51
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
52
|
Yunussova N, Tilegen M, Pham TT, Kanayeva D. Rapid detection of carcinoembryonic antigen by means of an electrochemical aptasensor. iScience 2024; 27:109637. [PMID: 38646165 PMCID: PMC11033162 DOI: 10.1016/j.isci.2024.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Carcinoembryonic antigen (CEA) is a critical biomarker for identifying colon cancer. This work presents an electrochemical impedance spectroscopy (EIS) based aptasensor for detecting CEA, utilizing a single-stranded DNA (ssDNA) aptamer previously selected and characterized by our research group. The surface of an interdigitated gold electrode (IDE) was successfully functionalized with an 18-HEG-modified aptamer sequence. The developed aptasensor demonstrated high specificity and sensitivity with detection limits of 2.4 pg/mL and 3.8 pg/mL for CEA in buffer and human serum samples, respectively. The optimal incubation time for the target protein was 20 min, and EIS measurements took less than 3 min. Atomic force microscopy (AFM) micrographs supported the EIS data, demonstrating a change in IDE surface roughness after each modification step, confirming the successful capture of the target. The potential of this developed EIS aptasensor in detecting CEA in complex samples holds promise.
Collapse
Affiliation(s)
- Nigara Yunussova
- Ph.D. program in Life Sciences, Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana 010000, Kazakhstan
| | - Meruyert Tilegen
- M.Sc. program in Molecular Medicine, School of Medicine, Nazarbayev University, 5/1 Kerey-Zhanibek Khandar St, Astana 010000, Kazakhstan
| | - Tri Thanh Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana 010000, Kazakhstan
| | - Damira Kanayeva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana 010000, Kazakhstan
| |
Collapse
|
53
|
Mliki H, Echabaane M, Rouis A, El Ghoul JM, Bessueille F, Ayed D, Jaffrezic-Renault N. Highly electroactive Co-ZnO/GO nanocomposite: Electrochemical sensing platform for oxytetracycline determination. Heliyon 2024; 10:e30265. [PMID: 38726196 PMCID: PMC11078884 DOI: 10.1016/j.heliyon.2024.e30265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Antimicrobial residues in animal-derived foods have become a major source of concern around the world. Oxytetracycline (OTC), one of these antibiotics that belongs to the tetracycline family should be detected in these matrices. Nanostructured metal oxides have attracted a lot of scientific attention due to their special characteristics that can be exploited for creating innovative nanodevices. Therefore, in the present study, we report the fabrication of cobalt-doped ZnO/GO nanocomposites for OTC sensors using a simple and environmentally friendly method that does not require toxic solvents. Contact angle measurements, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis were used to confirm the successful fabrication of the Co-ZnO/GO nanocomposite and to determine the surface area, Structural, morphological features, chemical composition and purity of the nanocomposite. The electrochemical and electrocatalytic properties were recorded using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and differential pulse voltammetry (DPV). Optimizing parameters such as scan rate, pH value, deposition time, and deposition potential, we achieve a wide linear concentration range from 10-12 M to 10-7 M, with an impressive detection limit of 1.6 10-13 M.Notably, our sensor exhibits remarkable selectivity, demonstrating its usefulness for the detection of oxytetracycline traces in real milk samples. These results emphasize the novelty and practical significance of our work and provide a promising avenue for the development of sensitive and selective electrochemical sensing platforms in various fields.
Collapse
Affiliation(s)
- Haifa Mliki
- Laboratory of Interfaces and Advanced Materials (LIMA) Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Mosaab Echabaane
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, 4034, Sousse, Tunisia
| | - Ahlem Rouis
- Laboratory of Interfaces and Advanced Materials (LIMA) Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Jaber Mohamed El Ghoul
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabes University, Faculty of Sciences in Gabes, 6072, Tunisia
| | - Francois Bessueille
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne, 69100, France
| | - Dhekra Ayed
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne, 69100, France
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne, 69100, France
| |
Collapse
|
54
|
Steiner D, Meyer A, Immohr LI, Pein-Hackelbusch M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024; 16:658. [PMID: 38794320 PMCID: PMC11125162 DOI: 10.3390/pharmaceutics16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In this review, we aim to highlight the advantages, challenges, and limitations of electronic tongues (e-tongues) in pharmaceutical drug development. The authors, therefore, critically evaluated the performance of e-tongues regarding their qualification to assess peroral formulations containing bitter active pharmaceutical ingredients. A literature search using the keywords 'electronic', 'tongue', 'bitter', and 'drug' in a Web of Science search was therefore initially conducted. Reviewing the publications of the past decade, and further literature where necessary, allowed the authors to discuss whether and how e-tongues perform as expected and whether they have the potential to become a standard tool in drug development. Specifically highlighted are the expectations an e-tongue should meet. Further, a brief insight into the technologies of the utilized e-tongues is given. Reliable protocols were found that enable (i) the qualified performance of e-tongue instruments from an analytical perspective, (ii) proper taste-masking assessments, and (iii) under certain circumstances, the evaluation of bitterness.
Collapse
Affiliation(s)
- Denise Steiner
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany;
| | - Alexander Meyer
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | | | - Miriam Pein-Hackelbusch
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| |
Collapse
|
55
|
Szydlowska BM, Pola CC, Cai Z, Chaney LE, Hui J, Sheets R, Carpenter J, Dean D, Claussen JC, Gomes CL, Hersam MC. Biolayer-Interferometry-Guided Functionalization of Screen-Printed Graphene for Label-Free Electrochemical Virus Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25169-25180. [PMID: 38695741 DOI: 10.1021/acsami.4c05264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.
Collapse
Affiliation(s)
- Beata M Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zizhen Cai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Janan Hui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert Sheets
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jeremiah Carpenter
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
56
|
Ell M, Bui MT, Kigili S, Zeck G, Prado-López S. Assessment of chemotherapeutic effects on cancer cells using adhesion noise spectroscopy. Front Bioeng Biotechnol 2024; 12:1385730. [PMID: 38803844 PMCID: PMC11128629 DOI: 10.3389/fbioe.2024.1385730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
With cancer as one of the leading causes of death worldwide, there is a need for the development of accurate, cost-effective, easy-to-use, and fast drug-testing assays. While the NCI 60 cell-line screening as the gold standard is based on a colorimetric assay, monitoring cells electrically constitutes a label-free and non-invasive tool to assess the cytotoxic effects of a chemotherapeutic treatment on cancer cells. For decades, impedance-based cellular assays extensively investigated various cell characteristics affected by drug treatment but lack spatiotemporal resolution. With progress in microelectrode fabrication, high-density Complementary Metal Oxide Semiconductor (CMOS)-based microelectrode arrays (MEAs) with subcellular resolution and time-continuous recording capability emerged as a potent alternative. In this article, we present a new cell adhesion noise (CAN)-based electrical imaging technique to expand CMOS MEA cell-biology applications: CAN spectroscopy enables drug screening quantification with single-cell spatial resolution. The chemotherapeutic agent 5-Fluorouracil exerts a cytotoxic effect on colorectal cancer (CRC) cells hampering cell proliferation and lowering cell viability. For proof-of-concept, we found sufficient accuracy and reproducibility for CAN spectroscopy compared to a commercially available standard colorimetric biological assay. This label-free, non-invasive, and fast electrical imaging technique complements standardized cancer screening methods with significant advances over established impedance-based approaches.
Collapse
Affiliation(s)
- Maximilian Ell
- Institute of Biomedical Electronics, Faculty of Electrical Engineering and Information Technology, TU Wien, Vienna, Austria
| | - Mai Thu Bui
- Institute of Biomedical Electronics, Faculty of Electrical Engineering and Information Technology, TU Wien, Vienna, Austria
| | - Seyda Kigili
- Institute of Solid State Electronics, Faculty of Electrical Engineering and Information Technology, TU Wien, Vienna, Austria
| | - Günther Zeck
- Institute of Biomedical Electronics, Faculty of Electrical Engineering and Information Technology, TU Wien, Vienna, Austria
| | - Sonia Prado-López
- Institute of Solid State Electronics, Faculty of Electrical Engineering and Information Technology, TU Wien, Vienna, Austria
| |
Collapse
|
57
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
58
|
Castañeda-Morales E, Gómez-Gómez FA, Li Y, Manzo-Robledo A. Insights in Pt-based electrocatalysts on carbon supports for electro-oxidation of carbohydrates: an EIS-DEMS analysis. Front Chem 2024; 12:1383443. [PMID: 38783898 PMCID: PMC11112023 DOI: 10.3389/fchem.2024.1383443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, the electrochemical oxidation of carbohydrates (glucose, fructose, and sucrose) was induced at the interface of Pt-nanoparticles supported on different carbon-based materials as carbon vulcan (C) and carbon black (CB). It was found that the support plays an important role during carbohydrates electro-oxidation as demonstrated by electrochemical techniques. In this context, current-concentration profiles of the redox peaks show the behavior of the pathways at carbohydrates-based solutions. Herein, the trend of current measured was glucose > sucrose > fructose, attributed to differences in the organic functional groups and chain-structure. Raman, XRD, SEM-EDS and XPS put in clear important structural, morphological, and electronic differences linked with the intrinsic nature of the obtained material. Differential Electrochemical Mass Spectroscopy (DEMS) indicated that the selectivity and the conversion of the formed reaction products during oxidation is linked with the catalyst nature (distribution, particle size) and the interaction with the carbon-based support.
