51
|
Moroni L, Barbaro F, Caiment F, Coleman O, Costagliola S, Di Conza G, Elviri L, Giselbrecht S, Krause C, Mota C, Nazzari M, Pennington SR, Ringwald A, Sandri M, Thomas S, Waddington J, Toni R. SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner. Int J Mol Sci 2020; 21:E3648. [PMID: 32455722 PMCID: PMC7279272 DOI: 10.3390/ijms21103648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Endocrine disruptors (EDs) are chemicals that contribute to health problems by interfering with the physiological production and target effects of hormones, with proven impacts on a number of endocrine systems including the thyroid gland. Exposure to EDs has also been associated with impairment of the reproductive system and incidence in occurrence of obesity, type 2 diabetes, and cardiovascular diseases during ageing. SCREENED aims at developing in vitro assays based on rodent and human thyroid cells organized in three different three-dimensional (3D) constructs. Due to different levels of anatomical complexity, each of these constructs has the potential to increasingly mimic the structure and function of the native thyroid gland, ultimately achieving relevant features of its 3D organization including: 1) a 3D organoid based on stem cell-derived thyrocytes, 2) a 3D organoid based on a decellularized thyroid lobe stromal matrix repopulated with stem cell-derived thyrocytes, and 3) a bioprinted organoid based on stem cell-derived thyrocytes able to mimic the spatial and geometrical features of a native thyroid gland. These 3D constructs will be hosted in a modular microbioreactor equipped with innovative sensing technology and enabling precise control of cell culture conditions. New superparamagnetic biocompatible and biomimetic particles will be used to produce "magnetic cells" to support precise spatiotemporal homing of the cells in the 3D decellularized and bioprinted constructs. Finally, these 3D constructs will be used to screen the effect of EDs on the thyroid function in a unique biological sex-specific manner. Their performance will be assessed individually, in comparison with each other, and against in vivo studies. The resulting 3D assays are expected to yield responses to low doses of different EDs, with sensitivity and specificity higher than that of classical 2D in vitro assays and animal models. Supporting the "Adverse Outcome Pathway" concept, proteogenomic analysis and biological computational modelling of the underlying mode of action of the tested EDs will be pursued to gain a mechanistic understanding of the chain of events from exposure to adverse toxic effects on thyroid function. For future uptake, SCREENED will engage discussion with relevant stakeholder groups, including regulatory bodies and industry, to ensure that the assays will fit with purposes of ED safety assessment. In this project review, we will briefly discuss the current state of the art in cellular assays of EDs and how our project aims at further advancing the field of cellular assays for EDs interfering with the thyroid gland.
Collapse
Affiliation(s)
- Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229ET Maastricht, The Netherlands;
| | - Fulvio Barbaro
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
| | - Florian Caiment
- Toxicogenomics, Maastricht University, 6229ET Maastricht, The Netherlands; (F.C.); (M.N.)
| | - Orla Coleman
- Atturos Ltd., c/o Conway Research Institute, University College Dublin, Dublin 4, Ireland; (O.C.); (S.R.P.)
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Giusy Di Conza
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
| | - Lisa Elviri
- Food and Drug Department, University of Parma, 43121 Parma, Italy;
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instruct Biomaterials Engineering, Maastricht University, 6229ET Maastricht, The Netherlands;
| | | | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229ET Maastricht, The Netherlands;
| | - Marta Nazzari
- Toxicogenomics, Maastricht University, 6229ET Maastricht, The Netherlands; (F.C.); (M.N.)
| | - Stephen R. Pennington
- Atturos Ltd., c/o Conway Research Institute, University College Dublin, Dublin 4, Ireland; (O.C.); (S.R.P.)
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| | | | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy (ISTEC-CNR), 48018 Faenza, Italy;
| | - Simon Thomas
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK;
| | - James Waddington
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Roberto Toni
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
- Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center - Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
52
|
Shuck SC, Nguyen C, Chan Y, O’Connor T, Ciminera AK, Kahn M, Termini J. Metal-Assisted Protein Quantitation (MAPq): Multiplex Analysis of Protein Expression Using Lanthanide-Modified Antibodies with Detection by Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2020; 92:7556-7564. [DOI: 10.1021/acs.analchem.0c00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
53
|
Multiplexed Detection of Cancer Serum Antigens with a Quantum Dot-Based Lab-on-Bead System. Methods Mol Biol 2020. [PMID: 32246338 DOI: 10.1007/978-1-0716-0463-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A quantum dot (QD)-based lab-on-bead system is a unique tool for multiple analysis of cancer markers in human serum samples by using a flow cytometer. In terms of specificity and sensitivity, this method is comparable with ELISA, the "gold standard" of serological in-clinic detection of single analytes. Fluorescent microspheres encoded with QDs have been used for the quantitative detection of free and total prostate-specific antigen in human serum samples. Developed multiplex assay demonstrates a clear discrimination between serum samples from control subjects and cancer patients. The proposed QD-based method is adaptable and makes it possible to develop numerous clinical tests with decreased duration and cost for early diagnosis of various diseases.
Collapse
|
54
|
Cassedy A, Mullins E, O'Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv 2020; 39:107358. [DOI: 10.1016/j.biotechadv.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
|
55
|
Movsas TZ, Paneth N, Gewolb IH, Lu Q, Cavey G, Muthusamy A. The postnatal presence of human chorionic gonadotropin in preterm infants and its potential inverse association with retinopathy of prematurity. Pediatr Res 2020; 87:558-563. [PMID: 31537012 PMCID: PMC7035966 DOI: 10.1038/s41390-019-0580-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are pro-angiogenic gonadotropic hormones, which classically target the reproductive organs. However, hCG, LH, and their shared CG/LH receptor are also present in the human eye. The possibility that a deficiency of these hormones may be involved in the pathogenesis of retinopathy of prematurity (ROP) during its early non-proliferative phase has not been explored. METHODS We conducted a cross-sectional study of Michigan-born preterm infants utilizing dried blood spots. We analyzed hCG and LH blood levels at 1 week and 4 weeks of age from 113 study participants (60 without ROP; 53 with non-proliferative ROP). We utilized electrochemiluminescence assays on the Mesoscale Discovery platform. RESULTS Similar levels of hCG are found in preterm infants at both 1 week and 4 weeks after birth. Preterm infants with non-proliferative ROP, after adjusting for sex and gestational age, have 2.42 [95% CI: 1.08-5.40] times the odds of having low hCG at fourth week of age. CONCLUSIONS We found that hCG is present postnatally in preterm infants and that a deficiency of hCG at 4 weeks of age is potentially associated with non-proliferative ROP. This provides novel evidence to suggest that hCG may participate in human retinal angiogenesis.
Collapse
Affiliation(s)
- Tammy Z Movsas
- Zietchick Research Institute, Plymouth, MI, USA.
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Nigel Paneth
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Ira H Gewolb
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Qing Lu
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Gregory Cavey
- Biomedical Sciences, Western Michigan University-Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | | |
Collapse
|
56
|
Clinical Studies of Ci-5, Sol-gel Encapsulated Multiplex Antibody Microarray for Quantitative Fluorometric Detection of Simultaneous Five Different Tumor Antigens. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3409-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
57
|
Uhlén M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, Zhong W, Tebani A, Strandberg L, Edfors F, Sjöstedt E, Mulder J, Mardinoglu A, Berling A, Ekblad S, Dannemeyer M, Kanje S, Rockberg J, Lundqvist M, Malm M, Volk AL, Nilsson P, Månberg A, Dodig-Crnkovic T, Pin E, Zwahlen M, Oksvold P, von Feilitzen K, Häussler RS, Hong MG, Lindskog C, Ponten F, Katona B, Vuu J, Lindström E, Nielsen J, Robinson J, Ayoglu B, Mahdessian D, Sullivan D, Thul P, Danielsson F, Stadler C, Lundberg E, Bergström G, Gummesson A, Voldborg BG, Tegel H, Hober S, Forsström B, Schwenk JM, Fagerberg L, Sivertsson Å. The human secretome. Sci Signal 2019; 12:12/609/eaaz0274. [PMID: 31772123 DOI: 10.1126/scisignal.aaz0274] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.
