51
|
Bozadjieva Kramer N, Lubaczeuski C, Blandino-Rosano M, Barker G, Gittes GK, Caicedo A, Bernal-Mizrachi E. Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia. Diabetes 2021; 70:477-491. [PMID: 33239450 PMCID: PMC7881862 DOI: 10.2337/db20-0440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Elevation of glucagon levels and increase in α-cell mass are associated with states of hyperglycemia in diabetes. Our previous studies have highlighted the role of nutrient signaling via mTOR complex 1 (mTORC1) regulation that controls glucagon secretion and α-cell mass. In the current studies we investigated the effects of activation of nutrient signaling by conditional deletion of the mTORC1 inhibitor, TSC2, in α-cells (αTSC2KO). We showed that activation of mTORC1 signaling is sufficient to induce chronic hyperglucagonemia as a result of α-cell proliferation, cell size, and mass expansion. Hyperglucagonemia in αTSC2KO was associated with an increase in glucagon content and enhanced glucagon secretion. This model allowed us to identify the effects of chronic hyperglucagonemia on glucose homeostasis by inducing insulin secretion and resistance to glucagon in the liver. Liver glucagon resistance in αTSC2KO mice was characterized by reduced expression of the glucagon receptor (GCGR), PEPCK, and genes involved in amino acid metabolism and urea production. Glucagon resistance in αTSC2KO mice was associated with improved glucose levels in streptozotocin-induced β-cell destruction and high-fat diet-induced glucose intolerance. These studies demonstrate that chronic hyperglucagonemia can improve glucose homeostasis by inducing glucagon resistance in the liver.
Collapse
Affiliation(s)
- Nadejda Bozadjieva Kramer
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
| | - Camila Lubaczeuski
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Manuel Blandino-Rosano
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Grant Barker
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - George K Gittes
- UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburg, PA
| | - Alejandro Caicedo
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL
- Veterans Affairs Medical Center, Miami, FL
| |
Collapse
|
52
|
Guo K, Tian Q, Yang L, Zhou Z. The Role of Glucagon in Glycemic Variability in Type 1 Diabetes: A Narrative Review. Diabetes Metab Syndr Obes 2021; 14:4865-4873. [PMID: 34992395 PMCID: PMC8710064 DOI: 10.2147/dmso.s343514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/01/2021] [Indexed: 01/20/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive disease as a result of the severe destruction of islet β-cell function, which leads to high glucose variability in patients. However, α-cell function is also compromised in patients with T1DM, characterized by aberrant fasting and postprandial glucagon secretion. According to recent studies, this aberrant glucagon secretion plays an increasing role in hyperglycemia, insulin-induced hypoglycemia and exercise-associated hypoglycemia in patients with T1DM. With application of continuous glucose monitoring system, dozens of metrics enable the assessment of glycemic variability, which is an integral component of glycemic control for patients with T1DM. There is growing evidences to illustrate the contribution of glucagon secretion to the glycemic variability in patients with T1DM, which may promote the development of new treatment strategies aiming to mitigate glycemic variability associated with aberrant glucagon secretion.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Qi Tian
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Correspondence: Lin Yang; Zhiguang Zhou Email ;
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| |
Collapse
|
53
|
Malaguarnera R, Scamporrino A, Filippello A, Di Mauro S, Minardo A, Purrello F, Piro S. The entero-insular axis: a journey in the physiopathology of diabetes. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glycemic homeostasis is an essential mechanism for the proper working of an organism. However, balance in blood lipid and protein levels also plays an important role. The discovery of the hormone insulin and the description of its function for glycemic control made fundamental scientific progress in this field. However, since then our view of the problem has been deeply influenced only in terms of glucose and insulin (in an insulin-centric and glucose-centric way). Based on recent scientific discoveries, a fine and sophisticated network of hormonal and metabolic interactions, involving almost every apparatus and tissue of the human body, has been theorized. Efficient metabolic homeostasis is founded on these intricate interactions. Although it is still not fully defined, this complex network can undergo alterations that lead to metabolic disorders such as diabetes mellitus (DM). The endocrine pancreas plays a crucial role in the metabolic balance of an organism, but insulin is just one of the elements involved and each single pancreatic islet hormone is worthy of our concern. Moreover, pancreatic hormones need to be considered in a general view, concerning both their systemic function as direct mediators and as hormones, which, in turn, are regulated by other hormones or other substances. This more complex scenario should be taken into account for a better understanding of the pathophysiology and the therapeutic algorithms of DM. As a consequence, improvements in modern medicine could help to contemplate this new perspective. This review is focused on some aspects of gut-pancreas interaction, aiming to integrate this synergy into a wider context involving other organs and tissues.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Alessandro Minardo
- Department of Anaesthesiology and Intensive Care Medicine, IRCCS Gemelli, 00168 Rome, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| |
Collapse
|
54
|
Zeng Z, Huang SY, Sun T. Pharmacogenomic Studies of Current Antidiabetic Agents and Potential New Drug Targets for Precision Medicine of Diabetes. Diabetes Ther 2020; 11:2521-2538. [PMID: 32930968 PMCID: PMC7548012 DOI: 10.1007/s13300-020-00922-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes is a major threat to people's health and has become a burden worldwide. Current drugs for diabetes have limitations, such as different drug responses among individuals, failure to achieve glycemic control, and adverse effects. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Currently pharmacogenomics has provided potential for individualized drug therapy based on genetic and genomic information of patients, and has made precision medicine possible. Responses and adverse effects to antidiabetic drugs are significantly associated with gene polymorphisms in patients. Many new targets for diabetes also have been discovered and developed, and even entered clinical trial phases. This review summarizes pharmacogenomic evidence of some current antidiabetic agents applied in clinical settings, and highlights potential drugs with new targets for diabetes, which represent a more effective treatment in the future.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Shi-Ying Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
55
|
Direct Effects of D-Chiro-Inositol on Insulin Signaling and Glucagon Secretion of Pancreatic Alpha Cells. Biomolecules 2020; 10:biom10101404. [PMID: 33020399 PMCID: PMC7601246 DOI: 10.3390/biom10101404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The insulin resistance state of pancreatic α-cells seems to be related to glucagon hypersecretion in type 2 diabetes. Treatment that can improve the insulin sensitivity of α-cells could control glucagon levels in patients with diabetes mellitus. The aim of this study was to investigate the preventive role of D-chiro-inositol (DCI), which has insulin receptor-sensitizer effects on insulin signaling pathways and glucagon secretion in pancreatic α-TC1 clone 6 cells. Cells were chronically treated with palmitate to induce insulin resistance in the presence/absence of DCI. DCI treatment improved the insulin signaling pathway and restored insulin-mediated glucagon suppression in α-TC1-6 cells exposed to palmitate. These results indicate that DCI treatment prevents the insulin resistance of α-TC1-6 cells chronically exposed to palmitate. Our data provide evidence that DCI could be useful to improve the insulin sensitivity of pancreatic α-cells in diabetes treatment.
Collapse
|
56
|
Kobayashi M, Satoh H, Matsuo T, Kusunoki Y, Tokushima M, Watada H, Namba M, Kitamura T. Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocr J 2020; 67:903-922. [PMID: 32448820 DOI: 10.1507/endocrj.ej20-0079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glucagon dysfunction as well as insulin dysfunction is associated with the pathogenesis of type 2 diabetes (T2DM). However, it is still unclear whether the measurement of plasma glucagon levels is useful in understanding the pathophysiology of T2DM. We recently reported that sandwich ELISA provides more accurate plasma glucagon values than conventional RIA in healthy subjects. Here we used sandwich ELISA as well as RIA to assess plasma glucagon levels, comparing them in T2DM patients and healthy subjects during oral glucose (OGTT) or meal tolerance tests (MTT). We confirmed that sandwich ELISA was able to detect more significant difference between healthy subjects and T2DM patients in the fasting levels and the response dynamics of plasma glucagon than RIA. We also found significant differences in the following glucagon parameters: (1) fasting glucagon, (2) the area under the curve (AUC) of glucagon in OGTT, and (3) the change in glucagon between 0 and 30 min (ΔGlucagon0-0.5h) in OGTT or MTT. Among these, the most apparent difference was ΔGlucagon0-0.5h in MTT. When we divided T2DM patients into two groups whose ΔGlucagon0-0.5h in MTT was either below or above the maximum value in healthy subjects, the group with higher ΔGlucagon0-0.5h showed more significant impairment of glucose tolerance. These results suggest that the assessment of plasma glucagon levels by sandwich ELISA might enhance our understanding of the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Hiroaki Satoh
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshihiro Matsuo
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yoshiki Kusunoki
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Namba
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
57
|
Singha A, Palavicini JP, Pan M, Farmer S, Sandoval D, Han X, Fujikawa T. Leptin Receptors in RIP-Cre 25Mgn Neurons Mediate Anti-dyslipidemia Effects of Leptin in Insulin-Deficient Mice. Front Endocrinol (Lausanne) 2020; 11:588447. [PMID: 33071988 PMCID: PMC7538546 DOI: 10.3389/fendo.2020.588447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a potent endocrine hormone produced by adipose tissue and regulates a broad range of whole-body metabolism such as glucose and lipid metabolism, even without insulin. Central leptin signaling can lower hyperglycemia in insulin-deficient rodents via multiple mechanisms, including improvements of dyslipidemia. However, the specific neurons that regulate anti-dyslipidemia effects of leptin remain unidentified. Here we report that leptin receptors (LEPRs) in neurons expressing Cre recombinase driven by a short fragment of a promoter region of Ins2 gene (RIP-Cre25Mgn neurons) are required for central leptin signaling to reverse dyslipidemia, thereby hyperglycemia in insulin-deficient mice. Ablation of LEPRs in RIP-Cre25Mgn neurons completely blocks glucose-lowering effects of leptin in insulin-deficient mice. Further investigations reveal that insulin-deficient mice lacking LEPRs in RIP-Cre25Mgn neurons (RIP-CreΔLEPR mice) exhibit greater lipid levels in blood and liver compared to wild-type controls, and that leptin injection into the brain does not suppress dyslipidemia in insulin-deficient RIP-CreΔLEPR mice. Leptin administration into the brain combined with acipimox, which lowers blood lipids by suppressing triglyceride lipase activity, can restore normal glycemia in insulin-deficient RIP-CreΔLEPR mice, suggesting that excess circulating lipids are a driving-force of hyperglycemia in these mice. Collectively, our data demonstrate that LEPRs in RIP-Cre25Mgn neurons significantly contribute to glucose-lowering effects of leptin in an insulin-independent manner by improving dyslipidemia.
