated the expression of connexin 43 (P2; active form) and connexin 45 in the epileptic hippocampus. These findings demonstrate that activation of astrocytic mitoK(ATP) channels improves the GJ function in astrocytes, indicating that the effect of the astrocytic mitoK(ATP) channels on neurotoxin-induced neurodysfunction might be, in part, through the regulation of the GJ-coupled spatial buffering in the hippocampus.
Collapse
Affiliation(s)
- Kewen Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
72
|
Ding SY, Nkobena A, Kraft CA, Markwardt ML, Rizzo MA. Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic beta cells. J Biol Chem 2011; 286:16768-74. [PMID: 21454584 DOI: 10.1074/jbc.m110.192799] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) potentiates glucose-stimulated insulin secretion from pancreatic β cells, yet does not directly stimulate secretion. The mechanisms underlying this phenomenon are incompletely understood. Here, we report that GLP-1 augments glucose-dependent rises in NAD(P)H autofluorescence in both βTC3 insulinoma cells and islets in a manner consistent with post-translational activation of glucokinase (GCK). GLP-1 treatment increased GCK activity and enhanced GCK S-nitrosylation in βTC3 cells. A 2-fold increase in S-nitrosylated GCK was also observed in mouse islets. Furthermore, GLP-1 activated a FRET-based GCK reporter in living cells. Activation of this reporter was sensitive to inhibition of nitric-oxide synthase (NOS), and incorporating the S-nitrosylation-blocking V367M mutation into this sensor prevented activation by GLP-1. GLP-1 potentiation of the glucose-dependent increase in islet NAD(P)H autofluorescence was also sensitive to a NOS inhibitor, whereas NOS inhibition did not affect the response to glucose alone. Expression of the GCK(V367M) mutant also blocked GLP-1 potentiation of the NAD(P)H response to glucose in βTC3 cells, but did not significantly affect metabolism of glucose in the absence of GLP-1. Co-expression of WT or mutant GCK proteins with a sensor for insulin secretory granule fusion also revealed that blockade of post-translational GCK S-nitrosylation diminished the effects of GLP-1 on granule exocytosis by ∼40% in βTC3 cells. These results suggest that post-translational activation of GCK is an important mechanism for mediating the insulinotropic effects of GLP-1.
Collapse
Affiliation(s)
- Shi-Ying Ding
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
73
|
Application of microfluidic technology to pancreatic islet research: first decade of endeavor. Bioanalysis 2011; 2:1729-44. [PMID: 21083325 DOI: 10.4155/bio.10.131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
β-cells respond to blood glucose by secreting insulin to maintain glucose homeostasis. Perifusion enables manipulation of biological and chemical cues in elucidating the mechanisms of β-cell physiology. Recently, microfluidic devices made of polydimethylsiloxane and Borofloat glass have been developed as miniaturized perifusion setups and demonstrated distinct advantages over conventional techniques in resolving rapid secretory and metabolic waveforms intrinsic to β-cells. In order to enhance sensing and monitoring capabilities, these devices have been integrated with analytical tools to increase assay throughput. The spatio-temporal resolutions of these analyses have been improved through enhanced flow control, valves and compartmentalization. For the first time, this review provides an overview of current devices used in islet studies and analyzes their strengths and experimental suitability. To realize the potential of microfluidic islet applications, it is essential to bridge the gap in design and application between engineers and biologists through the creation of standardized bioassays and user-friendly interfaces.
Collapse
|
74
|
Li YC, Cui WX, Wang XJ, Amthor F, Lu RW, Thompson A, Yao XC. Intrinsic optical signal imaging of glucose-stimulated insulin secreting β-cells. OPTICS EXPRESS 2011; 19:99-106. [PMID: 21263546 PMCID: PMC3090649 DOI: 10.1364/oe.19.000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Simultaneous monitoring of many functioning β-cells is essential for understanding β-cell dysfunction as an early event in the progression to diabetes. Intrinsic optical signal (IOS) imaging has been shown to allow high resolution detection of stimulus-evoked physiological responses in the retina and other neural tissues. In this paper, we demonstrate the feasibility of using IOS imaging for functional examination of insulin secreting INS-1 cells, a popular model for investigating diabetes associated β-cell dysfunction. Our experiments indicate that IOS imaging permits simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid IOS image sequences revealed transient optical responses that had time courses tightly correlated with the glucose stimulation.
Collapse
Affiliation(s)
- Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- These authors have equivalent contributions
| | - Wan-Xing Cui
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- These authors have equivalent contributions
| | - Xu-Jing Wang
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Franklin Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Anthony Thompson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| |
Collapse
|
75
|
Mehta P, Gregor T. Approaching the molecular origins of collective dynamics in oscillating cell populations. Curr Opin Genet Dev 2010; 20:574-80. [PMID: 20934869 PMCID: PMC3132649 DOI: 10.1016/j.gde.2010.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/04/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
From flocking birds, to organ generation, to swarming bacterial colonies, biological systems often exhibit collective behaviors. Here, we review recent advances in our understanding of collective dynamics in cell populations. We argue that understanding population-level oscillations requires examining the system under consideration at three different levels of complexity: at the level of isolated cells, homogenous populations, and spatially structured populations. We discuss the experimental and theoretical challenges this poses and highlight how new experimental techniques, when combined with conceptual tools adapted from physics, may help us overcome these challenges.