Collapse
Affiliation(s)
- Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden. .,Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Max J Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Hober
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anne-Sophie Svensson
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Julia Scheffel
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - David Kotol
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Wen Zhong
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Abdellah Tebani
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Linnéa Strandberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Adil Mardinoglu
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Berling
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Siri Ekblad
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Melanie Dannemeyer
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Johan Rockberg
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Magnus Lundqvist
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Magdalena Malm
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna-Luisa Volk
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Tea Dodig-Crnkovic
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Elisa Pin
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Martin Zwahlen
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Per Oksvold
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kalle von Feilitzen
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Ragna S Häussler
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mun-Gwan Hong
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - Fredrik Ponten
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Borbala Katona
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Jimmy Vuu
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Emil Lindström
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jonathan Robinson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Burcu Ayoglu
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Diana Mahdessian
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Devin Sullivan
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Peter Thul
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Frida Danielsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Charlotte Stadler
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bjørn G Voldborg
- Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hanna Tegel
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Björn Forsström
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jochen M Schwenk
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Sivertsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
58
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
59
|
Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat Protoc 2019; 14:2900-2930. [PMID: 31534232 DOI: 10.1038/s41596-019-0206-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
Multiplexed tissue imaging enables precise, spatially resolved enumeration and characterization of cell types and states in human resection specimens. A growing number of methods applicable to formalin-fixed, paraffin-embedded (FFPE) tissue sections have been described, the majority of which rely on antibodies for antigen detection and mapping. This protocol provides step-by-step procedures for confirming the selectivity and specificity of antibodies used in fluorescence-based tissue imaging and for the construction and validation of antibody panels. Although the protocol is implemented using tissue-based cyclic immunofluorescence (t-CyCIF) as an imaging platform, these antibody-testing methods are broadly applicable. We demonstrate assembly of a 16-antibody panel for enumerating and localizing T cells and B cells, macrophages, and cells expressing immune checkpoint regulators. The protocol is accessible to individuals with experience in microscopy and immunofluorescence; some experience in computation is required for data analysis. A typical 30-antibody dataset for 20 FFPE slides can be generated within 2 weeks.
Collapse
|
60
|
Ramirez K, Campbell E, Han SY, Buehler J, Phan T, Young Yoon H, Lee YL, Suresh T, Sulchek T. Optimization of Microparticle Reagents to Collect and Detect Antibody. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11717-11724. [PMID: 31430169 DOI: 10.1021/acs.langmuir.9b01555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bead reagents are used in a large number of assays in bioscience and biotechnology to collect and purify antibodies by immobilization. Bead-based immunoassays offer high-throughput analysis of multiple antibodies in a single sample. Although a variety of antibody-binding moieties on the collection beads have been studied, the physical and material properties of collection beads have not been optimized to isolate specific antibodies over a broad range of concentrations from complex environments containing cells. We present a study of how to optimally use microparticles coated with protein G to collect low concentrations of IgG antibodies from complex solutions. We study the impact of bead material, bead size, incubation time, and protein G density to more efficiently collect antibodies and detect specific antibodies via fluorescent antigen labeling. The minimum detectable limit and the minimum incubation time for antibody collection are used as metrics to evaluate the collection parameters. We found that larger silica beads can capture more antibodies from a low concentration of sample, with a minimum incubation time of 60 min to equilibrium binding, resulting in a minimum detectable concentration of antibodies of 26 nM. We show that simple biophysical optimization of antibody collection reagents can be used to improve the collection of low concentrations of antibodies in complex environments. We demonstrate that the technology may be useful for monitoring antibody secretions from hybridoma cultures.
Collapse
|
61
|
Jearn LAH, Kim TY. ANA-negative Antitopoisomerase I Antibody Is Not Generally Accepted. J Rheumatol 2019; 46:1546. [PMID: 31371655 DOI: 10.3899/jrheum.190524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- LA-He Jearn
- Department of Laboratory Medicine, College of Medicine, Hanyang University
| | - Think-You Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
62
|
Zheng K, Chen C, Chen X, Xu M, Chen L, Hu Y, Bai Y, Liu B, Yan C, Wang H, Li J. Graphically encoded suspension array for multiplex immunoassay and quantification of autoimmune biomarkers in patient sera. Biosens Bioelectron 2019; 132:47-54. [DOI: 10.1016/j.bios.2019.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
|
63
|
Gao M, Lian H, Yu L, Gong M, Ma L, Zhou Y, Yu M, Yan X. Rolling circle amplification integrated with suspension bead array for ultrasensitive multiplex immunodetection of tumor markers. Anal Chim Acta 2019; 1048:75-84. [DOI: 10.1016/j.aca.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
|
64
|
Tin A, Yu B, Ma J, Masushita K, Daya N, Hoogeveen RC, Ballantyne CM, Couper D, Rebholz CM, Grams ME, Alonso A, Mosley T, Heiss G, Ganz P, Selvin E, Boerwinkle E, Coresh J. Reproducibility and Variability of Protein Analytes Measured Using a Multiplexed Modified Aptamer Assay. J Appl Lab Med 2019; 4:30-39. [PMID: 31639705 DOI: 10.1373/jalm.2018.027086] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/05/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND There is growing interest in the use of multiplexed aptamer-based assays for large-scale proteomic studies. However, the analytic, short- and long-term variation of the measured proteins is largely uncharacterized. METHODS We quantified 4001 plasma protein analytes from 42 participants in the Atherosclerosis Risk in Communities (ARIC) Study in split samples and at multiple visits using a multiplexed modified aptamer assay. We calculated the CV, Spearman correlation, and intraclass correlation (ICC) between split samples and evaluated the short-term (4-9 weeks) and long-term (approximately 20 years) variability using paired t-tests with log-transformed protein concentrations and Bonferroni-corrected significance thresholds. We performed principal component (PC) analysis of protein analyte concentrations and evaluated their associations with age, sex, race, and estimated glomerular filtration rate (eGFR). RESULTS The mean baseline age was 57 years at the first visit, 43% of participants were male and 57% were white. Among 3693 protein analytes that passed quality control, half (n = 1846) had CVs < 5.0%, Spearman correlations > 0.89, and ICCs > 0.96 among the split samples. Over the short term, only 1 analyte had a statistically significant difference between the 2 time points, whereas, over approximately 20 years, 866 analytes (23.4%) had statistically significant differences (P < 1.4 × 10-5, 681 increased, 185 decreased). PC1 had high correlations with age (-0.73) and eGFR (0.60). PC2 had moderate correlation with male sex (0.18) and white race (0.31). CONCLUSIONS Multiplexed modified aptamer technology can assay thousands of proteins with excellent precision. Our results support the potential for large-scale studies of the plasma proteome over the lifespan.
Collapse
Affiliation(s)
- Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; .,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore MD
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Jianzhong Ma
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - Kunihiro Masushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore MD
| | - Natalie Daya
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore MD
| | - Ron C Hoogeveen
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston TX
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston TX
| | - David Couper
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore MD
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Thomas Mosley
- Department of Neurology, The University of Mississippi Medical Center, Jackson, MS
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Peter Ganz
- Division of Cardiology, San Francisco General Hospital, University of California, San Francisco, CA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore MD
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore MD
| |
Collapse
|
65
|
A Systematic Analysis Workflow for High-Density Customized Protein Microarrays in Biomarker Screening. Methods Mol Biol 2019; 1871:107-122. [PMID: 30276735 DOI: 10.1007/978-1-4939-8814-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High-density protein microarrays constitute a promising high-throughput platform for the characterization of protein expression patterns, biomarker discovery, and validation. Different types of protein microarrays have been described according to several features (such as content, format, and detection system) presenting advantages and disadvantages which are relevant for the specific application and purposes. Therefore, an experimental design is key for any screening based on protein microarrays assays; in fact, the data analysis strategy is directly related to the experimental design, type of protein microarray and consequently the final outcome, the data and results interpretation, is also directly linked. Here, it is proposed a systematic workflow for biomarker discovery based on tailor-made protein microarrays platforms which obtain comprehensively info for the functional protein characterization in high-throughput format.
Collapse
|
66
|
Brambilla D, Chiari M, Gori A, Cretich M. Towards precision medicine: the role and potential of protein and peptide microarrays. Analyst 2019; 144:5353-5367. [DOI: 10.1039/c9an01142k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Techniques to comprehensively analyze protein signatures are pivotal to unravel disease mechanisms, develop novel biomarkers and targeted therapies. In this frame, protein and peptide microarrays can play a major role in fuelling precision medicine.