Collapse
Affiliation(s)
- Eleazar Castañeda-Morales
- Instituto Politécnico Nacional, Laboratorio de electroquímica y corrosión. Escuela Superior de Ingeniería Química e Industrias Extractivas, Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Fabio A. Gómez-Gómez
- Instituto Politécnico Nacional, Laboratorio de electroquímica y corrosión. Escuela Superior de Ingeniería Química e Industrias Extractivas, Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Yueyin Li
- Universidad de Anahuac Campus norte, Mexico City, Mexico
| | - Arturo Manzo-Robledo
- Instituto Politécnico Nacional, Laboratorio de electroquímica y corrosión. Escuela Superior de Ingeniería Química e Industrias Extractivas, Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
59
|
Lin Y, Chen Z, Feng C, Ma L, Jing J, Hou J, Xu L, Sun M, Chen D. Preparation of S-C 3N 4/AgCdS Z-Scheme Heterojunction Photocatalyst and Its Effectively Improved Photocatalytic Performance. Molecules 2024; 29:1931. [PMID: 38731422 PMCID: PMC11085748 DOI: 10.3390/molecules29091931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, S-doped graphitic carbon nitride (S-C3N4) was prepared using the high-temperature polymerization method, and then S-C3N4/AgCdS heterojunction photocatalyst was obtained using the chemical deposition method through loading Ag-doped CdS nanoparticles (AgCdS NPs) on the surface of S-C3N4. Experimental results show that the AgCdS NPs were evenly dispersed on the surface of S-C3N4, indicating that a good heterojunction structure was formed. Compared to S-C3N4, CdS, AgCdS and S-C3N4/CdS, the photocatalytic performance of S-C3N4/AgCdS has been significantly improved, and exhibits excellent photocatalytic degradation performance of Rhodamine B and methyl orange. The doping of Ag in collaboration with the construction of a Z-scheme heterojunction system promoted the effective separation and transport of the photogenerated carriers in S-C3N4/AgCdS, significantly accelerated its photocatalytic reaction process, and thus improved its photocatalytic performance.
Collapse
Affiliation(s)
- Yuhong Lin
- School of Materials Science and Hydrogen Energy, Foshan University, 18 Jiangwanyi Road, Foshan 528000, China; (Y.L.); (J.J.); (D.C.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Wenhai Road, Qingdao 266237, China; (L.M.); (J.H.); (L.X.); (M.S.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, 18 Jiangwanyi Road, Foshan 528000, China
| | - Zhuoyuan Chen
- School of Materials Science and Hydrogen Energy, Foshan University, 18 Jiangwanyi Road, Foshan 528000, China; (Y.L.); (J.J.); (D.C.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Wenhai Road, Qingdao 266237, China; (L.M.); (J.H.); (L.X.); (M.S.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, 18 Jiangwanyi Road, Foshan 528000, China
| | - Chang Feng
- School of Materials Science and Hydrogen Energy, Foshan University, 18 Jiangwanyi Road, Foshan 528000, China; (Y.L.); (J.J.); (D.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, 18 Jiangwanyi Road, Foshan 528000, China
| | - Li Ma
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Wenhai Road, Qingdao 266237, China; (L.M.); (J.H.); (L.X.); (M.S.)
| | - Jiangping Jing
- School of Materials Science and Hydrogen Energy, Foshan University, 18 Jiangwanyi Road, Foshan 528000, China; (Y.L.); (J.J.); (D.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, 18 Jiangwanyi Road, Foshan 528000, China
| | - Jian Hou
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Wenhai Road, Qingdao 266237, China; (L.M.); (J.H.); (L.X.); (M.S.)
| | - Likun Xu
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Wenhai Road, Qingdao 266237, China; (L.M.); (J.H.); (L.X.); (M.S.)
| | - Mingxian Sun
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Wenhai Road, Qingdao 266237, China; (L.M.); (J.H.); (L.X.); (M.S.)
| | - Dongchu Chen
- School of Materials Science and Hydrogen Energy, Foshan University, 18 Jiangwanyi Road, Foshan 528000, China; (Y.L.); (J.J.); (D.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, 18 Jiangwanyi Road, Foshan 528000, China
| |
Collapse
|
60
|
Li Q, Qu K. Electrochemical Impedimetric Platform Based on Con A@MIL-101 for Glycoprotein Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7974-7981. [PMID: 38564230 DOI: 10.1021/acs.langmuir.3c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An electrochemical impedimetric biosensing platform with lectin as a molecular recognition element has been established for the sensitive detection of glycoproteins, a class of important biomarkers in clinical diagnosis. One of the representative metal-organic framework materials, MIL-101(Cr)-NH2, was utilized as the supporting matrix, and its amino groups served as the anchors to immobilize the lectins of concanavalin A (Con A), constituting Con A@MIL-101(Cr)-NH2 for the determination of invertase (INV) as a model glycoprotein. The Con A concentration, immobilization time, and incubation time with INV were optimized. Under the optimal conditions, the degree of impedance increase was linearly proportional to the logarithm of INV concentration between 1.0 × 10-16 and 1.0 × 10-11 M, affording a limit of detection as low as 3.98 × 10-18 M. Good specificity, stability, reproducibility, and repeatability were demonstrated for the fabricated biosensing platform. Moreover, real mouse serum samples were spiked with different concentrations of INV. Excellent recoveries were obtained, which demonstrated the biosensing platform's capability of analyzing glycoproteins within a complex matrix.
Collapse
Affiliation(s)
- Qianlan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Ke Qu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| |
Collapse
|
61
|
Khanwalker M, Hatada M, LaBelle JT, Sode K. Development of an electrochemical impedance spectroscopy immunosensor for insulin monitoring employing pyrroloquinoline quinone as an ingestible redox probe. Biosens Bioelectron 2024; 250:116049. [PMID: 38290381 DOI: 10.1016/j.bios.2024.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Contemporary electrochemical impedance spectroscopy (EIS)-based biosensors face limitations in their applicability for in vivo measurements, primarily due to the necessity of using a redox probe capable of undergoing oxidation and reduction reactions in solution. Although previous investigations have demonstrated the effectiveness of EIS-based biosensors in detecting various target analytes using potassium ferricyanide as a redox probe, its unsuitability for blood or serum measurements, attributed to its inherent toxicity, poses a significant challenge. In response to this challenge, our study adopted a unique approach, focusing on the use of ingestible materials, by exploring naturally occurring substances within the body, with a specific emphasis on pyrroloquinoline quinone (PQQ). Following an assessment of PQQ's electrochemical attributes, we conducted a comprehensive series of EIS measurements. This involved the thorough characterization of the sensor's evolution, starting from the bare electrode and progressing to the immobilization of antibodies. The sensor's performance was then evaluated through the quantification of insulin concentrations ranging from 1 pM to 100 nM. A single frequency was identified for insulin measurements, offering a pathway for potential in vivo applications by combining PQQ as a redox probe with EIS measurements. This innovative approach holds promise for advancing the field of in vivo biosensing based on the EIS method.
Collapse
Affiliation(s)
- Mukund Khanwalker
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA
| | - Mika Hatada
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA
| | - Jeffery T LaBelle
- Department of Bioengineering, College of Engineering Science and Technology, Grand Canyon University, Phoenix, AZ, AZ85017, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA.
| |
Collapse
|
62
|
Zanoni C, Dallù LV, Costa C, Cutaia A, Alberti G. A Screen-Printed Voltammetric Sensor Modified with Electropolymerized Molecularly Imprinted Polymer (eMIP) to Determine Gallic Acid in Non-Alcoholic and Alcoholic Beverages. Polymers (Basel) 2024; 16:1076. [PMID: 38674995 PMCID: PMC11054643 DOI: 10.3390/polym16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This paper presents a low-cost disposable sensor for gallic acid (GA) detection in non-alcoholic and alcoholic beverages using a screen-printed cell (SPC) whose working electrode (in graphite) is modified with electrosynthesized molecularly imprinted polypyrrole (eMIP). Our preliminary characterization of the electrochemical process shows that gallic acid (GA) undergoes irreversible oxidation at potentials of about +0.3 V. The peak potential is not affected by the presence of the eMIP film and alcohol percentages (ethanol) up to 20%. The GA determination is based on a differential pulse voltammetry (DPV) analysis leveraging its oxidation peak. The calibration data and the figures of merit of the analytical method (LOD, LOQ, and linear range) are calculated. To validate the feasibility of the sensor's application for the dosing of GA in real matrices, some non-alcoholic and alcoholic beverages are analyzed. The results are then compared with those reported in the literature and with the total polyphenol content determined by the Folin-Ciocalteu method. In all cases, the concentrations of GA align with those previously found in the literature for the beverages examined. Notably, the values are consistently lower than the total polyphenol content, demonstrating the sensor's selectivity in discriminating the target molecule from other polyphenols present.
Collapse
Affiliation(s)
| | | | | | | | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
63
|
Çağlayan Arslan Z, Okan M, Külah H. Pre-enrichment-free detection of hepatocellular carcinoma-specific ctDNA via PDMS and MEMS-based microfluidic sensor. Mikrochim Acta 2024; 191:229. [PMID: 38565645 PMCID: PMC10987365 DOI: 10.1007/s00604-024-06315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The growing interest in microfluidic biosensors has led to improvements in the analytical performance of various sensing mechanisms. Although various sensors can be integrated with microfluidics, electrochemical ones have been most commonly employed due to their ease of miniaturization, integration ability, and low cost, making them an established point-of-care diagnostic method. This concept can be easily adapted to the detection of biomarkers specific to certain cancer types. Pathological profiling of hepatocellular carcinoma (HCC) is heterogeneous and rather complex, and biopsy samples contain limited information regarding the tumor and do not reflect its heterogeneity. Circulating tumor DNAs (ctDNAs), which can contain information regarding cancer characteristics, have been studied tremendously since liquid biopsy emerged as a new diagnostic method. Recent improvements in the accuracy and sensitivity of ctDNA determination also paved the way for genotyping of somatic genomic alterations. In this study, three-electrode (Au-Pt-Ag) glass chips were fabricated and combined with polydimethylsiloxane (PDMS) microchannels to establish an electrochemical microfluidic sensor for detecting c.747G > T hotspot mutations in the TP53 gene of ctDNAs from HCC. The preparation and analysis times of the constructed sensor were as short as 2 h in total, and a relatively high flow rate of 30 µl/min was used during immobilization and hybridization steps. To the best of our knowledge, this is the first time a PDMS-based microfluidic electrochemical sensor has been developed to target HCC ctDNAs. The system exhibited a limit of detection (LOD) of 24.1 fM within the tested range of 2-200 fM. The sensor demonstrated high specificity in tests conducted with fully noncomplementary and one-base mismatched target sequences. The developed platform is promising for detecting HCC-specific ctDNA at very low concentrations without requiring pre-enrichment steps.
