51
|
De Ridder R, Boudin E, Vandeweyer G, Devogelaer JP, Fransen E, Mortier G, Van Hul W. Genetic Variation in RIN3 in the Belgian Population Supports Its Involvement in the Pathogenesis of Paget's Disease of Bone and Modifies the Age of Onset. Calcif Tissue Int 2019; 104:613-621. [PMID: 30726512 DOI: 10.1007/s00223-019-00530-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Abstract
Paget's disease of bone (PDB) is a common, late-onset bone disorder characterized by focal increase of bone turnover. Mutations in the SQSTM1 gene are found in up to 40% of patients and recent GWAS have led to novel associations with several loci. RIN3, the candidate gene located at the associated 14q32 locus, has recently been studied in a British cohort to elucidate its contribution to the pathogenesis. In this study, we performed a genetic screening of RIN3 in an unrelated cohort to validate these findings and to further explore genetic variation in this gene in the context of PDB. In our screening, we examined the 5' untranslated region (UTR), the exonic regions and the intron-exon boundaries of the gene in a control cohort and a patient cohort. Our findings show clustering of variation similar to the British cohort and support a protective role for common genetic variation (rs117068593, p.R279C) in the proline-rich region and a functionally relevant role for rare genetic variation in the domains that mediate binding and activation of its interaction partner, Rab5. Additive regression models, fitted for the common variants, validated the association of the rs117068593 variant with the disease (OR+/+ 0.315; OR+/- 0.562). In addition, our analyses revealed a potentially modifying effect of this variant on the age of onset of the disease. In conclusion, our findings support the involvement of genetic variation in RIN3 in PDB and suggest a role for RIN3 as a potential modifier of the age of onset of the disease.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem, 2650, Antwerp, Belgium
| | - Eveline Boudin
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem, 2650, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem, 2650, Antwerp, Belgium
| | - Jean-Pierre Devogelaer
- Department of Rheumatology, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Erik Fransen
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem, 2650, Antwerp, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem, 2650, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem, 2650, Antwerp, Belgium.
| |
Collapse
|
52
|
Yurchenko AA, Deniskova TE, Yudin NS, Dotsev AV, Khamiruev TN, Selionova MI, Egorov SV, Reyer H, Wimmers K, Brem G, Zinovieva NA, Larkin DM. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics 2019; 20:294. [PMID: 32039702 PMCID: PMC7227232 DOI: 10.1186/s12864-019-5537-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Domestication and centuries of selective breeding have changed genomes of sheep breeds to respond to environmental challenges and human needs. The genomes of local breeds, therefore, are valuable sources of genomic variants to be used to understand mechanisms of response to adaptation and artificial selection. As a step toward this we performed a high-density genotyping and comprehensive scans for signatures of selection in the genomes from 15 local sheep breeds reared across Russia. Results Results demonstrated that the genomes of Russian sheep breeds contain multiple regions under putative selection. More than 50% of these regions matched with intervals identified in previous scans for selective sweeps in sheep genomes. These regions contain well-known candidate genes related to morphology, adaptation, and domestication (e.g., KITLG, KIT, MITF, and MC1R), wool quality and quantity (e.g., DSG@, DSC@, and KRT@), growth and feed intake (e.g., HOXA@, HOXC@, LCORL, NCAPG, LAP3, and CCSER1), reproduction (e.g., CMTM6, HTRA1, GNAQ, UBQLN1, and IFT88), and milk-related traits (e.g., ABCG2, SPP1, ACSS1, and ACSS2). In addition, multiple genes that are putatively related to environmental adaptations were top-ranked in selected intervals (e.g., EGFR, HSPH1, NMUR1, EDNRB, PRL, TSHR, and ADAMTS5). Moreover, we observed that multiple key genes involved in human hereditary sensory and autonomic neuropathies, and genetic disorders accompanied with an inability to feel pain and environmental temperatures, were top-ranked in multiple or individual sheep breeds from Russia pointing to a possible mechanism of adaptation to harsh climatic conditions. Conclusions Our work represents the first comprehensive scan for signatures of selection in genomes of local sheep breeds from the Russian Federation of both European and Asian origins. We confirmed that the genomes of Russian sheep contain previously identified signatures of selection, demonstrating the robustness of our integrative approach. Multiple novel signatures of selection were found near genes which could be related to adaptation to the harsh environments of Russia. Our study forms a basis for future work on using Russian sheep genomes to spot specific genetic variants or haplotypes to be used in efforts on developing next-generation highly productive breeds, better suited to diverse Eurasian environments. Electronic supplementary material The online version of this article (10.1186/s12864-019-5537-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Tatiana E Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia
| | - Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Arsen V Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia
| | - Timur N Khamiruev
- Research Institute of Veterinary Medicine of Eastern Siberia, The Branch of the Siberian Federal Scientific Center for Agrobiotechnologies of the Russian Academy of Sciences, Chita, Russia
| | - Marina I Selionova
- All-Russian Research Institute of Sheep and Goat Breeding - branch of the Federal State Budgetary Scientific Institution North Caucasian Agrarian Center, Stavropol, 355017, Russia
| | - Sergey V Egorov
- Siberian Research Institute of Animal Husbandry, Krasnoobsk, Russia
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, 142132, Russia.
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia. .,Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
53
|
Chesi A, Wagley Y, Johnson ME, Manduchi E, Su C, Lu S, Leonard ME, Hodge KM, Pippin JA, Hankenson KD, Wells AD, Grant SFA. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun 2019; 10:1260. [PMID: 30890710 PMCID: PMC6425012 DOI: 10.1038/s41467-019-09302-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a devastating disease with an essential genetic component. GWAS have discovered genetic signals robustly associated with bone mineral density (BMD), but not the precise localization of effector genes. Here, we carry out physical and direct variant to gene mapping in human mesenchymal progenitor cell-derived osteoblasts employing a massively parallel, high resolution Capture C based method in order to simultaneously characterize the genome-wide interactions of all human promoters. By intersecting our Capture C and ATAC-seq data, we observe consistent contacts between candidate causal variants and putative target gene promoters in open chromatin for ~ 17% of the 273 BMD loci investigated. Knockdown of two novel implicated genes, ING3 at ‘CPED1-WNT16’ and EPDR1 at ‘STARD3NL’, inhibits osteoblastogenesis, while promoting adipogenesis. This approach therefore aids target discovery in osteoporosis, here on the example of two relevant genes involved in the fate determination of mesenchymal progenitors, and can be applied to other common genetic diseases. GWAS have identified numerous genetic loci for bone mineral density (BMD) and fracture risk. Here, the authors map these variants to putative target genes using ATAC-seq and Capture C of human osteoblasts and confirm ING3 and EPDR1 as BMD genes in in vitro osteoblast differentiation experiments.
Collapse
Affiliation(s)
- Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.,Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA. .,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA. .,Divisions of Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.
| |
Collapse
|
54
|
LncRNA ZBTB40-IT1 modulated by osteoporosis GWAS risk SNPs suppresses osteogenesis. Hum Genet 2019; 138:151-166. [PMID: 30661131 DOI: 10.1007/s00439-019-01969-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Previous genome-wide linkage and association studies have identified an osteoporosis-associated locus at 1p36 that harbors SNPs rs34920465 and rs6426749. The 1p36 locus also comprises the WNT4 gene with known role in bone metabolism and functionally unknown ZBTB40/lncRNA ZBTB40-IT1 genes. How these might interact to contribute to osteoporosis susceptibility is not known. In this study, we show that lncRNA ZBTB40-IT1 is able to suppress osteogenesis and promote osteoclastogenesis by regulating the expression of WNT4, RUNX2, OSX, ALP, COL1A1, OPG and RANKL in U-2OS and hFOB1.19 cell lines, whereas ZBTB40 plays an opposite role in bone metabolism. Treatment with parathyroid hormone significantly downregulates the expression of ZBTB40-IT1 in U-2OS cell lines. ZBTB40 can suppress ZBTB40-IT1 expression but has no response to parathyroid hormone treatment. Dual-luciferase assay and biotin pull-down assay demonstrate that osteoporosis GWAS lead SNPs rs34920465-G and rs6426749-C alleles can respectively bind transcription factors JUN::FOS and CREB1, and upregulate ZBTB40 and ZBTB40-IT1 expression. Our study discovers the critical role of ZBTB40 and lncRNA ZBTB40-IT1 in bone metabolism, and provides a mechanistic basis for osteoporosis GWAS lead SNPs rs34920465 and rs6426749.
Collapse
|
55
|
Koromani F, Trajanoska K, Rivadeneira F, Oei L. Recent Advances in the Genetics of Fractures in Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:337. [PMID: 31231309 PMCID: PMC6559287 DOI: 10.3389/fendo.2019.00337] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic susceptibility, together with old age, female sex, and low bone mineral density (BMD) are amongst the strongest determinants of fracture risk. Tmost recent large-scale genome-wide association study (GWAS) meta-analysis has yielded fifteen loci. This review focuses on the advances in the research of genetic determinants of fracture risk. We first discuss the genetic architecture of fracture risk, touching upon different methods and overall findings. We then discuss in a second paragraph the most recent advances in the field and focus on the genetics of fracture risk and also of other endophenotypes closely related to fracture risk such as bone mineral density (BMD). Application of state-of-the-art methodology such as Mendelian randzation in fracture GWAS are reviewed. The final part of this review touches upon potential future directions in genetic research of osteoporotic fractures.
Collapse
Affiliation(s)
- Fjorda Koromani
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ling Oei
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Ling Oei
| |
Collapse
|
56
|
Joshi HJ, Hansen L, Narimatsu Y, Freeze HH, Henrissat B, Bennett E, Wandall HH, Clausen H, Schjoldager KT. Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology 2018; 28:284-294. [PMID: 29579191 DOI: 10.1093/glycob/cwy015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of proteins, lipids and proteoglycans in human cells involves at least 167 identified glycosyltransferases (GTfs), and these orchestrate the biosynthesis of diverse types of glycoconjugates and glycan structures. Mutations in this part of the genome-the GTf-genome-cause more than 58 rare, monogenic congenital disorders of glycosylation (CDGs). They are also statistically associated with a large number of complex phenotypes, diseases or predispositions to complex diseases based on Genome-Wide Association Studies (GWAS). CDGs are extremely rare and often with severe medical consequences. In contrast, GWAS are likely to identify more common genetic variations and generally involve less severe and distinct traits. We recently confirmed that structural defects in GTf genes are extremely rare, which seemed at odds with the large number of GWAS pointing to GTf-genes. To resolve this issue, we surveyed the GTf-genome for reported CDGs and GWAS candidates; we found little overlap between the two groups of genes. Moreover, GTf-genes implicated by CDG or GWAS appear to constitute different classes with respect to their: (i) predicted roles in glycosylation pathways; (ii) potential for partial redundancy by closely homologous genes; and (iii) transcriptional regulation as evaluated by RNAseq data. Our analysis suggest that more complex traits are caused by dysregulation rather than structural deficiency of GTfs, which suggests that some glycosylation reactions may be predicted to be under tight regulation for fine-tuning of important biological functions.
Collapse
Affiliation(s)
- Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bernard Henrissat
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.,Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, F-13288 Marseille, France
| | - Eric Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
57
|
Maynard RD, Godfrey DA, Medina-Gomez C, Ackert-Bicknell CL. Characterization of expression and alternative splicing of the gene cadherin-like and PC esterase domain containing 1 (Cped1). Gene 2018; 674:127-133. [PMID: 29935354 PMCID: PMC6201759 DOI: 10.1016/j.gene.2018.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 01/21/2023]
Abstract
Cadherin-like and PC-esterase domain containing 1 (CPED1) is an uncharacterized gene with no known function. Human genome wide association studies (GWAS) for bone mineral density (BMD) have repeatedly identified a significant locus on Chromosome 7 that contains the gene CPED1, but it remains unclear if this gene could be causative. While an open reading frame for this gene has been predicted, there has been no systematic exploration of expression or alternate splicing for CPED1 in humans or mice.Using mouse models, we demonstrate that Cped1 is alternately spliced whereby transcripts are generated with exon 3 or exons 16 and 17 removed. In calvarial-derived pre-osteoblasts, Cped1 utilizes the predicted promoter upstream of exon 1 as well as alternate promoters upstream of exon 3 and exon 12.Lastly, we have determined that some transcripts terminate at the end of exon 10 and therefore do not contain the cadherin like and the PC esterase domains.Together, these data suggest that multiple protein products may be produced by this gene, with some products either lacking or containing both the predicted functional domains. Our data provide a framework upon which future functional studies will be built to understand the role of this gene in bone biology.