Collapse
Affiliation(s)
- Dario Brambilla
- Consiglio Nazionale delle Ricerche
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)
- Milano
- Italy
| | - Marcella Chiari
- Consiglio Nazionale delle Ricerche
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)
- Milano
- Italy
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)
- Milano
- Italy
| | - Marina Cretich
- Consiglio Nazionale delle Ricerche
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)
- Milano
- Italy
| |
Collapse
|
67
|
Byron A. Reproducibility and Crossplatform Validation of Reverse-Phase Protein Array Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1188:181-201. [PMID: 31820389 DOI: 10.1007/978-981-32-9755-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reverse-phase protein array (RPPA) technology is a high-throughput antibody- and microarray-based approach for the rapid profiling of levels of proteins and protein posttranslational modifications in biological specimens. The technology consumes small amounts of samples, can sensitively detect low-abundance proteins and posttranslational modifications, enables measurements of multiple signaling pathways in parallel, has the capacity to analyze large sample numbers, and offers robust interexperimental reproducibility. These features of RPPA experiments have motivated and enabled the use of RPPA technology in various biomedical, translational, and clinical applications, including the delineation of molecular mechanisms of disease, profiling of druggable signaling pathway activation, and search for new prognostic markers. Owing to the complexity of many of these applications, such as developing multiplex protein assays for diagnostic laboratories or integrating posttranslational modification-level data using large-scale proteogenomic approaches, robust and well-validated data are essential. There are many distinct components of an RPPA workflow, and numerous possible technical setups and analysis parameter options exist. The differences between RPPA platform setups around the world offer opportunities to assess and minimize interplatform variation. Crossplatform validation may also aid in the evaluation of robust, platform-independent protein markers of disease and response to therapy.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
68
|
Parsa SF, Vafajoo A, Rostami A, Salarian R, Rabiee M, Rabiee N, Rabiee G, Tahriri M, Yadegari A, Vashaee D, Tayebi L, Hamblin MR. Early diagnosis of disease using microbead array technology: A review. Anal Chim Acta 2018; 1032:1-17. [PMID: 30143206 PMCID: PMC6152944 DOI: 10.1016/j.aca.2018.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Early diagnosis of diseases (before they become advanced and incurable) is essential to reduce morbidity and mortality rates. With the advent of novel technologies in clinical laboratory diagnosis, microbead-based arrays have come to be recognized as an efficient approach, that demonstrates useful advantages over traditional assay methods for multiple disease-related biomarkers. Multiplexed microbead assays provide a robust, rapid, specific, and cost-effective approach for high-throughput and simultaneous screening of many different targets. Biomolecular binding interactions occur after applying a biological sample (such as blood plasma, saliva, cerebrospinal fluid etc.) containing the target analyte(s) to a set of microbeads with different ligand-specificities that have been coded in planar or suspension arrays. The ligand-receptor binding activity is tracked by optical signals generated by means of flow cytometry analysis in the case of suspension arrays, or by image processing devices in the case of planar arrays. In this review paper, we discuss diagnosis of cancer, neurological and infectious diseases by using optically-encoded microbead-based arrays (both multiplexed and single-analyte assays) as a reliable tool for detection and quantification of various analytes.
Collapse
Affiliation(s)
- Sanam Foroutan Parsa
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Atieh Vafajoo
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azin Rostami
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Noor, Royan, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Ghazal Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Biomaterials and Advanced Drug Delivery Laboratory, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
69
|
Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants. J Nanobiotechnology 2018; 16:95. [PMID: 30466465 PMCID: PMC6249933 DOI: 10.1186/s12951-018-0419-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
The need and desire to understand the environment, especially the quality of one's local water and air, has continued to expand with the emergence of the digital age. The bottleneck in understanding the environment has switched from being able to store all of the data collected to collecting enough data on a broad range of contaminants of environmental concern. Nanomaterial enabled sensors represent a suite of technologies developed over the last 15 years for the highly specific and sensitive detection of environmental contaminants. With the promise of facile, low cost, field-deployable technology, the ability to quantitatively understand nature in a systematic way will soon be a reality. In this review, we first introduce nanosensor design before exploring the application of nanosensors for the detection of three classes of environmental contaminants: pesticides, heavy metals, and pathogens.
Collapse
Affiliation(s)
- Marjorie R. Willner
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science, Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, USA
| |
Collapse
|
70
|
Kaushik AM, Hsieh K, Wang TH. Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1522. [PMID: 29797414 PMCID: PMC6185786 DOI: 10.1002/wnan.1522] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 12/17/2022]
Abstract
Biomarkers are nucleic acids, proteins, single cells, or small molecules in human tissues or biological fluids whose reliable detection can be used to confirm or predict disease and disease states. Sensitive detection of biomarkers is therefore critical in a variety of applications including disease diagnostics, therapeutics, and drug screening. Unfortunately for many diseases, low abundance of biomarkers in human samples and low sample volumes render standard benchtop platforms like 96-well plates ineffective for reliable detection and screening. Discretization of bulk samples into a large number of small volumes (fL-nL) via droplet microfluidic technology offers a promising solution for high-sensitivity and high-throughput detection and screening of biomarkers. Several microfluidic strategies exist for high-throughput biomarker digitization into droplets, and these strategies have been utilized by numerous droplet platforms for nucleic acid, protein, and single-cell detection and screening. While the potential of droplet-based platforms has led to burgeoning interest in droplets, seamless integration of sample preparation technologies and automation of platforms from biological sample to answer remain critical components that can render these platforms useful in the clinical setting in the near future. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Department of Biomedical Engineering, Johns Hopkins University
| |
Collapse
|
71
|
Bush DB, Knotts TA. The effects of antigen size, binding site valency, and flexibility on fab-antigen binding near solid surfaces. J Chem Phys 2018; 149:165102. [PMID: 30384722 DOI: 10.1063/1.5045356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Next generation antibody microarray devices have the potential to outperform current molecular detection methods and realize new applications in medicine, scientific research, and national defense. However, antibody microarrays, or arrays of antibody fragments ("fabs"), continue to evade mainstream use in part due to persistent reliability problems despite improvements to substrate design and protein immobilization strategies. Other factors could be disrupting microarray performance, including effects resulting from antigen characteristics. Target molecules embody a wide range of sizes, shapes, number of epitopes, epitope accessibility, and other physical and chemical properties. As a result, it may not be ideal for microarray designs to utilize the same substrate or immobilization strategy for all of the capture molecules. This study investigates how three antigen properties, such as size, binding site valency, and molecular flexibility, affect fab binding. The work uses an advanced, experimentally validated, coarse-grain model and umbrella sampling to calculate the free energy of ligand binding and how this energy landscape is different on the surface compared to in the bulk. The results confirm that large antigens interact differently with immobilized fabs compared to smaller antigens. Analysis of the results shows that despite these differences, tethering fabs in an upright orientation on hydrophilic surfaces is the best configuration for antibody microarrays.
Collapse
Affiliation(s)
- Derek B Bush
- Department of Chemical Engineering, Brigham Young University Provo, Provo, Utah 84602, USA
| | - Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University Provo, Provo, Utah 84602, USA
| |
Collapse
|
72
|
Shekaramiz E, Doshi R, Wickramasinghe HK. Protein fishing from single live cells. J Nanobiotechnology 2018; 16:67. [PMID: 30205820 PMCID: PMC6134770 DOI: 10.1186/s12951-018-0395-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
Intracellular protein and proteomic studies using mass spectrometry, imaging microscopy, flow cytometry, or western blotting techniques require genetic manipulation, cell permeabilization, and/or cell lysis. We present a biophysical method that employs a nanoaspirator to 'fish' native cytoplasmic or nuclear proteins from single mammalian cells, without compromising cell viability, followed by ex cellulo quantitative detection. Our work paves the way for spatiotemporally-controlled, quantitative, live, single-cell proteomics.
Collapse
Affiliation(s)
- Elaheh Shekaramiz
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA USA
| | - Rupak Doshi
- Department of Electrical Engineering, University of California Irvine, Irvine, CA USA
- InhibRx LLP, 11025 N Torrey Pines Rd, #200, La Jolla, CA 92037 USA
| | - H. Kumar Wickramasinghe
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA USA
- Department of Electrical Engineering, University of California Irvine, Irvine, CA USA
| |
Collapse
|
73
|
Identification and detection of protein markers to differentiate between forensically relevant body fluids. Forensic Sci Int 2018; 290:196-206. [DOI: 10.1016/j.forsciint.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
|
74
|
Zhang G, Yang C, Kang X, Gao Z, Wan H, Liu Y. The combination of cerebrospinal fluid procalcitonin, lactate, interleukin-8 and interleukin-10 concentrations for the diagnosis of postneurosurgical bacterial meningitis: A prospective study. Ann Clin Biochem 2018; 56:133-140. [PMID: 30056757 DOI: 10.1177/0004563218794729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background The differential diagnosis between postneurosurgical bacterial meningitis and aseptic meningitis remains challenging both for the clinician and the laboratory. Combinations of markers, as opposed to single ones, may improve diagnosis and thereby survival. Methods This prospective cohort study included patients with suspected bacterial meningitis after neurosurgery. The patients were divided into two groups according to the diagnostic criteria of meningitis involving a postneurosurgical bacterial meningitis group and a postneurosurgical aseptic meningitis group. Four biomarkers, including cerebrospinal fluid procalcitonin, lactate, interleukin-8 and interleukin-10 were assayed separately, and three algorithms were constructed using a linear combination. The area under the receiver operating characteristic curve was used to compare their performances. Results A cohort of 112 patients was enrolled in our study. Forty-three patients were diagnosed with postneurosurgical bacterial meningitis, and the cerebrospinal fluid values of their biomarkers were higher in patients with postneurosurgical bacterial meningitis than with postneurosurgical aseptic meningitis. The area under the receiver operating characteristic curves for the detection of postneurosurgical bacterial meningitis were 0.803 (95% confidence interval [CI], 0.724–0.883) for procalcitonin; 0.936 (95% CI, 0.895–0.977) for lactate; 0.771 (95% CI, 0.683–0.860) for interleukin-8; 0.860 (95% CI, 0.797–0.929) for interleukin-10; 0.937 (95% CI, 0.897–0.977) for the composite two-marker test; 0.945 (95% CI, 0.908–0.982) for the composite three-marker test and 0.954 (95% CI, 0.922–0.989) for the composite of all tests. The area under the receiver operating characteristic curves of the combination tests were greater than those of the single markers. Conclusions Combining information from several markers improved the diagnostic accuracy in detecting postneurosurgical bacterial meningitis.