Collapse
Affiliation(s)
- Pankaj Mehta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
76
|
Zhao A, Ohara-Imaizumi M, Brissova M, Benninger RK, Xu Y, Hao Y, Abramowitz J, Boulay G, Powers AC, Piston D, Jiang M, Nagamatsu S, Birnbaumer L, Gu G. Gαo represses insulin secretion by reducing vesicular docking in pancreatic beta-cells. Diabetes 2010; 59:2522-9. [PMID: 20622165 PMCID: PMC3279551 DOI: 10.2337/db09-1719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Pertussis toxin uncoupling-based studies have shown that Gαi and Gαo can inhibit insulin secretion in pancreatic β-cells. Yet it is unclear whether Gαi and Gαo operate through identical mechanisms and how these G-protein-mediated signals inhibit insulin secretion in vivo. Our objective is to examine whether/how Gαo regulates islet development and insulin secretion in β-cells. RESEARCH DESIGN AND METHODS Immunoassays were used to analyze the Gαo expression in mouse pancreatic cells. Gαo was specifically inactivated in pancreatic progenitor cells by pancreatic cell-specific gene deletion. Hormone expression and insulin secretion in response to different stimuli were assayed in vivo and in vitro. Electron microscope and total internal reflection fluorescence-based assays were used to evaluate how Gαo regulates insulin vesicle docking and secretion in response to glucose stimulation. RESULTS Islet cells differentiate properly in Gαo(-/-) mutant mice. Gαo inactivation significantly enhances insulin secretion both in vivo and in isolation. Gαo nullizygous β-cells contain an increased number of insulin granules docked on the cell plasma membrane, although the total number of vesicles per β-cell remains unchanged. CONCLUSIONS Gαo is not required for endocrine islet cell differentiation, but it regulates the number of insulin vesicles docked on the β-cell membrane.
Collapse
Affiliation(s)
- Aizhen Zhao
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine Mitaka, Tokyo, Japan
| | - Marcella Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard K.P. Benninger
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yanwen Xu
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuhan Hao
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joel Abramowitz
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Guylain Boulay
- Department of Pharmacology, School of Medicine, Sherbrooke University, Sherbrooke, Québec, Canada
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - David Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine Mitaka, Tokyo, Japan
| | - Lutz Birnbaumer
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Guoqiang Gu
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Corresponding author: Guoqiang Gu,
| |
Collapse
|
77
|
Carvalho CPF, Barbosa HCL, Britan A, Santos-Silva JCR, Boschero AC, Meda P, Collares-Buzato CB. Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets. Diabetologia 2010; 53:1428-37. [PMID: 20361177 DOI: 10.1007/s00125-010-1726-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/22/2010] [Indexed: 12/01/2022]
Abstract
AIMS/HYPOTHESIS Cell-cell coupling mediated by gap junctions formed from connexin (CX) contributes to the control of insulin secretion in the endocrine pancreas. We investigated the cellular production and localisation of CX36 and CX43, and gap junction-mediated beta cell coupling in pancreatic islets from rats of different ages, displaying different degrees of maturation of insulin secretion. METHODS The presence and distribution of islet connexins were assessed by immunoblotting and immunofluorescence. The expression of connexin genes was evaluated by RT-PCR and quantitative real-time PCR. The ultrastructure of gap junctions and the function of connexin channels were assessed by freeze-fracture electron microscopy and tracer microinjection, respectively. RESULTS Young and adult beta cells, which respond to glucose, expressed significantly higher levels of Cx36 (also known as Gjd2) than fetal and newborn beta cells, which respond poorly to the sugar. Accordingly, adult beta cells also showed a significantly higher membrane density of gap junctions and greater intercellular exchange of ethidium bromide than newborn beta cells. Cx43 (also known as Gja1) was not expressed by beta cells, but was located in various cell types at the periphery of fetal and newborn islets. CONCLUSIONS/INTERPRETATION These findings show that the pattern of connexins, gap junction membrane density and coupling changes in islets during the functional maturation of beta cells.