Collapse
Affiliation(s)
- Zeynep Çağlayan Arslan
- Department of Electrical and Electronics Engineering, METU, Ankara, Turkey
- METU MEMS Research and Application Center, Ankara, Turkey
| | - Meltem Okan
- Department of Micro and Nanotechnology, METU, Ankara, Turkey
- METU MEMS Research and Application Center, Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, METU, Ankara, Turkey.
- Department of Micro and Nanotechnology, METU, Ankara, Turkey.
- METU MEMS Research and Application Center, Ankara, Turkey.
| |
Collapse
|
64
|
Jaradat H, Hryniewicz BM, Pašti IA, Valério TL, Al-Hamry A, Marchesi LF, Vidotti M, Kanoun O. Detection of H. pylori outer membrane protein (HopQ) biomarker using electrochemical impedimetric immunosensor with polypyrrole nanotubes and carbon nanotubes nanocomposite on screen-printed carbon electrode. Biosens Bioelectron 2024; 249:115937. [PMID: 38211465 DOI: 10.1016/j.bios.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Helicobacter pylori (H. pylori) is classified as a class I carcinogen that colonizes the human gastrointestinal (GI) tract. The detection at low concentrations is crucial in combatting H. pylori. HopQ protein is located on H. pylori's outer membrane and is expressed at an early stage of contamination, which signifies it as an ideal biomarker. In this study, we presented the development of an electrochemical impedimetric immunosensor for the ultra-sensitive detection of HopQ at low concentrations. The sensor employed polypyrrole nanotubes (PPy-NTs) and carboxylated multi-walled carbon nanotubes (MWCNT-COOH) nanocomposite. PPy-NTs were chosen for their excellent conductivity, biocompatibility, and redox capabilities, simplifying sample preparation by eliminating the need to add redox probes upon measurement. MWCNT-COOH provided covalent binding sites for HopQ antibodies (HopQ-Ab) on the biosensor surface. Characterization of the biosensor was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and electrochemical impedance spectroscopy (EIS), complemented by numerical semiempirical quantum calculations. The results demonstrated a dynamic linear range of 5 pg/mL to 1.063 ng/mL and an excellent selectivity, with the possibility of excluding interference using EIS data, specifically charge transfer resistance and double-layer capacitance as multivariants for the calibration curve. Using two EIS components, the limit of detection is calculated to be 2.06 pg/mL. The biosensor was tested with a spiked drinking water sample and showed a signal recovery of 105.5% when detecting 300 pg/mL of HopQ. This novel H. pylori biosensor offers reliable, simple, portable, and rapid screening of the bacteria.
Collapse
Affiliation(s)
- Hussamaldeen Jaradat
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| | - Bruna M Hryniewicz
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Igor A Pašti
- University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia.
| | - Tatiana L Valério
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Ammar Al-Hamry
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| | - Luís F Marchesi
- Grupo de Estudos em Espectroscopia de Impedância Eletroquímica (GEIS), Universidade Tecnológica Federal Do Paraná, Rua Dr. Washington Subtil Chueire, 330 - Jd. Carvalho, CEP 84017-220, Ponta Grossa, PR, Brazil.
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Olfa Kanoun
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| |
Collapse
|
65
|
Jiang J, Luo L, Ying N, Wu S, Ji J, Su H, Li X, Zeng D. Electrochemical biosensor based on PAMAM functionalized MXene nanoplatform for detection of folate receptor. Bioelectrochemistry 2024; 156:108627. [PMID: 38142545 DOI: 10.1016/j.bioelechem.2023.108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The level of folate receptor (FR) has become one of the independent factors for measuring human tumor diseases. The precise quantification of FR is helpful for the early diagnosis and subsequent treatment of tumors. The modification of electrodes is a key issue in ensuring and enhancing the electrochemical biosensing ability. In this study, we in-situ synthesized a nanocomposite material with excellent conductivity and stability by grafting first-generation poly(amidoamine) dendrimers onto the MXene (Ti3C2TX) as the immobilized matrix (PAMAM@MXene). An electrochemical sensor was developed for FR monitor by loading the PAMAM@MXene on screen-printed carbon electrodes (SPCEs). Scanning electron microscopy (SEM) supported the effective synthesis of PAMAM@MXene. Under optimal conditions, the prepared sensor achieved the quantification of FR with a wide range of concentrations from 10 ng/mL to 1000 ng/mL with a detection limit (LOD) of 5.6 ng/mL. It also exhibited satisfactory selectivity, reproducibility, and stability, which provided the possibility for expanding new pathways in the detection of clinical FR.
Collapse
Affiliation(s)
- Jiayi Jiang
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shu Wu
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jun Ji
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Haoyuan Su
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiaoou Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
66
|
Pradeepa E, Arthoba Nayaka Y, Sahana HR. Electrochemical investigation of an anticancer drug 5-Fluorouracil in the presence of Theophylline using low-cost and disposable poly(GLY) modified pencil graphite electrode. Anal Biochem 2024; 687:115451. [PMID: 38154624 DOI: 10.1016/j.ab.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Herein this study, a facile, efficient and disposable electrochemical sensor has been prepared by electropolymerization of glycine (poly(GLY)) on the surface of pencil graphite electrode (PGE). The surface topology of the equipped poly(GLY) modified pencil graphite electrode (poly(GLY)/PGE) and bare pencil graphite electrode (BPGE) has been characterized by the scanning electron microscopy (SEM) combined with energy dispersive x-ray analysis (EDX) and charge transfer behaviour was measured by electron impedance spectroscopy (EIS) method. The voltammetric behaviour of anticancer, 5-fluorouracil (5-FU) in the presence of theophylline (THP) has been carried out in 0.1 M phosphate buffer solution (PBS) of physiological pH 7.0 using different techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). The proposed poly(GLY)/PGE shows augmented peak current for 5-FU at lower potential side over the BPGE due to the electrocatalytic behaviour of modifier layers wrapped on the electrode surface. The kinetic behaviour of 5-FU at modified electrode surface was studied by varying different parameters such as pH, scan rate and concentration study in 0.1 M PBS used as a supporting electrolyte. The limit of detection (LOD) for 5-FU was attained using DPV method with different concentrations (1.0-13.0 μM) and it was found to be 0.012 μM. The possible electrochemical reaction of 5-FU was proposed and it was incorporated by two electrons and two protons mechanism at modified electrode surface. The voltammetric response of poly(GLY)/PGE towards the determination of 5-FU was unaffected in the presence of some excipients in addition to the remarkable stability and reproducibility. The applicability of the proposed sensor has been performed by real sample investigation of 5-FU with a substantial percentage of recovery results in all optimized conditions.
Collapse
Affiliation(s)
- E Pradeepa
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - Y Arthoba Nayaka
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India.
| | - H R Sahana
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| |
Collapse
|
67
|
Dhahi TS, Dafhalla AKY, Saad SA, Zayan DMI, Ahmed AET, Elobaid ME, Adam T, Gopinath SCB. The importance, benefits, and future of nanobiosensors for infectious diseases. Biotechnol Appl Biochem 2024; 71:429-445. [PMID: 38238920 DOI: 10.1002/bab.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/19/2023] [Indexed: 04/11/2024]
Abstract
Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.
Collapse
Affiliation(s)
- Th S Dhahi
- Electronics Technical Department, Southern Technical University, Basra, Iraq
| | - Alaa Kamal Yousif Dafhalla
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Sawsan Ali Saad
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | | | | | - Mohamed Elshaikh Elobaid
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Advanced Communication Engineering, Centre of Excellence (ACE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| |
Collapse
|
68
|
Liu M, Wang Y, Tang S, Wang W, Liang A, Luo A. A ratiometric molecular imprinted electrochemiluminescence sensor based on enhanced luminescence of CdSe@ZnS quantum dots by MXene@NaAsc for detecting uric acid. Bioelectrochemistry 2024; 156:108610. [PMID: 38000205 DOI: 10.1016/j.bioelechem.2023.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid, based on MXene@NaAsc nanocomposites, CdSe@ZnS quantum dots and molecularly imprinted polymer composites modified glass carbon electrode. MXene@NaAsc stably enhanced the electron transfer and improved electrochemiluminescence intensity by acting as a base platform and signal amplifier for CdSe@ZnS quantum dots. Specific molecular imprinting cavities based on electropolymerization with o-phenylenediamine were formed to specifically identify uric acid. Combining the good sensitivity of electrochemiluminescence and the excellent selectivity of molecularly imprinted polymer, the ratio of optical signal and electrical signal was used as a comprehensive signal to achieve the detection of uric acid. Based on this, uric acid was detected in the range from 1 × 10-10 to 1 × 10-4 mol/L with the LOD of 18.13 pmol/L (S/N = 3). The developed sensor with easy preparation, great selectivity and excellent sensitivity could successfully detect uric acid in human serum.