Collapse
Affiliation(s)
- Ashish Singha
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Scotlynn Farmer
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Darleen Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Teppei Fujikawa
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, TX, United States
- Division of Hypothalamic Research Center, Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
58
|
Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep 2020; 22:603-611. [PMID: 32468027 PMCID: PMC7339764 DOI: 10.3892/mmr.2020.11175] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a growing health concern in society. Type 1 and type 2 DM are the two main types of diabetes; both types are chronic diseases that affect glucose metabolism in the body and the impaired regulation of glucose and lipid metabolism promotes the development and progression of DM. During the physiological metabolism process, the liver serves a unique role in glucose and lipid metabolism. The present article aimed to review the association between DM and glucose metabolism in the liver and discuss the changes of the following hepatic glucose fluxes: Gluconeogenesis, glucose/glucose 6-phosphate cycling, glycogenolysis, glycogenesis and the pentose phosphate pathway. Moreover, the incidence of fatty liver in DM was also investigated.
Collapse
Affiliation(s)
- Saizhi Jiang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Kai Wang
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yan Qian
- Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Cai
- Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW In this brief review, we highlight studies that have contributed to our current understanding of glucose homeostasis by the central nervous system (CNS) leptin-melanocortin system, particularly proopiomelanocortin neurons and melanocortin-4 receptors (MC4R). RECENT FINDINGS Leptin deficiency is associated with insulin resistance and impaired glucose metabolism whereas leptin administration improves tissue glucose uptake/oxidation and reduces hepatic glucose output. These antidiabetic effects of leptin have been demonstrated in experimental animals and humans, even when circulating insulin levels are barely detectable. Recent evidence suggests that these antidiabetic actions of leptin are mediated, in large part, by stimulation of leptin receptors (LRs) in the CNS and require activation of proopiomelanocortin (POMC) neurons and MC4R. These chronic antidiabetic effects of the CNS leptin-melanocortin system appear to be independent of autonomic nervous system and pituitary-thyroid-adrenal (PTA) axis mechanisms. The powerful antidiabetic actions of the CNS leptin-melanocortin system are capable of normalizing plasma glucose even in the absence of insulin and involve interactions of multiple neuronal populations and intracellular signaling pathways. Although the links between the CNS leptin-melanocortin system and its chronic effects on peripheral tissue glucose metabolism are still uncertain, they are independent of insulin action, activation of the autonomic nervous system, or the PTA axis. Unraveling the pathways that contribute to the powerful antidiabetic effects of the CNS leptin-melanocortin system may provide novel therapeutic approaches for diabetes mellitus.
Collapse
Affiliation(s)
- Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| |
Collapse
|
60
|
Finan B, Capozzi ME, Campbell JE. Repositioning Glucagon Action in the Physiology and Pharmacology of Diabetes. Diabetes 2020; 69:532-541. [PMID: 31178432 PMCID: PMC7085250 DOI: 10.2337/dbi19-0004] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Glucagon is historically described as the counterregulatory hormone to insulin, induced by fasting/hypoglycemia to raise blood glucose through action mediated in the liver. However, it is becoming clear that the biology of glucagon is much more complex and extends beyond hepatic actions to exert control on glucose metabolism. We discuss the inconsistencies with the canonical view that glucagon is primarily a hyperglycemic agent driven by fasting/hypoglycemia and highlight the recent advances that have reshaped the metabolic role of glucagon. These concepts are placed within the context of both normal physiology and the pathophysiology of disease and then extended to discuss emerging strategies that incorporate glucagon agonism in the pharmacology of treating diabetes.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center, Indianapolis, IN
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
61
|
Lang S, Yang J, Yang K, Gu L, Cui X, Wei T, Liu J, Le Y, Wang H, Wei R, Hong T. Glucagon receptor antagonist upregulates circulating GLP-1 level by promoting intestinal L-cell proliferation and GLP-1 production in type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001025. [PMID: 32139602 PMCID: PMC7059498 DOI: 10.1136/bmjdrc-2019-001025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Glucagon receptor (GCGR) blockage improves glycemic control and increases circulating glucagon-like peptide-1 (GLP-1) level in diabetic animals and humans. The elevated GLP-1 has been reported to be involved in the hypoglycemic effect of GCGR blockage. However, the source of this elevation remains to be clarified. RESEARCH DESIGN AND METHODS REMD 2.59, a human GCGR monoclonal antibody (mAb), was administrated for 12 weeks in db/db mice and high-fat diet+streptozotocin (HFD/STZ)-induced type 2 diabetic (T2D) mice. Blood glucose, glucose tolerance and plasma GLP-1 were evaluated during the treatment. The gut length, epithelial area, and L-cell number and proliferation were detected after the mice were sacrificed. Cell proliferation and GLP-1 production were measured in mouse L-cell line GLUTag cells, and primary mouse and human enterocytes. Moreover, GLP-1 receptor (GLP-1R) antagonist or protein kinase A (PKA) inhibitor was used in GLUTag cells to determine the involved signaling pathways. RESULTS Treatment with the GCGR mAb lowered blood glucose level, improved glucose tolerance and elevated plasma GLP-1 level in both db/db and HFD/STZ-induced T2D mice. Besides, the treatment promoted L-cell proliferation and LK-cell expansion, and increased the gut length, epithelial area and L-cell number in these two T2D mice. Similarly, our in vitro study showed that the GCGR mAb promoted L-cell proliferation and increased GLP-1 production in GLUTag cells, and primary mouse and human enterocytes. Furthermore, either GLP-1R antagonist or PKA inhibitor diminished the effects of GCGR mAb on L-cell proliferation and GLP-1 production. CONCLUSIONS The elevated circulating GLP-1 level by GCGR mAb is mainly due to intestinal L-cell proliferation and GLP-1 production, which may be mediated via GLP-1R/PKA signaling pathways. Therefore, GCGR mAb represents a promising strategy to improve glycemic control and restore the impaired GLP-1 production in T2D.
Collapse
Affiliation(s)
- Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
62
|
Luziga C. Immunoreactivity of cytotoxic T-lymphocyte antigen 2 alpha in mouse pancreatic islet cells. Anat Histol Embryol 2020; 49:382-389. [PMID: 32059262 DOI: 10.1111/ahe.12541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/26/2019] [Accepted: 01/29/2020] [Indexed: 11/29/2022]
Abstract
Cells of the pancreatic islets produce several molecules including insulin (beta cells), glucagon (alpha cells), somatostatin (delta cells), pancreatic polypeptide (PP cells), ghrelin (epsilon cells), serotonin (enterochromaffin cells), gastrin (G cells) and small granules of unknown content secreted by the P/D1 cells. Secretion mechanism of some of these molecules is still poorly understood. However, Cathepsin L is shown to regulate insulin exocytosis in beta cells and activate the trypsinogen produced by the pancreatic serous acini cells into trypsin. The structure of the propeptide region of Cathepsin L is homologous to Cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2 alpha) which is also shown to exhibit selective inhibitory activities against Cathepsin L. It was thought that if CTLA-2 alpha was expressed in the pancreas; then, it would be an important regulator of protease activation and insulin secretion. The purpose of this study was, therefore, to examine by immunohistochemistry the cellular localization and distribution pattern of CTLA-2 alpha in the pancreas. Results showed that strong immunoreactivity was specifically detected in the pancreatic islets (endocrine pancreas) but not in the exocrine pancreas and pancreatic stroma. Immunostaining was further performed to investigate more on localization of Cathepsin L in the pancreas. Strong immunoreactivity for Cathepsin L was detected in the pancreatic islets, serous cells and the pancreas duct system. These findings suggest that CTLA-2 alpha may be involved in the proteolytic processing and secretion of insulin through regulation of Cathepsin L and that the regulated inhibition of Cathepsin L may have therapeutic potential for type 1 diabetes.
Collapse
Affiliation(s)
- Claudius Luziga
- Department of Veterinary Anatomy & Pathology, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
63
|
Wendt A, Eliasson L. Pancreatic α-cells - The unsung heroes in islet function. Semin Cell Dev Biol 2020; 103:41-50. [PMID: 31983511 DOI: 10.1016/j.semcdb.2020.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
The pancreatic islets of Langerhans consist of several hormone-secreting cell types important for blood glucose control. The insulin secreting β-cells are the best studied of these cell types, but less is known about the glucagon secreting α-cells. The α-cells secrete glucagon as a response to low blood glucose. The major function of glucagon is to release glucose from the glycogen stores in the liver. In both type 1 and type 2 diabetes, glucagon secretion is dysregulated further exaggerating the hyperglycaemia, and in type 1 diabetes α-cells fail to counter regulate hypoglycaemia. Although glucagon has been recognized for almost 100 years, the understanding of how glucagon secretion is regulated and how glucagon act within the islet is far from complete. However, α-cell research has taken off lately which is promising for future knowledge. In this review we aim to highlight α-cell regulation and glucagon secretion with a special focus on recent discoveries from human islets. We will present some novel aspects of glucagon function and effects of selected glucose lowering agents on glucagon secretion.