Collapse
Affiliation(s)
- Guojun Zhang
- Department of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunjiao Yang
- Department of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xixiong Kang
- Department of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhixian Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yunpeng Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
75
|
Moreno-Paz M, Gómez-Cifuentes A, Ruiz-Bermejo M, Hofstetter O, Maquieira Á, Manchado JM, Morais S, Sephton MA, Niessner R, Knopp D, Parro V. Detecting Nonvolatile Life- and Nonlife-Derived Organics in a Carbonaceous Chondrite Analogue with a New Multiplex Immunoassay and Its Relevance for Planetary Exploration. ASTROBIOLOGY 2018; 18:1041-1056. [PMID: 29638146 PMCID: PMC6225596 DOI: 10.1089/ast.2017.1747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/18/2018] [Indexed: 05/05/2023]
Abstract
Potential martian molecular targets include those supplied by meteoritic carbonaceous chondrites such as amino acids and polycyclic aromatic hydrocarbons and true biomarkers stemming from any hypothetical martian biota (organic architectures that can be directly related to once living organisms). Heat extraction and pyrolysis-based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making their identification a cumbersome task. We have developed and validated a mild, nondestructive, multiplex inhibitory microarray immunoassay and demonstrated its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several nonvolatile life- and nonlife-derived organic molecules relevant in planetary exploration and environmental monitoring. By utilizing a set of highly specific antibodies that recognize D- or L- aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (B[a]P), pentachlorophenol, and sulfone-containing aromatic compounds, respectively, the assay was validated in the SOLID instrument for the analysis of carbon-rich samples used as analogues of the organic material in carbonaceous chondrites or even Mars samples. Most of the antibodies enabled sensitivities at the 1-10 ppb level and some even at the ppt level. The multiplex immunoassay allowed the detection of B[a]P as well as aromatic sulfones in a water/methanol extract of an Early Cretaceous lignite sample (c.a., 140 Ma) representing type IV kerogen. No L- or D-aromatic amino acids were detected, reflecting the advanced diagenetic stage and the fossil nature of the sample. The results demonstrate the ability of the liquid extraction by ultrasonication and the versatility of the multiplex inhibitory immunoassays in the SOLID instrument to discriminate between organic matter derived from life and nonlife processes, an essential step toward life detection outside Earth.
Collapse
Affiliation(s)
- Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Ana Gómez-Cifuentes
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Marta Ruiz-Bermejo
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Oliver Hofstetter
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois
| | - Ángel Maquieira
- Department of Chemistry, Instituto Universitario de Reconocimiento Molecular y Desarrollo Tecnológico, Universidad Politécnica de Valencia, Valencia, Spain
| | - Juan M. Manchado
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Sergi Morais
- Department of Chemistry, Instituto Universitario de Reconocimiento Molecular y Desarrollo Tecnológico, Universidad Politécnica de Valencia, Valencia, Spain
| | - Mark A. Sephton
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Dietmar Knopp
- Department Chemie, Technische Universität München, Munich, Germany
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
76
|
Lin JR, Izar B, Wang S, Yapp C, Mei S, Shah PM, Santagata S, Sorger PK. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 2018; 7:e31657. [PMID: 29993362 PMCID: PMC6075866 DOI: 10.7554/elife.31657] [Citation(s) in RCA: 378] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
The architecture of normal and diseased tissues strongly influences the development and progression of disease as well as responsiveness and resistance to therapy. We describe a tissue-based cyclic immunofluorescence (t-CyCIF) method for highly multiplexed immuno-fluorescence imaging of formalin-fixed, paraffin-embedded (FFPE) specimens mounted on glass slides, the most widely used specimens for histopathological diagnosis of cancer and other diseases. t-CyCIF generates up to 60-plex images using an iterative process (a cycle) in which conventional low-plex fluorescence images are repeatedly collected from the same sample and then assembled into a high-dimensional representation. t-CyCIF requires no specialized instruments or reagents and is compatible with super-resolution imaging; we demonstrate its application to quantifying signal transduction cascades, tumor antigens and immune markers in diverse tissues and tumors. The simplicity and adaptability of t-CyCIF makes it an effective method for pre-clinical and clinical research and a natural complement to single-cell genomics.
Collapse
Affiliation(s)
- Jia-Ren Lin
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
- Ludwig Center for Cancer Research at HarvardHarvard Medical SchoolBostonUnited States
| | - Benjamin Izar
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
- Ludwig Center for Cancer Research at HarvardHarvard Medical SchoolBostonUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Shu Wang
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
- Harvard Graduate Program in BiophysicsHarvard UniversityCambridgeUnited States
| | - Clarence Yapp
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
| | - Shaolin Mei
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Parin M Shah
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Sandro Santagata
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
- Ludwig Center for Cancer Research at HarvardHarvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUnited States
| | - Peter K Sorger
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
- Ludwig Center for Cancer Research at HarvardHarvard Medical SchoolBostonUnited States
| |
Collapse
|
77
|
Controlled network structures of chitosan-poly(ethylene glycol) hydrogel microspheres and their impact on protein conjugation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Lee J, Geiss GK, Demirkan G, Vellano CP, Filanoski B, Lu Y, Ju Z, Yu S, Guo H, Bogatzki LY, Carter W, Meredith RK, Krishnamurthy S, Ding Z, Beechem JM, Mills GB. Implementation of a Multiplex and Quantitative Proteomics Platform for Assessing Protein Lysates Using DNA-Barcoded Antibodies. Mol Cell Proteomics 2018; 17:1245-1258. [PMID: 29531020 PMCID: PMC5986246 DOI: 10.1074/mcp.ra117.000291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/17/2018] [Indexed: 11/06/2022] Open
Abstract
Molecular analysis of tumors forms the basis for personalized cancer medicine and increasingly guides patient selection for targeted therapy. Future opportunities for personalized medicine are highlighted by the measurement of protein expression levels via immunohistochemistry, protein arrays, and other approaches; however, sample type, sample quantity, batch effects, and "time to result" are limiting factors for clinical application. Here, we present a development pipeline for a novel multiplexed DNA-labeled antibody platform which digitally quantifies protein expression from lysate samples. We implemented a rigorous validation process for each antibody and show that the platform is amenable to multiple protocols covering nitrocellulose and plate-based methods. Results are highly reproducible across technical and biological replicates, and there are no observed "batch effects" which are common for most multiplex molecular assays. Tests from basal and perturbed cancer cell lines indicate that this platform is comparable to orthogonal proteomic assays such as Reverse-Phase Protein Array, and applicable to measuring the pharmacodynamic effects of clinically-relevant cancer therapeutics. Furthermore, we demonstrate the potential clinical utility of the platform with protein profiling from breast cancer patient samples to identify molecular subtypes. Together, these findings highlight the potential of this platform for enhancing our understanding of cancer biology in a clinical translation setting.