Collapse
Affiliation(s)
- Miao Liu
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yuwei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shanshan Tang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
69
|
Balser S, Röhrl M, Spormann C, Lindhorst TK, Terfort A. Selective Quantification of Bacteria in Mixtures by Using Glycosylated Polypyrrole/Hydrogel Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14243-14251. [PMID: 38442898 PMCID: PMC10959108 DOI: 10.1021/acsami.3c14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Here, we present a covalent nanolayer system that consists of a conductive and biorepulsive base layer topped by a layer carrying biorecognition sites. The layers are built up by electropolymerization of pyrrole derivatives that either carry polyglycerol brushes (for biorepulsivity) or glycoside moieties (as biorecognition sites). The polypyrrole backbone makes the resulting nanolayer systems conductive, opening the opportunity for constructing an electrochemistry-based sensor system. The basic concept of the sensor exploits the highly selective binding of carbohydrates by certain harmful bacteria, as bacterial adhesion and infection are a major threat to human health, and thus, a sensitive and selective detection of the respective bacteria by portable devices is highly desirable. To demonstrate the selectivity, two strains of Escherichia coli were selected. The first strain carries type 1 fimbriae, terminated by a lectin called FimH, which recognizes α-d-mannopyranosides, which is a carbohydrate that is commonly found on endothelial cells. The otherE. coli strain was of a strain that lacked this particular lectin. It could be demonstrated that hybrid nanolayer systems containing a very thin carbohydrate top layer (2 nm) show the highest discrimination (factor 80) between the different strains. Using electrochemical impedance spectroscopy, it was possible to quantify in vivo the type 1-fimbriated E. coli down to an optical density of OD600 = 0.0004 with a theoretical limit of 0.00005. Surprisingly, the selectivity and sensitivity of the sensing remained the same even in the presence of a large excess of nonbinding bacteria, making the system useful for the rapid and selective detection of pathogens in complex matrices. As the presented covalent nanolayer system is modularly built, it opens the opportunity to develop a broad band of mobile sensing devices suitable for various field applications such as bedside diagnostics or monitoring for bacterial contamination, e.g., in bioreactors.
Collapse
Affiliation(s)
- Sebastian Balser
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Michael Röhrl
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Carina Spormann
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Thisbe K. Lindhorst
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Andreas Terfort
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
70
|
Alamier WM, Ali SK, Qudsieh IY, Imran M, Almashnowi MYA, Ansari A, Ahmed S. Hydrothermally Synthesized Z-Scheme Nanocomposite of ZIF-9 Modified MXene for Photocatalytic Degradation of 4-Chlorophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6004-6015. [PMID: 38451499 DOI: 10.1021/acs.langmuir.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential to have harmful impacts on both aquatic ecosystems and human health, owing to its hazardous and mutagenic properties. Hence, degradation of 4CP is of utmost significance. This research investigates the photocatalytic degradation of 4CP using a novel Z-scheme heterojunction nanocomposite composed of MXene and ZIF-9. The nanocomposite is synthesized through a two-step hydrothermal method and thoroughly characterized by using XRD, SEM, UV-visible spectroscopy, zeta potential, and electrochemical impedance spectroscopy studies, confirming successful fabrication with improved surface properties. The comparative photocatalytic degradation studies between pristine materials and the nanocomposite were performed, and significant enhancement in performance was observed. The effect of pH on the degradation efficiency is also explored and correlated with the surface charge. The Z-scheme photocatalysis mechanism is proposed, which is supported by time-resolved photoluminescence studies and scavenger experiments. The reusability of the nanocomposite is also evaluated. The study contributes to the development of efficient and sustainable photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Waleed M Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Isam Y Qudsieh
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Majed Y A Almashnowi
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Arshiya Ansari
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Shahzad Ahmed
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
- The Institute for Lasers, Photonics, and Biophotonics/Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
71
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585587. [PMID: 38562885 PMCID: PMC10983962 DOI: 10.1101/2024.03.18.585587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
3 D human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in pre-clinical investigative dermatology and regulatory toxicology. Here, we investigated the utility of electrical impedance spectroscopy (EIS) for non-invasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for seven consecutive days did not impact epidermal morphology and readouts showed comparable trends to HEEs measured only once. We determined two frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9 engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to pro-inflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a non-invasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects and repair.
Collapse
Affiliation(s)
| | - F Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - L D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | - D Rodijk-Olthuis
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - H Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - P A M Jansen
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | - M G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - J P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
72
|
Adam H, Gopinath SC, Adam T, A. Fakhri M, T. Salim E, Subramaniam S. Exploring faradaic and non-faradaic electrochemical impedance spectroscopy approaches in Parkinson's disease diagnosis. Heliyon 2024; 10:e27433. [PMID: 38495156 PMCID: PMC10943381 DOI: 10.1016/j.heliyon.2024.e27433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Parkinson's disease is a neurodegenerative condition defined by the progressive death of dopaminergic neurons in the brain. The diagnosis of Parkinson's disease often uses time-consuming clinical evaluations and subjective assessments. Electrochemical Impedance Spectroscopy (EIS) is a useful technique for electroanalytical devices due to its label-free performance, in-situ measurements, and low cost. The development of reliable diagnostic tools for Parkinson's disease can be significantly enhanced by exploring novel techniques like faradaic and non-faradaic EIS detection methods. These techniques have the ability to identify specific biomarkers or changes in electrochemical properties linked to Parkinson's disease, allowing for an early and accurate diagnosis. Faradaic EIS detection methods utilize redox processes on the electrode surface, while non-faradaic EIS methods rely on charge transfer or capacitive properties. EIS can identify biomarkers or changes in electrical properties as indicators of Parkinson's disease by measuring impedance at different frequencies. By combining both faradaic and non-faradaic EIS approaches, it may be possible to obtain a comprehensive understanding of the electrochemical changes occurring in Parkinson's disease patients. This may lead to the development of more effective diagnostic techniques and potentially opening up new avenues for personalized treatment strategies. This review explores the current research on faradaic and non-faradaic EIS approaches for diagnosing Parkinson's disease using electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Subash C.B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Makram A. Fakhri
- Laser and Optoelectronics Eng. Department, University of Technology-Iraq, Baghdad, 10066, Iraq
| | - Evan T. Salim
- Applied Science Department, University of Technology-Iraq, Baghdad, 10066, Iraq
| | - Sreeramanan Subramaniam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Georgetown, 11800, Penang, Malaysia
| |
Collapse
|
73
|
Wei X, Reddy VS, Gao S, Zhai X, Li Z, Shi J, Niu L, Zhang D, Ramakrishna S, Zou X. Recent advances in electrochemical cell-based biosensors for food analysis: Strategies for sensor construction. Biosens Bioelectron 2024; 248:115947. [PMID: 38181518 DOI: 10.1016/j.bios.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Owing to their advantages such as great specificity, sensitivity, rapidity, and possibility of noninvasive and real-time monitoring, electrochemical cell-based biosensors (ECBBs) have been a powerful tool for food analysis encompassing the areas of nutrition, flavor, and safety. Notably, the distinctive biological relevance of ECBBs enables them to mimic physiological environments and reflect cellular behaviors, leading to valuable insights into the biological function of target components in food. Compared with previous reviews, this review fills the current gap in the narrative of ECBB construction strategies. The review commences by providing an overview of the materials and configuration of ECBBs, including cell types, cell immobilization strategies, electrode modification materials, and electrochemical sensing types. Subsequently, a detailed discussion is presented on the fabrication strategies of ECBBs in food analysis applications, which are categorized based on distinct signal sources. Lastly, we summarize the merits, drawbacks, and application scope of these diverse strategies, and discuss the current challenges and future perspectives of ECBBs. Consequently, this review provides guidance for the design of ECBBs with specific functions and promotes the application of ECBBs in food analysis.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
74
|
Amini-Nogorani E, Zare HR, Jahangiri-Dehaghani F, Benvidi A. A label-free aptasensor based on electrodeposition of gold nanoparticles on silver-based metal-organic frameworks for measuring ochratoxin A in black and red pepper. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1631-1638. [PMID: 38410935 DOI: 10.1039/d3ay02232c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Since ochratoxin A (OTA) is immunotoxic, teratogenic and carcinogenic, it is very important to monitor this compound in food samples. In the present work, the development and fabrication of a label-free electrochemical aptasensor based on the gold nanoparticles/silver-based metal-organic framework (AuNPs/Ag-MOF) for the determination of ochratoxin A (OTA) is introduced. The aptasensor was fabricated by electrodeposition of AuNPs on a glassy carbon electrode modified with Ag-MOF. The characteristics of the synthesized Ag-MOF were determined by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy. The aptamer was immobilized on the modified electrode and then OTA was incubated on it. The process of different stages of the aptasensor construction has been confirmed by two methods of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and using [Fe(CN)6]3-/4- as a redox probe. The EIS method has also been used for the OTA quantitative determination. The difference in charge transfer resistance (Rct) before and after the interaction of OTA with the immobilized aptamer was considered as the analytical response of the aptasensor. Using the developed aptasensor, it is possible to measure OTA in the concentration range of 1.0 × 10-3 to 200.0 ng mL-1 with a detection limit of 2.2 × 10-4 ng mL-1. Finally, the ability of the aptasensor to measure OTA in red and black pepper was investigated and completely satisfactory results were obtained.