Collapse
Affiliation(s)
- Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden.
| |
Collapse
|
64
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
65
|
Abarkan M, Gaitan J, Lebreton F, Perrier R, Jaffredo M, Mulle C, Magnan C, Raoux M, Lang J. The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging. Mol Metab 2019; 30:152-160. [PMID: 31767166 PMCID: PMC6807305 DOI: 10.1016/j.molmet.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Islets secrete neurotransmitters including glutamate which participate in fine regulation of islet function. The excitatory ionotropic glutamate receptor GluK2 of the kainate receptor family is widely expressed in brain and also found in islets, mainly in α and γ cells. α cells co-release glucagon and glutamate and the latter increases glucagon release via ionotropic glutamate receptors. However, neither the precise nature of the ionotropic glutamate receptor involved nor its role in glucose homeostasis is known. As isoform specific pharmacology is not available, we investigated this question in constitutive GluK2 knock-out mice (GluK2-/-) using adult and middle-aged animals to also gain insight in a potential role during aging. METHODS We compared wild-type GluK2+/+ and knock-out GluK2-/- mice using adult (14-20 weeks) and middle-aged animals (40-52 weeks). Glucose (oral OGTT and intraperitoneal IPGTT) and insulin tolerance as well as pyruvate challenge tests were performed according to standard procedures. Parasympathetic activity, which stimulates hormones secretion, was measured by electrophysiology in vivo. Isolated islets were used in vitro to determine islet β-cell electrical activity on multi-electrode arrays and dynamic secretion of insulin as well as glucagon was determined by ELISA. RESULTS Adult GluK2-/- mice exhibit an improved glucose tolerance (OGTT and IPGTT), and this was also apparent in middle-aged mice, whereas the outcome of pyruvate challenge was slightly improved only in middle-aged GluK2-/- mice. Similarly, insulin sensitivity was markedly enhanced in middle-aged GluK2-/- animals. Basal and glucose-induced insulin secretion in vivo was slightly lower in GluK2-/- mice, whereas fasting glucagonemia was strongly reduced. In vivo recordings of parasympathetic activity showed an increase in basal activity in GluK2-/- mice which represents most likely an adaptive mechanism to counteract hypoglucagonemia rather than altered neuronal mechanism. In vitro recording demonstrated an improvement of glucose-induced electrical activity of β-cells in islets obtained from GluK2-/- mice at both ages. Finally, glucose-induced insulin secretion in vitro was increased in GluK2-/- islets, whereas glucagon secretion at 2 mmol/l of glucose was considerably reduced. CONCLUSIONS These observations indicate a general role for kainate receptors in glucose homeostasis and specifically suggest a negative effect of GluK2 on glucose homeostasis and preservation of islet function during aging. Our observations raise the possibility that blockade of GluK2 may provide benefits in glucose homeostasis especially during aging.
Collapse
Affiliation(s)
- Myriam Abarkan
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Julien Gaitan
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Fanny Lebreton
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Romain Perrier
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Manon Jaffredo
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, Université de Paris, Paris, France
| | - Matthieu Raoux
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Jochen Lang
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France.
| |
Collapse
|
66
|
Stern JH, Smith GI, Chen S, Unger RH, Klein S, Scherer PE. Obesity dysregulates fasting-induced changes in glucagon secretion. J Endocrinol 2019; 243:149-160. [PMID: 31454790 PMCID: PMC6994388 DOI: 10.1530/joe-19-0201] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023]
Abstract
Hyperglucagonemia, a hallmark in obesity and insulin resistance promotes hepatic glucose output, exacerbating hyperglycemia and thus predisposing to the development type 2 diabetes. As such, glucagon signaling is a key target for new therapeutics to manage insulin resistance. We evaluated glucagon homeostasis in lean and obese mice and people. In lean mice, fasting for 24 h caused a rise in glucagon. In contrast, a decrease in serum glucagon compared to baseline was observed in diet-induced obese mice between 8 and 24 h of fasting. Fasting decreased serum insulin in both lean and obese mice. Accordingly, the glucagon:insulin ratio was unaffected by fasting in obese mice but increased in lean mice. Re-feeding (2 h) restored hyperglucagonemia in obese mice. Pancreatic perfusion studies confirm that fasting (16 h) decreases pancreatic glucagon secretion in obese mice. Consistent with our findings in the mouse, a mixed meal increased serum glucagon and insulin concentrations in obese humans, both of which decreased with time after a meal. Consequently, fasting and re-feeding less robustly affected glucagon:insulin ratios in obese compared to lean participants. The glucoregulatory disturbance in obesity may be driven by inappropriate regulation of glucagon by fasting and a static glucagon:insulin ratio.
Collapse
Affiliation(s)
- Jennifer H. Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Gordon I. Smith
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO
| | - Shiuwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Roger H. Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
- Correspondence: , Telephone: (214) 648-8715, Fax: (214) 648-8720
| |
Collapse
|
67
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
68
|
Cell Autonomous Dysfunction and Insulin Resistance in Pancreatic α Cells. Int J Mol Sci 2019; 20:ijms20153699. [PMID: 31357734 PMCID: PMC6695724 DOI: 10.3390/ijms20153699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
To date, type 2 diabetes is considered to be a "bi-hormonal disorder" rather than an "insulin-centric disorder," suggesting that glucagon is as important as insulin. Although glucagon increases hepatic glucose production and blood glucose levels, paradoxical glucagon hypersecretion is observed in diabetes. Recently, insulin resistance in pancreatic α cells has been proposed to be associated with glucagon dysregulation. Moreover, cell autonomous dysfunction of α cells is involved in the etiology of diabetes. In this review, we summarize the current knowledge about the physiological and pathological roles of glucagon.
Collapse
|
69
|
Mikaelyan NP, Dvornikov AS, Mikaelyan AA, Smirnova NV. Association between Disturbances in Polyunsaturated Fatty Acid Metabolism and Development of Oxidative Stress during Experimental Diabetes Mellitus. Bull Exp Biol Med 2019; 167:343-346. [PMID: 31346865 DOI: 10.1007/s10517-019-04523-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/22/2022]
Abstract
We studied the effect of streptozotocin-induced diabetes mellitus on the level of glycemia and some other indices of lipid metabolism, including fatty acid metabolism and LPO intensity, during the development of diabetes mellitus in rats. Even at the early terms of diabetes development, hypertriglyceridemia and hypercholesterolemia were accompanied by changes in the blood content of fatty acid (at the expense of ω3 and ω6 fatty acids) that persisted throughout the observation period. Intensification of LPO against the background of suppressed activity of antioxidant enzymes and reduced level of ω3 fatty acids attested to the development of oxidative stress. These data attest to antioxidant property of ω3 fatty acids, which is seen from positive correlations between these fatty acids and activity of antioxidant enzymes.
Collapse
Affiliation(s)
- N P Mikaelyan
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A S Dvornikov
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Mikaelyan
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Smirnova
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
70
|
Bru-Tari E, Cobo-Vuilleumier N, Alonso-Magdalena P, Dos Santos RS, Marroqui L, Nadal A, Gauthier BR, Quesada I. Pancreatic alpha-cell mass in the early-onset and advanced stage of a mouse model of experimental autoimmune diabetes. Sci Rep 2019; 9:9515. [PMID: 31266981 PMCID: PMC6606577 DOI: 10.1038/s41598-019-45853-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Most studies in type 1 diabetes (T1D) have focused on the loss of the pancreatic beta-cell population. However, despite the involvement of the alpha-cell in the aetiology and complications of T1D, little is known about the regulation of the pancreatic alpha-cell mass in this disease. The need for a better understanding of this process is further emphasized by recent findings suggesting that alpha-cells may constitute a potential reservoir for beta-cell regeneration. In this study, we characterized the pancreatic alpha-cell mass and its regulatory processes in the transgenic RIP-B7.1 mice model of experimental autoimmune diabetes (EAD). Diabetic mice presented insulitis, hyperglycaemia, hypoinsulinemia and hyperglucagonemia along with lower pancreatic insulin content. While alpha-cell mass and pancreatic glucagon content were preserved at the early-onset of EAD, both parameters were reduced in the advanced phase. At both stages, alpha-cell size, proliferation and ductal neogenesis were up-regulated, whereas apoptosis was almost negligible. Interestingly, we found an increase in the proportion of glucagon-containing cells positive for insulin or the beta-cell transcription factor PDX1. Our findings suggest that pancreatic alpha-cell renewal mechanisms are boosted during the natural course of EAD, possibly as an attempt to maintain the alpha-cell population and/or to increase beta-cell regeneration via alpha-cell transdifferentiation.
Collapse
Affiliation(s)
- Eva Bru-Tari
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), IBMC, Universidad Miguel Hernández, Elche, Spain
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nadia Cobo-Vuilleumier
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), IBMC, Universidad Miguel Hernández, Elche, Spain
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), IBMC, Universidad Miguel Hernández, Elche, Spain
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), IBMC, Universidad Miguel Hernández, Elche, Spain
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), IBMC, Universidad Miguel Hernández, Elche, Spain
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Benoit R Gauthier
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), IBMC, Universidad Miguel Hernández, Elche, Spain.
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
71
|
|
72
|
Yang W, Yan H, Pan Q, Shen JZ, Zhou F, Wu C, Sun Y, Guo S. Glucagon regulates hepatic mitochondrial function and biogenesis through FOXO1. J Endocrinol 2019; 241:265-278. [PMID: 31026811 PMCID: PMC9675317 DOI: 10.1530/joe-19-0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
Glucagon promotes hepatic glucose production maintaining glucose homeostasis in the fasting state. Glucagon maintains at high level in both diabetic animals and human, contributing to hyperglycemia. Mitochondria, a major place for glucose oxidation, are dysfunctional in diabetic condition. However, whether hepatic mitochondrial function can be affected by glucagon remains unknown. Recently, we reported that FOXO1 is an important mediator in glucagon signaling in control of glucose homeostasis. In this study, we further assessed the role of FOXO1 in the action of glucagon in the regulation of hepatic mitochondrial function. We found that glucagon decreased the heme production in a FOXO1-dependent manner, suppressed heme-dependent complex III (UQCRC1) and complex IV (MT-CO1) and inhibited hepatic mitochondrial function. However, the suppression of mitochondrial function by glucagon was largely rescued by deleting the Foxo1 gene in hepatocytes. Glucagon tends to reduce hepatic mitochondrial biogenesis by attenuating the expression of NRF1, TFAM and MFN2, which is mediated by FOXO1. In db/db mice, we found that hepatic mitochondrial function was suppressed and expression levels of UQCRC1, MT-CO1, NRF1 and TFAM were downregulated in the liver. These findings suggest that hepatic mitochondrial function can be impaired when hyperglucagonemia occurs in the patients with diabetes mellitus, resulting in organ failure.