Collapse
Affiliation(s)
- Robert D Maynard
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, United States.
| | - Dana A Godfrey
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States; Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, United States.
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center University, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States; Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, United States; Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
58
|
Cuellar Partida G, Laurin C, Ring SM, Gaunt TR, McRae AF, Visscher PM, Montgomery GW, Martin NG, Hemani G, Suderman M, Relton CL, Davey Smith G, Evans DM. Genome-wide survey of parent-of-origin effects on DNA methylation identifies candidate imprinted loci in humans. Hum Mol Genet 2018; 27:2927-2939. [PMID: 29860447 PMCID: PMC6077796 DOI: 10.1093/hmg/ddy206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism leading to parent-of-origin silencing of alleles. So far, the precise number of imprinted regions in humans is uncertain. In this study, we leveraged genome-wide DNA methylation in whole blood measured longitudinally at three time points (birth, childhood and adolescence) and genome-wide association studies (GWAS) data in 740 mother-child duos from the Avon Longitudinal Study of parents and children to identify candidate imprinted loci. We reasoned that cis-meQTLs at genomic regions that were imprinted would show strong evidence of parent-of-origin associations with DNA methylation, enabling the detection of imprinted regions. Using this approach, we identified genome-wide significant cis-meQTLs that exhibited parent-of-origin effects (POEs) at 82 loci, 34 novel and 48 regions previously implicated in imprinting (3.7-10<P < 10-300). Using an independent dataset from the Brisbane Systems Genetic Study, we replicated 76 out of the 82 identified loci. POEs were remarkably consistent across time points and were so strong at some loci that methylation levels enabled good discrimination of parental transmissions at these and surrounding genomic regions. The implication is that parental allelic transmissions could be modelled at many imprinted (and linked) loci in GWAS of unrelated individuals given a combination of genetic and methylation data. Novel regions showing parent of origin effects on methylation will require replication using a different technology and further functional experiments to confirm that such effects arise through a genomic imprinting mechanism.
Collapse
Affiliation(s)
- Gabriel Cuellar Partida
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Charles Laurin
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan M Ring
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R Gaunt
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Allan F McRae
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Peter M Visscher
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | | | - Gibran Hemani
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.,Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
59
|
Khayal LA, Grünhagen J, Provazník I, Mundlos S, Kornak U, Robinson PN, Ott CE. Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses. Bone 2018; 113:29-40. [PMID: 29653293 DOI: 10.1016/j.bone.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Abstract
Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology.
Collapse
Affiliation(s)
- Layal Abo Khayal
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Johannes Grünhagen
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ivo Provazník
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic; International Clinical Research Center, Center of Biomedical Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter N Robinson
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
60
|
Glucocorticoids suppress Wnt16 expression in osteoblasts in vitro and in vivo. Sci Rep 2018; 8:8711. [PMID: 29880826 PMCID: PMC5992207 DOI: 10.1038/s41598-018-26300-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoid-induced osteoporosis is a frequent complication of systemic glucocorticoid (GC) therapy and mainly characterized by suppressed osteoblast activity. Wnt16 derived from osteogenic cells is a key determinant of bone mass. Here, we assessed whether GC suppress bone formation via inhibiting Wnt16 expression. GC treatment with dexamethasone (DEX) decreased Wnt16 mRNA levels in murine bone marrow stromal cells (mBMSCs) time- and dose-dependently. Similarly, Wnt16 expression was also suppressed after DEX treatment in calvarial organ cultures. Consistently, mice receiving GC-containing slow-release prednisolone pellets showed lower skeletal Wnt16 mRNA levels and bone mineral density than placebo-treated mice. The suppression of Wnt16 by GCs was GC-receptor-dependent as co-treatment of mBMSCs with DEX and the GR antagonist RU-486 abrogated the GC-mediated suppression of Wnt16. Likewise, DEX failed to suppress Wnt16 expression in GR knockout-mBMSCs. In addition, Wnt16 mRNA levels were unaltered in bone tissue of GC-treated GR dimerization-defective GRdim mice, suggesting that GCs suppress Wnt16 via direct DNA-binding mechanisms. Consistently, DEX treatment reduced Wnt16 promoter activity in MC3T3-E1 cells. Finally, recombinant Wnt16 restored DEX-induced suppression of bone formation in mouse calvaria. Thus, this study identifies Wnt16 as a novel target of GC action in GC-induced suppression of bone formation.
Collapse
|
61
|
Warrington NM, Shevroja E, Hemani G, Hysi PG, Jiang Y, Auton A, Boer CG, Mangino M, Wang CA, Kemp JP, McMahon G, Medina-Gomez C, Hickey M, Trajanoska K, Wolke D, Ikram MA, Montgomery GW, Felix JF, Wright MJ, Mackey DA, Jaddoe VW, Martin NG, Tung JY, Davey Smith G, Pennell CE, Spector TD, van Meurs J, Rivadeneira F, Medland SE, Evans DM. Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero. Hum Mol Genet 2018; 27:2025-2038. [PMID: 29659830 PMCID: PMC5961159 DOI: 10.1093/hmg/ddy121] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (β = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
| | - Enisa Shevroja
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | | | - Adam Auton
- 23andMe, Inc., Mountain View, CA 94061, USA
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Carol A Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - John P Kemp
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne and the Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Dieter Wolke
- Department of Psychology and Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | | | - Grant W Montgomery
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas G Martin
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Joyce van Meurs
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - David M Evans
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| |
Collapse
|
62
|
Warrington NM, Shevroja E, Hemani G, Hysi PG, Jiang Y, Auton A, Boer CG, Mangino M, Wang CA, Kemp JP, McMahon G, Medina-Gomez C, Hickey M, Trajanoska K, Wolke D, Ikram MA, Montgomery GW, Felix JF, Wright MJ, Mackey DA, Jaddoe VW, Martin NG, Tung JY, Davey Smith G, Pennell CE, Spector TD, van Meurs J, Rivadeneira F, Medland SE, Evans DM. Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero. Hum Mol Genet 2018; 27:2025-2038. [PMID: 29659830 PMCID: PMC5961159 DOI: 10.1093/hmg/ddy121 10.1093/hmg/ddy121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 10/22/2023] Open
Abstract
The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (β = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
| | - Enisa Shevroja
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | | | - Adam Auton
- 23andMe, Inc., Mountain View, CA 94061, USA
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Carol A Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - John P Kemp
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne and the Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Dieter Wolke
- Department of Psychology and Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | | | - Grant W Montgomery
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas G Martin
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Joyce van Meurs
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - David M Evans
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| |
Collapse
|
63
|
Chen XF, Zhu DL, Yang M, Hu WX, Duan YY, Lu BJ, Rong Y, Dong SS, Hao RH, Chen JB, Chen YX, Yao S, Thynn HN, Guo Y, Yang TL. An Osteoporosis Risk SNP at 1p36.12 Acts as an Allele-Specific Enhancer to Modulate LINC00339 Expression via Long-Range Loop Formation. Am J Hum Genet 2018; 102:776-793. [PMID: 29706346 PMCID: PMC5986728 DOI: 10.1016/j.ajhg.2018.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have reproducibly associated variants within intergenic regions of 1p36.12 locus with osteoporosis, but the functional roles underlying these noncoding variants are unknown. Through an integrative functional genomic and epigenomic analyses, we prioritized rs6426749 as a potential causal SNP for osteoporosis at 1p36.12. Dual-luciferase assay and CRISPR/Cas9 experiments demonstrate that rs6426749 acts as a distal allele-specific enhancer regulating expression of a lncRNA (LINC00339) (∼360 kb) via long-range chromatin loop formation and that this loop is mediated by CTCF occupied near rs6426749 and LINC00339 promoter region. Specifically, rs6426749-G allele can bind transcription factor TFAP2A, which efficiently elevates the enhancer activity and increases LINC00339 expression. Downregulation of LINC00339 significantly increases the expression of CDC42 in osteoblast cells, which is a pivotal regulator involved in bone metabolism. Our study provides mechanistic insight into how a noncoding SNP affects osteoporosis by long-range interaction, a finding that could indicate promising therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Man Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bing-Jie Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hlaing Nwe Thynn
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
64
|
Mitchell JA, Chesi A, Cousminer DL, McCormack SE, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, Zemel BS, Grant SF. Multidimensional Bone Density Phenotyping Reveals New Insights Into Genetic Regulation of the Pediatric Skeleton. J Bone Miner Res 2018; 33:812-821. [PMID: 29240982 PMCID: PMC7473448 DOI: 10.1002/jbmr.3362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a complex disease with developmental origins. It is therefore important to understand the genetic contribution to pediatric areal bone mineral density (aBMD). Individual skeletal site phenotyping has been primarily used to identify pediatric aBMD loci. However, this approach is limited because there is a degree of aBMD discordance across skeletal sites. We therefore applied a novel multidimensional phenotyping approach to further understand the genetic regulation of pediatric aBMD. Our sample comprised a prospective, longitudinal cohort of 1293 children of European ancestry (52% female; up to seven annual measurements). Principal components analysis was applied to dual-energy X-ray absorptiometry-derived aBMD Z-scores for total hip, femoral neck, spine, and distal radius to generate multidimensional aBMD phenotypes (ie, principal component scores). We tested the association between a genetic score (percentage of bone lowering alleles at 63 loci) and each principal component. We also performed a genomewide association study (GWAS) using the multiethnic baseline data (n = 1885) to identify novel loci associated with these principal components. The first component (PC1) reflected a concordant phenotypic model of the skeleton (eg, higher loading score = higher BMD across all sites). In contrast, PC2 was discordant for distal radius versus spine and hip aBMD, and PC3 was discordant for spine versus distal radius and hip aBMD. The genetic score was associated with PC1 (beta = -0.05, p = 3.9 × 10-10 ), but was not associated with discordant PC2 or PC3. Our GWAS discovered variation near CPED1 that associated with PC2 (rs67991850, p = 2.5 × 10-11 ) and near RAB11FIP5 (rs58649746, p = 4.8 × 10-9 ) that associated with PC3. In conclusion, an established bone fragility genetic summary score was associated with a concordant skeletal phenotype, but not discordant skeletal phenotypes. Novel associations were observed for the discordant multidimensional skeletal phenotypes that provide new biological insights into the developing skeleton. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jonathan A Mitchell
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shana E McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heidi J Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan M Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - John A Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan Fa Grant
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
65
|
Rowe DW, Adams DJ, Hong SH, Zhang C, Shin DG, Renata Rydzik C, Chen L, Wu Z, Garland G, Godfrey DA, Sundberg JP, Ackert-Bicknell C. Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by μCT and Histomorphometry. Curr Osteoporos Rep 2018; 16:77-94. [PMID: 29508144 DOI: 10.1007/s11914-018-0421-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The international mouse phenotyping consortium (IMPC) is producing defined gene knockout mouse lines. Here, a phenotyping program is presented that is based on micro-computed tomography (μCT) assessment of distal femur and vertebra. Lines with significant variation undergo a computer-based bone histomorphometric analysis. RECENT FINDINGS Of the 220 lines examined to date, approximately 15% have a significant variation (high or low) by μCT, most of which are not identified by the IMPC screen. Significant dimorphism between the sexes and bone compartments adds to the complexity of the skeletal findings. The μCT information that is posted at www.bonebase.org can group KOMP lines with similar morphological features. The histological data is presented in a graphic form that associates the cellular features with a specific anatomic group. The web portal presents a bone-centric view appropriate for the skeletal biologist/clinician to organize and understand the large number of genes that can influence skeletal health. Cataloging the relative severity of each variant is the first step towards compiling the dataset necessary to appreciate the full polygenic basis of degenerative bone disease.