Collapse
Affiliation(s)
| | - Hamid R Zare
- Department of Chemistry, Yazd University, Yazd, 89195-741, Iran.
| | | | - Ali Benvidi
- Department of Chemistry, Yazd University, Yazd, 89195-741, Iran.
| |
Collapse
|
75
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
76
|
Malecka-Baturo K, Żółtowska P, Jackowska A, Kurzątkowska-Adaszyńska K, Grabowska I. Electrochemical Aptasensing Platform for the Detection of Retinol Binding Protein-4. BIOSENSORS 2024; 14:101. [PMID: 38392020 PMCID: PMC10887324 DOI: 10.3390/bios14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Here, we present the results of our the electrochemical aptasensing strategy for retinol binding protein-4 (RBP-4) detection based on a thiolated aptamer against RBP-4 and 6-mercaptohexanol (MCH) directly immobilized on a gold electrode surface. The most important parameters affecting the magnitude of the analytical signal generated were optimized: (i) the presence of magnesium ions in the immobilization and measurement buffer, (ii) the concentration of aptamer in the immobilization solution and (iii) its folding procedure. In this work, a systematic assessment of the electrochemical parameters related to the optimization of the sensing layer of the aptasensor was carried out (electron transfer coefficients (α), electron transfer rate constants (k0) and surface coverage of the thiolated aptamer probe (ΓApt)). Then, under the optimized conditions, the analytical response towards RBP-4 protein, in the presence of an Fe(CN)63-/4- redox couple in the supporting solution was assessed. The proposed electrochemical strategy allowed for RBP-4 detection in the concentration range between 100 and 1000 ng/mL with a limit of detection equal to 44 ng/mL based on electrochemical impedance spectroscopy (EIS). The specificity studies against other diabetes biomarkers, including vaspin and adiponectin, proved the selectivity of the proposed platform. These preliminary results will be used in the next step to miniaturize and test the sensor in real samples.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Paulina Żółtowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Agnieszka Jackowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Katarzyna Kurzątkowska-Adaszyńska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| |
Collapse
|
77
|
Massey RS, Appadurai RR, Prakash R. A Surface Imprinted Polymer EIS Sensor for Detecting Alpha-Synuclein, a Parkinson's Disease Biomarker. MICROMACHINES 2024; 15:273. [PMID: 38399001 PMCID: PMC10892569 DOI: 10.3390/mi15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming a PD diagnosis are extremely invasive. This prevents their use as a screening tool for the early onset stages of PD. We propose a surface imprinted polymer (SIP) electroimpedance spectroscopy (EIS) biosensor for detecting α-Synuclein (αSyn) and its aggregates, a biomarker that appears in saliva and blood during the early stages of PD as the blood-brain barrier degrades. The surface imprinted polymer stamp is fabricated by low-temperature melt stamping polycaprolactone (PCL) on interdigitated EIS electrodes. The result is a low-cost, small-footprint biosensor that is highly suitable for non-invasive monitoring of the disease biomarker. The sensors were tested with αSyn dilutions in deionized water and in constant ionic concentration matrix solutions with decreasing concentrations of αSyn to remove the background effects of concentration. The device response confirmed the specificity of these devices to the target protein of monomeric αSyn. The sensor limit of detection was measured to be 5 pg/L, and its linear detection range was 5 pg/L-5 µg/L. This covers the physiological range of αSyn in saliva and makes this a highly promising method of quantifying αSyn monomers for PD patients in the future. The SIP surface was regenerated, and the sensor was reused to demonstrate its capability for repeat sensing as a potential continuous monitoring tool for the disease biomarker.
Collapse
Affiliation(s)
| | | | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (R.S.M.); (R.R.A.)
| |
Collapse
|
78
|
Duan H, Tang SY, Goda K, Li M. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers. Biosens Bioelectron 2024; 246:115918. [PMID: 38086309 DOI: 10.1016/j.bios.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring. To fill this gap, we employed gold nanoparticles and MXene Ti3C2 (AuNPs@MXene), a versatile nanocomposite, in designing an E-AB sensor targeted at vascular endothelial growth factor (VEGF), a crucial human signaling protein. Remarkably, the AuNPs@MXene nanocomposite achieved over thirty-fold and half-fold increases in active surface area compared to bare and AuNPs-modified gold electrodes, respectively, significantly elevating the analytical capabilities of E-AB sensors during continuous operation. After a systematic optimization and characterization process, the newly developed E-AB sensor, powered by AuNPs@MXene nanocomposite, demonstrated both enhanced stability and heightened sensitivity. Overall, our findings open new avenues for the incorporation of nanocomposites in E-AB sensor design, enabling the creation of more sensitive and durable real-time monitoring systems.
Collapse
Affiliation(s)
- Haowei Duan
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO16 1BJ, UK
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA; Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
79
|
Inomata T, Endo S, Ido H, Miyamoto M, Ichikawa H, Sugita R, Ozawa T, Masuda H. Detection of Microorganisms Using Artificial Siderophore-Fe III Complex-Modified Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2632-2645. [PMID: 38252152 DOI: 10.1021/acs.langmuir.3c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Four FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups of tricatecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and trihydroxamate type artificial siderophores (K3[FeIIILC3], K2[FeIIILC2H1], K[FeIIILC1H2], and [FeIIILH3]) were modified on Au substrate surfaces. Their abilities to adsorb microorganisms were investigated using scanning electron microscopy, quartz crystal microbalance, and AC impedance methods. The artificial siderophore-iron complexes modified on Au substrates (FeLC3/Au, FeLC2H1/Au, FeLC1H2/Au, and FeLH3/Au) showed the selective immobilization behavior for various microorganisms, depending on the structural features of the artificial siderophores (the number of catecholate and hydroxamate arms). Their specificities corresponded well with the structural characteristics of natural siderophores released by microorganisms and used for FeIII ion uptake. These findings suggest that they were generated via specific interactions between the artificial siderophore-FeIII complexes and the receptors on microorganism surfaces. Our observations revealed that the FeL/Au systems may be potentially used as effective microbe-capturing probes that can enable rapid and simple detection and identification of various microorganisms.
Collapse
Affiliation(s)
- Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Suguru Endo
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ido
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masakazu Miyamoto
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ichikawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ririka Sugita
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tomohiro Ozawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
80
|
Yudin Kharismasari C, Irkham, Zein MIHL, Hardianto A, Nur Zakiyyah S, Umar Ibrahim A, Ozsoz M, Wahyuni Hartati Y. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry 2024; 155:108600. [PMID: 37956622 DOI: 10.1016/j.bioelechem.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Each organism has a unique sequence of nitrogenous bases in in the form of DNA or RNA which distinguish them from other organisms. This characteristic makes nucleic acid-based detection extremely selective and compare to other molecular techniques. In recent years, several nucleic acid-based detection technology methods have been developed, one of which is the electrochemical biosensor. Electrochemical biosensors are known to have high sensitivity and accuracy. In addition, the ease of miniaturization of this electrochemical technique has garnered interest from many researchers. On the other hand, the CRISPR/Cas12 method has been widely used in detecting nucleic acids due to its highly selective nature. The CRISPR/Cas12 method is also reported to increase the sensitivity of electrochemical biosensors through the utilization of modified electrodes. The electrodes can be modified according to detection needs so that the biosensor's performance can be improved. This review discusses the application of CRISPR/Cas12-based electrochemical biosensors, as well as various electrode modifications that have been successfully used to improve the performance of these biosensors in the clinical and food monitoring fields.
Collapse
Affiliation(s)
- Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey; Operational Research Centre in Healthcare, Near East University, Mersin 10, TRNC, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia.
| |
Collapse
|
81
|
Lee AW, Dong Y, Natani S, Ban DK, Bandaru PR. Toward the Ultimate Limit of Analyte Detection, in Graphene-Based Field-Effect Transistors. NANO LETTERS 2024; 24:1214-1222. [PMID: 38230628 DOI: 10.1021/acs.nanolett.3c04066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The ultimate sensitivity of field-effect-transistor (FET)-based devices for ionic species detection is of great interest, given that such devices are capable of monitoring single-electron-level modulations. It is shown here, from both theoretical and experimental perspectives, that for such ultimate limits to be approached the thermodynamic as well as kinetic characteristics of the (FET surface)-(linker)-(ion-receptor) ensemble must be considered. The sensitivity was probed in terms of optimal packing of the ensemble, through a minimal charge state/capacitance point of view and atomic force microscopy. Through the fine-tuning of the linker and receptor interaction with the sensing surface, a record limit of detection as well as specificity in the femtomolar range, orders of magnitude better than previously obtained and in excellent accord with prediction, was observed.
Collapse
Affiliation(s)
- Alex W Lee
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Yongliang Dong
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Shreyam Natani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, United States
| | - Deependra Kumar Ban
- Keck Graduate Institute, Claremont, Los Angeles, California 91711, United States
| | - Prabhakar R Bandaru
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, United States
| |
Collapse
|
82
|
Elnagar N, Elgiddawy N, El Rouby WMA, Farghali AA, Korri-Youssoufi H. Impedimetric Detection of Cancer Markers Based on Nanofiber Copolymers. BIOSENSORS 2024; 14:77. [PMID: 38391996 PMCID: PMC10887276 DOI: 10.3390/bios14020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
The sensitive determination of folate receptors (FRs) in the early stages of cancer is of great significance for controlling the progression of cancerous cells. Many folic acid (FA)-based electrochemical biosensors have been utilized to detect FRs with promising performances, but most were complicated, non-reproducible, non-biocompatible, and time and cost consuming. Here, we developed an environmentally friendly and sensitive biosensor for FR detection. We proposed an electrochemical impedimetric biosensor formed by nanofibers (NFs) of bio-copolymers prepared by electrospinning. The biosensor combines the advantages of bio-friendly polymers, such as sodium alginate (SA) and polyethylene oxide (PEO) as an antifouling polymer, with FA as a biorecognition element. The NF nanocomposites were characterized using various techniques, including SEM, FTIR, zeta potential (ZP), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). We evaluated the performance of the NF biosensor using EIS and demonstrated FR detection in plasma with a limit of detection of 3 pM. Furthermore, the biosensor showed high selectivity, reliability, and good stability when stored for two months. This biosensor was constructed from 'green credentials' holding polymers that are highly needed in the new paradigm shift in the medical industry.
Collapse
Affiliation(s)
- Noha Elnagar
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt; (N.E.); (W.M.A.E.R.); (A.A.F.)