Collapse
Affiliation(s)
- Wanbao Yang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hui Yan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Quan Pan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - James Zheng Shen
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Fenghua Zhou
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yuxiang Sun
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shaodong Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
- To whom correspondence should be addressed: Shaodong Guo: Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843; ; Tel: 979-845-0850; Fax: 979-862-6842
| |
Collapse
|
73
|
Dusaulcy R, Handgraaf S, Visentin F, Howald C, Dermitzakis ET, Philippe J, Gosmain Y. High-fat diet impacts more changes in beta-cell compared to alpha-cell transcriptome. PLoS One 2019; 14:e0213299. [PMID: 30849121 PMCID: PMC6407777 DOI: 10.1371/journal.pone.0213299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Characterization of endocrine-cell functions and associated molecular signatures in diabetes is crucial to better understand why and by which mechanisms alpha and beta cells cause and perpetuate metabolic abnormalities. The now recognized role of glucagon in diabetes control is a major incentive to have a better understanding of dysfunctional alpha cells. To characterize molecular alterations of alpha cells in diabetes, we analyzed alpha-cell transcriptome from control and diabetic mice using diet-induced obesity model. To this aim, we quantified the expression levels of total mRNAs from sorted alpha and beta cells of low-fat and high-fat diet-treated mice through RNAseq experiments, using a transgenic mouse strain allowing collections of pancreatic alpha- and beta-cells after 16 weeks of diet. We now report that pancreatic alpha cells from obese hyperglycemic mice displayed minor variations of their transcriptome compared to controls. Depending on analyses, we identified 11 to 39 differentially expressed genes including non-alpha cell markers mainly due to minor cell contamination during purification process. From these analyses, we identified three new target genes altered in diabetic alpha cells and potently involved in cellular stress and exocytosis (Upk3a, Adcy1 and Dpp6). By contrast, analysis of the beta-cell transcriptome from control and diabetic mice revealed major alterations of specific genes coding for proteins involved in proliferation and secretion. We conclude that alpha cell transcriptome is less reactive to HFD diet compared to beta cells and display adaptations to cellular stress and exocytosis.
Collapse
Affiliation(s)
- Rodolphe Dusaulcy
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Sandra Handgraaf
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Florian Visentin
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Cedric Howald
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Philippe
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Yvan Gosmain
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
74
|
Liu L, Shao Z, Xia Y, Qin J, Xiao Y, Zhou Z, Mei Z. Incretin-based therapies for patients with type 1 diabetes: a meta-analysis. Endocr Connect 2019; 8:277-288. [PMID: 30694794 PMCID: PMC6410765 DOI: 10.1530/ec-18-0546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Combined treatment with an incretin-based drug, such as a glucagon-like peptide 1 receptor agonist (GLP-1 RA) or a dipeptidyl peptidase-4 (DPP-4) inhibitor, and basal insulin is a new strategy for improving glucose control in type 1 diabetes mellitus (T1DM). We performed a meta-analysis to assess the effect of this combined treatment on glycaemic control, insulin dose, severe hypoglycaemia, weight gain and gastrointestinal side effects in T1DM patients. METHODS We searched PubMed, EMBASE and the Cochrane Library for relevant studies published before July 16, 2018. The primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes included total daily insulin dose, body weight, severe hypoglycaemia and gastrointestinal side effects. RESULTS Nine randomized controlled trials (RCTs) involving 2389 patients were ultimately included in the meta-analysis. The pooled data suggested that incretin-based therapy was associated with a reduction in HbA1c levels (weighted mean difference (WMD) -0.17%, 95% confidence interval (CI) -0.24 to -0.11, P < 0.001), total daily insulin dose (WMD -5.53 IU/day, 95% CI -8.89 to -2.17, P = 0.001) and body weight (WMD -3.24 kg, 95% CI -4.43 to -2.04, P < 0.001). Incretins did not increase the risk of severe hypoglycaemia (odds ratio (OR) 0.83, 95% CI 0.60-1.16, P = 0.287) but increased the occurrence of gastrointestinal side effects (OR 3.46, 95% CI 2.20-5.45, P < 0.001). CONCLUSIONS In T1DM patients, GLP-1 RAs, but not DPP-4 inhibitors, combined with insulin appear to be an effective therapy but may increase the occurrence of gastrointestinal side effects.
Collapse
Affiliation(s)
- Lili Liu
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhuo Shao
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, Shanghai, China
| | - Ying Xia
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Jiabi Qin
- Department of Epidemiology & Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yang Xiao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Correspondence should be addressed to Y Xiao or Z Zhou: or
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Correspondence should be addressed to Y Xiao or Z Zhou: or
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
75
|
Mandaliya DK, Seshadri S. Short Chain Fatty Acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 2019; 19:280-284. [PMID: 30713129 DOI: 10.1016/j.pan.2019.01.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
The microbiota living in gut influence the immune response, metabolism, mood and behavior. The diet plays a pivotal role in maintaining healthy gut microbiota composition and its fermentation leads to production of Short Chain Fatty Acids (SCFAs) mainly acetate, propionate and butyrate. During pancreatic dysfunction, insulin mediated suppression of glucagon is impaired leading to uncontrolled glucose production by liver and state of hyperglycemia. Insulin and glucagon balance is as important as insulin sensitivity which is reduced during Type 2 Diabetes (T2D). Glucagon like peptide-1 (GLP1) produced by Intestinal epithelial cells regulates insulin and glucagon secretion directly via GLP1 receptor on pancreatic cells or via nervous system. But half-life period of GLP1 is very short i.e. about 2 min, after which it is cleaved and inactivated. SCFAs are well documented to induce GLP1 but its direct effect on pancreatic dysfunction has not been reported. This review opens a new avenue to study the role of SCFAs as treatment to pancreatic dysfunction and T2D.
Collapse
Affiliation(s)
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
76
|
Usui R, Yabe D, Seino Y. Twincretin as a potential therapeutic for the management of type 2 diabetes with obesity. J Diabetes Investig 2019; 10:902-905. [PMID: 30637966 PMCID: PMC6626965 DOI: 10.1111/jdi.13005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Unimolecular peptide‐based dual agonists against glucagon‐like peptide‐1 receptor (GLP‐1R) and glucose‐dependent insulinotropic polypeptide receptor (GIPR) have been gaining much attention recently as novel antidiabetic agents that can potentially control glycemia and bodyweight. Although GLP‐1 and GIP both enhance insulin secretion and subsequently ameliorate postprandial glucose excursion, most research has focused on GLP‐1R as a therapeutic target for type 2 diabetes. This is partly because the effects of GIPR activation on glycemia and bodyweight have been controversial. GIPR‐deficient mice showed impaired glucose tolerance with reduced β‐cell function and resistance to high‐fat diet‐induced obesity, whereas GIPR agonists improved glycemia and prevented high‐fat diet‐induced obesity in mice. Conflicting results in mice might be explained by pharmacological levels of GIP signal in the central nervous systems decreasing food intake and overcoming the obesogenic effects of GIP at physiological levels in adipose tissues. Thus, GIPR activation at pharmacological levels might result in bodyweight reduction. Indeed, bodyweight reduction by GIPR/GLP‐1R dual agonists was greater than GLP‐1R single agonists in individuals with type 2 diabetes. Thus, GLP‐1R/GIPR dual agonists can add additional therapeutic efficacy to tailored diabetes care, especially among obese individuals with type 2 diabetes. However, caution should be exercised as to whether or not these drugs are appropriate for the management of Asian type 2 diabetes patients, which are primarily characterized by non‐obesity and impaired β‐cell function, as well as in that of elderly adults with type 2 diabetes, who tend to develop sarcopenia and frailty as a result of poor energy intake.
Collapse
Affiliation(s)
- Ryota Usui
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Center for Diabetes, Metabolism and Endocrinology, Kansai Electric Power Hospital, Osaka, Japan
| |
Collapse
|
77
|
Qi H, Mariager CØ, Nielsen PM, Schroeder M, Lindhardt J, Nørregaard R, Klein JD, Sands JM, Laustsen C. Glucagon infusion alters the hyperpolarized 13 C-urea renal hemodynamic signature. NMR IN BIOMEDICINE 2019; 32:e4028. [PMID: 30426590 DOI: 10.1002/nbm.4028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Renal urea handling is central to the urine concentrating mechanism, and as such the ability to image urea transport in the kidney is an important potential imaging biomarker for renal functional assessment. Glucagon levels associated with changes in dietary protein intake have been shown to influence renal urea handling; however, the exact mechanism has still to be fully understood. Here we investigate renal function and osmolite distribution using [13 C,15 N] urea dynamics and 23 Na distribution before and 60 min after glucagon infusion in six female rats. Glucagon infusion increased the renal [13 C,15 N] urea mean transit time by 14%, while no change was seen in the sodium distribution, glomerular filtration rate or oxygen consumption. This change is related to the well-known effect of increased urea excretion associated with glucagon infusion, independent of renal functional effects. This study demonstrates for the first time that hyperpolarized 13 C-urea enables monitoring of renal urinary excretion effects in vivo.