Collapse
Affiliation(s)
- C P F Carvalho
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, CEP 13083-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
78
|
Kitagawa T, Murakami N, Nagano S. Modeling of the gap junction of pancreatic β-cells and the robustness of insulin secretion. Biophysics (Nagoya-shi) 2010; 6:37-51. [PMID: 27857584 PMCID: PMC5036665 DOI: 10.2142/biophysics.6.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/19/2010] [Indexed: 12/04/2022] Open
Abstract
Pancreatic β-cells are interconnected by gap junctions, which allow small molecules to pass from cell to cell. In spite of the importance of the gap junctions in cellular communication, modeling studies have been limited by the complexity of the system. Here, we propose a mathematical gap junction model that properly takes into account biological functions, and apply this model to the study of the β-cell cluster. We consider both electrical and metabolic features of the system. Then, we find that when a fraction of the ATP-sensitive K+ channels are damaged, robust insulin secretion can only be achieved by gap junctions. Our finding is consistent with recent experiments conducted by Rocheleau et al. Our study also suggests that the free passage of potassium ions through gap junctions plays an important role in achieving metabolic synchronization between β-cells.
Collapse
Affiliation(s)
- Tomoki Kitagawa
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Noriaki Murakami
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Seido Nagano
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
79
|
Meyer-Hermann M, Benninger RKP. A mathematical model of β-cells in an islet of Langerhans sensing a glucose gradient. HFSP JOURNAL 2010; 4:61-71. [PMID: 20885774 DOI: 10.2976/1.3354862] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/10/2010] [Indexed: 11/19/2022]
Abstract
Pancreatic β-cells release insulin in response to increased glucose levels. Compared to isolated β-cells, β-cells embedded within the islets of Langerhans network exhibit a coordinated and greater insulin secretion response to glucose. This coordinated activity is considered to rely on gap-junctions. We investigated the β-cell electrophysiology and the calcium dynamics in islets in response to glucose gradients. While at constant glucose the network of β-cells fires in a correlated fashion, a glucose gradient induces a sharp division into an active and an inactive part. We hypothesized that this sharp transition is mediated by the specific properties of the gap-junctions. We used a mathematical model of the β-cell electrophysiology in islets to discuss possible origins of this sharp transition in electrical activity. In silico, gap-junctions were required for such a transition. However, the small width of transition was only found when a stochastic variability of the expression of key transmembrane proteins, such as the ATP-dependent potassium channel, was included. The agreement with experimental data was further improved by assuming a delay of gap-junction currents, which points to a role of spatial constraints in the β-cell. This result clearly demonstrates the power of mathematical modeling in disentangling causal relationships in complex systems.
Collapse
|
80
|
Le Marchand SJ, Piston DW. Glucose suppression of glucagon secretion: metabolic and calcium responses from alpha-cells in intact mouse pancreatic islets. J Biol Chem 2010; 285:14389-98. [PMID: 20231269 DOI: 10.1074/jbc.m109.069195] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucagon is released from alpha-cells present in intact pancreatic islets at glucose concentrations below 4 mm, whereas higher glucose levels inhibit its secretion. The mechanisms underlying the suppression of alpha-cell secretory activity are poorly understood, but two general types of models have been proposed as follows: direct inhibition by glucose or paracrine inhibition from non-alpha-cells within the islet of Langerhans. To identify alpha-cells for analysis, we utilized transgenic mice expressing fluorescent proteins targeted specifically to these cells. Measurements of glucagon secretion from pure populations of flow-sorted alpha-cells show that contrary to its effect on intact islets, glucose does stimulate glucagon secretion from isolated alpha-cells. This observation argues against a direct inhibition of glucagon secretion by glucose and supports the paracrine inhibition model. Imaging of cellular metabolism by two-photon excitation of NAD(P)H autofluorescence indicates that glucose is metabolized in alpha-cells and that glucokinase is the likely rate-limiting step in this process. Imaging calcium dynamics of alpha-cells in intact islets reveals that inhibiting concentrations of glucose increase the intracellular calcium concentration and the frequency of alpha-cell calcium oscillations. Application of candidate paracrine inhibitors leads to reduced glucagon secretion but did not decrease the alpha-cell calcium activity. Taken together, the data suggest that suppression occurs downstream from alpha-cell calcium signaling, presumably at the level of vesicle trafficking or exocytotic machinery.
Collapse
Affiliation(s)
- Sylvain J Le Marchand
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
81
|
Tsaneva-Atanasova K, Sherman A. Accounting for near-normal glucose sensitivity in Kir6.2[AAA] transgenic mice. Biophys J 2010; 97:2409-18. [PMID: 19883583 DOI: 10.1016/j.bpj.2009.07.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/03/2009] [Accepted: 07/28/2009] [Indexed: 11/17/2022] Open
Abstract
K(ir)6.2[AAA] transgenic mouse islets exhibit mosaicism such that approximately 70% of the beta-cells have nonfunctional ATP-sensitive potassium (K(ATP)) channels, whereas the remainder have normal K(ATP) function. Despite this drastic reduction, the glucose dose-response curve is only shifted by approximately 2 mM. We use a previously published mathematical model, in which K(ATP) conductance is increased by rises in cytosolic calcium through indirect effects on metabolism, to investigate how cells could compensate for the loss of K(ATP) conductance. Compensation is favored by the assumption that only a small fraction of K(ATP) channels are open during oscillations, which renders it easy to upregulate the open fraction via a modest elevation of calcium. We show further that strong gap-junctional coupling of both membrane potential and calcium is needed to overcome the stark heterogeneity of cell properties in these mosaic islets.