Collapse
Affiliation(s)
- Jinho Lee
- From the ‡The University of Texas M.D. Anderson Cancer Center, Department of Systems Biology, 1300 Moursund St., Houston, Texas 77030;
| | - Gary K Geiss
- §NanoString Technologies, Inc., 530 Fairview Ave N., Seattle, Washington 98109;
| | - Gokhan Demirkan
- §NanoString Technologies, Inc., 530 Fairview Ave N., Seattle, Washington 98109
| | - Christopher P Vellano
- From the ‡The University of Texas M.D. Anderson Cancer Center, Department of Systems Biology, 1300 Moursund St., Houston, Texas 77030
| | - Brian Filanoski
- §NanoString Technologies, Inc., 530 Fairview Ave N., Seattle, Washington 98109
| | - Yiling Lu
- From the ‡The University of Texas M.D. Anderson Cancer Center, Department of Systems Biology, 1300 Moursund St., Houston, Texas 77030
| | - Zhenlin Ju
- ¶The University of Texas M.D. Anderson Cancer Center, Department of Pathology, 1515 Holcombe Blvd, Houston, Texas 77030
| | - Shuangxing Yu
- From the ‡The University of Texas M.D. Anderson Cancer Center, Department of Systems Biology, 1300 Moursund St., Houston, Texas 77030
| | - Huifang Guo
- From the ‡The University of Texas M.D. Anderson Cancer Center, Department of Systems Biology, 1300 Moursund St., Houston, Texas 77030
| | - Lisa Y Bogatzki
- §NanoString Technologies, Inc., 530 Fairview Ave N., Seattle, Washington 98109
| | - Warren Carter
- §NanoString Technologies, Inc., 530 Fairview Ave N., Seattle, Washington 98109
| | - Rhonda K Meredith
- §NanoString Technologies, Inc., 530 Fairview Ave N., Seattle, Washington 98109
| | - Savitri Krishnamurthy
- ¶The University of Texas M.D. Anderson Cancer Center, Department of Pathology, 1515 Holcombe Blvd, Houston, Texas 77030
| | - Zhiyong Ding
- From the ‡The University of Texas M.D. Anderson Cancer Center, Department of Systems Biology, 1300 Moursund St., Houston, Texas 77030
| | - Joseph M Beechem
- §NanoString Technologies, Inc., 530 Fairview Ave N., Seattle, Washington 98109
| | - Gordon B Mills
- From the ‡The University of Texas M.D. Anderson Cancer Center, Department of Systems Biology, 1300 Moursund St., Houston, Texas 77030;
| |
Collapse
|
79
|
Kearney P, Boniface JJ, Price ND, Hood L. The building blocks of successful translation of proteomics to the clinic. Curr Opin Biotechnol 2018; 51:123-129. [PMID: 29427919 PMCID: PMC6091638 DOI: 10.1016/j.copbio.2017.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
Recently, the first two multiplexed tests using selective reaction monitoring (SRM-MS) mass spectrometry have entered clinical practice. Despite different areas of indication, risk stratification in lung cancer and preterm birth, they share multiple steps in their development strategies. Here we review these strategies and their implications for successful translation of biomarkers to clinical practice. We believe that the identification of blood protein panels for the identification of disease phenotypes is now a reproducible and standard (albeit complex) process.
Collapse
Affiliation(s)
- Paul Kearney
- Integrated Diagnostics, Seattle, WA, United States
| | | | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, United States
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, United States.
| |
Collapse
|
80
|
Hendriks J, Stojanovic I, Schasfoort RBM, Saris DBF, Karperien M. Nanoparticle Enhancement Cascade for Sensitive Multiplex Measurements of Biomarkers in Complex Fluids with Surface Plasmon Resonance Imaging. Anal Chem 2018; 90:6563-6571. [PMID: 29732889 PMCID: PMC5990928 DOI: 10.1021/acs.analchem.8b00260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
There is a large
unmet need for reliable biomarker measurement
systems for clinical application. Such systems should meet challenging
requirements for large scale use, including a large dynamic detection
range, multiplexing capacity, and both high specificity and sensitivity.
More importantly, these requirements need to apply to complex biological
samples, which require extensive quality control. In this paper, we
present the development of an enhancement detection cascade for surface
plasmon resonance imaging (SPRi). The cascade applies an antibody
sandwich assay, followed by neutravidin and a gold nanoparticle enhancement
for quantitative biomarker measurements in small volumes of complex
fluids. We present a feasibility study both in simple buffers and
in spiked equine synovial fluid with four cytokines, IL-1β,
IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads
to an antibody dependent improvement in sensitivity up to 40 000
times, resulting in a limit of detection as low as 50 fg/mL and a
dynamic detection range of more than 7 logs. Additionally, measurements
at these low concentrations are highly reliable with intra- and interassay
CVs between 2% and 20%. We subsequently showed this assay is suitable
for multiplex measurements with good specificity and limited cross-reactivity.
Moreover, we demonstrated robust detection of IL-6 and IL-1β
in spiked undiluted equine synovial fluid with small variation compared
to buffer controls. In addition, the availability of real time measurements
provides extensive quality control opportunities, essential for clinical
applications. Therefore, we consider this method is suitable for broad
application in SPRi for multiplex biomarker detection in both research
and clinical settings.
Collapse
Affiliation(s)
- Jan Hendriks
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , Enschede , 7522 NB , The Netherlands
| | - Ivan Stojanovic
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , Enschede , 7522 NB , The Netherlands
| | - Richard B M Schasfoort
- Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , Enschede , 7522 NB , The Netherlands
| | - Daniël B F Saris
- Department of Orthopedics , UMC Utrecht , Utrecht , 3584 CX , The Netherlands.,Department of Reconstructive Medicine, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology , University of Twente , Enschede , 7522 NB , The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , Enschede , 7522 NB , The Netherlands
| |
Collapse
|
81
|
Bielohuby M, Bidlingmaier M, Schwahn U. Control of (pre)-analytical aspects in immunoassay measurements of metabolic hormones in rodents. Endocr Connect 2018; 7. [PMID: 29540488 PMCID: PMC5881432 DOI: 10.1530/ec-18-0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The measurement of circulating hormones by immunoassay remains a cornerstone in preclinical endocrine research. For scientists conducting and interpreting immunoassay measurements of rodent samples, the paramount aim usually is to obtain reliable and meaningful measurement data in order to draw conclusions on biological processes. However, the biological variability between samples is not the only variable affecting the readout of an immunoassay measurement and a considerable amount of unwanted or unintended variability can be quickly introduced during the pre-analytical and analytical phase. This review aims to increase the awareness for the factors 'pre-analytical' and 'analytical' variability particularly in the context of immunoassay measurement of circulating metabolic hormones in rodent samples. In addition, guidance is provided how to gain control over these variables and how to avoid common pitfalls associated with sample collection, processing, storage and measurement. Furthermore, recommendations are given on how to perform a basic validation of novel single and multiplex immunoassays for the measurement of metabolic hormones in rodents. Finally, practical examples from immunoassay measurements of plasma insulin in mice address the factors 'sampling site and inhalation anesthesia' as frequent sources of introducing an unwanted variability during the pre-analytical phase. The knowledge about the influence of both types of variability on the immunoassay measurement of circulating hormones as well as strategies to control these variables are crucial, on the one hand, for planning and realization of metabolic rodent studies and, on the other hand, for the generation and interpretation of meaningful immunoassay data from rodent samples.
Collapse
Affiliation(s)
| | - Martin Bidlingmaier
- Endocrine Research LaboratoriesMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Uwe Schwahn
- Sanofi-Aventis Deutschland GmbHR&D, Industriepark Höchst, Frankfurt, Germany
| |
Collapse
|
82
|
Tarhoni I, Fhied CL, Pool M, Liptay MJ, Bonomi P, Seder CW, Borgia JA. Development of bead based multiplexed immunoassay for evaluation of midkine, syndecan-1, and ANGPTL4 in patient serum. J Immunoassay Immunochem 2018; 39:84-98. [PMID: 29309212 DOI: 10.1080/15321819.2017.1407338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Angiogenesis is associated with tumor progression in a range of malignancies. Herein, we develop custom immunobead assays for several mechanistically important targets and evaluated these against sera from cohorts of non-small cell lung cancer (NSCLC) patients. METHODS Antigen "capture" antibodies for midkine, syndecan-1, and ANGPTL4 were independently conjugated to MagPlex® Microspheres using standard carbodiimide/NHS-based chemistry. These reagents served as the basis for quantitative sandwich assay assembly using biotinylated detection antibodies and R-phycoerythrin-conjugated streptavidin reporter system. Standard curves were created using dilution series of recombinant target proteins with assay performance characteristics calculated, accordingly. Finally, we evaluated a range of serum samples from NSCLC patients (n = 32) to verify assay performance. RESULTS Multiplexed assays for midkine, syndecan-1, and ANGPTL4 were developed with three orders of magnitude in dynamic range, excellent intra- and inter-assay precision, and accuracy parameters (<10%, and <15% variability, respectively). Detection and quantifications limits were suitable for the three assays to efficiently evaluate sera across a range of disease stages with a four-fold dilution factor. CONCLUSION We successfully developed and analytically validated a 3-plex immunobead assay for quantifying midkine, syndecan-1, and ANGPTL4 in patient sera. This multiplexed assay will provide an important tool for future studies delineating the role of angiogenesis in lung cancer progression.
Collapse
Affiliation(s)
- Imad Tarhoni
- a Departments of Biochemistry , Rush University Medical Center , Chicago , IL, USA
| | - Cristina L Fhied
- b Departments of Pathology , Rush University Medical Center , Chicago , IL, USA
| | - Mark Pool
- b Departments of Pathology , Rush University Medical Center , Chicago , IL, USA
| | - Michael J Liptay
- c Departments of Cardiovascular and Thoracic Surgery , Rush University Medical Center , Chicago , IL, USA
| | - Philip Bonomi
- d Departments of Medical Oncology , Rush University Medical Center , Chicago , IL, USA
| | - Christopher W Seder
- c Departments of Cardiovascular and Thoracic Surgery , Rush University Medical Center , Chicago , IL, USA
| | - Jeffrey A Borgia
- a Departments of Biochemistry , Rush University Medical Center , Chicago , IL, USA.,b Departments of Pathology , Rush University Medical Center , Chicago , IL, USA
| |
Collapse
|
83
|
Ahmed M, Carrascosa LG, Wuethrich A, Mainwaring P, Trau M. An exosomal- and interfacial-biosensing based strategy for remote monitoring of aberrantly phosphorylated proteins in lung cancer cells. Biomater Sci 2018; 6:2336-2341. [DOI: 10.1039/c8bm00629f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We demonstrate remote detection of cellular protein phosphorylation using exosomal sources and an interfacial-biosensing strategy.