Collapse
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Water Salt Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
78
|
Rivero-Gutierrez B, Haller A, Holland J, Yates E, Khrisna R, Habegger K, Dimarchi R, D'Alessio D, Perez-Tilve D. Deletion of the glucagon receptor gene before and after experimental diabetes reveals differential protection from hyperglycemia. Mol Metab 2018; 17:28-38. [PMID: 30170980 PMCID: PMC6197675 DOI: 10.1016/j.molmet.2018.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Mice with congenital loss of the glucagon receptor gene (Gcgr-/- mice) remain normoglycemic in insulinopenic conditions, suggesting that unopposed glucagon action is the driving force for hyperglycemia in Type-1 Diabetes Mellitus (T1DM). However, chronic loss of GCGR results in a neomorphic phenotype that includes hormonal signals with hypoglycemic activity. We combined temporally-controlled GCGR deletion with pharmacological treatments to dissect the direct contribution of GCGR signaling to glucose control in a common mouse model of T1DM. METHODS We induced experimental T1DM by injecting the beta-cell cytotoxin streptozotocin (STZ) in mice with congenital or temporally-controlled Gcgr loss-of-function using tamoxifen (TMX). RESULTS Disruption of Gcgr expression, using either an inducible approach in adult mice or animals with congenital knockout, abolished the response to a long-acting Gcgr agonist. Mice with either developmental Gcgr disruption or inducible deletion several weeks before STZ treatment maintained normoglycemia. However, mice with inducible knockout of the Gcgr one week after the onset of STZ diabetes had only partial correction of hyperglycemia, an effect that was reversed by GLP-1 receptor blockade. Mice with Gcgr deletion for either 2 or 6 weeks had similar patterns of gene expression, although the changes were generally larger with longer GCGR knockout. CONCLUSIONS These findings demonstrate that the effects of glucagon to mitigate diabetic hyperglycemia are not through acute signaling but require compensations that take weeks to develop.
Collapse
Affiliation(s)
- Belen Rivero-Gutierrez
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - April Haller
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - Jenna Holland
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - Emily Yates
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - Radha Khrisna
- Department of Medicine, Duke University School of Medicine, NC, USA
| | - Kirk Habegger
- Comprehensive Diabetes Center and Department of Medicine - Endocrinology, Diabetes & and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard Dimarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - David D'Alessio
- Department of Medicine, Duke University School of Medicine, NC, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA.
| |
Collapse
|
79
|
Wu Y, Pan Q, Yan H, Zhang K, Guo X, Xu Z, Yang W, Qi Y, Guo CA, Hornsby C, Zhang L, Zhou A, Li L, Chen Y, Zhang W, Sun Y, Zheng H, Wondisford F, He L, Guo S. Novel Mechanism of Foxo1 Phosphorylation in Glucagon Signaling in Control of Glucose Homeostasis. Diabetes 2018; 67:2167-2182. [PMID: 30201683 PMCID: PMC6198346 DOI: 10.2337/db18-0674] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
Dysregulation of hepatic glucose production (HGP) serves as a major underlying mechanism for the pathogenesis of type 2 diabetes. The pancreatic hormone glucagon increases and insulin suppresses HGP, controlling blood glucose homeostasis. The forkhead transcription factor Foxo1 promotes HGP through increasing expression of genes encoding the rate-limiting enzymes responsible for gluconeogenesis. We previously established that insulin suppresses Foxo1 by Akt-mediated phosphorylation of Foxo1 at Ser256 in human hepatocytes. In this study, we found a novel Foxo1 regulatory mechanism by glucagon, which promotes Foxo1 nuclear translocation and stability via cAMP- and protein kinase A-dependent phosphorylation of Foxo1 at Ser276 Replacing Foxo1-S276 with alanine (A) or aspartate (D) to block or mimic phosphorylation, respectively, markedly regulates Foxo1 stability and nuclear localization in human hepatocytes. To establish in vivo function of Foxo1-Ser276 phosphorylation in glucose metabolism, we generated Foxo1-S273A and Foxo1-S273D knock-in (KI) mice. The KI mice displayed impaired blood glucose homeostasis, as well as the basal and glucagon-mediated HGP in hepatocytes. Thus, Foxo1-Ser276 is a new target site identified in the control of Foxo1 bioactivity and associated metabolic diseases.
Collapse
Affiliation(s)
- Yuxin Wu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Quan Pan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Hui Yan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Kebin Zhang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Xiaoqin Guo
- Department of Endocrinology, Third Military Medical University, Chongqing, China
- Division of Endocrinology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Zihui Xu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yajuan Qi
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Cathy A Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Caitlyn Hornsby
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Lin Zhang
- Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Aimin Zhou
- Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Ling Li
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yunmei Chen
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiping Zhang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Hongting Zheng
- Department of Endocrinology, Third Military Medical University, Chongqing, China
| | - Fred Wondisford
- Division of Endocrinology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Ling He
- Division of Endocrinology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Shaodong Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
80
|
Crookshank JA, Serrano D, Wang GS, Patrick C, Morgan BS, Paré MF, Scott FW. Changes in insulin, glucagon and ER stress precede immune activation in type 1 diabetes. J Endocrinol 2018; 239:181-195. [PMID: 30139929 DOI: 10.1530/joe-18-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
It is unknown whether there is a gene signature in pancreas which is associated with type 1 diabetes (T1D). We performed partial pancreatectomies on 30-day preinsulitic, diabetes-prone BioBreeding (BBdp) rats to prospectively identify factors involved in early prediabetes. Microarrays of the biopsies revealed downregulation of endoplasmic reticulum (ER) stress, metabolism and apoptosis. Based on these results, additional investigations compared gene expression in control (BBc) and BBdp rats age ~8, 30 and 60 days using RT-qPCR. Neonates had increased ER stress gene expression in pancreas. This was associated with decreased insulin, cleaved caspase-3 and Ins1 whereas Gcg and Pcsk2 were increased. The increase in ER stress was not sustained at 30 days and decreased by 60 days. In parallel, the liver gene profile showed a similar signature in neonates but with an early decrease of the unfolded protein response (UPR) at 30 days. This suggested that changes in the liver precede those in the pancreas. Tnf and Il1b expression was increased in BBdp pancreas in association with increased caspase-1, cleaved caspase-3 and decreased proinsulin area. Glucagon area was increased in both 30-day and 60-day BBdp rats. Increased colocalization of BIP and proinsulin was observed at 60 days in the pancreas, suggesting insulin-related ER dysfunction. We propose that dysregulated metabolism leads to ER stress in neonatal rats long before insulitis, creating a microenvironment in both pancreas and liver that promotes autoimmunity.
Collapse
Affiliation(s)
- Jennifer A Crookshank
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Daniel Serrano
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Baylie S Morgan
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biomedical Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-France Paré
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Fraser W Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
81
|
Galkina SI, Fedorova NV, Ksenofontov AL, Stadnichuk VI, Baratova LA, Sud'Ina GF. Neutrophils as a source of branched-chain, aromatic and positively charged free amino acids. Cell Adh Migr 2018; 13:98-105. [PMID: 30359173 PMCID: PMC6527394 DOI: 10.1080/19336918.2018.1540903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neutrophils release branched-chain (valine, isoleucine, leucine), aromatic (tyrosine, phenylalanine) and positively charged free amino acids (arginine, ornithine, lysine, hydroxylysine, histidine) when adhere and spread onto fibronectin. In the presence of agents that impair cell spreading or adhesion (cytochalasin D, fMLP, nonadhesive substrate), neutrophils release the same amino acids, except for a sharp decrease in hydroxylysine and an increase in phenylalanine, indicating their special connection with cell adhesion. Plasma of patients with diabetes is characterized by an increased content of branched-chain and aromatic amino acids and a reduced ratio of arginine/ornithine compared to healthy human plasma. Our data showed that the secretion of neutrophils, regardless of their adhesion state, can contribute to this shift in the amino acid content. Abbreviations: BCAAs: branched-chain amino acids; Е2: 17β-estradiol; LPS: lipopolysaccharide from Salmonella enterica serovar Typhimurium; fMLP: N-formylmethionyl-leucyl-phenylalanine.
Collapse
Affiliation(s)
- Svetlana I Galkina
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Natalia V Fedorova
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Alexander L Ksenofontov
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | | | - Ludmila A Baratova
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Galina F Sud'Ina
- a A. N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
82
|
Shang W, Si X, Zhou Z, Strappe P, Blanchard C. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet. Food Funct 2018; 9:2820-2828. [PMID: 29693103 DOI: 10.1039/c8fo00331a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.