Collapse
Affiliation(s)
- Krasimira Tsaneva-Atanasova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
82
|
Easley CJ, Rocheleau JV, Head WS, Piston DW. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics. Anal Chem 2010; 81:9086-95. [PMID: 19874061 DOI: 10.1021/ac9017692] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.
Collapse
Affiliation(s)
- Christopher J Easley
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Vanderbilt University, 702 Light Hall, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
83
|
Zoga V, Kawano T, Liang MY, Bienengraeber M, Weihrauch D, McCallum B, Gemes G, Hogan Q, Sarantopoulos C. KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy. Mol Pain 2010; 6:6. [PMID: 20102598 PMCID: PMC2825500 DOI: 10.1186/1744-8069-6-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 01/26/2010] [Indexed: 11/16/2022] Open
Abstract
Background ATP-sensitive potassium (KATP) channels in neurons mediate neuroprotection, they regulate membrane excitability, and they control neurotransmitter release. Because loss of DRG neuronal KATP currents is involved in the pathophysiology of pain after peripheral nerve injury, we characterized the distribution of the KATP channel subunits in rat DRG, and determined their alterations by painful axotomy using RT-PCR, immunohistochemistry and electron microscopy. Results PCR demonstrated Kir6.1, Kir6.2, SUR1 and SUR2 transcripts in control DRG neurons. Protein expression for all but Kir6.1 was confirmed by Western blots and immunohistochemistry. Immunostaining of these subunits was identified by fluorescent and confocal microscopy in plasmalemmal and nuclear membranes, in the cytosol, along the peripheral fibers, and in satellite glial cells. Kir6.2 co-localized with SUR1 subunits. Kir6.2, SUR1, and SUR2 subunits were identified in neuronal subpopulations, categorized by positive or negative NF200 or CGRP staining. KATP current recorded in excised patches was blocked by glybenclamide, but preincubation with antibody against SUR1 abolished this blocking effect of glybenclamide, confirming that the antibody targets the SUR1 protein in the neuronal plasmalemmal membrane. In the myelinated nerve fibers we observed anti-SUR1 immunostaining in regularly spaced funneled-shaped structures. These structures were identified by electron microscopy as Schmidt-Lanterman incisures (SLI) formed by the Schwann cells. Immunostaining against SUR1 and Kir6.2 colocalized with anti-Caspr at paranodal sites. DRG excised from rats made hyperalgesic by spinal nerve ligation exhibited similar staining against Kir6.2, SUR1 or SUR2 as DRG from controls, but showed decreased prevalence of SUR1 immunofluorescent NF200 positive neurons. In DRG and dorsal roots proximal to axotomy SLI were smaller and showed decreased SUR1 immunofluorescence. Conclusions We identified Kir6.2/SUR1 and Kir6.2/SUR2 KATP channels in rat DRG neuronal somata, peripheral nerve fibers, and glial satellite and Schwann cells, in both normal state and after painful nerve injury. This is the first report of KATP channels in paranodal sites adjacent to nodes of Ranvier and in the SLI of the Schwann cells. After painful axotomy KATP channels are downregulated in large, myelinated somata and also in SLI, which are also of smaller size compared to controls. Because KATP channels may have diverse functional roles in neurons and glia, further studies are needed to explore the potential of KATP channels as targets of therapies against neuropathic pain and neurodegeneration.
Collapse
Affiliation(s)
- Vasiliki Zoga
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Easley CJ, Benninger RKP, Shaver JH, Head WS, Piston DW. Rapid and inexpensive fabrication of polymeric microfluidic devices via toner transfer masking. LAB ON A CHIP 2009; 9:1119-27. [PMID: 19350094 PMCID: PMC2752280 DOI: 10.1039/b816575k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An alternative fabrication method is presented for production of masters for single- or multi-layer polymeric microfluidic devices in a standard laboratory environment, precluding the need for a cleanroom. This toner transfer masking (TTM) method utilizes an office laser printer to generate a toner pattern which is thermally transferred to a metal master to serve as a mask for etching. With master fabrication times as little as one hour (depending on channel depth) using commercially-available equipment and supplies, this approach should make microfluidic technology more widely accessible to the non-expert-even the non-scientist. The cost of fabrication consumables was estimated to be < $1 per master, over an order of magnitude decrease in consumable costs compared to standard photolithography. In addition, the use of chemical etching allows accurate control over the height of raised features (i.e., channel depths), allowing the flexibility to fabricate multiple depths on a single master with little added time. Resultant devices are shown capable of pneumatic valving, three-dimensional channel formation (using layer-connecting vias), droplet fluidics, and cell imaging and staining. The multiple-depth capabilities of the method are proven useful for cellular analysis by fabrication of handheld, disposable devices used for trapping and imaging of live murine pancreatic islets. The precise fluidic control provided by the microfluidic platform allows subsequent fixing and staining of these cells without significant movement, thus spatial correlation of imaging and staining is attainable-even with rare alpha cells that constitute only approximately 10% of the islet cells.