Collapse
Affiliation(s)
- David W Rowe
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA.
| | - Douglas J Adams
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Caibin Zhang
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dong-Guk Shin
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - C Renata Rydzik
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Li Chen
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Zhihua Wu
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | | | - Dana A Godfrey
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| | | | - Cheryl Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| |
Collapse
|
66
|
Differential Expression Profiling of Long Noncoding RNA and mRNA during Osteoblast Differentiation in Mouse. Int J Genomics 2018; 2018:7691794. [PMID: 29765976 PMCID: PMC5885395 DOI: 10.1155/2018/7691794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as an important controller affecting metabolic tissue development, signaling, and function. However, little is known about the function and profile of lncRNAs in osteoblastic differentiation in mice. Here, we analyzed the RNA-sequencing (RNA-Seq) datasets obtained for 18 days in two-day intervals from neonatal mouse calvarial pre-osteoblast-like cells. Over the course of osteoblast differentiation, 4058 mRNAs and 3948 lncRNAs were differentially expressed, and they were grouped into 12 clusters according to the expression pattern by fuzzy c-means clustering. Using weighted gene coexpression network analysis, we identified 9 modules related to the early differentiation stage (days 2–8) and 7 modules related to the late differentiation stage (days 10–18). Gene ontology and KEGG pathway enrichment analysis revealed that the mRNA and lncRNA upregulated in the late differentiation stage are highly associated with osteogenesis. We also identified 72 mRNA and 89 lncRNAs as potential markers including several novel markers for osteoblast differentiation and activation. Our findings provide a valuable resource for mouse lncRNA study and improves our understanding of the biology of osteoblastic differentiation in mice.
Collapse
|
67
|
Cousminer DL, Mitchell JA, Chesi A, Roy SM, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, McCormack SE, Voight BF, Zemel BS, Grant SFA. Genetically Determined Later Puberty Impacts Lowered Bone Mineral Density in Childhood and Adulthood. J Bone Miner Res 2018; 33:430-436. [PMID: 29068475 PMCID: PMC5839967 DOI: 10.1002/jbmr.3320] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 11/11/2022]
Abstract
Later puberty associates with lower areal bone mineral density (aBMD), and both are risk factors for osteoporosis. However, the association between puberty timing-associated genetic variants and aBMD during development, and the causal relationship between puberty timing and aBMD, remain uncharacterized. We constructed sex-specific polygenic risk scores (GRS) consisting of 333 genetic variants associated with later puberty in European-descent children in the Bone Mineral Density in Childhood Study (BMDCS), consisting of a longitudinal cohort with up to seven assessments (n = 933) and a cross-sectional cohort (n = 486). These GRS were tested for associations with age- and sex-specific aBMD Z-scores at the lumbar spine (LS), femoral neck (FN), total hip, and distal radius, accounting for clinical covariates using sex-stratified linear mixed models. The causal relationship between puberty timing and aBMD was tested in the BMDCS and in publicly available adult data (GEFOS consortium) using two-sample Mendelian randomization (MR). The puberty-delaying GRS was associated with later puberty and lower LS-aBMD in the BMDCS in both sexes (combined beta ± SE = -0.078 ± 0.024; p = 0.0010). In the MR framework, the puberty-delaying genetic instrument also supported a causal association with lower LS-aBMD and FN-aBMD in adults of both sexes. Our results suggest that pubertal timing is causal for diminished aBMD in a skeletal site- and sex-specific manner that tracks throughout life, potentially impacting later risk for osteoporosis, which should be tested in future studies. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Diana L. Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia
- Department of Genetics, University of Pennsylvania, Philadelphia
| | - Jonathan A. Mitchell
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Alessandra Chesi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia
| | - Sani M. Roy
- Division of Endocrinology and Diabetes, Cook Children’s Medical Center, Fort Worth, Texas
| | - Heidi J. Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Joan M. Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha
| | - Vicente Gilsanz
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles
| | - Sharon E. Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York
| | - John A. Shepherd
- Department of Radiology, University of California San Francisco, San Francisco
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| | - Shana E. McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| | - Benjamin F. Voight
- Department of Genetics, University of Pennsylvania, Philadelphia
- Department of Systems Pharmacology and Translation Therapeutics, University of Pennsylvania, Philadelphia
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia
| | - Babette S. Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Struan F. A. Grant
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| |
Collapse
|
68
|
Hackinger S, Trajanoska K, Styrkarsdottir U, Zengini E, Steinberg J, Ritchie GRS, Hatzikotoulas K, Gilly A, Evangelou E, Kemp JP, Evans D, Ingvarsson T, Jonsson H, Thorsteinsdottir U, Stefansson K, McCaskie AW, Brooks RA, Wilkinson JM, Rivadeneira F, Zeggini E. Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. Hum Mol Genet 2018; 26:3850-3858. [PMID: 28934396 PMCID: PMC5886098 DOI: 10.1093/hmg/ddx285] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/15/2017] [Indexed: 01/20/2023] Open
Abstract
Osteoarthritis (OA) is a common complex disease with high public health burden and no curative therapy. High bone mineral density (BMD) is associated with an increased risk of developing OA, suggesting a shared underlying biology. Here, we performed the first systematic overlap analysis of OA and BMD on a genome wide scale. We used summary statistics from the GEFOS consortium for lumbar spine (n = 31,800) and femoral neck (n = 32,961) BMD, and from the arcOGEN consortium for three OA phenotypes (hip, ncases=3,498; knee, ncases=3,266; hip and/or knee, ncases=7,410; ncontrols=11,009). Performing LD score regression we found a significant genetic correlation between the combined OA phenotype (hip and/or knee) and lumbar spine BMD (rg=0.18, P = 2.23 × 10−2), which may be driven by the presence of spinal osteophytes. We identified 143 variants with evidence for cross-phenotype association which we took forward for replication in independent large-scale OA datasets, and subsequent meta-analysis with arcOGEN for a total sample size of up to 23,425 cases and 236,814 controls. We found robustly replicating evidence for association with OA at rs12901071 (OR 1.08 95% CI 1.05–1.11, Pmeta=3.12 × 10−10), an intronic variant in the SMAD3 gene, which is known to play a role in bone remodeling and cartilage maintenance. We were able to confirm expression of SMAD3 in intact and degraded cartilage of the knee and hip. Our findings provide the first systematic evaluation of pleiotropy between OA and BMD, highlight genes with biological relevance to both traits, and establish a robust new OA genetic risk locus at SMAD3.
Collapse
Affiliation(s)
- Sophie Hackinger
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | - Katerina Trajanoska
- Departments of Internal Medicine and Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| | | | - Eleni Zengini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.,5th Department, Dromokaiteio Psychiatric Hospital, Athens 124 61, Greece
| | - Julia Steinberg
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | | | | | - Arthur Gilly
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - John P Kemp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | | | - David Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Thorvaldur Ingvarsson
- Department of Orthopedic Surgery, Akureyri Hospital, 600 Akureyri, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.,Institution of Health Science, University of Akureyri, 600 Akureyri, Iceland
| | - Helgi Jonsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.,Department of Medicine, Landspitali, The National University Hospital of Iceland, 101 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Andrew W McCaskie
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Box 180, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Roger A Brooks
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Box 180, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Jeremy M Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Fernando Rivadeneira
- Departments of Internal Medicine and Epidemiology, Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| | | |
Collapse
|
69
|
Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, Mook-Kanamori DO, Ham A, Hartwig FP, Evans DS, Joro R, Nedeljkovic I, Zheng HF, Zhu K, Atalay M, Liu CT, Nethander M, Broer L, Porleifsson G, Mullin BH, Handelman SK, Nalls MA, Jessen LE, Heppe DH, Richards JB, Wang C, Chawes B, Schraut KE, Amin N, Wareham N, Karasik D, Van der Velde N, Ikram MA, Zemel BS, Zhou Y, Carlsson CJ, Liu Y, McGuigan FE, Boer CG, Bønnelykke K, Ralston SH, Robbins JA, Walsh JP, Zillikens MC, Langenberg C, Li-Gao R, Williams FM, Harris TB, Akesson K, Jackson RD, Sigurdsson G, den Heijer M, van der Eerden BC, van de Peppel J, Spector TD, Pennell C, Horta BL, Felix JF, Zhao JH, Wilson SG, de Mutsert R, Bisgaard H, Styrkársdóttir U, Jaddoe VW, Orwoll E, Lakka TA, Scott R, Grant SF, Lorentzon M, van Duijn CM, Wilson JF, Stefansson K, Psaty BM, Kiel DP, Ohlsson C, Ntzani E, van Wijnen AJ, Forgetta V, Ghanbari M, Logan JG, Williams GR, Bassett JD, Croucher PI, Evangelou E, Uitterlinden AG, Ackert-Bicknell CL, Tobias JH, Evans DM, Rivadeneira F. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am J Hum Genet 2018; 102:88-102. [PMID: 29304378 DOI: 10.1016/j.ajhg.2017.12.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.
Collapse
|
70
|
Correa-Rodríguez M, Schmidt Rio-Valle J, Rueda-Medina B. The RSPO3 gene as genetic markers for bone mass assessed by quantitative ultrasound in a population of young adults. Ann Hum Genet 2017; 82:143-149. [PMID: 29230809 DOI: 10.1111/ahg.12235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
Ultrasound bone mass measurement has been postulated as a valuable bone-health assessment tool for primary care. The aim of this study was to analyse the possible relationship between the SPTBN1, RSPO3, CCDC170, DKK1, GPATCH1, and TMEM135 genes, with calcaneal quantitative ultrasound (QUS) in a population of young adults. These genes were first associated with broadband ultrasound attenuation (BUA) in the GEFOS/GENOMOS study. A cross-sectional study was conducted on 575 individuals (mean age 20.41 ± 2.69). Bone mass at the right calcaneus was estimated by QUS. Six single-nucleotide polymorphisms (SNPs) in SPTBN1 (rs11898505), RSPO3 (rs7741021), CCDC170 (rs4869739), DKK1 (rs7902708), TMEM135 (rs597319), and GPATCH1 (rs10416265) were selected as genetic markers based on their previous association with calcaneal QUS. After adjusting for multiple confounding factors, the only significant association with QUS in our population was found for the rs7741021 SNP in the RSPO3 gene (P = 0.006) using the dominant model of inheritance. This suggests the possible implication of the RSPO3 gene in bone mass acquisition during early adulthood.
Collapse
|
71
|
Cao C, Ren Y, Barnett AS, Mirando AJ, Rouse D, Mun SH, Park-Min KH, McNulty AL, Guilak F, Karner CM, Hilton MJ, Pitt GS. Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss. JCI Insight 2017; 2:95512. [PMID: 29202453 DOI: 10.1172/jci.insight.95512] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 11/17/2022] Open
Abstract
While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.
Collapse
Affiliation(s)
- Chike Cao
- Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, USA.,Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | | | - Adam S Barnett
- Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Douglas Rouse
- Department of Lab Animal Resources & Rodent Surgical and Genetic Services, Duke University Medical Center, Durham, North Carolina, USA
| | - Se Hwan Mun
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | | | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University Medical Center, St. Louis, Missouri, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery and.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery and.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, USA.,Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
72
|
Rivadeneira F, Uitterlinden AG. Scrutinizing the Genetic Underpinnings of Bone Strength. J Bone Miner Res 2017; 32:2147-2150. [PMID: 29023918 DOI: 10.1002/jbmr.3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
73
|
McGarvey AC, Rybtsov S, Souilhol C, Tamagno S, Rice R, Hills D, Godwin D, Rice D, Tomlinson SR, Medvinsky A. A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. J Exp Med 2017; 214:3731-3751. [PMID: 29093060 PMCID: PMC5716029 DOI: 10.1084/jem.20162012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Through transcriptional profiling of the mouse AGM region, McGarvey et al. identify potential niche regulators of HSC development. They show a new function of BMPER in regulating HSC maturation, likely via its modulation of BMP signalling. In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMPER as a novel positive regulator of HSC development. We demonstrate that BMPER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMPER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.