Collapse
Affiliation(s)
- Wenting Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
83
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
84
|
Capozzi ME, DiMarchi RD, Tschöp MH, Finan B, Campbell JE. Targeting the Incretin/Glucagon System With Triagonists to Treat Diabetes. Endocr Rev 2018; 39:719-738. [PMID: 29905825 PMCID: PMC7263842 DOI: 10.1210/er.2018-00117] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
Glucagonlike peptide 1 (GLP-1) receptor agonists have been efficacious for the treatment of type 2 diabetes due to their ability to reduce weight and attenuate hyperglycemia. However, the activity of glucagonlike peptide 1 receptor-directed strategies is submaximal, and the only potent, sustainable treatment of metabolic dysfunction is bariatric surgery, necessitating the development of unique therapeutics. GLP-1 is structurally related to glucagon and glucose-dependent insulinotropic peptide (GIP), allowing for the development of intermixed, unimolecular peptides with activity at each of their respective receptors. In this review, we discuss the range of tissue targets and added benefits afforded by the inclusion of each of GIP and glucagon. We discuss considerations for the development of sequence-intermixed dual agonists and triagonists, highlighting the importance of evaluating balanced signaling at the targeted receptors. Several multireceptor agonist peptides have been developed and evaluated, and the key preclinical and clinical findings are reviewed in detail. The biological activity of these multireceptor agonists are founded in the success of GLP-1-directed strategies; by including GIP and glucagon components, these multireceptor agonists are thought to enhance GLP-1's activities by broadening the tissue targets and synergizing at tissues that express multiple receptors, such at the brain and pancreatic islet β cells. The development and utility of balanced, unimolecular multireceptor agonists provide both a useful tool for querying the actions of incretins and glucagon during metabolic disease and a unique drug class to treat type 2 diabetes with unprecedented efficacy.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana
- Novo Nordisk Research Center, Indianapolis, Indiana
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Brian Finan
- Novo Nordisk Research Center, Indianapolis, Indiana
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
85
|
Pérez A, Rojas P, Carrasco F, Basfi-Fer K, Pérez-Bravo F, Codoceo J, Inostroza J, Ruz M. Zinc Supplementation Does Not Affect Glucagon Response to Intravenous Glucose and Insulin Infusion in Patients with Well-Controlled Type 2 Diabetes. Biol Trace Elem Res 2018; 185:255-261. [PMID: 29374382 DOI: 10.1007/s12011-018-1249-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
Glucagon dysregulation is an essential component in the pathophysiology of type 2 diabetes. Studies in vitro and in animal models have shown that zinc co-secreted with insulin suppresses glucagon secretion. Zinc supplementation improves blood glucose control in patients with type 2 diabetes, although there is little information about how zinc supplementation may affect glucagon secretion. The objective of this study was to evaluate the effect of 1-year zinc supplementation on fasting plasma glucagon concentration and in response to intravenous glucose and insulin infusion in patients with type 2 diabetes. A cross-sectional study was performed after 1-year of intervention with 30 mg/day zinc supplementation or a placebo on 28 patients with type 2 diabetes. Demographic, anthropometric, and biochemical parameters were determined. Fasting plasma glucagon and in response to intravenous glucose and insulin infusion were evaluated. Patients of both placebo and supplemented groups presented a well control of diabetes, with mean values of fasting blood glucose and glycated hemoglobin within the therapeutic goals established by ADA. No significant differences were observed in plasma glucagon concentration, glucagon/glucose ratio or glucagon/insulin ratio fasting, after glucose or after insulin infusions between placebo and supplemented groups. No significant effects of glucose or insulin infusions were observed on plasma glucagon concentration. One-year zinc supplementation did not affect fasting plasma glucagon nor response to intravenous glucose or insulin infusion in well-controlled type 2 diabetes patients with an adequate zinc status.
Collapse
Affiliation(s)
- Alvaro Pérez
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Pamela Rojas
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Fernando Carrasco
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Karen Basfi-Fer
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Francisco Pérez-Bravo
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Juana Codoceo
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Jorge Inostroza
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile.
| |
Collapse
|
86
|
Zhang Y, Thai K, Jin T, Woo M, Gilbert RE. SIRT1 activation attenuates α cell hyperplasia, hyperglucagonaemia and hyperglycaemia in STZ-diabetic mice. Sci Rep 2018; 8:13972. [PMID: 30228292 PMCID: PMC6143559 DOI: 10.1038/s41598-018-32351-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
The NAD+-dependent lysine deacetylase, Sirtuin 1 (SIRT1), plays a central role in metabolic regulation. With type 1 diabetes a disease that is characterised by metabolic dysregulation, we sought to assess the impact of SIRT1 activation in experimental, streptozotocin (STZ)-induced diabetes. CD1 mice with and without STZ-induced diabetes were randomized to receive the SIRT1 activating compound, SRT3025, or vehicle over 20 weeks. Vehicle treated STZ-CD1 mice developed severe hyperglycaemia with near-absent circulating insulin and widespread beta cell loss in association with hyperglucagonaemia and expanded islet alpha cell mass. Without affecting ß-cell mass or circulating insulin, diabetic mice that received SRT3025 had substantially improved glycaemic control with greatly reduced islet α cell mass and lower plasma glucagon concentrations. Consistent with reduced glucagon abundance, the diabetes-associated overexpression of key gluconeogenic enzymes, glucose-6-phosphatase and PEPCK were also lowered by SRT3025. Incubating cultured α cells with SRT3025 diminished their glucagon secretion and proliferative activity in association with a reduction in the α cell associated transcription factor, Aristaless Related Homeobox (Arx). By reducing the paradoxical increase in glucagon, SIRT1 activation may offer a new, α-cell centric approach to the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Yanling Zhang
- St. Michael's Hospital, Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, M5B 1W8, Canada
| | - Kerri Thai
- St. Michael's Hospital, Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, M5B 1W8, Canada
| | - Tianru Jin
- Toronto General Hospital Research Institute (TGHRI), Toronto, ON, M5G 2C4, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute (TGHRI), Toronto, ON, M5G 2C4, Canada
| | - Richard E Gilbert
- St. Michael's Hospital, Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, M5B 1W8, Canada.
| |
Collapse
|
87
|
The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose Production. Molecules 2018; 23:molecules23092338. [PMID: 30216981 PMCID: PMC6192519 DOI: 10.3390/molecules23092338] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022] Open
Abstract
In diabetes mellitus, the excessive rate of glucose production from the liver is considered a primary contributor for the development of hyperglycemia, in particular, fasting hyperglycemia. In this study, we investigated whether kaempferol, a flavonol present in several medicinal herbs and foods, can be used to ameliorate diabetes in an animal model of insulin deficiency and further explored the mechanism underlying the anti-diabetic effect of this flavonol. We demonstrate that oral administration of kaempferol (50 mg/kg/day) to streptozotocin-induced diabetic mice significantly improved hyperglycemia and reduced the incidence of overt diabetes from 100% to 77.8%. This outcome was accompanied by a reduction in hepatic glucose production and an increase in glucose oxidation in the muscle of the diabetic mice, whereas body weight, calorie intake, body composition, and plasma insulin and glucagon levels were not altered. Consistently, treatment with kaempferol restored hexokinase activity in the liver and skeletal muscle of diabetic mice while suppressed hepatic pyruvate carboxylase activity and gluconeogenesis. These results suggest that kaempferol may exert antidiabetic action via promoting glucose metabolism in skeletal muscle and inhibiting gluconeogenesis in the liver.
Collapse
|
88
|
Niwano F, Hiromine Y, Noso S, Babaya N, Ito H, Yasutake S, Matsumoto I, Takeyama Y, Kawabata Y, Ikegami H. Insulin deficiency with and without glucagon: A comparative study between total pancreatectomy and type 1 diabetes. J Diabetes Investig 2018; 9:1084-1090. [PMID: 29288524 PMCID: PMC6123030 DOI: 10.1111/jdi.12799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 12/24/2022] Open
Abstract
AIMS/INTRODUCTION Patients with a total pancreatectomy and type 1 diabetes are similar in regard to absolute insulin deficiency, but different in regard to glucagon, providing a unique opportunity to study the contribution of glucagon to glucose metabolism in an insulin-dependent state. The aim of the present study was to investigate the contribution of glucagon to glucose homeostasis in complete insulin deficiency in vivo. METHODS A total of 38 individuals with a complete lack of endogenous insulin (fasting C-peptide <0.0066 nmol/L) and whose glycemic control was optimized with an insulin pump during hospitalization were retrospectively studied. The basal insulin requirement, time-to-time adjustment of the basal insulin infusion rate, prandial insulin requirement and fasting plasma glucagon were compared between patients with a total pancreatectomy (n = 10) and those with type 1 diabetes (n = 28) after achievement of optimal glycemic control. RESULTS Total daily insulin (P = 0.03) and basal insulin (P = 0.000006), but not prandial insulin requirements, were significantly lower in total pancreatectomy patients than in type 1 diabetes patients. The basal percentage (basal insulin/total daily insulin) was also significantly lower in total pancreatectomy patients than in type 1 diabetes patients (15.8 ± 7.8 vs 32.9 ± 10.1%, P = 0.00003). An increase in the insulin infusion rate early in the morning was not necessary in most patients with a pancreatectomy. The fasting plasma glucagon concentration was significantly lower in total pancreatectomy patients than in type 1 diabetes patients (P = 0.00007), and was positively correlated with the basal insulin requirement (P = 0.038). CONCLUSIONS The difference in insulin requirements between total pancreatectomy and type 1 diabetes patients suggests a contribution of glucagon to the basal insulin requirement and dawn phenomenon.
Collapse
Affiliation(s)
- Fumimaru Niwano
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Yoshihisa Hiromine
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Naru Babaya
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Hiroyuki Ito
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Sara Yasutake
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Ippei Matsumoto
- Department of SurgeryKindai University Faculty of MedicineOsakaJapan
| | | | - Yumiko Kawabata
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| |
Collapse
|
89
|
Hughes JW, Ustione A, Lavagnino Z, Piston DW. Regulation of islet glucagon secretion: Beyond calcium. Diabetes Obes Metab 2018; 20 Suppl 2:127-136. [PMID: 30230183 PMCID: PMC6148361 DOI: 10.1111/dom.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
The islet of Langerhans plays a key role in glucose homeostasis through regulated secretion of the hormones insulin and glucagon. Islet research has focused on the insulin-secreting β-cells, even though aberrant glucagon secretion from α-cells also contributes to the aetiology of diabetes. Despite its importance, the mechanisms controlling glucagon secretion remain controversial. Proper α-cell function requires the islet milieu, where β- and δ-cells drive and constrain α-cell dynamics. The response of glucagon to glucose is similar between isolated islets and that measured in vivo, so it appears that the glucose dependence requires only islet-intrinsic factors and not input from blood flow or the nervous system. Elevated intracellular free Ca2+ is needed for α-cell exocytosis, but interpreting Ca2+ data is tricky since it is heterogeneous among α-cells at all physiological glucose levels. Total Ca2+ activity in α-cells increases slightly with glucose, so Ca2+ may serve a permissive, rather than regulatory, role in glucagon secretion. On the other hand, cAMP is a more promising candidate for controlling glucagon secretion and is itself driven by paracrine signalling from β- and δ-cells. Another pathway, juxtacrine signalling through the α-cell EphA receptors, stimulated by β-cell ephrin ligands, leads to a tonic inhibition of glucagon secretion. We discuss potential combinations of Ca2+ , cAMP, paracrine and juxtacrine factors in the regulation of glucagon secretion, focusing on recent data in the literature that might unify the field towards a quantitative understanding of α-cell function.