Collapse
Affiliation(s)
- Christopher J. Easley
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 702 Light Hall, Nashville, TN 37232, USA
| | - Richard K. P. Benninger
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 702 Light Hall, Nashville, TN 37232, USA
| | - Jesse H. Shaver
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 702 Light Hall, Nashville, TN 37232, USA
| | - W. Steven Head
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 702 Light Hall, Nashville, TN 37232, USA
| | - David W. Piston
- Vanderbilt University, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 702 Light Hall, Nashville, TN 37232, USA
- Vanderbilt University, Department of Physics and Astronomy Vanderbilt University Medical Center, 702 Light Hall, Nashville, TN 37232, USA
- Address Correspondence to: David W. Piston, Ph.D., Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 747D Light Hall, 21 Avenue South, Nashville, TN, USA 37232-0615, Phone: (615) 322-7030, Fax: (615) 322-7236,
| |
Collapse
|
85
|
Jahanshahi P, Wu R, Carter JD, Nunemaker CS. Evidence of diminished glucose stimulation and endoplasmic reticulum function in nonoscillatory pancreatic islets. Endocrinology 2009; 150:607-15. [PMID: 18818288 PMCID: PMC2646533 DOI: 10.1210/en.2008-0773] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulsatility is a fundamental feature of pancreatic islets and a hallmark of hormone secretion. Isolated pancreatic islets endogenously generate rhythms in secretion, metabolic activity, and intracellular calcium ([Ca(2+)](i)) that are important to normal physiological function. Few studies have directly compared oscillatory and nonoscillatory islets to identify possible differences in function. We investigated the hypothesis that the loss of these oscillations is a leading indicator of islet dysfunction by comparing oscillatory and nonoscillatory mouse islets for multiple parameters of function. Nonoscillatory islets displayed elevated basal [Ca(2+)](i) and diminished [Ca(2+)](i) response and insulin secretory response to 3-28 mm glucose stimulation compared with oscillatory islets, suggesting diminished glucose sensitivity. We investigated several possible mechanisms to explain these differences. No differences were observed in mitochondrial membrane potential, estimated ATP-sensitive potassium channel and L-type calcium channel activity, or cell death rates. Nonoscillatory islets, however, showed a reduced response to the sarco(endo)plasmic reticulum calcium ATPase inhibitor thapsigargin, suggesting a disruption in calcium homeostasis in the endoplasmic reticulum (ER) compared with oscillatory islets. The diminished ER calcium homeostasis among nonoscillatory islets was also consistent with the higher cytosolic calcium levels observed in 3 mm glucose. Inducing mild damage with low-dose proinflammatory cytokines reduced islet oscillatory capacity and produced similar effects on glucose-stimulated [Ca(2+)](i), basal [Ca(2+)](i), and thapsigargin response observed among untreated nonoscillatory islets. Our data suggest the loss of oscillatory capacity may be an early indicator of diminished islet glucose sensitivity and ER dysfunction, suggesting targets to improve islet assessment.
Collapse
Affiliation(s)
- Pooya Jahanshahi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908-1413, USA
| | | | | | | |
Collapse
|
86
|
Mohammed JS, Wang Y, Harvat TA, Oberholzer J, Eddington DT. Microfluidic device for multimodal characterization of pancreatic islets. LAB ON A CHIP 2009; 9:97-106. [PMID: 19209341 PMCID: PMC3759253 DOI: 10.1039/b809590f] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A microfluidic device to perfuse pancreatic islets while simultaneously characterizing their functionality through fluorescence imaging of the mitochondrial membrane potential and intracellular calcium ([Ca(2+)](i)) in addition to enzyme linked immunosorbent assay (ELISA) quantification of secreted insulin was developed and characterized. This multimodal characterization of islet function will facilitate rapid assessment of tissue quality immediately following isolation from donor pancreas and allow more informed transplantation decisions to be made which may improve transplantation outcomes. The microfluidic perfusion chamber allows flow rates of up to 1 mL min(-1), without any noticeable perturbation or shear of islets. This multimodal quantification was done on both mouse and human islets. The ability of this simple microfluidic device to detect subtle variations in islet responses in different functional assays performed in short time-periods demonstrates that the microfluidic perfusion chamber device can be used as a new gold standard to perform comprehensive islet analysis and obtain a more meaningful predictive value for islet functionality prior to transplantation into recipients, which is currently difficult to predict using a single functional assay.
Collapse
|
87
|
Abstract
Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.