Collapse
Affiliation(s)
- Mostak Ahmed
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- The University of Queensland
- Brisbane
| | - Laura G. Carrascosa
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- The University of Queensland
- Brisbane
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- The University of Queensland
- Brisbane
| | - Paul Mainwaring
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- The University of Queensland
- Brisbane
| | - Matt Trau
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- The University of Queensland
- Brisbane
| |
Collapse
|
84
|
Abstract
Cell-matrix and cell-cell interactions influence intracellular signalling and play an important role in physiologic and pathologic processes. Detachment of cells from the surrounding microenvironment alters intracellular signalling. Here, we demonstrate and characterise an integrated microfluidic device to culture single and clustered cells in tuneable microenvironments and then directly analyse the lysate of each cell in situ, thereby eliminating the need to detach cells prior to analysis. First, we utilise microcontact printing to pattern cells in confined geometries. We then utilise a microscale isoelectric focusing (IEF) module to separate, detect, and analyse lamin A/C from substrate-adhered cells seeded and cultured at varying (500, 2000, and 9000 cells per cm2) densities. We report separation performance (minimum resolvable pI difference of 0.11) that is on par with capillary IEF and independent of cell density. Moreover, we map lamin A/C and β-tubulin protein expression to morphometric information (cell area, circumference, eccentricity, form factor, and cell area factor) of single cells and observe poor correlation with each of these parameters. By eliminating the need for cell detachment from substrates, we enhance detection of cell receptor proteins (CD44 and β-integrin) and dynamic phosphorylation events (pMLCS19) that are rendered undetectable or disrupted by enzymatic treatments. Finally, we optimise protein solubilisation and separation performance by tuning lysis and electrofocusing (EF) durations. We observe enhanced separation performance (decreased peak width) with longer EF durations by 25.1% and improved protein solubilisation with longer lysis durations. Overall, the combination of morphometric analyses of substrate-adhered cells, with minimised handling, will yield important insights into our understanding of adhesion-mediated signalling processes.
Collapse
Affiliation(s)
- Elaine J Su
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
85
|
Forthun RB, Aasebø E, Rasinger JD, Bedringaas SL, Berven F, Selheim F, Bruserud Ø, Gjertsen BT. Phosphoprotein DIGE profiles reflect blast differentiation, cytogenetic risk stratification, FLT3/NPM1 mutations and therapy response in acute myeloid leukaemia. J Proteomics 2017; 173:32-41. [PMID: 29175091 DOI: 10.1016/j.jprot.2017.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/30/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukaemia (AML) is an aggressive blood cancer characterized by a distinct block in differentiation of myeloid progenitors, recurrent chromosomal translocations and gene mutations of which >50% involve signal transduction through dysregulated kinases and phosphatases. In search for novel protein biomarkers for disease stratification we investigated the phosphoproteome in leukaemic cells from 62 AML patients at time of diagnosis using immobilized metal-affinity chromatography, protein separation by two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry before validation by selected reaction monitoring (SRM). Unsupervised clustering found 27 phosphoproteins significantly discriminating patients according to leukaemic cell differentiation (French-American-British (FAB) classification), cytogenetic and mutational (FLT3, NPM1) status or response to chemotherapy. Monocytic differentiation (FAB M4-M5) correlated with enrichment of proteins involved in apoptosis (MOES, ANXA5 and EFHD2). TALDO, a protein associated with thrombocytopenia if down-regulated, was elevated in patients with wild type NPM1 compared to patients with NPM1 mutation. This study demonstrates the potential of quantitative proteomics in AML classification and risk stratification. BIOLOGICAL SIGNIFICANCE Patients diagnosed with AML are currently categorized according to cellular morphology, cytogenetic alterations and mutations, although the majority of these cellular and genetic alterations have no or unsolved impact on therapy selection or prognosis. We therefore explored the phosphoproteome for abundance changes associated with traditional classifiers to unravel patterns that could stratify patients at the protein level. MOES, ANXA5 and EFHD2 were confirmed by SRM to be correlated to monocytic differentiation, whilst TALDO was elevated in NPM1 wild type patients.
Collapse
Affiliation(s)
- Rakel Brendsdal Forthun
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Biomedicine, Proteomic Unit, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Department of Clinical Science, Leukemia Research Group, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Siv Lise Bedringaas
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Berven
- Department of Biomedicine, Proteomic Unit, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Selheim
- Department of Biomedicine, Proteomic Unit, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, Leukemia Research Group, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
86
|
Li M, Gao Y, Qian WJ, Shi L, Liu Y, Nelson WC, Nicora CD, Resch CT, Thompson C, Yan S, Fredrickson JK, Zachara JM, Liu C. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:512-521. [PMID: 28618201 DOI: 10.1111/1758-2229.12558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Microbial enzymes catalytically drive biogeochemical processes in environments. The dynamic linkage between functional enzymes and biogeochemical species transformation has, however, rarely been investigated for decades because of the challenges to directly quantify enzymes in environmental samples. The diversity of microorganisms, the low amount of available biomass and the complexity of chemical composition in environmental samples represent the main challenges. To address the diversity challenge, we first identify several signature peptides that are conserved in the targeted enzymes with the same functionality across many phylogenetically diverse microorganisms using metagenome-based protein sequence data. Quantification of the signature peptides then allows estimation of the targeted enzyme abundance. To achieve analyses of the requisite sensitivity for complex environmental samples with low available biomass, we adapted a recently developed ultrasensitive targeted quantification technology, termed high-pressure high-resolution separations with intelligent selection and multiplexing (PRISM) by improving peptide separation efficiency and method detection sensitivity. Nitrate reduction dynamics catalyzed by dissimilatory and assimilatory enzymes in a hyporheic zone sediment was used as an example to demonstrate the application of the enzyme quantification approach. Together with the measurements of biogeochemical species, the approach enables investigating the dynamic linkage between functional enzymes and biogeochemical processes.
Collapse
Affiliation(s)
- Minjing Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Yuqian Gao
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yuanyuan Liu
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Carrie D Nicora
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Charles T Resch
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Sen Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China
| | | | - John M Zachara
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chongxuan Liu
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
87
|
Stephen L, Schwarz E, Guest PC. Multiplex Immunoassay Profiling of Serum in Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:149-156. [PMID: 28353231 DOI: 10.1007/978-3-319-52479-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Multiplex immunoassays allow for the rapid profiling of biomarker proteins in biological fluids, using less sample and labour than in single immunoassays. This chapter details the methods to develop and manufacture a 5-plex immunoassay for the Luminex® platform. Although assay development is not included here, the same methods can be used to covalently couple antibodies to the Luminex beads and to label antibodies for the screening of sandwich pairs, if needed. An example will be given for the analysis of five hormones (glucagon-like peptide 1, growth hormone, insulin, leptin and thyroid-stimulating hormone) in serum samples from schizophrenia patients and controls.
Collapse
Affiliation(s)
- Laurie Stephen
- Ampersand Biosciences, 3 Main Street, Saranac Lake, NY, USA.
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255 F/01, Cidade Universitária ZeferinoVaz, 13083-862, Campinas, Brazil
| |
Collapse
|
88
|
Steiner J, Guest PC, Martins-de-Souza D. Application of Proteomic Techniques for Improved Stratification and Treatment of Schizophrenia Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:3-19. [PMID: 28353222 DOI: 10.1007/978-3-319-52479-5_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For major psychiatric disorders such as schizophrenia, there have been shortcomings in the translation of scientific findings into new treatments and this has led to diminished interest for large pharmaceutical companies. This chapter describes how incorporation of proteomic approaches into the clinical pipeline can lead to identification and implementation of biomarker tests for improved patient characterization, prediction of treatment response and monitoring treatment effects to help revitalize efforts in this important area. In addition, the construction of specific biomarker tests for disease prediction should smooth the progress of early intervention strategies which, in turn, may help to slow disease onset or progression. Finally, the development of purpose-built biomarker tests using lab-on-a-chip platforms with smartphone readouts will help to shift the diagnosis and treatment of this major psychiatric disorder into point-of-care settings for increased effectiveness and improved patient outcomes.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255 F/01, Cidade Universitária Zeferino Vaz, 13083-862, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255 F/01, Cidade Universitária Zeferino Vaz, 13083-862, Campinas, Brazil.,UNICAMP's Neurobiology Center, Rua Monteiro Lobato 255, Cidade Universitária Zeferino Vaz, 13083-862, Campinas, Brazil
| |
Collapse
|
89
|
Harmon JR, Nichol ST, Spiropoulou CF, McElroy AK. Whole Blood-Based Multiplex Immunoassays for the Evaluation of Human Biomarker Responses to Emerging Viruses in Resource-Limited Regions. Viral Immunol 2017; 30:671-674. [PMID: 28937957 DOI: 10.1089/vim.2017.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many emerging viruses such as Ebola and Lassa occur in resource-limited areas of the world. The advent of multiplex immunoassays has facilitated the study of biomarkers of disease since only small amounts of clinical material are required; however, such assays are designed and validated for only plasma or serum. This is a significant impediment when studying infectious diseases in the context of an outbreak in a developing nation. Plasma or serum can be difficult to obtain in the field due to the need for additional processing of infectious materials. Evaluation of multiplex immunoassays using frozen and thawed human whole blood (WB) would permit additional analysis using a more readily available human clinical sample. In this study, frozen and thawed human WB was directly compared with frozen and thawed plasma from normal healthy donors in a series of multiplexed immunoassays for 59 different biomarkers. We demonstrate that most important biomarkers can be evaluated using thawed WB, which will facilitate the study of human cytokine and other biomarker responses to viruses emerging in resource-limited regions.