Collapse
Affiliation(s)
- Alison C McGarvey
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Stanislav Rybtsov
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Céline Souilhol
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sara Tamagno
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ritva Rice
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David Hills
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Duncan Godwin
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - David Rice
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Simon R Tomlinson
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Alexander Medvinsky
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
74
|
Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, Zheng J, Gregson CL, Grundberg E, Trajanoska K, Logan JG, Pollard AS, Sparkes PC, Ghirardello EJ, Allen R, Leitch VD, Butterfield NC, Komla-Ebri D, Adoum AT, Curry KF, White JK, Kussy F, Greenlaw KM, Xu C, Harvey NC, Cooper C, Adams DJ, Greenwood CMT, Maurano MT, Kaptoge S, Rivadeneira F, Tobias JH, Croucher PI, Ackert-Bicknell CL, Bassett JHD, Williams GR, Richards JB, Evans DM. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet 2017; 49:1468-1475. [PMID: 28869591 PMCID: PMC5621629 DOI: 10.1038/ng.3949] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/11/2017] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genome-wide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes.
Collapse
Affiliation(s)
- John P Kemp
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - John A Morris
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Forgetta
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Scott E Youlten
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Department of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Andrea S Pollard
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Penny C Sparkes
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Rebecca Allen
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Anne-Tounsia Adoum
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Katharine F Curry
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Fiona Kussy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Keelin M Greenlaw
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Changjiang Xu
- Donnelly Center for Cellular and Biomedical Research, University of Toronto, Toronto, Canada
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Celia MT Greenwood
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
| | - Matthew T Maurano
- Department of Pathology and Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, USA
| | - Stephen Kaptoge
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Strangeways Research Laboratory, Worts’ Causeway, Cambridge, UK
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Department of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Peter I Croucher
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2015, Australia
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| | - JH Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - J Brent Richards
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| |
Collapse
|
75
|
Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, Miller DE, Litterman N, Jiang PP, Russell L, Hinds DA, Hu Y, Weirauch MT, Chen X, Chavan AR, Wagner GP, Pavličev M, Nnamani MC, Maziarz J, Karjalainen MK, Rämet M, Sengpiel V, Geller F, Boyd HA, Palotie A, Momany A, Bedell B, Ryckman KK, Huusko JM, Forney CR, Kottyan LC, Hallman M, Teramo K, Nohr EA, Davey Smith G, Melbye M, Jacobsson B, Muglia LJ. Genetic Associations with Gestational Duration and Spontaneous Preterm Birth. N Engl J Med 2017; 377:1156-1167. [PMID: 28877031 PMCID: PMC5561422 DOI: 10.1056/nejmoa1612665] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10-8) or an association with suggestive significance (P<1.0×10-6) in the discovery set. RESULTS In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement. (Funded by the March of Dimes and others.).
Collapse
Affiliation(s)
- Ge Zhang
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Bjarke Feenstra
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Jonas Bacelis
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Xueping Liu
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Lisa M Muglia
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Julius Juodakis
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Daniel E Miller
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Nadia Litterman
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Pan-Pan Jiang
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Laura Russell
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - David A Hinds
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Youna Hu
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Matthew T Weirauch
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Xiaoting Chen
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Arun R Chavan
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Günter P Wagner
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Mihaela Pavličev
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Mauris C Nnamani
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Jamie Maziarz
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Minna K Karjalainen
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Mika Rämet
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Verena Sengpiel
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Frank Geller
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Heather A Boyd
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Aarno Palotie
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Allison Momany
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Bruce Bedell
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Kelli K Ryckman
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Johanna M Huusko
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Carmy R Forney
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Leah C Kottyan
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Mikko Hallman
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Kari Teramo
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Ellen A Nohr
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - George Davey Smith
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Mads Melbye
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Bo Jacobsson
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| | - Louis J Muglia
- From the Division of Human Genetics (G.Z., L.J.M.), Center for Autoimmune Genomics and Etiology (M.T.W., D.E.M., X.C., C.R.F., L.C.K.) and the Divisions of Biomedical Informatics and Developmental Biology (M.T.W.), Cincinnati Children's Hospital Medical Center, and the Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative (G.Z., L.M.M., M.P., J.M.H., L.J.M.), Cincinnati; the Department of Epidemiology Research, Statens Serum Institut (B.F., X.L., F.G., H.A.B., M.M.), and the Department of Clinical Medicine, University of Copenhagen (M.M.), Copenhagen, and the Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense (E.A.N.) - all in Denmark; the Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (J.B., V.S.), the Department of Obstetrics and Gynecology, Institute of Clinical Sciences (J.J.), and the Department of Obstetrics and Gynecology (B.J.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 23andMe, Mountain View (N.L., P.-P.J., L.R., D.A.H., Y.H.), and the Department of Medicine, Stanford University School of Medicine, Stanford (M.M.) - both in California; the Department of Ecology and Evolutionary Biology, Yale University (A.R.C., G.P.W., M.C.N., J.M.), and the Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Medical School (G.P.W.), New Haven, and the Yale Systems Biology Institute, West Haven (A.R.C., G.P.W., M.C.N., J.M.) - all in Connecticut; the Department of Obstetrics and Gynecology, Wayne State University, Detroit (G.P.W.); the PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, and the Department of Children and Adolescents, Oulu University Hospital, Oulu (M.K.K., M.R., J.M.H., M.H.), and the Institute for Molecular Medicine Finland, University of Helsinki (A.P.), and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital (K.T.), Helsinki - all in Finland; the Analytic and Translational Genetics Unit, Department of Medicine, the Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, and the Department of Neurology, Massachusetts General Hospital, Boston (A.P.), and the Program in Medical and Population Genetics and the Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge (A.P.) - both in Massachusetts; the Departments of Pediatrics (A.M., B.B.) and Epidemiology (K.K.R.), College of Public Health, and the Department of Pediatrics (K.K.R.), Carver College of Medicine, University of Iowa, Iowa City; the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (G.D.S.); and the Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo (B.J.)
| |
Collapse
|
76
|
Boudin E, Van Hul W. MECHANISMS IN ENDOCRINOLOGY: Genetics of human bone formation. Eur J Endocrinol 2017; 177:R69-R83. [PMID: 28381451 DOI: 10.1530/eje-16-0990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Throughout life, bone is continuously remodelled to be able to fulfil its multiple functions. The importance of strictly regulating the bone remodelling process, which is defined by the sequential actions of osteoclasts and osteoblasts, is shown by a variety of disorders with abnormalities in bone mass and strength. The best known and most common example of such a disorder is osteoporosis, which is marked by a decreased bone mass and strength that consequently results in an increased fracture risk. As osteoporosis is a serious health problem, a large number of studies focus on elucidating the aetiology of the disease as well as on the identification of novel therapeutic targets for the treatment of osteoporotic patients. These studies have demonstrated that a large amount of variation in bone mass and strength is often influenced by genetic variation in genes encoding important regulators of bone homeostasis. Throughout the years, studies into the genetic causes of osteoporosis as well as several rare monogenic disorders with abnormal high or low bone mass and strength have largely increased the knowledge on regulatory pathways important for bone resorption and formation. This review gives an overview of genes and pathways that are important for the regulation of bone formation and that are identified through their involvement in monogenic and complex disorders with abnormal bone mass. Furthermore, novel bone-forming strategies for the treatment of osteoporosis that resulted from these discoveries, such as antibodies against sclerostin, are discussed as well.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
77
|
Reppe S, Datta HK, Gautvik KM. Omics analysis of human bone to identify genes and molecular networks regulating skeletal remodeling in health and disease. Bone 2017; 101:88-95. [PMID: 28450214 DOI: 10.1016/j.bone.2017.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/13/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
Abstract
The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease.
Collapse
Affiliation(s)
- Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway; Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, Oslo, Norway.
| | - Harish K Datta
- Pathology Department, Biochemistry Section, James Cook University Hospital, Middlesbrough, UK; Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kaare M Gautvik
- Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, Oslo, Norway; University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway
| |
Collapse
|
78
|
Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun 2017; 8:121. [PMID: 28743860 PMCID: PMC5527106 DOI: 10.1038/s41467-017-00108-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/01/2017] [Indexed: 11/24/2022] Open
Abstract
Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34–52%) for TBLH-BMD, and 39% (95% CI: 30–48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29–56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass. Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.
Collapse
|
79
|
Joeng KS, Lee YC, Lim J, Chen Y, Jiang MM, Munivez E, Ambrose C, Lee BH. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 2017. [PMID: 28628032 DOI: 10.1172/jci92617] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in WNT1 cause osteogenesis imperfecta (OI) and early-onset osteoporosis, identifying it as a key Wnt ligand in human bone homeostasis. However, how and where WNT1 acts in bone are unclear. To address this mechanism, we generated late-osteoblast-specific and osteocyte-specific WNT1 loss- and gain-of-function mouse models. Deletion of Wnt1 in osteocytes resulted in low bone mass with spontaneous fractures similar to that observed in OI patients. Conversely, Wnt1 overexpression from osteocytes stimulated bone formation by increasing osteoblast number and activity, which was due in part to activation of mTORC1 signaling. While antiresorptive therapy is the mainstay of OI treatment, it has limited efficacy in WNT1-related OI. In this study, anti-sclerostin antibody (Scl-Ab) treatment effectively improved bone mass and dramatically decreased fracture rate in swaying mice, a model of global Wnt1 loss. Collectively, our data suggest that WNT1-related OI and osteoporosis are caused in part by decreased mTORC1-dependent osteoblast function resulting from loss of WNT1 signaling in osteocytes. As such, this work identifies an anabolic function of osteocytes as a source of Wnt in bone development and homoeostasis, complementing their known function as targets of Wnt signaling in regulating osteoclastogenesis. Finally, this study suggests that Scl-Ab is an effective genotype-specific treatment option for WNT1-related OI and osteoporosis.
Collapse
Affiliation(s)
- Kyu Sang Joeng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yi-Chien Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Catherine Ambrose
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
80
|
Chesi A, Mitchell JA, Kalkwarf HJ, Bradfield JP, Lappe JM, Cousminer DL, Roy SM, McCormack SE, Gilsanz V, Oberfield SE, Hakonarson H, Shepherd JA, Kelly A, Zemel BS, Grant SF. A Genomewide Association Study Identifies Two Sex-Specific Loci, at SPTB and IZUMO3, Influencing Pediatric Bone Mineral Density at Multiple Skeletal Sites. J Bone Miner Res 2017; 32:1274-1281. [PMID: 28181694 PMCID: PMC5466475 DOI: 10.1002/jbmr.3097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Failure to achieve optimal bone mineral accretion during childhood and adolescence results in subsequent suboptimal peak bone mass, contributing to osteoporosis risk later in life. To identify novel genetic factors that influence pediatric bone mass at discrete skeletal sites, we performed a sex-stratified genomewide association study of areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry at the 1/3 distal radius, spine, total hip, and femoral neck in a cohort of 933 healthy European American children. We took forward signals with p < 5 × 10-5 and minor allele frequency (MAF) >5% into an independent cohort of 486 European American children in search of replication. In doing so, we identified five loci that achieved genome wide significance in the combined cohorts (nearest genes: CPED1, IZUMO3, RBFOX1, SPBT, and TBPL2), of which the last four were novel and two were sex-specific (SPTB in females and IZUMO3 in males), with all of them yielding associations that were particularly strong at a specific skeletal site. Annotation of potential regulatory function, expression quantitative trait loci (eQTL) effects and pathway analyses identified several potential target genes at these associated loci. This study highlights the importance of sex-stratified analyses at discrete skeletal sites during the critical period of bone accrual, and identifies novel loci for further functional follow-up to pinpoint key genes and better understand the regulation of bone development in children. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alessandra Chesi
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan A. Mitchell
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heidi J. Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan P. Bradfield
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joan M. Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Diana L. Cousminer
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia
| | - Sani M. Roy
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E. McCormack
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vicente Gilsanz
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E. Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York; NY, USA
| | - Hakon Hakonarson
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - John A. Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
81
|
Hojo H, Chung UI, Ohba S. Identification of the gene-regulatory landscape in skeletal development and potential links to skeletal regeneration. Regen Ther 2017; 6:100-107. [PMID: 30271844 PMCID: PMC6134913 DOI: 10.1016/j.reth.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
A class of gene-regulatory elements called enhancers are the main mediators controlling quantitative, temporal and spatial gene expressions. In the course of evolution, the enhancer landscape of higher organisms such as mammals has become quite complex, exerting biological functions precisely and coordinately. In mammalian skeletal development, the master transcription factors Sox9, Runx2 and Sp7/Osterix function primarily through enhancers on the genome to achieve specification and differentiation of skeletal cells. Recently developed genome-scale analyses have shed light on multiple layers of gene regulations, uncovering not only the primary mode of actions of these transcription factors on skeletal enhancers, but also the relation of the epigenetic landscape to three-dimensional chromatin architecture. Here, we review findings on the emerging framework of gene-regulatory networks involved in skeletal development. We further discuss the power of genome-scale analyses to provide new insights into genetic diseases and regenerative medicine in skeletal tissues. Skeletal development is coordinated by master transcription factors. ChIP-seq analyses for the skeletal regulators identified their modes of actions. Analyses of epigenetic landscape features distinct cell types in skeletal tissues. Integrated analyses of the gene regulatory networks link to skeletal regeneration.