Collapse
Affiliation(s)
- M Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
88
|
Remedi MS, Nichols CG. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells. PLoS Med 2008; 5:e206. [PMID: 18959471 PMCID: PMC2573909 DOI: 10.1371/journal.pmed.0050206] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pancreatic beta-cell ATP-sensitive potassium (K ATP) channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice) show an unexpected insulin undersecretory phenotype. Therefore we have proposed an "inverse U" hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives beta-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit K ATP activity and thereby enhance insulin secretion) show long-term insulin secretory failure, which we further suggest might reflect a similar progression. METHODS AND FINDINGS To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide) pellets, to chronically inhibit beta-cell K ATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05) reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult K ATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05) as those from K ATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and alpha-/beta-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis. CONCLUSIONS These results demonstrate that chronic glibenclamide treatment in vivo causes loss of insulin secretory capacity due to beta-cell hyperexcitability, but also reveal rapid reversibility of this secretory failure, arguing against beta-cell apoptosis or other cell death induced by sulfonylureas. These in vivo studies may help to explain why patients with type 2 diabetes can show long-term secondary failure to secrete insulin in response to sulfonylureas, but experience restoration of insulin secretion after a drug resting period, without permanent damage to beta-cells. This finding suggests that novel treatment regimens may succeed in prolonging pharmacological therapies in susceptible individuals.
Collapse
|
89
|
Zhang Q, Galvanovskis J, Abdulkader F, Partridge CJ, Göpel SO, Eliasson L, Rorsman P. Cell coupling in mouse pancreatic beta-cells measured in intact islets of Langerhans. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3503-23. [PMID: 18632454 DOI: 10.1098/rsta.2008.0110] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell (due to the firing of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell KATP channel conductance (GK,ATP) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC50 of approximately 4mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca2+]i waves to spread with a speed of approximately 80 microms-1, similar to that observed experimentally in confocal [Ca2+]i imaging.
Collapse
Affiliation(s)
- Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of beta-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet.
Collapse
|
91
|
Gonze D, Markadieu N, Goldbeter A. Selection of in-phase or out-of-phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations. CHAOS (WOODBURY, N.Y.) 2008; 18:037127. [PMID: 19045501 DOI: 10.1063/1.2983753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
On the basis of experimental observations, it has been suggested that glycolytic oscillations underlie the pulsatile secretion of insulin by pancreatic beta cells, with a periodicity of about 13 min. If beta cells within an islet are synchronized through gap junctions, the question arises as to how beta cells located in different islets of Langerhans synchronize to produce oscillations in plasma levels of insulin. We address this question by means of a minimal model that incorporates the secretion of insulin by cells undergoing glycolytic oscillations. Global coupling and synchronization result from the inhibition exerted by insulin on the production of glucose, which serves as the substrate for metabolic oscillations. Glycolytic oscillations are described by a simple two-variable model centered on the product-activated reaction catalyzed by the allosteric enzyme phosphofructokinase. We obtain bifurcation diagrams for the cases in which insulin secretion is controlled solely by the product or by the substrate of the metabolic oscillator. Remarkably, we find that the oscillating cells in these conditions synchronize, respectively, in phase or out of phase. Numerical simulations show that in-phase and out-of-phase synchronization can sometimes coexist when insulin release is controlled by both the substrate and the product of the metabolic oscillator. The results provide an example of a system in which the selection of in-phase or out-of-phase synchronization is governed by the nature of the coupling between the intracellular oscillations and the secretion of the biochemical signal through which the oscillating cells are globally coupled.
Collapse
Affiliation(s)
- Didier Gonze
- Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, CP 231, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
92
|
Jaques F, Jousset H, Tomas A, Prost AL, Wollheim CB, Irminger JC, Demaurex N, Halban PA. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion. Endocrinology 2008; 149:2494-505. [PMID: 18218692 DOI: 10.1210/en.2007-0974] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-to-cell interactions play an important role in insulin secretion. Compared with intact islets, dispersed pancreatic beta-cells show increased basal and decreased glucose-stimulated insulin secretion. In this study, we used mouse MIN6B1 cells to investigate the mechanisms that control insulin secretion when cells are in contact with each other or not. RNAi-mediated silencing of the adhesion molecule E-cadherin in confluent cells reduced glucose-stimulated secretion to the levels observed in isolated cells but had no impact on basal secretion. Dispersed cells presented high cytosolic Ca(2+) activity, depolymerized cytoskeleton and ERK1/2 activation in low glucose conditions. Both the increased basal secretion and the spontaneous Ca(2+) activity were corrected by transient removal of Ca(2+) or prolonged incubation of cells in low glucose, a procedure that restored the ability of dispersed cells to respond to glucose (11-fold stimulation). In conclusion, we show that dispersed pancreatic beta-cells can respond robustly to glucose once their elevated basal secretion has been corrected. The increased basal insulin secretion of dispersed cells is due to spontaneous Ca(2+) transients that activate downstream Ca(2+) effectors, whereas engagement of cell adhesion molecules including E-cadherin contributes to the greater secretory response to glucose seen in cells with normal intercellular contacts.