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), ECBB, 17 Avenue des Sciences, Site Henri Moisson, 91400 Orsay, France
| | - Nada Elgiddawy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt;
| | - Waleed M. A. El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt; (N.E.); (W.M.A.E.R.); (A.A.F.)
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62 511, Egypt; (N.E.); (W.M.A.E.R.); (A.A.F.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), ECBB, 17 Avenue des Sciences, Site Henri Moisson, 91400 Orsay, France
| |
Collapse
|
83
|
Kandukuri TR, Prattis I, Oluwasanya P, Occhipinti LG. Pathogen Detection via Impedance Spectroscopy-Based Biosensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:856. [PMID: 38339574 PMCID: PMC10857222 DOI: 10.3390/s24030856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
This paper presents the development of a miniaturized sensor device for selective detection of pathogens, specifically Influenza A Influenza virus, as an enveloped virus is relatively vulnerable to damaging environmental impacts. In consideration of environmental factors such as humidity and temperature, this particular pathogen proves to be an ideal choice for our study. It falls into the category of pathogens that pose greater challenges due to their susceptibility. An impedance biosensor was integrated into an existing platform and effectively separated and detected high concentrations of airborne pathogens. Bio-functionalized hydrogel-based detectors were utilized to analyze virus-containing particles. The sensor device demonstrated high sensitivity and specificity when exposed to varying concentrations of Influenza A virus ranging from 0.5 to 50 μg/mL. The sensitivity of the device for a 0.5 μg/mL analyte concentration was measured to be 695 Ω· mL/μg. Integration of this pathogen detector into a compact-design air quality monitoring device could foster the advancement of personal exposure monitoring applications. The proposed sensor device offers a promising approach for real-time pathogen detection in complex environmental settings.
Collapse
Affiliation(s)
| | | | - Pelumi Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK; (T.R.K.); (I.P.)
| | - Luigi G. Occhipinti
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK; (T.R.K.); (I.P.)
| |
Collapse
|
84
|
Patil Kunturu P, Lavorenti M, Bera S, Johnson H, Kinge S, van de Sanden MCM, Tsampas MN. Scaling up BiVO 4 Photoanodes on Porous Ti Transport Layers for Solar Hydrogen Production. CHEMSUSCHEM 2024; 17:e202300969. [PMID: 37792861 DOI: 10.1002/cssc.202300969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
Commercialization of photoelectrochemical (PEC) water-splitting devices requires the development of large-area, low-cost photoanodes with high efficiency and photostability. Herein, we address these challenges by using scalable fabrication techniques and porous transport layer (PTLs) electrode supports. We demonstrate the deposition of W-doped BiVO4 on Ti PTLs using successive-ionic-layer-adsorption-and-reaction methods followed by boron treatment and chemical bath deposition of NiFeOOH co-catalyst. The use of PTLs that facilitate efficient mass and charge transfer allowed the scaling of the photoanodes (100 cm2 ) while maintaining ~90 % of the performance obtained with 1 cm2 photoanodes for oxygen evolution reaction, that is, 2.10 mA cm-2 at 1.23 V vs. RHE. This is the highest reported performance to date. Integration with a polycrystalline Si PV cell leads to bias-free water splitting with a stable photocurrent of 208 mA for 6 h and 2.2 % solar-to-hydrogen efficiency. Our findings highlight the importance of photoelectrode design towards scalable PEC device development.
Collapse
Affiliation(s)
- Pramod Patil Kunturu
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ, Eindhoven (The, Netherlands
| | - Marek Lavorenti
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ, Eindhoven (The, Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
| | - Susanta Bera
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ, Eindhoven (The, Netherlands
| | - Hannah Johnson
- Toyota Motor Europe NV/SA, Hoge Wei 33, 1930, Zaventem, Belgium
| | - Sachin Kinge
- Toyota Motor Europe NV/SA, Hoge Wei 33, 1930, Zaventem, Belgium
| | - Mauritius C M van de Sanden
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ, Eindhoven (The, Netherlands
- Eindhoven Institute for Renewable Energy Systems (EIRES), Eindhoven University of Technology, 5600 MB, Eindhoven (The, Netherlands
| | - Mihalis N Tsampas
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ, Eindhoven (The, Netherlands
| |
Collapse
|
85
|
Choowongkomon K, Chaisakul J, Seetaha S, Vasaruchapong T, Hodgson WC, Rasri N, Chaeksin K, Boonchaleaw S, Sookprasert N. Development of a Biosensor to Detect Venom of Malayan Krait ( Bungarus candidus). Toxins (Basel) 2024; 16:56. [PMID: 38276532 PMCID: PMC10820552 DOI: 10.3390/toxins16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Malayan krait (Bungarus candidus) envenoming is a cause of significant morbidity and mortality in many Southeast Asian countries. If intubation and specific antivenom administration are delayed, the most significant life-threatening outcome may be the inhibition of neuromuscular transmission and subsequent respiratory failure. It is recommended that krait-envenomed victims without indications of neurotoxicity, e.g., skeletal muscle weakness or ptosis, immediately receive 10 vials of antivenom. However, the administration of excess antivenom may lead to hypersensitivity or serum sickness. Therefore, monitoring venom concentrations in patients could be used as an indicator for snake antivenom treatment. In this study, we aimed to develop a screen-printed gold electrode (SPGE) biosensor to detect B. candidus venom in experimentally envenomed rats. The gold electrodes were coated with monovalent Malayan krait IgG antivenom and used as venom detection biosensors. Electrochemical impedance spectrometry (EIS) and square wave voltammetry (SWV) measurements were performed to detect the electrical characterization between B. candidus venom and monovalent IgG antivenom in the biosensor. The EIS measurements showed increases in charge transfer resistance (Rct) following IgG immobilization and incubation with B. candidus venom solution (0.1-0.4 mg/mL); thus, the antibody was immobilized on the electrode surface and venom was successfully detected. The lowest current signal was detected by SWV measurement in rat plasma collected 30 min following B. candidus experimental envenoming, indicating the highest level of venom concentration in blood circulation (4.3 ± 0.7 µg/mL). The present study demonstrates the ability of the SPGE biosensor to detect B. candidus venom in plasma from experimentally envenomed rats. The technology obtained in this work may be developed as a detection tool for use along with the standard treatment of Malayan krait envenoming.
Collapse
Affiliation(s)
- Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (K.C.); (S.S.); (N.R.)
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.B.)
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (K.C.); (S.S.); (N.R.)
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Natchaya Rasri
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (K.C.); (S.S.); (N.R.)
| | - Katechawin Chaeksin
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.B.)
| | - Sattawat Boonchaleaw
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.B.)
| | - Nattapon Sookprasert
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| |
Collapse
|
86
|
Ou D, Yan H, Chen Z. An impedance labeling free electrochemical aptamer sensor based on tetrahedral DNA nanostructures for doxorubicin determination. Mikrochim Acta 2024; 191:94. [PMID: 38217713 DOI: 10.1007/s00604-024-06176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Based on the electrochemical impedance method, a marker-free biosensor with aptamer as a biometric element was developed for the determination of doxorubicin (DOX). By combining aptamer with rigid tetrahedral DNA nanostructures (TDNs) and fixing them on the surface of gold electrode (GE) as biometric elements, the density and directivity of surface nanoprobes improved, and DOX was captured with high sensitivity and specificity. DOX was captured by immobilized aptamers on the GE, which inhibited electron transfer between the GE and [Fe(CN)6]3-/4- in solution, resulting in a change in electrochemical impedance. When the DOX concentration was between 10.0 and 100.0 nM, the aptasensor showed a linear relationship with charge transfer resistance, the relative standard deviation (RSD) ranged from 3.6 to 5.9%, and the detection limit (LOD) was 3.0 nM. This technique offered a successful performance for the determination of the target analyte in serum samples with recovery in the range 97.0 to 99.6% and RSD ranged from 4.8 to 6.5%. This method displayed the advantages of fast response speed, good selectivity, and simple sensor structure and showed potential application in therapeutic drug monitoring.
Collapse
Affiliation(s)
- Dan Ou
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huixian Yan
- Department of Interventional Radiology, Guangxi Academy of Medical Science, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
87
|
Liu Y, Li H, Liu X, Wang Y, Wang L, Yang T, Jadhav AR, Zhang J, Wang Y, Wu M, Lee JY, Kim MG, Lee H. Insight into Controllable Metal-Support Interactions in Metal/Metal Electrocatalysts for Efficient Energy-Saving Hydrogen Production. ACS NANO 2024; 18:874-884. [PMID: 38112494 DOI: 10.1021/acsnano.3c09504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Controllable metal-support interaction (MSI) modulations have long been studied for improving the performance of catalysts supported on metal oxides. However, the corresponding in-depth study for metal1-metal2 (M1-M2) composited configurations is rarely achieved due to the lack of reliable models and manipulation mechanisms of MSI modifications. We modeled ruthenium on copper support (Ru-Cu) metal catalysts with negligible interfacial contact potential (e0.06 V) and investigated MSI-dependent hydrogen evolution reaction (HER) catalysis kinetics induced by an electronic hydroxyl (HO-) modifier. Comprehensive simulations and characterizations confirmed that adjusting the HO- coverage can readily realize the tailorable improvement of MSI, facilitating charge migration at the Ru-Cu interface and optimizing the overall HER pathway on active Ru. As a result, a 5/10 monolayer (ML) HO-modified catalyst (5/10 ML) exhibits superior HER activity and durability owing to the relatively stronger MSI. This catalyst also ensured sustainable and efficient hydrogen generation in a urea electrolyzer with significant energy savings. Our work provides a valuable reference for optimizing the MSI-activity relationship in M1-M2 catalysts that target more than just HER.