Collapse
Affiliation(s)
- Hironori Hojo
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-Il Chung
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
82
|
Alam I, Reilly AM, Alkhouli M, Gerard-O'Riley RL, Kasipathi C, Oakes DK, Wright WB, Acton D, McQueen AK, Patel B, Lim KE, Robling AG, Econs MJ. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes. Calcif Tissue Int 2017; 100:361-373. [PMID: 28013361 PMCID: PMC5337173 DOI: 10.1007/s00223-016-0225-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/16/2016] [Indexed: 11/26/2022]
Abstract
Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.
Collapse
Affiliation(s)
- Imranul Alam
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA.
| | - Austin M Reilly
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Mohammed Alkhouli
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Rita L Gerard-O'Riley
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Charishma Kasipathi
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Dana K Oakes
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Weston B Wright
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Dena Acton
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Amie K McQueen
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Bhavmik Patel
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| | - Kyung-Eun Lim
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Econs
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
83
|
Park HW, Tse S, Yang W, Kelly HW, Kaste SC, Pui CH, Relling MV, Tantisira KG. A genetic factor associated with low final bone mineral density in children after a long-term glucocorticoids treatment. THE PHARMACOGENOMICS JOURNAL 2017; 17:180-185. [PMID: 26856247 PMCID: PMC4980282 DOI: 10.1038/tpj.2015.92] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
Abstract
Treatment with glucocorticoids is associated with lower bone mineral density (BMD). We performed a genome-wide association study to analyze interactive effects between genotypes and cumulative dose of prednisone (PD) over 4.3 years of follow-up period on the final BMD Z-scores in 461 white children from the Childhood Asthma Management Program. No variants met the conventional criteria for genome-wide significance, and thus we looked for evidence of replication. The top 100-ranked single-nucleotide polymorphisms (SNPs) were then carried forward replication in 59 children with acute lymphoblastic leukemia (ALL) exposed to large fixed doses of PD as part of their chemotherapeutic regimen. Among them, rs6461639 (interaction P=1.88 × 10-5 in the CAMP population) showed a significant association with the final BMD Z-scores in the ALL population (P=0.016). The association of the ALL population was only present after correction for the anti-metabolite treatment arm (high vs low dose). We have identified a novel SNP, rs6461639, showing a significant effect on the final BMD Z-scores in two independent pediatric populations after long-term high-dose PD treatment.
Collapse
Affiliation(s)
- Heung-Woo Park
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Szeman Tse
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Sainte-Justine University Hospital Center, Montréal, Québec, Canada
| | - Wenjian Yang
- Departments of Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - H. William Kelly
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Sue C. Kaste
- Departments of Radiological Sciences, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Departments of Oncology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary V. Relling
- Departments of Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kelan G. Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
84
|
Zhang M, Zhang P, Liu Y, Lv L, Zhang X, Liu H, Zhou Y. RSPO3-LGR4 Regulates Osteogenic Differentiation Of Human Adipose-Derived Stem Cells Via ERK/FGF Signalling. Sci Rep 2017; 7:42841. [PMID: 28220828 PMCID: PMC5318871 DOI: 10.1038/srep42841] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
The four R-spondins (RSPOs) and their three related receptors, LGR4, 5 and 6, have emerged as a major ligand-receptor system with critical roles in development and stem cell survival. However, the exact roles of the RSPO-LGR system in osteogenesis remain largely unknown. In the present study, we showed that RSPO3-shRNA increased the osteogenic potential of human adipose-derived stem cells (hASCs) significantly. Mechanistically, we demonstrated that RSPO3 is a negative regulator of ERK/FGF signalling. We confirmed that inhibition of the ERK1/2 signalling pathway blocked osteogenic differentiation in hASCs, and the increased osteogenic capacity observed after RSPO3 knockdown in hASCs was reversed by inhibition of ERK signalling. Further, silencing of LGR4 inhibited the activity of ERK signalling and osteogenic differentiation of hASCs. Most importantly, we found that loss of LGR4 abrogated RSPO3-regulated osteogenesis and RSPO3-induced ERK1/2 signalling inhibition. Collectively, our data show that ERK signalling works downstream of LGR4 and RSPO3 regulates osteoblastic differentiation of hASCs possibly via the LGR4-ERK signalling.
Collapse
Affiliation(s)
- Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hao Liu
- National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
85
|
Calabrese GM, Mesner LD, Stains JP, Tommasini SM, Horowitz MC, Rosen CJ, Farber CR. Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Syst 2017; 4:46-59.e4. [PMID: 27866947 PMCID: PMC5269473 DOI: 10.1016/j.cels.2016.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/26/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. Genome-wide association studies (GWAS) for BMD have identified dozens of associations; yet, the genes responsible for most associations remain elusive. Here, we used a bone co-expression network to predict causal genes at BMD GWAS loci based on the premise that genes underlying a disease are often functionally related and functionally related genes are often co-expressed. By mapping genes implicated by BMD GWAS onto a bone co-expression network, we predicted and inferred the function of causal genes for 30 of 64 GWAS loci. We experimentally confirmed that two of the genes predicted to be causal, SPTBN1 and MARK3, are potentially responsible for the effects of GWAS loci on chromosomes 2p16.2 and 14q32.32, respectively. This approach provides a roadmap for the dissection of additional BMD GWAS associations. Furthermore, it should be applicable to GWAS data for a wide range of diseases.
Collapse
Affiliation(s)
- Gina M Calabrese
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Larry D Mesner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06520-8071, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06520-8071, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
86
|
Richmond RC, Timpson NJ, Felix JF, Palmer T, Gaillard R, McMahon G, Davey Smith G, Jaddoe VW, Lawlor DA. Using Genetic Variation to Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring Adiposity: A Mendelian Randomisation Study. PLoS Med 2017; 14:e1002221. [PMID: 28118352 PMCID: PMC5261553 DOI: 10.1371/journal.pmed.1002221] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It has been suggested that greater maternal adiposity during pregnancy affects lifelong risk of offspring fatness via intrauterine mechanisms. Our aim was to use Mendelian randomisation (MR) to investigate the causal effect of intrauterine exposure to greater maternal body mass index (BMI) on offspring BMI and fat mass from childhood to early adulthood. METHODS AND FINDINGS We used maternal genetic variants as instrumental variables (IVs) to test the causal effect of maternal BMI in pregnancy on offspring fatness (BMI and dual-energy X-ray absorptiometry [DXA] determined fat mass index [FMI]) in a MR approach. This was investigated, with repeat measurements, from ages 7 to 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 2,521 to 3,720 for different ages). We then sought to replicate findings with results for BMI at age 6 in Generation R (n = 2,337 for replication sample; n = 6,057 for total pooled sample). In confounder-adjusted multivariable regression in ALSPAC, a 1 standard deviation (SD, equivalent of 3.7 kg/m2) increase in maternal BMI was associated with a 0.25 SD (95% CI 0.21-0.29) increase in offspring BMI at age 7, with similar results at later ages and when FMI was used as the outcome. A weighted genetic risk score was generated from 32 genetic variants robustly associated with BMI (minimum F-statistic = 45 in ALSPAC). The MR results using this genetic risk score as an IV in ALSPAC were close to the null at all ages (e.g., 0.04 SD (95% CI -0.21-0.30) at age 7 and 0.03 SD (95% CI -0.26-0.32) at age 18 per SD increase in maternal BMI), which was similar when a 97 variant generic risk score was used in ALSPAC. When findings from age 7 in ALSPAC were meta-analysed with those from age 6 in Generation R, the pooled confounder-adjusted multivariable regression association was 0.22 SD (95% CI 0.19-0.25) per SD increase in maternal BMI and the pooled MR effect (pooling the 97 variant score results from ALSPAC with the 32 variant score results from Generation R) was 0.05 SD (95%CI -0.11-0.21) per SD increase in maternal BMI (p-value for difference between the two results = 0.05). A number of sensitivity analyses exploring violation of the MR results supported our main findings. However, power was limited for some of the sensitivity tests and further studies with relevant data on maternal, offspring, and paternal genotype are required to obtain more precise (and unbiased) causal estimates. CONCLUSIONS Our findings provide little evidence to support a strong causal intrauterine effect of incrementally greater maternal BMI resulting in greater offspring adiposity.
Collapse
Affiliation(s)
- Rebecca C. Richmond
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tom Palmer
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - George McMahon
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Vincent W. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Debbie A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
87
|
Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg 2016; 6:680-698. [PMID: 28090446 DOI: 10.21037/qims.2016.12.13] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.