Collapse
Affiliation(s)
- Jing W. Hughes
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
90
|
Tsuru M, Ono A, Umeyama H, Takeuchi M, Nagata K. Ubiquitin-dependent proteolysis of CXCL7 leads to posterior longitudinal ligament ossification. PLoS One 2018; 13:e0196204. [PMID: 29782494 PMCID: PMC5962073 DOI: 10.1371/journal.pone.0196204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL), a spinal ligament, reduces the range of motion in limbs. No treatment is currently available for OPLL, which is why therapies are urgently needed. OPLL occurs in obesity, is more common in men, and has an onset after 40 years of age. The mechanisms underlying OPLL remain unclear. In this study, we performed a serum proteomic analysis in both OPLL patients and healthy subjects to identify factors potentially involved in the development of OPLL, and found reduced levels of a protein that might underlie the pathology of OPLL. We isolated the protein, determined its amino acid sequence, and identified it as chemokine (C-X-C motif) ligand 7 (CXCL7). Based on these proteomics findings, we generated a CXCL7 knockout mouse model to study the molecular mechanisms underlying OPLL. CXCL7-null mice presented with a phenotype of OPLL, showing motor impairment, heterotopic ossification in the posterior ligament tissue, and osteoporosis in vertebrate tissue. To identify the mechanisms of CXCL7 deficiency in OPLL, we searched for single nucleotide polymorphisms and altered DNA exons, but no abnormalities were found. Although miR-340 levels were found to be high in an miRNA array, they were insufficient to reduce CXCL7 levels. Ubiquitin C-terminal hydrolase1 (UCHL1) was found to be overexpressed in CXCL7-null mice and in the sera of patients with OPLL, and was correlated with OPLL severity. Post-translational modifications of proteins with ubiquitin and ubiquitin-like modifiers, orchestrated by a cascade of specialized ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3) enzymes, are thought to control a wide range of cellular processes, and alterations in the ubiquitin–proteasome system have been associated with several degenerative disorders. In addition, the OPLL tissue of CXCL7-null mouse and its primary cells expressed the antibody to ubiquitin (linkage-specific K48). Our data clearly show decreased CXCL7 levels in patients with OPLL, and that OPLL developed in mice lacking CXCL7. Tumor necrosis factor receptor-associated factor (TRAF)6 expression was decreased in CXCL7-null mouse primary cells. Furthermore, K48 polyubiquitination was found in posterior longitudinal ligament ossified tissue and primary cells from CXCL7-null mice. We performed a phosphoproteomics analysis in CXCL7-deficient mice and identified increased phosphorylation of mitogen-activated protein kinase kinase (ME3K)15, ubiquitin protein ligase E3C (UBE3C) and protein kinase C (PKC) alpha, suggesting that ubiquitin-dependent degradation is involved in CXCL7 deficiency. Future studies in the CXCL7-null mouse model are, therefore, warranted to investigate the role of ubiquitination in the onset of OPLL. In conclusion, CXCL7 levels may be useful as a serum marker for the progression of OPLL. This study also suggests that increasing CXCL7 levels in patients can serve as an effective therapeutic strategy for the treatment of OPLL.
Collapse
Affiliation(s)
- Michiyo Tsuru
- Clinical Proteomics and Gene Therapy Laboratory, Kurume University, Fukuoka, Japan
| | - Atsushi Ono
- Department of Orthopaedic Surgery, Hirosaki Memorial Hospital, Hirosaki, Japan
| | - Hideaki Umeyama
- Department of Biological Science, Chuo University, Tokyo, Japan
| | - Masahiro Takeuchi
- Department of Clinical Medicine (Biostatistics), Kitasato University School of Pharmacy, Tokyo, Japan
| | - Kensei Nagata
- Department of Orthopaedic Surgery, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
91
|
MafB Is Critical for Glucagon Production and Secretion in Mouse Pancreatic α Cells In Vivo. Mol Cell Biol 2018; 38:MCB.00504-17. [PMID: 29378833 DOI: 10.1128/mcb.00504-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The MafB transcription factor is expressed in pancreatic α and β cells during development but becomes exclusive to α cells in adult rodents. Mafb-null (Mafb-/- ) mice were reported to have reduced α- and β-cell numbers throughout embryonic development. To further analyze the postnatal function of MafB in the pancreas, we generated endocrine cell-specific (MafbΔEndo ) and tamoxifen-dependent (MafbΔTAM ) Mafb knockout mice. MafbΔEndo mice exhibited reduced populations of insulin-positive (insulin+) and glucagon+ cells at postnatal day 0, but the insulin+ cell population recovered by 8 weeks of age. In contrast, the Arx+ glucagon+ cell fraction and glucagon expression remained decreased even in adulthood. MafbΔTAM mice, with Mafb deleted after pancreas maturation, also demonstrated diminished glucagon+ cells and glucagon content without affecting β cells. A decreased Arx+ glucagon+ cell population in MafbΔEndo mice was compensated for by an increased Arx+ pancreatic polypeptide+ cell population. Furthermore, gene expression analyses from both MafbΔEndo and MafbΔTAM islets revealed that MafB is a key regulator of glucagon expression in α cells. Finally, both mutants failed to respond to arginine, likely due to impaired arginine transporter gene expression and glucagon production ability. Taken together, our findings reveal that MafB is critical for the functional maintenance of mouse α cells in vivo, including glucagon production and secretion, as well as in development.
Collapse
|
92
|
Pedersen C, Porsgaard T, Thomsen M, Rosenkilde MM, Roed NK. Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats. PLoS One 2018; 13:e0194468. [PMID: 29558502 PMCID: PMC5860770 DOI: 10.1371/journal.pone.0194468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 11/18/2022] Open
Abstract
Insulin is a vital part of diabetes treatment, whereas glucagon is primarily used to treat insulin-induced hypoglycemia. However, glucagon is suggested to have a central role in the regulation of body weight, which would be beneficial for diabetic patients. Since the glucagon effect on blood glucose is known to be transient, it is relevant to investigate the pharmacodynamics of glucagon after repeated dosing. In the present study, we used telemetry to continuously measure blood glucose in streptozotocin induced diabetic Sprague-Dawley rats. This allowed for a more detailed analysis of glucose regulation compared to intermittent blood sampling. In particular, we evaluated the blood glucose-lowering effect of different insulin doses alone, and in combination with a long acting glucagon analog (LAG). We showed how the effect of the LAG accumulated and persisted over time. Furthermore, we found that addition of the LAG decreased body weight without affecting food intake. In a subsequent study, we focused on the glucagon effect on body weight and food intake during equal glycemic control. In order to obtain comparable maximum blood glucose lowering effect to insulin alone, the insulin dose had to be increased four times in combination with 1 nmol/kg of the LAG. In this set-up the LAG prevented further increase in body weight despite the four times higher insulin-dose. However, the body composition was changed. The insulin group increased both lean and fat mass, whereas the group receiving four times insulin in combination with the LAG only significantly increased the fat mass. No differences were observed in food intake, suggesting a direct effect on energy expenditure by glucagon. Surprisingly, we observed decreased levels of FGF21 in plasma compared to insulin treatment alone. With the combination of insulin and the LAG the blood glucose-lowering effect of insulin was prolonged, which could potentially be beneficial in diabetes treatment.
Collapse
Affiliation(s)
- Christina Pedersen
- Department of GLP-1 & T2D Biology, Novo Nordisk A/S, Maaloev, Denmark
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Trine Porsgaard
- Department of Insulin Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | - Maria Thomsen
- Department of Modelling, Novo Nordisk A/S, Maaloev, Denmark
| | - Mette Marie Rosenkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
93
|
Abstract
Islets of Langerhans are islands of endocrine cells scattered throughout the pancreas. A number of new studies have pointed to the potential for conversion of non-β islet cells in to insulin-producing β-cells to replenish β-cell mass as a means to treat diabetes. Understanding normal islet cell mass and function is important to help advance such treatment modalities: what should be the target islet/β-cell mass, does islet architecture matter to energy homeostasis, and what may happen if we lose a particular population of islet cells in favour of β-cells? These are all questions to which we will need answers for islet replacement therapy by transdifferentiation of non-β islet cells to be a reality in humans. We know a fair amount about the biology of β-cells but not quite as much about the other islet cell types. Until recently, we have not had a good grasp of islet mass and distribution in the human pancreas. In this review, we will look at current data on islet cells, focussing more on non-β cells, and on human pancreatic islet mass and distribution.
Collapse
Affiliation(s)
- Gabriela Da Silva Xavier
- Section of Functional Genomics and Cell Biology, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
94
|
Pancreatic alpha cells in diabetic rats express active GLP-1 receptor: Endosomal co-localization of GLP-1/GLP-1R complex functioning through intra-islet paracrine mechanism. Sci Rep 2018; 8:3725. [PMID: 29487355 PMCID: PMC5829082 DOI: 10.1038/s41598-018-21751-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion from pancreatic beta cells and suppresses glucagon secretion from alpha cells. It remains controversial, however, whether GLP-1 receptor (GLP-1R) is expressed in mature alpha cells. In this study, unlike previous studies using non-diabetic animals, we demonstrated using diabetic model rats and confocal laser scanning microscopy that the GLP-1/GLP-1R complex was located in the endosome of diabetic islets. In addition, we showed that GLP-1 and GLP-1R co-localized with various endosomal markers and adenylate cyclase in the alpha cells of diabetic rats. Diabetic rats had endosomal signaling pathway but normal rats had classical signaling pathway for activated GLP-1R. Furthermore, we performed pancreatic perfusion to assess the functional activity of GLP-1R when stimulated by exendin-4 (EX4). In a pancreas perfusion study, EX4 significantly stimulated glucagon secretion in diabetic rats but not normal rats. However, such glucagon secretion was immediately suppressed, probably due to concomitantly secreted insulin. The GLP-1/GLP-1R complex appears to function through an intra-islet paracrine mechanism in diabetic conditions which could explain, at least in part, the mechanism of paradoxical hyperglucagonaemia in type 2 diabetes.