Collapse
Affiliation(s)
- Yang Liu
- Creative Research Institute, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yixuan Wang
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Lingling Wang
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taehun Yang
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Amol R Jadhav
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinqiang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyoyoung Lee
- Creative Research Institute, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute for Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
88
|
Aydın EB, Aydın M, Sezgintürk MK. A new immunosensing platform based on conjugated Poly(ThidEp-co-EDOT) copolymer for resistin detection, a new obesity biomarker. Mikrochim Acta 2024; 191:69. [PMID: 38165489 DOI: 10.1007/s00604-023-06145-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
The design of a novel electrochemical impedimetric biosensor for label-free analysis of resistin, a biomarker for obesity, is reported. For the fabrication of the immunosensor, a novel approach composed of electrochemical copolymerization of double epoxy groups-substituted thiophene (ThidEp) and 3,4-Ethylenedioxythiophene (EDOT) monomers was utilized. Anti-resistin antibodies were covalently attached to the copolymer-coated electrode. The capture of resistin antigens by anti-resistin antibodies caused significant variations in charge transfer resistance (Rct) because of the immunoreactions between these proteins. Under optimum experimental variables, the changes in impedance signals were employed for the determination of resistin antigen concentration, and the prepared immunosensor based on conjugated copolymer illustrated a wide linear range between 0.0125 and 22.5 pg/mL, a low detection limit (LOD) of 3.71 fg/mL, and a good sensitivity of 1.22 kΩ pg-1mL cm2. The excellent analytical performance of the resistin immunosensor in terms of selectivity, sensitivity, repeatability, reproducibility, storage stability, and low detection limit might be attributed to the conductive copolymer film layer generation on the disposable indium tin oxide (ITO) platform. The capability of this system for the determination of resistin in human serum and saliva samples was also tested. The immunosensor results were in accordance with the enzyme-linked immunosorbent assay (ELISA) results. The matrix effects of human serum and saliva were also investigated, and the proposed immunosensor displayed good recovery ranging from 95.91 to 106.25%. The engineered immunosensor could open new avenues for obesity monitoring.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
89
|
Endo S, Ozawa T, Inomata T, Masuda H. [Microorganism Immobilization Device Using Artificial Siderophores]. YAKUGAKU ZASSHI 2024; 144:643-650. [PMID: 38825473 DOI: 10.1248/yakushi.23-00197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Inspired by the mechanism by which microorganisms utilize siderophores to ingest iron, four different FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups, K3[FeIII-LC3], K2[FeIII-LC2H1], K[FeIII-LC1H2], and [FeIII-LH3], were prepared. They were modified on an Au substrate surface (Fe-L/Au) and applied as microorganism immobilization devices for fast, sensitive, selective detection of microorganisms, where H6LC3, H5LC2H1, H4LC1H2, and H3LH3 denote the tri-catecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and tri-hydroxamate type of artificial siderophores, respectively. Their adsorption properties for the several microorganisms were investigated using scanning electron microscopy (SEM), quartz crystal microbalance (QCM), and electric impedance spectroscopy (EIS) methods. The artificial siderophore-iron complexes modified on the Au substrates Fe-LC3/Au, Fe-LC2H1/Au, Fe-LC1H2/Au, and Fe-LH3/Au showed specific microorganism immobilization behavior with selectivity based on the structure of the artificial siderophores. Their specificities corresponded well with the structural characteristics of natural siderophores that microorganisms release from the cell and/or use to take up an iron. These findings suggest that release and uptake are achieved through specific interactions between the artificial siderophore-FeIII complexes and receptors on the cell surfaces of microorganisms. This study revealed that Fe-L/Au systems have specific potential to serve as effective immobilization probes of microorganisms for rapid, selective detection and identification of a variety of microorganisms.
Collapse
Affiliation(s)
- Suguru Endo
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomohiro Ozawa
- Graduate School of Engineering, Nagoya Institute of Technology
| | | | - Hideki Masuda
- Graduate School of Engineering, Nagoya Institute of Technology
- Faculty of Engineering, Aichi Institute of Technology
| |
Collapse
|
90
|
Kampouraki ZC, Petala M, Zacharias K, Konstantinidis A, Zabulis X, Karamaounas P, Kostoglou M, Karapantsios TD. Highly sensitive resistance spectroscopy technique for online monitoring of biofilm growth on metallic surfaces. ENVIRONMENTAL RESEARCH 2024; 240:117401. [PMID: 37918765 DOI: 10.1016/j.envres.2023.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Online techniques for monitoring biofilm formation and evolution are limited, especially as regards its application in flowing water systems. This is chiefly due to the absence of efficient non-destructive and non-invasive sensing methods. In this study, a sensitive electrical resistance spectroscopy technique is developed to monitor non-invasively and in real time the growth of biofilms over metallic surfaces inside water flow systems. To this aim, Pseudomonas fluorescens strain is used for biofilm development lasting 72 h in a laboratory-scale test channel of orthogonal cross section. Biofilm development corresponds to a progressively increasing coverage of the metallic surface area up to full coverage and a progressively increasing thickness. Biofilm development is registered by continuous recording of electrical impedance signals (time series). Proper configuration and tuning of the electronics promote the resistive contribution to the signal whereas careful grounding diminishes electrical interferences and yields superb sensing sensitivity. An increase of relative electrical resistance of around 15% is noticed in 72 h flow experiments which is attributed to both an increase of metallic surface area coverage and an increase of biofilm thickness. An independent estimation of these quantities using imaging tools and microscopy analysis, indicates that full coverage of the metallic surface occurs after only 48 h of the flow experiment, whereas biofilm thickness increases gradually along the entire 72 h of the experiment. Cross-examination of electrical signals with biofilm characteristics (metallic surface coverage and biofilm thickness) reveals that, qualitatively speaking, electrical signals are rather more sensitive to metallic surface coverage than biofilm thickness.
Collapse
Affiliation(s)
- Zoi Christina Kampouraki
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Maria Petala
- Department of Civil Engineering, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantinos Zacharias
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Avraam Konstantinidis
- Laboratory of Engineering Mechanics, School of Civil Engineering, Aristotle University of Thessaloniki, GR, 541 24, Thessaloniki, Greece
| | - Xenophon Zabulis
- Institute of Computer Science, Foundation for Research and Technology, 711 10, Heraklion, Greece
| | - Polykarpos Karamaounas
- Institute of Computer Science, Foundation for Research and Technology, 711 10, Heraklion, Greece
| | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece.
| |
Collapse
|
91
|
Chen J, Wang S, Wang K, Abiri P, Huang Z, Yin J, Jabalera AM, Arianpour B, Roustaei M, Zhu E, Zhao P, Cavallero S, Duarte‐Vogel S, Stark E, Luo Y, Benharash P, Tai Y, Cui Q, Hsiai TK. Machine learning-directed electrical impedance tomography to predict metabolically vulnerable plaques. Bioeng Transl Med 2024; 9:e10616. [PMID: 38193119 PMCID: PMC10771559 DOI: 10.1002/btm2.10616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 10/15/2023] [Indexed: 01/10/2024] Open
Abstract
The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.
Collapse
Affiliation(s)
- Justin Chen
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Parinaz Abiri
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Zi‐Yu Huang
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Alejandro M. Jabalera
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Mehrdad Roustaei
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of MedicineGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| | - Sandra Duarte‐Vogel
- Division of Laboratory Animal Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Elena Stark
- Division of Anatomy, Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yuan Luo
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Peyman Benharash
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yu‐Chong Tai
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Qingyu Cui
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Tzung K. Hsiai
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Division of Cardiology, Department of MedicineGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| |
Collapse
|
92
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
93
|
Sousa MP, Bettencourt P, Brás-Silva C, Pereira C. Biosensors for natriuretic peptides in cardiovascular diseases. A review. Curr Probl Cardiol 2024; 49:102180. [PMID: 37907188 DOI: 10.1016/j.cpcardiol.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with high rates of morbidity and mortality. Over the years, it has been crucial to find accurate biomarkers capable of doing a precise monitor of HF and provide an early diagnosis. Of these, it has been established an important role of natriuretic peptides in HF assessment. Moreover, the development of biosensors has been garnering interest as new diagnostic medical tools. In this review we first provide a general overview of HF, its pathogenesis, and diagnostic features. We then discuss the role of natriuretic peptides in heart failure by characterizing them and point out their potential as biomarkers. Finally, we adress the evolution of biosensors development and the available natriuretic peptides biosensors for disease monitoring.
Collapse
Affiliation(s)
- Mariana P Sousa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto 4200-135, Portugal
| | - Paulo Bettencourt
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Claudia Pereira
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, Porto 4249-004, Portugal; HE-FP-Hospital Fernando Pessoa, CECLIN, Center of Clinical Studies, 4420-096 Gondomar, Portugal; FCS-Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
94
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
95
|
Seibold JM, Abeykoon SW, Ross AE, White RJ. Development of an Electrochemical, Aptamer-Based Sensor for Dynamic Detection of Neuropeptide Y. ACS Sens 2023; 8:4504-4511. [PMID: 38033269 PMCID: PMC11214579 DOI: 10.1021/acssensors.3c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The ability to monitor dynamic changes in neuropeptide Y (NPY) levels in complex environments can have an impact on many fields, including neuroscience and immunology. Here, we describe the development of an electrochemical, aptamer-based (E-AB) sensor for the dynamic (reversible) measurement of physiologically relevant (nanomolar) concentrations of neuropeptide Y. The E-AB sensors are fabricated using a previously described 80 nucleotide aptamer1 reported to specifically bind NPY with a binding affinity Kd = 0.3 ± 0.2 uM. We investigated two redox tag placement locations on the aptamer sequence (terminal vs internal) and various sensor fabrication and interrogation parameters to tune the performance of the resulting sensor. The best-performing sensor architecture displayed a physiologically relevant dynamic range (nM) and low limit of detection and is selective among competitors and similar molecules. The development of this sensor accomplishes two breakthroughs: first, the development of a nonmicrofluidic aptamer-based electrochemical sensor that can detect NPY on a physiologically relevant (seconds to minutes) time scale and across a relevant concentration range; second, the expansion of the range of molecules for which an electrochemical, aptamer-based sensor can be used.