Collapse
Affiliation(s)
- Jessica R Harmon
- 1 U.S. Centers for Disease Control and Prevention , Viral Special Pathogens Branch, Atlanta, Georgia
| | - Stuart T Nichol
- 1 U.S. Centers for Disease Control and Prevention , Viral Special Pathogens Branch, Atlanta, Georgia
| | - Christina F Spiropoulou
- 1 U.S. Centers for Disease Control and Prevention , Viral Special Pathogens Branch, Atlanta, Georgia
| | - Anita K McElroy
- 1 U.S. Centers for Disease Control and Prevention , Viral Special Pathogens Branch, Atlanta, Georgia .,2 Division of Pediatric Infectious Disease, Emory University School of Medicine , Atlanta, Georgia .,3 Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine , Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
90
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
91
|
Mohd Hanafiah K, Arifin N, Bustami Y, Noordin R, Garcia M, Anderson D. Development of Multiplexed Infectious Disease Lateral Flow Assays: Challenges and Opportunities. Diagnostics (Basel) 2017; 7:E51. [PMID: 28880218 PMCID: PMC5617951 DOI: 10.3390/diagnostics7030051] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Lateral flow assays (LFAs) are the mainstay of rapid point-of-care diagnostics, with the potential to enable early case management and transform the epidemiology of infectious disease. However, most LFAs only detect single biomarkers. Recognizing the complex nature of human disease, overlapping symptoms and states of co-infections, there is increasing demand for multiplexed systems that can detect multiple biomarkers simultaneously. Due to innate limitations in the design of traditional membrane-based LFAs, multiplexing is arguably limited to a small number of biomarkers. Here, we summarize the need for multiplexed LFA, key technical and operational challenges for multiplexing, inherent in the design and production of multiplexed LFAs, as well as emerging enabling technologies that may be able to address these challenges. We further identify important areas for research in efforts towards developing multiplexed LFAs for more impactful diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Khayriyyah Mohd Hanafiah
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Australia.
| | - Norsyahida Arifin
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Rahmah Noordin
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mary Garcia
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Australia.
| | - David Anderson
- Life Sciences, Macfarlane Burnet Institute, Melbourne 3004, Australia.
| |
Collapse
|
92
|
Smith JG, Gerszten RE. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation 2017; 135:1651-1664. [PMID: 28438806 DOI: 10.1161/circulationaha.116.025446] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma biomarkers that reflect molecular states of the cardiovascular system are central for clinical decision making. Routinely used plasma biomarkers include troponins, natriuretic peptides, and lipoprotein particles, yet interrogate only a modest subset of pathways relevant to cardiovascular disease. Systematic profiling of a larger portion of circulating plasma proteins (the plasma proteome) will provide opportunities for unbiased discovery of novel markers to improve diagnostic or predictive accuracy. In addition, proteomic profiling may inform pathophysiological understanding and point to novel therapeutic targets. Obstacles for comprehensive proteomic profiling include the immense size and structural heterogeneity of the proteome, and the broad range of abundance levels, as well. Proteome-wide, untargeted profiling can be performed in tissues and cells with tandem mass spectrometry. However, applications to plasma are limited by the need for complex preanalytical sample preparation stages limiting sample throughput. Multiplexing of targeted methods based on capture and detection of specific proteins are therefore receiving increasing attention in plasma proteomics. Immunoaffinity assays are the workhorse for measuring individual proteins but have been limited for proteomic applications by long development times, cross-reactivity preventing multiplexing, specificity issues, and incomplete sensitivity to detect proteins in the lower range of the abundance spectrum (below picograms per milliliter). Emerging technologies to address these issues include nucleotide-labeled immunoassays and aptamer reagents that can be automated for efficient multiplexing of thousands of proteins at high sample throughput, coupling of affinity capture methods to mass spectrometry for improved specificity, and ultrasensitive detection systems to measure low-abundance proteins. In addition, proteomics can now be integrated with modern genomics tools to comprehensively relate proteomic profiles to genetic variants, which may both influence binding of affinity reagents and serve to validate the target specificity of affinity assays. The application of deep quantitative proteomic profiling to large cohorts has thus become increasingly feasible with emerging affinity methods. The aims of this article are to provide the broad readership of Circulation with a timely overview of emerging methods for affinity proteomics and recent progress in cardiovascular medicine based on such methods.
Collapse
Affiliation(s)
- J Gustav Smith
- From Molecular Epidemiology and Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Sweden (J.G.S.); Department of Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden (J.G.S.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (J.G.S., R.E.G.); and Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (R.E.G.).
| | - Robert E Gerszten
- From Molecular Epidemiology and Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Sweden (J.G.S.); Department of Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden (J.G.S.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (J.G.S., R.E.G.); and Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (R.E.G.).
| |
Collapse
|
93
|
Qiu X, Guo J, Jin Z, Petreto A, Medintz IL, Hildebrandt N. Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28371153 DOI: 10.1002/smll.201700332] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 05/04/2023]
Abstract
Multiplexed photoluminescence (PL) detection plays an important role in chemical and biological sensing. Here, it is shown that time-gated (TG) detection of a single terbium-donor-based Förster resonance energy transfer (FRET) pair can be used to selectively quantify low nanomolar concentrations of multiple DNAs or microRNAs in a single sample. This study demonstrates the applicability of single-TG-FRET-pair multiplexing for molecular (Tb-to-dye) and nanoparticle (Tb-to-quantum-dot) biosensing. Both systems use acceptor-sensitization and donor-quenching for quantifying biomolecular recognition and modification of the donor-acceptor distance for tuning the PL decays. TG intensity detection provides extremely low background noise and a quick and simple one-step assay format. Single-TG-FRET-pair multiplexing can be combined with spectral and spatial resolution, paving the way for biosensing with unprecedented high-order multiplexing capabilities.
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405, Orsay Cedex, France
| | - Jiajia Guo
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405, Orsay Cedex, France
| | - Zongwen Jin
- CAS/CUHK Research Centre for Biosensing and Medical Instrumentation, SIAT/CAS, Shenzhen, 518055, P. R. China
| | - Alexandra Petreto
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405, Orsay Cedex, France
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, DC, 20375, USA
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405, Orsay Cedex, France
| |
Collapse
|
94
|
Bush DB, Knotts TA. Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding. J Chem Phys 2017; 146:155103. [DOI: 10.1063/1.4980083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Derek B. Bush
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Thomas A. Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
95
|
Validation of two multiplex platforms to quantify circulating markers of inflammation and endothelial injury in severe infection. PLoS One 2017; 12:e0175130. [PMID: 28419100 PMCID: PMC5395141 DOI: 10.1371/journal.pone.0175130] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
Biomarkers can prognosticate outcome and enable risk-stratification. In severe infection, focusing on multiple markers reflecting pathophysiological mechanisms of organ injury could enhance management and pathway-directed therapeutics. Limited data exist on the performance of multiplex biomarker platforms. Our goal was to compare endothelial and immune activation biomarkers in severe pediatric infections using two multiplex platforms. Frozen plasma from 410 children presenting to the Jinja Regional Hospital in Uganda with suspected infection was used to measure biomarkers of endothelial (Angiopoietin-2, sFlt-1, sVCAM-1, sICAM-1) and immune (IL-6, IP-10, sTNFR-1, CHI3L1) activation. Two multiplex platforms (Luminex®, EllaTM) based on monoclonal antibody sandwich immunoassays using biotin-streptavidin conjugate chemistry were selected with reagents from R&D Systems. The two platforms differed in ease and time of completion, number of samples per assay, and dynamic concentration range. Intra-assay variability assessed using a coefficient of variation (CV%) was 2.2–3.4 for Luminex® and 1.2–2.9 for EllaTM. Correlations for biomarker concentrations within dynamic range of both platforms were best for IL-6 (ρ = 0.96, p<0.0001), IP-10 (ρ = 0.94, p<0.0001) and sFlt-1 (ρ = 0.94, p<0.0001). Agreement between concentrations obtained by both methods assessed by the Bland-Altman test varied, with best agreement for CHI3L1. Our data suggest that biomarkers of endothelial and immune activation can be readily measured with multiplex platforms. Luminex® and EllaTM produced reliable results with excellent CV% values. The EllaTM platform was more automated and completed in 75 minutes, potentially compatible with near-patient use. Trends in concentrations obtained by these methods were highly correlated, although absolute values varied, suggesting caution is required when comparing data from different multiplex platforms.