Collapse
Affiliation(s)
- Ling Oei
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fjorda Koromani
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
88
|
Adams HHH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Rentería ME, Trompet S, Arias-Vasquez A, Seshadri S, Desrivières S, Beecham AH, Jahanshad N, Wittfeld K, Van der Lee SJ, Abramovic L, Alhusaini S, Amin N, Andersson M, Arfanakis K, Aribisala BS, Armstrong NJ, Athanasiu L, Axelsson T, Beiser A, Bernard M, Bis JC, Blanken LME, Blanton SH, Bohlken MM, Boks MP, Bralten J, Brickman AM, Carmichael O, Chakravarty MM, Chauhan G, Chen Q, Ching CRK, Cuellar-Partida G, Braber AD, Doan NT, Ehrlich S, Filippi I, Ge T, Giddaluru S, Goldman AL, Gottesman RF, Greven CU, Grimm O, Griswold ME, Guadalupe T, Hass J, Haukvik UK, Hilal S, Hofer E, Hoehn D, Holmes AJ, Hoogman M, Janowitz D, Jia T, Kasperaviciute D, Kim S, Klein M, Kraemer B, Lee PH, Liao J, Liewald DCM, Lopez LM, Luciano M, Macare C, Marquand A, Matarin M, Mather KA, Mattheisen M, Mazoyer B, McKay DR, McWhirter R, Milaneschi Y, Mirza-Schreiber N, Muetzel RL, Maniega SM, Nho K, Nugent AC, Loohuis LMO, Oosterlaan J, Papmeyer M, Pappa I, Pirpamer L, Pudas S, Pütz B, Rajan KB, Ramasamy A, Richards JS, Risacher SL, Roiz-Santiañez R, Rommelse N, Rose EJ, Royle NA, Rundek T, Sämann PG, Satizabal CL, Schmaal L, Schork AJ, Shen L, Shin J, Shumskaya E, Smith AV, Sprooten E, Strike LT, Teumer A, Thomson R, Tordesillas-Gutierrez D, Toro R, Trabzuni D, Vaidya D, Van der Grond J, Van der Meer D, Van Donkelaar MMJ, Van Eijk KR, Van Erp TGM, Van Rooij D, Walton E, Westlye LT, Whelan CD, Windham BG, Winkler AM, Woldehawariat G, Wolf C, Wolfers T, Xu B, Yanek LR, Yang J, Zijdenbos A, Zwiers MP, Agartz I, Aggarwal NT, Almasy L, Ames D, Amouyel P, Andreassen OA, Arepalli S, Assareh AA, Barral S, Bastin ME, Becker DM, Becker JT, Bennett DA, Blangero J, van Bokhoven H, Boomsma DI, Brodaty H, Brouwer RM, Brunner HG, Buckner RL, Buitelaar JK, Bulayeva KB, Cahn W, Calhoun VD, Cannon DM, Cavalleri GL, Chen C, Cheng CY, Cichon S, Cookson MR, Corvin A, Crespo-Facorro B, Curran JE, Czisch M, Dale AM, Davies GE, De Geus EJC, De Jager PL, de Zubicaray GI, Delanty N, Depondt C, DeStefano AL, Dillman A, Djurovic S, Donohoe G, Drevets WC, Duggirala R, Dyer TD, Erk S, Espeseth T, Evans DA, Fedko IO, Fernández G, Ferrucci L, Fisher SE, Fleischman DA, Ford I, Foroud TM, Fox PT, Francks C, Fukunaga M, Gibbs JR, Glahn DC, Gollub RL, Göring HHH, Grabe HJ, Green RC, Gruber O, Gudnason V, Guelfi S, Hansell NK, Hardy J, Hartman CA, Hashimoto R, Hegenscheid K, Heinz A, Le Hellard S, Hernandez DG, Heslenfeld DJ, Ho BC, Hoekstra PJ, Hoffmann W, Hofman A, Holsboer F, Homuth G, Hosten N, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Ikram MK, Jack CR, Jenkinson M, Johnson R, Jönsson EG, Jukema JW, Kahn RS, Kanai R, Kloszewska I, Knopman DS, Kochunov P, Kwok JB, Lawrie SM, Lemaître H, Liu X, Longo DL, Longstreth WT, Lopez OL, Lovestone S, Martinez O, Martinot JL, Mattay VS, McDonald C, McIntosh AM, McMahon KL, McMahon FJ, Mecocci P, Melle I, Meyer-Lindenberg A, Mohnke S, Montgomery GW, Morris DW, Mosley TH, Mühleisen TW, Müller-Myhsok B, Nalls MA, Nauck M, Nichols TE, Niessen WJ, Nöthen MM, Nyberg L, Ohi K, Olvera RL, Ophoff RA, Pandolfo M, Paus T, Pausova Z, Penninx BWJH, Pike GB, Potkin SG, Psaty BM, Reppermund S, Rietschel M, Roffman JL, Romanczuk-Seiferth N, Rotter JI, Ryten M, Sacco RL, Sachdev PS, Saykin AJ, Schmidt R, Schofield PR, Sigurdsson S, Simmons A, Singleton A, Sisodiya SM, Smith C, Smoller JW, Soininen H, Srikanth V, Steen VM, Stott DJ, Sussmann JE, Thalamuthu A, Tiemeier H, Toga AW, Traynor BJ, Troncoso J, Turner JA, Tzourio C, Uitterlinden AG, Hernández MCV, Van der Brug M, Van der Lugt A, Van der Wee NJA, Van Duijn CM, Van Haren NEM, Van T Ent D, Van Tol MJ, Vardarajan BN, Veltman DJ, Vernooij MW, Völzke H, Walter H, Wardlaw JM, Wassink TH, Weale ME, Weinberger DR, Weiner MW, Wen W, Westman E, White T, Wong TY, Wright CB, Zielke HR, Zonderman AB, Deary IJ, DeCarli C, Schmidt H, Martin NG, De Craen AJM, Wright MJ, Launer LJ, Schumann G, Fornage M, Franke B, Debette S, Medland SE, Ikram MA, Thompson PM. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci 2016; 19:1569-1582. [PMID: 27694991 PMCID: PMC5227112 DOI: 10.1038/nn.4398] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/31/2016] [Indexed: 02/08/2023]
Abstract
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
Collapse
Affiliation(s)
- Hieab H H Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Lille University, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Lille, France
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Jason L Stein
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Genetics and UNC Neuroscience Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Paul A Nyquist
- Department of Neurology, Department of Anesthesia/Critical Care Medicine, Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Sylvane Desrivières
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashley H Beecham
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Greifswald, Germany
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | | | - Lucija Abramovic
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Saud Alhusaini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- The Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Micael Andersson
- Department of Integrative Medical Biology and Umeå center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Benjamin S Aribisala
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Department of Computer Science, Lagos State University, Lagos, Nigeria
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Mathematics and Statistics, Murdoch University, Perth, Australia
| | - Lavinia Athanasiu
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexa Beiser
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Manon Bernard
- Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Laura M E Blanken
- Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Susan H Blanton
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Marc M Bohlken
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Marco P Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
- G.H. Sergievsky Center, Columbia University Medical Center, New York, New York, USA
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, Canada
| | | | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, California, USA
| | | | - Anouk Den Braber
- Biological Psychology, Neuroscience Campus Amsterdam, Vrije Universiteit University and Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Nhat Trung Doan
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, Masschusetts, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, North Carolina, USA
| | - Irina Filippi
- NSERM Unit 1000 ″Neuroimaging and Psychiatry″, University Paris Sud, University Paris Descartes, Paris, France
- Maison de Solenn, Adolescent Psychopathology and Medicine Department, APHP Hospital Cochin, Paris, France
| | - Tian Ge
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, North Carolina, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Sudheer Giddaluru
- NORMENT - KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Corina U Greven
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
- King's College London, Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychology, Psychiatry and Neurosciene, London, UK
| | - Oliver Grimm
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Michael E Griswold
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- International Max Planck Research School for Language Sciences, Nijmegen, the Netherlands
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Unn K Haukvik
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Development, Diakonhjemmet Hospital, Oslo, Norway
| | - Saima Hilal
- Department of Pharmacology, National University of Singapore, Singapore
- Memory Aging and Cognition Centre (MACC), National University Health System, Singapore
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Austria, Graz, Austria
- Institute of Medical Informatics, Statistics and Documentation, Medical University Graz, Austria, Graz, Austria
| | - David Hoehn
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Avram J Holmes
- Department of Psychiatry, Massachusetts General Hospital, Boston, Masschusetts, USA
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Tianye Jia
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dalia Kasperaviciute
- UCL Institute of Neurology, London, United Kingdom and Epilepsy Society, Bucks, UK
- Department of Medicine, Imperial College London, London, UK
| | - Sungeun Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Phil H Lee
- Department of Psychiatry, Massachusetts General Hospital, Boston, Masschusetts, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Lexington, Massachusetts, USA
| | - Jiemin Liao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Lorna M Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Christine Macare
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andre Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Mar Matarin
- UCL Institute of Neurology, London, United Kingdom and Epilepsy Society, Bucks, UK
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- Center for integrated Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | | | - David R McKay
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- Olin Neuropsychiatric Research Center, Hartford, Connecticut, USA
| | - Rebekah McWhirter
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam, The Netherlands
| | - Nazanin Mirza-Schreiber
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Ryan L Muetzel
- Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Susana Muñoz Maniega
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Kwangsik Nho
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Martina Papmeyer
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
- Division of Systems Neuroscience of Psychopathology, Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Irene Pappa
- Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
- School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Lukas Pirpamer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Austria, Graz, Austria
| | - Sara Pudas
- Department of Integrative Medical Biology and Umeå center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Kumar B Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Adaikalavan Ramasamy
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Jennifer S Richards
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Roberto Roiz-Santiañez
- Department of Medicine and Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Santander, Spain
| | - Nanda Rommelse
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Emma J Rose
- Psychosis Research Group, Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin
| | - Natalie A Royle
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tatjana Rundek
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Epidemiology and Public Health Sciences, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Philipp G Sämann
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Claudia L Satizabal
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Andrew J Schork
- Multimodal Imaging Laboratory, Department of Neurosciences, University of California, San Diego, USA
- Department of Cognitive Sciences, University of California, San Diego, USA
| | - Li Shen
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elena Shumskaya
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Emma Sprooten
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- Olin Neuropsychiatric Research Center, Hartford, Connecticut, USA
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lachlan T Strike
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Russell Thomson
- School of Computing Engineering and Mathematics, Western Sydney University, Parramatta, Australia
| | - Diana Tordesillas-Gutierrez
- CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Santander, Spain
- Neuroimaging Unit,Technological Facilities. Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | | | - Daniah Trabzuni
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dhananjay Vaidya
- GeneSTAR Research Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeroen Van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis Van der Meer
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marjolein M J Van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kristel R Van Eijk
- Brain Center Rudolf Magnus, Human Neurogenetics Unit, UMC Utrecht, Utrecht, the Netherlands
| | - Theo G M Van Erp
- Department of Psychiatry and Human Behavior, University of California-Irvine, Irvine, California, USA
| | - Daan Van Rooij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Lars T Westlye
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT - KG Jebsen Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Christopher D Whelan
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- The Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Beverly G Windham
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anderson M Winkler
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- FMRIB Centre, University of Oxford, Oxford, UK
| | - Girma Woldehawariat
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Christiane Wolf
- University of Wuerzburg, Department of Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany
| | - Thomas Wolfers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Bing Xu
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lisa R Yanek
- GeneSTAR Research Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Alex Zijdenbos
- Biospective Inc, Montreal, Quebec, Canada, Montréal, Québec, Canada
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Ingrid Agartz
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Development, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Neelum T Aggarwal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Brownsville/Edinburg/San Antonio, Texas, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David Ames
- National Ageing Research Institute, Royal Melbourne Hospital, Melbourne, Australia
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Australia
| | - Philippe Amouyel
- Lille University, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Ole A Andreassen
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Amelia A Assareh
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Sandra Barral
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - Mark E Bastin
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Diane M Becker
- GeneSTAR Research Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James T Becker
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Brownsville/Edinburg/San Antonio, Texas, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dorret I Boomsma
- Biological Psychology, Neuroscience Campus Amsterdam, Vrije Universiteit University and Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Collaborative Research Centre - Assessment and Better Care, UNSW, Sydney, Australia
| | - Rachel M Brouwer
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Randy L Buckner
- Department of Psychiatry, Massachusetts General Hospital, Boston, Masschusetts, USA
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Kazima B Bulayeva
- Department of Evolution and Genetics, Dagestan State University, Makhachkala, Dagestan, Russia
| | - Wiepke Cahn
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Vince D Calhoun
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
- Department of ECE, University of New Mexico, Albuquerque, New Mexico, USA
| | - Dara M Cannon
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | | | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore
- Memory Aging and Cognition Centre (MACC), National University Health System, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Academic Medicine Research Institute, Duke-NUS Graduate Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Aiden Corvin
- Psychosis Research Group, Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin
| | - Benedicto Crespo-Facorro
- Department of Medicine and Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Santander, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Brownsville/Edinburg/San Antonio, Texas, USA
| | - Michael Czisch
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California, USA
- Department of Neurosciences, University of California, San Diego, California, USA
- Department of Radiology, University of California, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
- Department of Cognitive Science, University of California, San Diego, California, USA
| | - Gareth E Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Eco J C De Geus
- Biological Psychology, Neuroscience Campus Amsterdam, Vrije Universiteit University and Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Philip L De Jager
- Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Greig I de Zubicaray
- Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Norman Delanty
- The Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Neurology Division, Beaumont Hospital, Dublin, 9, Ireland
| | - Chantal Depondt
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Anita L DeStefano
- Framingham Heart Study, Framingham, Massachusetts, USA
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Allissa Dillman
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Srdjan Djurovic
- NORMENT - KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics Centre (NICOG) and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - Wayne C Drevets
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
- Janssen Research and Development, LLC, Titusville, New Jersey, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Brownsville/Edinburg/San Antonio, Texas, USA
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Brownsville/Edinburg/San Antonio, Texas, USA
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, CCM, Berlin, Germany
| | - Thomas Espeseth
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT - KG Jebsen Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Denis A Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, USA
| | - Iryna O Fedko
- Biological Psychology, Neuroscience Campus Amsterdam, Vrije Universiteit University and Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, Baltimore, Maryland, USA
| | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Tatiana M Foroud
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peter T Fox
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - J Raphael Gibbs
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- Olin Neuropsychiatric Research Center, Hartford, Connecticut, USA
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, Masschusetts, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, North Carolina, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Brownsville/Edinburg/San Antonio, Texas, USA