Collapse
Affiliation(s)
- Fabienne Jaques
- Department of Genetic Medicine and Development, University of Geneva Medical Center, 1211 Geneva-4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Rocheleau JV, Piston DW. Chapter 4 Combining Microfluidics and Quantitative Fluorescence Microscopy to Examine Pancreatic Islet Molecular Physiology. Methods Cell Biol 2008; 89:71-92. [DOI: 10.1016/s0091-679x(08)00604-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
94
|
Abstract
Nutrient oxidation in beta cells generates a rise in [ATP]:[ADP] ratio. This reduces K(ATP) channel activity, leading to depolarization, activation of voltage-dependent Ca(2+) channels, Ca(2+) entry and insulin secretion. Consistent with this paradigm, loss-of-function mutations in the genes (KCNJ11 and ABCC8) that encode the two subunits (Kir6.2 and SUR1, respectively) of the ATP-sensitive K(+) (K(ATP)) channel underlie hyperinsulinism in humans, a genetic disorder characterized by dysregulated insulin secretion. In mice with genetic suppression of K(ATP) channel subunit expression, partial loss of K(ATP) channel conductance also causes hypersecretion, but unexpectedly, complete loss results in an undersecreting, mildly glucose-intolerant phenotype. When challenged by a high-fat diet, normal mice and mice with reduced K(ATP) channel density respond with hypersecretion, but mice with more significant or complete loss of K(ATP) channels cross over, or progress further, to an undersecreting, diabetic phenotype. It is our contention that in mice, and perhaps in humans, there is an inverse U-shaped response to hyperexcitabilty, leading first to hypersecretion but with further exacerbation to undersecretion and diabetes. The causes of the overcompensation and diabetic susceptibility are poorly understood but may have broader implications for the progression of hyperinsulinism and type 2 diabetes in humans.
Collapse
Affiliation(s)
- C G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
95
|
Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metab 2007; 9 Suppl 2:118-32. [PMID: 17919186 DOI: 10.1111/j.1463-1326.2007.00780.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The emergence of pancreatic islets has necessitated the development of a signalling system for the intra- and inter-islet coordination of beta cells. With evolution, this system has evolved into a complex regulatory network of partially cross-talking pathways, whereby individual cells sense the state of activity of their neighbours and, accordingly, regulate their own level of functioning. A consistent feature of this network in vertebrates is the expression of connexin (Cx)-36-made cell-to-cell channels, which cluster at gap junction domains of the cell membrane, and which adjacent beta cells use to share cytoplasmic ions and small metabolites within individual islets. This chapter reviews what is known about Cx36, and the mechanism whereby this beta-cell connexin significantly regulates insulin secretion. It further outlines other less established functions of the protein and evaluates its potential relevance for the development of novel therapeutic approaches to diabetes.
Collapse
Affiliation(s)
- S Bavamian
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Genève, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Nittala A, Ghosh S, Wang X. Investigating the role of islet cytoarchitecture in its oscillation using a new beta-cell cluster model. PLoS One 2007; 2:e983. [PMID: 17912360 PMCID: PMC1991600 DOI: 10.1371/journal.pone.0000983] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 09/07/2007] [Indexed: 12/02/2022] Open
Abstract
The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of β cells in each islet. The functional role of islet β cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of β-cell clusters, including the fraction of cells able to burst fb, the synchronization index λ of the bursting β cells, the bursting period Tb, the plateau fraction pf, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells nβ, number of inter-β cell couplings of each β cell nc, and the coupling strength gc. We found that at low values of nβ, nc and gc, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at nβ∼100, nc∼6 and gc∼200 pS. In addition, normal β-cell clusters are robust against significant perturbation to their architecture, including the presence of non-β cells or dead β cells. In clusters with nβ>∼100, coordinated β-cell bursting can be maintained at up to 70% of β-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a β-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Aparna Nittala
- Max McGee National Research Center for Juvenile Diabetes, Human and Molecular Genetics Center, Medical College of Wisconsin, Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Soumitra Ghosh
- Max McGee National Research Center for Juvenile Diabetes, Human and Molecular Genetics Center, Medical College of Wisconsin, Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- Max McGee National Research Center for Juvenile Diabetes, Human and Molecular Genetics Center, Medical College of Wisconsin, Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
97
|
Bertram R, Sherman A, Satin LS. Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am J Physiol Endocrinol Metab 2007; 293:E890-900. [PMID: 17666486 DOI: 10.1152/ajpendo.00359.2007] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impairment of insulin secretion from the beta-cells of the pancreatic islets of Langerhans is central to the development of type 2 diabetes mellitus and has therefore been the subject of much investigation. Great advances have been made in this area, but the mechanisms underlying the pulsatility of insulin secretion remain controversial. The period of these pulses is 4-6 min and reflects oscillations in islet membrane potential and intracellular free Ca(2+). Pulsatile blood insulin levels appear to play an important physiological role in insulin action and are lost in patients with type 2 diabetes and their near relatives. We present evidence for a recently developed beta-cell model, the "dual oscillator model," in which oscillations in activity are due to both electrical and metabolic mechanisms. This model is capable of explaining much of the available data on islet activity and offers possible resolutions of a number of longstanding issues. The model, however, still lacks direct confirmation and raises new issues. In this article, we highlight both the successes of the model and the challenges that it poses for the field.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | | | | |
Collapse
|
98
|
Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M. Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes 2007; 56:1078-86. [PMID: 17395748 DOI: 10.2337/db06-0232] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied the effect of gap junctional coupling on the excitability of beta-cells in slices of pancreas, which provide a normal environment for islet cells. The electrophysiological properties of beta-cells from mice (C57Bl/6 background) lacking the gap junction protein connexin36 (Cx36(-/-)) were compared with heterozygous (Cx36(+/-)) and wild-type littermates (Cx36(+/+)) and with frequently used wild-type NMRI mice. Most electrophysiological characteristics of beta-cells were found to be unchanged after the knockout of Cx36, except the density of Ca(2+) channels, which was increased in uncoupled cells. With closed ATP-sensitive K(+) (K(ATP)) channels, the electrically coupled beta-cells of Cx36(+/+) and Cx36(+/-) mice were hyperpolarized by the membrane potential of adjacent, inactive cells. Additionally, the hyperpolarization of one beta-cell could attenuate or even stop the electrical activity of nearby coupled cells. In contrast, beta-cells of Cx36(-/-) littermates with blocked K(ATP) channels rapidly depolarized and exhibited a continuous electrical activity. Absence of electrical coupling modified the electrophysiological properties of beta-cells consistent with the reported increase in basal insulin release and altered the switch on/off response of beta-cells during an acute drop of the glucose concentration. Our data indicate an important role for Cx36-gap junctions in modulating stimulation threshold and kinetics of insulin release.
Collapse
Affiliation(s)
- Stephan Speier
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
99
|
Szollosi A, Nenquin M, Henquin JC. Overnight culture unmasks glucose-induced insulin secretion in mouse islets lacking ATP-sensitive K+ channels by improving the triggering Ca2+ signal. J Biol Chem 2007; 282:14768-76. [PMID: 17389589 DOI: 10.1074/jbc.m701382200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A current model ascribes glucose-induced insulin secretion to the interaction of a triggering pathway (K(ATP) channel-dependent Ca(2+) influx and rise in cytosolic [Ca(2+)](c)) and an amplifying pathway (K(ATP) channel-independent augmentation of secretion without further increase of [Ca(2+)](c)). However, several studies of sulfonylurea receptor 1 null mice (Sur1KO) failed to measure significant effects of glucose in their islets lacking K(ATP) channels. We addressed this issue that challenges the model. Compared with controls, fresh Sur1KO islets showed slightly elevated basal [Ca(2+)](c) and insulin secretion. In 15 mm glucose, the absolute rate of secretion was approximately 3-fold lower in Sur1KO than control islets, with only poor increase above base line. Overnight culture of Sur1KO islets in 10 mm glucose (not in 5 mm) augmented basal insulin secretion and considerably improved the response to 15 mm glucose, which reached higher values than in control islets, in which culture had little impact. Glucose stimulation during KCl depolarization showed that the amplifying pathway is functional in fresh and cultured Sur1KO islets. The differences in insulin secretion between fresh and cultured Sur1KO islets and between Sur1KO and control islets were not attributable to differences in insulin content, glucose oxidation rate, or synchronization of [Ca(2+)](c) oscillations. The unmasking of glucose-induced insulin secretion in beta-cells lacking K(ATP) channels is paradoxically due to improvement in the production of a triggering signal (elevated [Ca(2+)](c)). The results show that K(ATP) channels are not the only transducer of glucose effects on [Ca(2+)](c) in beta-cells. They explain controversies in the literature and refute arguments raised against the model implicating an amplifying pathway in glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Andras Szollosi
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL55.30, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
100
|
Zhang W, Feng D, Li Y, Iida K, McGrath B, Cavener DR. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab 2006; 4:491-7. [PMID: 17141632 DOI: 10.1016/j.cmet.2006.11.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/25/2006] [Accepted: 11/02/2006] [Indexed: 12/12/2022]
Abstract
Mutations in PERK (EIF2AK3) result in permanent neonatal diabetes as well as several other anomalies that underlie the human Wolcott-Rallison syndrome, and these anomalies are mirrored in Perk knockout mice. To identify the cause of diabetes in PERK-deficient mice, we generated a series of tissue- and cell-specific knockouts of the Perk gene and performed a developmental analysis of the progression to overt diabetes. We discovered that PERK is specifically required in the insulin-secreting beta cells during the fetal and early neonatal period as a prerequisite for postnatal glucose homeostasis. However, PERK expression in beta cells is not required at the adult stage to maintain beta cell functions and glucose homeostasis. We show that PERK-deficient mice exhibit severe defects in fetal/neonatal beta cell proliferation and differentiation, resulting in low beta cell mass, defects in proinsulin trafficking, and abrogation of insulin secretion that culminate in permanent neonatal diabetes.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|