Collapse
|
96
|
Becker DJ, Chumchal MM, Bentz AB, Platt SG, Czirják GÁ, Rainwater TR, Altizer S, Streicker DG. Predictors and immunological correlates of sublethal mercury exposure in vampire bats. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170073. [PMID: 28484633 PMCID: PMC5414270 DOI: 10.1098/rsos.170073] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/21/2017] [Indexed: 05/21/2023]
Abstract
Mercury (Hg) is a pervasive heavy metal that often enters the environment from anthropogenic sources such as gold mining and agriculture. Chronic exposure to Hg can impair immune function, reducing the ability of animals to resist or recover from infections. How Hg influences immunity and susceptibility remains unknown for bats, which appear immunologically distinct from other mammals and are reservoir hosts of many pathogens of importance to human and animal health. We here quantify total Hg (THg) in hair collected from common vampire bats (Desmodus rotundus), which feed on blood and are the main reservoir hosts of rabies virus in Latin America. We examine how diet, sampling site and year, and bat demography influence THg and test the consequences of this variation for eight immune measures. In two populations from Belize, THg concentrations in bats were best explained by an interaction between long-term diet inferred from stable isotopes and year. Bats that foraged more consistently on domestic animals exhibited higher THg. However, relationships between diet and THg were evident only in 2015 but not in 2014, which could reflect recent environmental perturbations associated with agriculture. THg concentrations were low relative to values previously observed in other bat species but still correlated with bat immunity. Bats with higher THg had more neutrophils, weaker bacterial killing ability and impaired innate immunity. These patterns suggest that temporal variation in Hg exposure may impair bat innate immunity and increase susceptibility to pathogens such as bacteria. Unexpected associations between low-level Hg exposure and immune function underscore the need to better understand the environmental sources of Hg exposure in bats and the consequences for bat immunity and susceptibility.
Collapse
Affiliation(s)
- Daniel J. Becker
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
- e-mail:
| | | | | | - Steven G. Platt
- Wildlife Conservation Society, Myanmar Program, Yangon, Myanmar
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Thomas R. Rainwater
- Tom Yawkey Wildlife Center and Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Daniel G. Streicker
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
97
|
Kim JJ, Sinkala E, Herr AE. High-selectivity cytology via lab-on-a-disc western blotting of individual cells. LAB ON A CHIP 2017; 17:855-863. [PMID: 28165521 PMCID: PMC5435485 DOI: 10.1039/c6lc01333c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytology of sparingly available cell samples from both clinical and experimental settings would benefit from high-selectivity protein tools. To minimize cell handling losses in sparse samples, we design a multi-stage assay using a lab-on-a-disc that integrates cell handling and subsequent single-cell western blotting (scWestern). As the two-layer microfluidic device rotates, the induced centrifugal force directs dissociated cells to dams, which in turn localize the cells over microwells. Cells then sediment into the microwells, where the cells are lysed and subjected to scWestern. Taking into account cell losses from loading, centrifugation, and lysis-buffer exchange, our lab-on-a-disc device handles cell samples with as few as 200 cells with 75% cell settling efficiencies. Over 70% of microwells contain single cells after the centrifugation. In addition to cell settling efficiency, cell-size filtration from a mixed population of two cell lines is also realized by tuning the cell time-of-flight during centrifugation (58.4% settling efficiency with 6.4% impurity). Following the upstream cell handling, scWestern analysis detects four proteins (GFP, β-TUB, GAPDH, and STAT3) in a glioblastoma cell line. By integrating the lab-on-a-disc cell preparation and scWestern analysis, our platform measures proteins from sparse cell samples at single-cell resolution.
Collapse
Affiliation(s)
- John J Kim
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA. and University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - Elly Sinkala
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA.
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA. and University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| |
Collapse
|
98
|
Legg KM, Powell R, Reisdorph N, Reisdorph R, Danielson PB. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry. Electrophoresis 2017; 38:833-845. [PMID: 27943336 DOI: 10.1002/elps.201600352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/15/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
Advances in proteomics technology over the past decade offer forensic serologists a greatly improved opportunity to accurately characterize the tissue source from which a DNA profile has been developed. Such information can provide critical context to evidence and can help to prioritize downstream DNA analyses. Previous proteome studies compiled panels of "candidate biomarkers" specific to each of five body fluids (i.e., peripheral blood, vaginal/menstrual fluid, seminal fluid, urine, and saliva). Here, a multiplex quadrupole time-of-flight mass spectrometry assay has been developed in order to verify the tissue/body fluid specificity the 23 protein biomarkers that comprise these panels and the consistency with which they can be detected across a sample population of 50 humans. Single-source samples of these human body fluids were accurately identified by the detection of one or more high-specificity biomarkers. Recovery of body fluid samples from a variety of substrates did not impede accurate characterization and, of the potential inhibitors assayed, only chewing tobacco juice appeared to preclude the identification of a target body fluid. Using a series of 2-component mixtures of human body fluids, the multiplex assay accurately identified both components in a single-pass. Only in the case of saliva and peripheral blood did matrix effects appear to impede the detection of salivary proteins.
Collapse
Affiliation(s)
- Kevin M Legg
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,The Center for Forensic Science Research and Education, Willow Grove, PA, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Rick Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Phillip B Danielson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,The Center for Forensic Science Research and Education, Willow Grove, PA, USA
| |
Collapse
|
99
|
Lee KT, Coffey JW, Robinson KJ, Muller DA, Grøndahl L, Kendall MAF, Young PR, Corrie SR. Investigating the Effect of Substrate Materials on Wearable Immunoassay Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:773-782. [PMID: 28006902 DOI: 10.1021/acs.langmuir.6b03933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Immunoassays are ubiquitous across research and clinical laboratories, yet little attention is paid to the effect of the substrate material on the assay performance characteristics. Given the emerging interest in wearable immunoassay formats, investigations into substrate materials that provide an optimal mix of mechanical and bioanalytical properties are paramount. In the course of our research in developing wearable immunoassays which can penetrate skin to selectively capture disease antigens from the underlying blood vessels, we recently identified significant differences in immunoassay performance between gold and polycarbonate surfaces, even with a consistent surface modification procedure. We observed significant differences in PEG density, antibody immobilization, and nonspecific adsorption between the two substrates. Despite a higher PEG density formed on gold-coated surfaces than on amine-functionalized polycarbonate, the latter revealed a higher immobilized capture antibody density and lower nonspecific adsorption, leading to improved signal-to-noise ratios and assay sensitivities. The major conclusion from this study is that in designing wearable bioassays or biosensors, the design and its effect on the antifouling polymer layer can significantly affect the assay performance in terms of analytical specificity and sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A F Kendall
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
- Faculty of Medicine and Biomedical Sciences, Royal Brisbane and Women's Hospital , Herston, Queensland 4029, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
| | - Simon R Corrie
- Australian Infectious Diseases Research Centre, St. Lucia, Queensland 4067, Australia
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
100
|
Steiner J, Guest PC, Rahmoune H, Martins-de-Souza D. The Application of Multiplex Biomarker Techniques for Improved Stratification and Treatment of Schizophrenia Patients. Methods Mol Biol 2017; 1546:19-35. [PMID: 27896755 DOI: 10.1007/978-1-4939-6730-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the case of major psychiatric disorders such as schizophrenia, shortcomings in the conversion of scientific discoveries into newer and safer treatment options has led to a loss of confidence and precipitated a crisis for large pharmaceutical companies. This chapter describes how incorporation of multiplex biomarker approaches into the clinical pipeline can lead to better patient characterization, delivery of novel treatment approaches and help to renew efforts in this important area. The development of specific biomarker test panels for disease prediction should facilitate early intervention strategies, which may help to slow disease development or progression. Furthermore, the development of such tests using lab-on-a-chip and smartphone platforms will help to shift diagnosis and treatment of this major disorder into a point-of-care setting for improved patient outcomes.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária Zeferino Vaz, 13083-862, Campinas, Brazil
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, UK
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária Zeferino Vaz, 13083-862, Campinas, SP, Brazil
| |
Collapse
|