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sebastian Guelfi
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Narelle K Hansell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - John Hardy
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, CCM, Berlin, Germany
| | - Stephanie Le Hellard
- NORMENT - KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Dena G Hernandez
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dirk J Heslenfeld
- Department of Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Pieter J Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wolfgang Hoffmann
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
- HMNC Brain Health, Munich, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jouke-Jan Hottenga
- Biological Psychology, Neuroscience Campus Amsterdam, Vrije Universiteit University and Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Pharmacology, National University of Singapore, Singapore
- Memory Aging and Cognition Centre (MACC), National University Health System, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Academic Medicine Research Institute, Duke-NUS Graduate Medical School, Singapore
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robert Johnson
- NICHD Brain and Tissue Bank for Developmental Disorders, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Erik G Jönsson
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- FMRIB Centre, University of Oxford, Oxford, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Ryota Kanai
- School of Psychology, University of Sussex, Brighton, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Neuroinformatics, Araya Brain Imaging, Tokyo, Japan
| | | | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John B Kwok
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, UNSW, Sydney, Australia
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Hervé Lemaître
- NSERM Unit 1000 ″Neuroimaging and Psychiatry″, University Paris Sud, University Paris Descartes, Paris, France
- Maison de Solenn, Adolescent Psychopathology and Medicine Department, APHP Hospital Cochin, Paris, France
| | - Xinmin Liu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
- Columbia University Medical Center, New York, New York, USA
| | - Dan L Longo
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - Oliver Martinez
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, California, USA
| | - Jean-Luc Martinot
- NSERM Unit 1000 ″Neuroimaging and Psychiatry″, University Paris Sud, University Paris Descartes, Paris, France
- Maison de Solenn, Adolescent Psychopathology and Medicine Department, APHP Hospital Cochin, Paris, France
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Katie L McMahon
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Francis J McMahon
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ingrid Melle
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, CCM, Berlin, Germany
| | | | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics Centre (NICOG) and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Thomas W Mühleisen
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Liverpool, Institute of Translational Medicine, Liverpool, UK
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK e.V.), partner site Greifswald, Germany
| | - Thomas E Nichols
- FMRIB Centre, University of Oxford, Oxford, UK
- Department of Statistics and Warwick Manufacturing Group, University of Warwick, Coventry, UK
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Medical Informatics Erasmus MC, Rotterdam, the Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Lars Nyberg
- Department of Integrative Medical Biology and Umeå center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Rene L Olvera
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, California, USA
| | - Massimo Pandolfo
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Tomas Paus
- Rotman Research Institute, University of Toronto, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Canada
- Child Mind Institute, New York, New York, USA
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - G Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California-Irvine, Irvine, California, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Health Services, University of Washington, Seattle, Washington, USA
- Group Health Research Institute, Group Health, Seattle, Washington, USA
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine, Australia
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, Masschusetts, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, CCM, Berlin, Germany
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Mina Ryten
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ralph L Sacco
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Epidemiology and Public Health Sciences, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Evelyn F. McKnight Brain Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Austria, Graz, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, UNSW, Sydney, Australia
| | | | - Andy Simmons
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
- Biomedical Research Centre for Mental Health, King's College London, London, UK
- Biomedical Research Unit for Dementia, King's College London, London, UK
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sanjay M Sisodiya
- UCL Institute of Neurology, London, United Kingdom and Epilepsy Society, Bucks, UK
| | - Colin Smith
- MRC Edinburgh Brain Bank, University of Edinburgh, Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Edinburgh, UK
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, Masschusetts, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocentre Neurology, Kuopio University Hospital, Finland
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health and Monash University, Melbourne, Australia
| | - Vidar M Steen
- NORMENT - KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK
| | - Jessika E Sussmann
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Troncoso
- Brain Resource Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Christophe Tzourio
- Institute for Neurodegenerative Disorders, UMR 5293, CEA, CNRS, Université de Bordeaux, France
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Maria C Valdés Hernández
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Aad Van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Nic J A Van der Wee
- Department of Psychiatry and Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Neeltje E M Van Haren
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands
| | - Dennis Van T Ent
- Biological Psychology, Neuroscience Campus Amsterdam, Vrije Universiteit University and Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Marie-Jose Van Tol
- Neuroimaging Centre, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - Dick J Veltman
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, CCM, Berlin, Germany
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Wassink
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael E Weale
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
- Departments of Psychiatry, Neurology, Neuroscience and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Disease, San Francisco VA Medical Center, University of California, San Francisco, California, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Evolution and Genetics, Dagestan State University, Makhachkala, Dagestan, Russia
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Clinton B Wright
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Epidemiology and Public Health Sciences, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Evelyn F. McKnight Brain Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - H Ronald Zielke
- NICHD Brain and Tissue Bank for Developmental Disorders, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Charles DeCarli
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, California, USA
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | | | - Anton J M De Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Lenore J Launer
- Intramural Research Program, NIA, NIH, Bethesda, Maryland, USA
| | - Gunter Schumann
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Stéphanie Debette
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| |
Collapse
|
89
|
Mydlárová Blaščáková M, Blaščáková Ľ, Poráčová J, Mydlár J, Vašková J, Bernasovská J, Boroňová I, Petrejčíková E, Bernasovský I. Relationship between A163G osteoprotegerin gene polymorphism and other osteoporosis parameters in Roma and non-Roma postmenopausal women in eastern Slovakia. J Clin Lab Anal 2016; 31. [PMID: 27859736 DOI: 10.1002/jcla.22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The study was focused on evaluating the possible correlation between biochemical, anthropometric, and genetic indicators of osteoporosis in postmenopausal women. The frequency of genotypes and differences in measured parameters were evaluated within two ethnically different groups of women in Slovakia. METHODS The study included 310 postmenopausal women divided into non-Roma and Roma groups. Based on results of densitometry, they were divided into control groups and women with osteoporosis and osteopenia. In all women, a genetic analysis of polymorphism of osteoprotegerin gene promotor region (A163G) was provided along with measurement of indicators of bone tissue metabolism. RESULTS There is a particularly low incidence of osteoporosis in Roma women. We found a correlation between bone mineral density (BMD), body mass index, and waist and hip circumference in women with osteoporosis and in Roma women with osteopenia. The frequency of the AG genotype was higher in non-Roma women with osteoporosis, but reached only 10.7% in Roma women with osteopenia. While the presence of the G allele in the non-Roma population was accompanied by higher BMD and markers of osteoformation, it was accompanied by significantly higher concentrations of parathyroid hormone in the Roma population. CONCLUSION The presence of the AG genotype has a different effect on bone metabolism in two ethnically diverse populations of women in Slovakia. In the general population, the presence of the G allele exhibited protective effects consistent with other studies, but in Roma population this appears to be the allele A. However, this requires a further study for confirmation and more detailed characterization of the differences between populations that have this work indicated.
Collapse
Affiliation(s)
- Marta Mydlárová Blaščáková
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Ľudmila Blaščáková
- Department of Biophysics, Faculty of Natural Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Janka Poráčová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Jozef Mydlár
- Department of Geography and Applied Geoinformatics, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Jarmila Bernasovská
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Iveta Boroňová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Eva Petrejčíková
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Ivan Bernasovský
- Center of Languages and Cultures of National Minorities, University of Prešov, Prešov, Slovakia
| |
Collapse
|
90
|
An Emerging Regulatory Landscape for Skeletal Development. Trends Genet 2016; 32:774-787. [PMID: 27814929 DOI: 10.1016/j.tig.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 02/02/2023]
Abstract
Skeletal development creates the physical framework that shapes our body and its actions. In the past two decades, genetic studies have provided important insights into the molecular processes at play, including the roles of signaling pathways and transcriptional effectors that coordinate an orderly, progressive emergence and expansion of distinct cartilage and bone cell fates in an invariant temporal and spatial pattern for any given skeletal element within that specific vertebrate species. Genome-scale studies have provided additional layers of understanding, moving from individual genes to the gene regulatory landscape, integrating regulatory information through cis-regulatory modules into cell type-specific gene regulatory programs. This review discusses our current understanding of the transcriptional control of mammalian skeletal development, focusing on recent genome-scale studies.
Collapse
|
91
|
How rare bone diseases have informed our knowledge of complex diseases. BONEKEY REPORTS 2016; 5:839. [PMID: 27688878 DOI: 10.1038/bonekey.2016.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.
Collapse
|
92
|
Genetics of pediatric bone strength. BONEKEY REPORTS 2016; 5:823. [PMID: 27579163 DOI: 10.1038/bonekey.2016.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Osteoporosis is one of the most common chronic forms of disability in postmenopausal women and represents a major health burden around the world. Bone fragility is affected by bone mineral density (BMD), and, one of the most important factors in preventing osteoporosis is optimizing peak bone mass, which is achieved during growth in childhood and adolescence. BMD is a complex trait resulting from environmental and genetic factors. Genome-wide association studies have discovered robust genetic signals influencing BMD in adults, and similar studies have also been conducted to investigate the genetics of BMD in the pediatric setting. These latter studies have revealed that many adult osteoporosis-related loci also regulate BMD during growth. These investigations have the potential to profoundly impact public health and will allow for the eventual development of effective interventions for the prevention of osteoporosis.
Collapse
|
93
|
Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss. Sci Rep 2016; 6:29475. [PMID: 27378017 PMCID: PMC4932518 DOI: 10.1038/srep29475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss.
Collapse
|
94
|
Kemp JP, Medina-Gomez C, Tobias JH, Rivadeneira F, Evans DM. The case for genome-wide association studies of bone acquisition in paediatric and adolescent populations. BONEKEY REPORTS 2016; 5:796. [PMID: 27257477 DOI: 10.1038/bonekey.2016.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/15/2016] [Indexed: 12/16/2022]
Abstract
Peak bone mass, the maximum amount of bone accrued at the end of the growth period, is an important predictor of future risk of osteoporosis and fracture. Hence, the contribution of genetic factors influencing bone accrual is of considerable interest to the osteoporosis research community. In this article, we review evidence that genetic factors play an important role in bone growth, describe the genetic loci implicated so far and briefly discuss lessons learned from the application of genome-wide association studies. Moreover, we attempt to make the case for genetic investigations of bone mineral density in paediatric and young adult populations, describing their potential to increase our knowledge of the process of bone metabolism throughout the life course, and in turn, identify novel targets for the pharmacological treatment of osteoporosis.
Collapse
Affiliation(s)
- John P Kemp
- University of Queensland Diamantina Institute, Level 5 Translational Research Institute, Brisbane, Queensland, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Joint first authors
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Joint first authors
| | - Jonathan H Tobias
- School of Clinical Sciences, University of Bristol, Bristol, UK; Joint senior authors
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Joint senior authors
| | - David M Evans
- University of Queensland Diamantina Institute, Level 5 Translational Research Institute, Brisbane, Queensland, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Joint senior authors
| |
Collapse
|
95
|
Kemp JP, Sayers A, Smith GD, Tobias JH, Evans DM. Using Mendelian randomization to investigate a possible causal relationship between adiposity and increased bone mineral density at different skeletal sites in children. Int J Epidemiol 2016; 45:1560-1572. [PMID: 27215616 PMCID: PMC5100609 DOI: 10.1093/ije/dyw079] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Lean mass is positively associated with bone mineral density (BMD). However, the relationship between adiposity and BMD is more controversial. In particular, it is unclear if the observational association between the two reflects a causal effect of fat mass on BMD. Previous Mendelian randomization (MR) studies using variants in the FTO and MC4R genes as genetic instruments for adiposity have suggested that fat mass does indeed causally influence BMD. However, it is possible that these genetic variants pleiotropically influence lean mass and affect BMD through pathways independent of adiposity, invalidating one of the core assumptions of MR and complicating interpretation of the analysis. METHODS To investigate whether adiposity causally affects BMD, we investigated the relationship between fat mass and BMD at the skull (SK), upper limbs (UL) and lower limbs (LL), spine (SP) and pelvis (PE), using 32 body mass index (BMI)-associated SNPs, including a variant near ADCY3 that was strongly associated with fat but not lean mass in our sample. Dual-energy X-ray absorptiometry (DXA) scans and genetic data were available for 5221 subjects (mean age 9.9 years) from the Avon Longitudinal Study of Parents and Children. We performed a series of MR analyses involving single BMI-associated SNPs and allelic scores of these SNPs. We used new extensions of the MR method including MR Egger regression and multivariable MR, which are more robust to possible confounding effects due to horizontal pleiotropy and, in the case of multivariable MR, specifically account for the effect of lean mass in the analysis. Bidirectional Mendelian randomization analysis was also performed to examine whether BMD causally affected BMI and adiposity. RESULTS Observationally, fat mass was strongly positively related to BMD at all sites, but more weakly at the skull. Instrumental variables (IV) analyses using an allelic score of BMI SNPs suggested that fat mass was causally related to LL-BMD, UL-BMD, SP-BMD and PE-BMD but not SK-BMD. Multivariable MR, Egger regression and IV analyses involving the ADCY3 variant suggested a positive causal effect of adiposity on all sites except the skull, and that an effect was present even after taking lean mass into account. Finally, IV analyses using BMD allelic scores showed no evidence of reverse causality between BMD and fat mass. CONCLUSIONS Our results suggest that adiposity is causally related to increased BMD at all sites except the skull, perhaps reflecting positive effects of loading on bone formation at weighted but not unweighted sites. In contrast, we found no evidence for BMD causally affecting BMI or measures of adiposity. Our results illustrate how MR can be used profitably to investigate clinical questions relevant to osteoporosis.