Collapse
|
95
|
Neutrophils Release Metalloproteinases during Adhesion in the Presence of Insulin, but Cathepsin G in the Presence of Glucagon. Mediators Inflamm 2018; 2018:1574928. [PMID: 29670459 PMCID: PMC5833473 DOI: 10.1155/2018/1574928] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022] Open
Abstract
In patients with reperfusion after ischemia and early development of diabetes, neutrophils can attach to blood vessel walls and release their aggressive bactericide agents, which damage the vascular walls. Insulin and 17β-estradiol (E2) relieve the vascular complications observed in metabolic disorders. In contrast, glucagon plays an essential role in the pathophysiology of diabetes. We studied the effect of hormones on neutrophil secretion during adhesion to fibronectin. Amino acid analysis revealed that proteins secreted by neutrophils are characterized by a stable amino acid profile enriched with glutamate, leucine, lysine, and arginine. The total amount of secreted proteins defined as the sum of detected amino acids was increased in the presence of insulin and reduced in the presence of glucagon. E2 did not affect the amount of protein secretion. Proteome analysis showed that in the presence of insulin and E2, neutrophils secreted metalloproteinases MMP-9 and MMP-8 playing a key role in modulation of the extracellular matrix. In contrast, glucagon induced the secretion of cathepsin G, a key bactericide protease of neutrophils. Cathepsin G can promote the development of vascular complications because of its proinflammatory activity and ability to stimulate neutrophil adhesion via the proteolysis of surface receptors.
Collapse
|
96
|
Abstract
Globally, 13% of the world's adult population is obese, and more than 400 million people suffer from diabetes. These conditions are both associated with significant morbidity, mortality and financial cost. Therefore, finding new pharmacological treatments is an imperative. Relative hyperglucagonaemia is seen in all types of diabetes, and has been implicated in its pathogenesis. Consequently, clinical trials are underway using drugs which block glucagon activity to treat type 2 diabetes. Conversely, exogenous glucagon can increase energy expenditure. Therefore, researchers are designing peptides that combine activation of the glucagon receptor with further incretin properties, which will treat obesity while mitigating the hyperglycaemic effects of glucagon. This review will discuss these conflicting physiological properties of glucagon, and the attempts to harness these effects pharmacologically.
Collapse
Affiliation(s)
- R V Scott
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| | - S R Bloom
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| |
Collapse
|
97
|
Kostic A, King TA, Yang F, Chan K, Yancopoulos GD, Gromada J, Harp JB. A first-in-human pharmacodynamic and pharmacokinetic study of a fully human anti-glucagon receptor monoclonal antibody in normal healthy volunteers. Diabetes Obes Metab 2018; 20:283-291. [PMID: 28755409 PMCID: PMC5813272 DOI: 10.1111/dom.13075] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023]
Abstract
AIMS Glucagon receptor (GCGR) blockers are being investigated as potential therapeutics for type 1 and type 2 diabetes. Here we report the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of REGN1193, a fully human glucagon receptor blocking monoclonal antibody from a first-in-human healthy volunteer randomized double-blinded trial. METHODS Healthy men and women received single ascending doses of REGN1193 ranging from 0.05 to 0.6 mg/kg (n = 42) or placebo (n = 14) intravenously. Safety, tolerability and PK were assessed over 106 days. The glucose-lowering effect of REGN1193 was assessed after induction of hyperglycaemia by serial glucagon challenges. RESULTS REGN1193 was generally well tolerated. There were small (<3× the upper limit of normal) and transient dose-dependent increases in hepatic aminotransferases. No increase in LDL-C was observed. Hypoglycaemia, assessed as laboratory blood glucose ≤70 mg/dL, occurred in 6/14 (43%) subjects on placebo and 27/42 (57%) on REGN1193 across all dose groups. All episodes of hypoglycaemia were asymptomatic, >50 mg/dL, and did not require treatment or medical assistance. Concentration-time profiles suggest a 2-compartment disposition and marked nonlinearity, consistent with target-mediated clearance. REGN1193 inhibited the glucagon-stimulated glucose increase in a dose-dependent manner. The 0.6 mg/kg dose inhibited the glucagon-induced glucose area under the curve for 0 to 90 minutes (AUC0-90 minutes ) by 80% to 90% on days 3 and 15, while blunting the increase in C-peptide. REGN1193 dose-dependently increased total GLP-1, GLP-2 and glucagon, with plasma levels returning to baseline by day 29 in all dose groups. CONCLUSION REGN1193, a GCGR-blocking monoclonal antibody, produced a safety, tolerability and PK/PD profile suitable for further clinical development. The occurrence of transient elevations in serum hepatic aminotransferases observed here and reported with several small molecule glucagon receptor antagonists suggests an on-target effect of glucagon receptor blockade. The underlying mechanism is unknown.
Collapse
MESH Headings
- Adult
- Antibodies, Blocking/administration & dosage
- Antibodies, Blocking/adverse effects
- Antibodies, Blocking/blood
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Biomarkers/blood
- Blood Glucose/analysis
- Cohort Studies
- Dose-Response Relationship, Drug
- Double-Blind Method
- Female
- Follow-Up Studies
- Half-Life
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/pharmacokinetics
- Hypoglycemic Agents/pharmacology
- Infusions, Intravenous
- Lost to Follow-Up
- Male
- Metabolic Clearance Rate
- Middle Aged
- Patient Dropouts
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Young Adult
Collapse
Affiliation(s)
- Ana Kostic
- Regeneron Pharmaceuticals, Inc.TarrytownNew York
| | | | - Feng Yang
- Regeneron Pharmaceuticals, Inc.TarrytownNew York
| | | | | | | | | |
Collapse
|
98
|
Abstract
Type 1 diabetes is characterized by selective loss of beta cells and insulin secretion, which significantly impact glucose homeostasis. However, this progressive disease is also associated with dysfunction of the alpha cell component of the islet, which can exacerbate hyperglycemia due to paradoxical hyperglucagonemia or lead to severe hypoglycemia as a result of failed counterregulation. In this review, the physiology of alpha cell secretion and the potential mechanisms underlying alpha cell dysfunction in type 1 diabetes will be explored. Because type 1 diabetes is a progressive disease, a synthesized timeline of aberrant alpha cell function will be presented as an attempt to delineate the natural history of type 1 diabetes with respect to the alpha cell.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO 63104, United States.
| |
Collapse
|
99
|
Hædersdal S, Lund A, Knop FK, Vilsbøll T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin Proc 2018; 93:217-239. [PMID: 29307553 DOI: 10.1016/j.mayocp.2017.12.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes is a disease involving both inadequate insulin levels and increased glucagon levels. While glucagon and insulin work together to achieve optimal plasma glucose concentrations in healthy individuals, the usual regulatory balance between these 2 critical pancreatic hormones is awry in patients with diabetes. Although clinical discussion often focuses on the role of insulin, glucagon is equally important in understanding type 2 diabetes. Furthermore, an awareness of the role of glucagon is essential to appreciate differences in the mechanisms of action of various classes of glucose-lowering therapies. Newer drug classes such as dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists improve glycemic control, in part, by affecting glucagon levels. This review provides an overview of the effect of glucose-lowering therapies on glucagon on the basis of an extensive PubMed literature search to identify clinical studies of glucose-lowering therapies in type 2 diabetes that included assessment of glucagon. Clinical practice currently benefits from available therapies that impact the glucagon regulatory pathway. As clinicians look to the future, improved treatment strategies are likely to emerge that will either use currently available therapies whose mechanisms of action complement each other or take advantage of new therapies based on an improved understanding of glucagon pathophysiology.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Asger Lund
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
100
|
Yagi T, Kubota E, Koyama H, Tanaka T, Kataoka H, Imaeda K, Joh T. Glucagon promotes colon cancer cell growth via regulating AMPK and MAPK pathways. Oncotarget 2018. [PMID: 29535833 PMCID: PMC5828215 DOI: 10.18632/oncotarget.24367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the major causes of death in diabetic patients, and an association between antidiabetic drugs and cancer risk has been reported. Such evidence implies a strong connection between diabetes and cancer. Recently, glucagon has been recognized as a pivotal factor implicated in the pathophysiology of diabetes. Glucagon acts through binding to its receptor, glucagon receptor (GCGR), and cross-talk between GCGR-mediated signals and signaling pathways that regulate cancer cell fate has been unveiled. In the current study, expression of GCGR in colon cancer cell lines and colon cancer tissue obtained from patients was demonstrated. Glucagon significantly promoted colon cancer cell growth, and GCGR knockdown with small interfering RNA attenuated the proliferation-promoting effect of glucagon on colon cancer cells. Molecular assays showed that glucagon acted as an activator of cancer cell growth through deactivation of AMPK and activation of MAPK in a GCGR-dependent manner. Moreover, a stable GCGR knockdown mouse colon cancer cell line, CMT93, grew significantly slower than control in a syngeneic mouse model of type 2 diabetes with glycemia and hyperglucagonemia. The present observations provide experimental evidence that hyperglucagonemia in type 2 diabetes promotes colon cancer progression via GCGR-mediated regulation of AMPK and MAPK pathways.
Collapse
Affiliation(s)
- Takashi Yagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kenro Imaeda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|