Collapse
Affiliation(s)
- John P Kemp
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.,MRC Integrative Epidemiology Unit and
| | - Adrian Sayers
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | | | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia .,MRC Integrative Epidemiology Unit and
| |
Collapse
|
96
|
Ling Y, Lin H, Aleteng Q, Ma H, Pan B, Gao J, Gao X. Cdx-2 polymorphism in Vitamin D Receptor gene was associated with serum 25-hydroxyvitamin D levels, bone mineral density and fracture in middle-aged and elderly Chinese women. Mol Cell Endocrinol 2016; 427:155-61. [PMID: 26970179 DOI: 10.1016/j.mce.2016.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 01/23/2023]
Abstract
The aim of the current study was to examine the relationship between Cdx-2 polymorphism in the promoter region of the VDR gene and serum 25-hydroxyvitamin D (25(OH)D) levels, bone mineral density (BMD) and fracture in Chinese population. This was a cross-sectional study, which included 738 individuals (428 women and 310 men) aged 45 years or older. In women, the association of Cdx-2 polymorphism with serum 25(OH)D levels was significant adjusting for age, BMI, estimated glomerular filtration rate, menopausal status and season of blood collection (P = 0.002). Cdx-2 polymorphism was associated with lumbar spine BMD adjusted for age, BMI, menopausal status and serum 25(OH)D in women (P = 0.005). But it was not associated with femoral neck BMD or total hip BMD in women. In women, Cdx-2 polymorphism was also associated with fracture adjusted for age, BMI, menopausal status, serum 25(OH)D and total hip BMD (P = 0.03). Carriers of AA and AG genotypes was associated with a higher odds of fracture compared with the carriers of GG genotype (OR = 2.14, 95% CI 1.04-4.42 and OR = 1.90, 95% CI 1.03-3.51). In men, Cdx-2 polymorphism was not associated with serum 25(OH)D levels, BMD or fracture. Our results indicate that the association of Cdx-2 polymorphism in the VDR gene with serum 25(OH)D levels, BMD and fracture may have sex differences. Cdx-2 polymorphism in the VDR gene may affect the serum 25(OH)D concentrations and the risk of osteoporosis and fracture in middle-aged and elderly Chinese women.
Collapse
Affiliation(s)
- Yan Ling
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University and Institute of Chronic Metabolic Diseases of Fudan University, No. 180 Fenglin Road, 200032 Shanghai, China.
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University and Institute of Chronic Metabolic Diseases of Fudan University, No. 180 Fenglin Road, 200032 Shanghai, China.
| | - Qiqige Aleteng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University and Institute of Chronic Metabolic Diseases of Fudan University, No. 180 Fenglin Road, 200032 Shanghai, China.
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032 Shanghai, China.
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University and Institute of Chronic Metabolic Diseases of Fudan University, No. 180 Fenglin Road, 200032 Shanghai, China.
| | - Jian Gao
- Department of Clinical Nutrition, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032 Shanghai, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University and Institute of Chronic Metabolic Diseases of Fudan University, No. 180 Fenglin Road, 200032 Shanghai, China.
| |
Collapse
|
97
|
Chen YC, Guo YF, He H, Lin X, Wang XF, Zhou R, Li WT, Pan DY, Shen J, Deng HW. Integrative Analysis of Genomics and Transcriptome Data to Identify Potential Functional Genes of BMDs in Females. J Bone Miner Res 2016; 31:1041-9. [PMID: 26748680 DOI: 10.1002/jbmr.2781] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/27/2015] [Accepted: 12/30/2015] [Indexed: 02/01/2023]
Abstract
Osteoporosis is known to be highly heritable. However, to date, the findings from more than 20 genome-wide association studies (GWASs) have explained less than 6% of genetic risks. Studies suggest that the missing heritability data may be because of joint effects among genes. To identify novel heritability for osteoporosis, we performed a system-level study on bone mineral density (BMD) by weighted gene coexpression network analysis (WGCNA), using the largest GWAS data set for BMD in the field, Genetic Factors for Osteoporosis Consortium (GEFOS-2), and a transcriptomic gene expression data set generated from transiliac bone biopsies in women. A weighted gene coexpression network was generated for 1574 genes with GWAS nominal evidence of association (p ≤ 0.05) based on dissimilarity measurement on the expression data. Twelve distinct gene modules were identified, and four modules showed nominally significant associations with BMD (p ≤ 0.05), but only one module, the yellow module, demonstrated a good correlation between module membership (MM) and gene significance (GS), suggesting that the yellow module serves an important biological role in bone regulation. Interestingly, through characterization of module content and topology, the yellow module was found to be significantly enriched with contractile fiber part (GO:044449), which is widely recognized as having a close relationship between muscle and bone. Furthermore, detailed submodule analyses of important candidate genes (HOMER1, SPTBN1) by all edges within the yellow module implied significant enrichment of functional connections between bone and cytoskeletal protein binding. Our study yielded novel information from system genetics analyses of GWAS data jointly with transcriptomic data. The findings highlighted a module and several genes in the model as playing important roles in the regulation of bone mass in females, which may yield novel insights into the genetic basis of osteoporosis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Yan-Fang Guo
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China.,Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Hao He
- Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA.,Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Wen-Ting Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Dao-Yan Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China.,Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| |
Collapse
|
98
|
Rivadeneira F, Mäkitie O. Osteoporosis and Bone Mass Disorders: From Gene Pathways to Treatments. Trends Endocrinol Metab 2016; 27:262-281. [PMID: 27079517 DOI: 10.1016/j.tem.2016.03.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 12/28/2022]
Abstract
Genomic technologies have evolved rapidly contributing to the understanding of diseases. Genome-wide association studies (GWAS) and whole-exome sequencing have aided the identification of the genetic determinants of monogenic and complex conditions including osteoporosis and bone mass disorders. Overlap exists between the genes implicated in monogenic and complex forms of bone mass disorders, largely explained by the clustering of genes encoding factors in signaling pathways crucial for mesenchymal cell differentiation, skeletal development, and bone remodeling and metabolism. Numerous of the remaining discovered genes merit functional follow-up studies to elucidate their role in bone biology. The insight provided by genetic studies is serving the identification of biomarkers predictive of disease, redefining disease, response to treatment, and discovery of novel drug targets for skeletal disorders.
Collapse
Affiliation(s)
- Fernando Rivadeneira
- Musculoskeletal Genomics, Health and Metabolism, Departments of Internal Medicine and Epidemiology, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands.
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
99
|
Medina-Gomez C, Heppe DHM, Yin JL, Trajanoska K, Uitterlinden AG, Beck TJ, Jaddoe VWV, Rivadeneira F. Bone Mass and Strength in School-Age Children Exhibit Sexual Dimorphism Related to Differences in Lean Mass: The Generation R Study. J Bone Miner Res 2016; 31:1099-106. [PMID: 26599073 DOI: 10.1002/jbmr.2755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 11/12/2022]
Abstract
Bone strength, a key determinant of fracture risk, has been shown to display clear sexual dimorphism after puberty. We sought to determine whether sex differences in bone mass and hip bone geometry as an index of strength exist in school-age prepubertal children and the degree to which the differences are independent of body size and lean mass. We studied 3514 children whose whole-body and hip scans were measured using the same densitometer (GE-Lunar iDXA) at a mean age of 6.2 years. Hip dual-energy X-ray absorptiometry (DXA) scans underwent hip structural analyses (HSA) with derivation of bone strength indices. Sex differences in these parameters were assessed by regression models adjusted for age, height, ethnicity, weight, and lean mass fraction (LMF). Whole-body bone mineral density (BMD) and bone mineral content (BMC) levels were 1.3% and 4.3% higher in girls after adjustment by LMF. Independent of LMF, boys had 1.5% shorter femurs, 1.9% and 2.2% narrower shaft and femoral neck with 1.6% to 3.4% thicker cortices than girls. Consequent with this geometry configuration, girls observed 6.6% higher stresses in the medial femoral neck than boys. When considering LMF, the sexual differences on the derived bone strength indices were attenuated, suggesting that differences in muscle loads may reflect an innate disadvantage in bone strength in girls, as consequence of their lower muscular acquisition. In summary, we show that bone sexual dimorphism is already present at 6 years of age, with boys having stronger bones than girls, the relation of which is influenced by body composition and likely attributable to differential adaptation to mechanical loading. Our results support the view that early life interventions (ie, increased physical activity) targeted during the pre- and peripubertal stages may be of high importance, particularly in girls, because before puberty onset, muscle mass is strongly associated with bone density and geometry in children. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Denise H M Heppe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jia-Lian Yin
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas J Beck
- Beck Radiological Innovations Inc., Baltimore, MD, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
100
|
Sato S, Uemoto Y, Kikuchi T, Egawa S, Kohira K, Saito T, Sakuma H, Miyashita S, Arata S, Kojima T, Suzuki K. SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genet 2016; 17:60. [PMID: 27094516 PMCID: PMC4837538 DOI: 10.1186/s12863-016-0368-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
Abstract
Background The aim of the present study was to compare the power of single nucleotide polymorphism (SNP)-based genome-wide association study (GWAS) and haplotype-based GWAS for quantitative trait loci (QTL) detection, and to detect novel candidate genes affecting economically important traits in a purebred Duroc population comprising seven-generation pedigree. First, we performed a simulation analysis using real genotype data of this population to compare the power (based on the null hypothesis) of the two methods. We then performed GWAS using both methods and real phenotype data comprising 52 traits, which included growth, carcass, and meat quality traits. Results In total, 836 animals were genotyped using the Illumina PorcineSNP60 BeadChip and 14 customized SNPs from regions of known candidate genes related to the traits of interest. The power of SNP-based GWAS was greater than that of haplotype-based GWAS in a simulation analysis. In real data analysis, a larger number of significant regions was obtained by SNP-based GWAS than by haplotype-based GWAS. For SNP-based GWAS, 23 genome-wide significant SNP regions were detected for 17 traits, and 120 genome-wide suggestive SNP regions were detected for 27 traits. For haplotype-based GWAS, 6 genome-wide significant SNP regions were detected for four traits, and 11 genome-wide suggestive SNP regions were detected for eight traits. All genome-wide significant SNP regions detected by haplotype-based GWAS were located in regions also detected by SNP-based GWAS. Four regions detected by SNP-based GWAS were significantly associated with multiple traits: on Sus scrofa chromosome (SSC) 1 at 304 Mb; and on SSC7 at 35–39 Mb, 41–42 Mb, and 103 Mb. The vertnin gene (VRTN) in particular, was located on SSC7 at 103 Mb and was significantly associated with vertebrae number and carcass lengths. Mapped QTL regions contain some candidate genes involved in skeletal formation (FUBP3; far upstream element binding protein 3) and fat deposition (METTL3; methyltransferase like 3). Conclusion Our results show that a multigenerational pig population is useful for detecting QTL, which are typically segregated in a purebred population. In addition, a novel significant region could be detected by SNP-based GWAS as opposed to haplotype-based GWAS. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0368-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuji Sato
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan.
| | - Yoshinobu Uemoto
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Takashi Kikuchi
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Sachiko Egawa
- Miyazaki Branch of National Livestock Breeding Center, Kobayashi, Miyazaki, 886-0004, Japan
| | - Kimiko Kohira
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Tomomi Saito
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Hironori Sakuma
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Satoshi Miyashita
- Miyazaki Branch of National Livestock Breeding Center, Kobayashi, Miyazaki, 886-0004, Japan
| | - Shinji Arata
- Miyazaki Branch of National Livestock Breeding Center, Kobayashi, Miyazaki, 886-0004, Japan
| | - Takatoshi Kojima
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 981-8555, Japan
| |
Collapse
|