Collapse
Affiliation(s)
- Jordan M. Seibold
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Sanduni W. Abeykoon
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Ryan J. White
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
- Department of Electrical and Computer Engineering
| |
Collapse
|
96
|
Tzaneva B, Aleksandrova M, Mateev V, Stefanov B, Iliev I. Electrochemical Properties of PEDOT:PSS/Graphene Conductive Layers in Artificial Sweat. SENSORS (BASEL, SWITZERLAND) 2023; 24:39. [PMID: 38202900 PMCID: PMC10780959 DOI: 10.3390/s24010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Electrodes based on PEDOT:PSS are gaining increasing importance as conductive electrodes and functional layers in various sensors and biosensors due to their easy processing and biocompatibility. This study investigates PEDOT:PSS/graphene layers deposited via spray coating on flexible PET substrates. The layers are characterized in terms of their morphology, roughness (via AFM and SEM), and electrochemical properties in artificial sweat using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The layers exhibit dominant capacitive behavior at low frequencies, with cut-off frequencies determined for thicker layers at 1 kHz. The equivalent circuit used to fit the EIS data reveals a resistance of about three orders of magnitude higher inside the layer compared to the charge transfer resistance at the solid/liquid interface. The capacitance values determined from the CV curves range from 54.3 to 122.0 mF m-2. After 500 CV cycles in a potential window of 1 V (from -0.3 to 0.7 V), capacitance retention for most layers is around 94%, with minimal surface changes being observed in the layers. The results suggest practical applications for PEDOT:PSS/graphene layers, both for high-frequency impedance measurements related to the functioning of individual organs and systems, such as impedance electrocardiography, impedance plethysmography, and respiratory monitoring, and as capacitive electrodes in the low-frequency range, realized as layered PEDOT:PSS/graphene conductive structures for biosignal recording.
Collapse
Affiliation(s)
- Boriana Tzaneva
- Department of Chemistry, Faculty of Electrical Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Mariya Aleksandrova
- Department of Microelectronics, Faculty of Electronic Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Valentin Mateev
- Department of Electrical Apparatus, Faculty of Electronic Engineering, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Bozhidar Stefanov
- Department of Chemistry, Faculty of Electrical Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria;
| | - Ivo Iliev
- Department of Electronics, Faculty of Electronic Engineering and Technology, Technical University of Sofia, Kliment Ohridski Blvd., 8, 1000 Sofia, Bulgaria
| |
Collapse
|
97
|
Srivastava R, Chaudhary H, Kumar A, de Souza FM, Mishra SR, Perez F, Gupta RK. Optimum iron-pyrophosphate electronic coupling to improve electrochemical water splitting and charge storage. DISCOVER NANO 2023; 18:148. [PMID: 38047966 PMCID: PMC10695914 DOI: 10.1186/s11671-023-03937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/02/2023] [Indexed: 12/05/2023]
Abstract
Tuning the electronic properties of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to improving the electrochemical performance of water electrolyzers and supercapacitors, although such a material's configuration is rarely exposed. Herein, we grow NiP2O7, CoP2O7, and FeP2O7 nanoparticles on conductive Ni-foam using a hydrothermal procedure. The results indicated that, among all the prepared samples, FeP2O7 exhibited outstanding oxygen evolution reaction and hydrogen evolution reaction with the least overpotential of 220 and 241 mV to draw a current density of 10 mA/cm2. Theoretical studies indicate that the optimal electronic coupling of the Fe site with pyrophosphate enhances the overall electronic properties of FeP2O7, thereby enhancing its electrochemical performance in water splitting. Further investigation of these materials found that NiP2O7 had the highest specific capacitance and remarkable cycle stability due to its high crystallinity as compared to FeP2O7, having a higher percentage composition of Ni on the Ni-foam, which allows more Ni to convert into its oxidation states and come back to its original oxidation state during supercapacitor testing. This work shows how to use pyrophosphate moieties to fabricate non-noble metal-based electrode materials to achieve good performance in electrocatalytic splitting water and supercapacitors.
Collapse
Affiliation(s)
- Rishabh Srivastava
- Department of Physics, Pittsburg State University, Pittsburg, KS, 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Himanshu Chaudhary
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Felipe M de Souza
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Sanjay R Mishra
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN, 38152, USA
| | - Felio Perez
- Integrated Microscopy Center, The University of Memphis, Memphis, TN, 38152, USA
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA.
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
98
|
Zhuravlova A, Ricciardulli AG, Pakulski D, Gorczyński A, Kelly A, Coleman JN, Ciesielski A, Samorì P. High Selectivity and Sensitivity in Chemiresistive Sensing of Co(II) Ions with Liquid-Phase Exfoliated Functionalized MoS 2 : A Supramolecular Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208100. [PMID: 37104823 DOI: 10.1002/smll.202208100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Chemical sensing of water contamination by heavy metal ions is key as it represents a most severe environmental problem. Liquid-phase exfoliated two-dimensional (2D) transition metal dichalcogenides (TMDs) are suitable candidates for chemical sensing thanks to their high surface-to-volume ratio, sensitivity, unique electrical characteristics, and scalability. However, TMDs lack selectivity due to nonspecific analyte-nanosheet interactions. To overcome this drawback, defect engineering enables controlled functionalization of 2D TMDs. Here, ultrasensitive and selective sensors of cobalt(II) ions via the covalent functionalization of defect-rich MoS2 flakes with a specific receptor, 2,2':6',2″-terpyridine-4'-thiol is developed. A continuous network is assembled by healing of MoS2 sulfur vacancies in a tailored microfluidic approach, enabling high control over the assembly of thin and large hybrid films. The Co2+ cations complexation represents a powerful gauge for low concentrations of cationic species which can be best monitored in a chemiresisitive ion sensor, featuring a 1 pm limit of detection, sensing in a broad concentration range (1 pm - 1 µm) and sensitivity as high as 0.308 ± 0.010 lg([Co2+ ])-1 combined with a high selectivity towards Co2+ over K+ , Ca2+ , Mn2+ , Cu2+ , Cr3+ , and Fe3+ cations. This supramolecular approach based on highly specific recognition can be adapted for sensing other analytes through specific ad-hoc receptors.
Collapse
Affiliation(s)
- Anna Zhuravlova
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Dawid Pakulski
- Adam Mickiewicz University Foundation, Poznań Science and Technology Park, Rubież 46, Poznań, 61-612, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, Poznan, 61-614, Poland
| | - Adam Kelly
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Jonathan N Coleman
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Artur Ciesielski
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
99
|
Marques C, Dinis LT, Santos MJ, Mota J, Vilela A. Beyond the Bottle: Exploring Health-Promoting Compounds in Wine and Wine-Related Products-Extraction, Detection, Quantification, Aroma Properties, and Terroir Effects. Foods 2023; 12:4277. [PMID: 38231704 DOI: 10.3390/foods12234277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Health-promoting compounds in wine and wine-related products are important due to their potential benefits to human health. Through an extensive literature review, this study explores the presence of these compounds in wine and wine-related products, examining their relationship with terroir and their impact on the aromatic and flavor properties that are perceived orally: sunlight exposure, rainfall patterns, and soil composition impact grapevines' synthesis and accumulation of health-promoting compounds. Enzymes, pH, and the oral microbiome are crucial in sensory evaluation and perception of health promotion. Moreover, their analysis of health-promoting compounds in wine and wine-related products relies on considerations such as the specific target compound, selectivity, sensitivity, and the complexity of the matrix.
Collapse
Affiliation(s)
- Catarina Marques
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Maria João Santos
- University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - João Mota
- University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| |
Collapse
|
100
|
Kumar Yadav A, Prakash C, Pandey A, Dixit A. Impact of Top Electrodes (Cu, Ag, and Al) on Resistive Switching behaviour of Cu-rich Cu 2 ZnSnS 4 (CZTS) Ideal Kesterite. Chemphyschem 2023; 24:e202300142. [PMID: 37646108 DOI: 10.1002/cphc.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Cu2 ZnSnS4 (CZTS) active material-based resistive random-access memory (RRAM) devices are investigated to understand the impact of three different Cu, Ag, and Al top electrodes. The dual resistance switching (RS) behaviour of spin coated CZTS on ITO/Glass is investigated up to 102 cycles. The stability of all the devices (Cu/CZTS/ITO, Ag/CZTS/ITO, and Al/CZTS/ITO) is investigated up to 103 sec in low- (LRS) and high- (HRS) resistance states at 0.2 V read voltage. The endurance up to 102 cycles with 30 msec switching width shows stable write and erase current. Weibull cumulative distribution plots suggest that Ag top electrode is relatively more stable for set and reset state with 33.61 and 25.02 shape factors, respectively. The charge carrier transportation is explained by double logarithmic plots, Schottky emission plots, and band diagrams, substantiating that at lower applied electric field intrinsic copper ions dominate in Cu/CZTS/ITO, whereas, at higher electric filed, top electrodes (Cu and Ag) dominate over intrinsic copper ions. Intrinsic Cu+ in CZTS plays a decisive role in resistive switching with Al electrode. Further, the impedance spectroscopy measurements suggest that Cu+ and Ag+ diffusion is the main source for the resistive switching with Cu and Ag electrodes.
Collapse
Affiliation(s)
- Ankit Kumar Yadav
- Advanced Materials and Device Laboratory, Department of Physics, Indian Institute of Technology, Jodhpur, 342037, India
| | - Chandra Prakash
- Advanced Materials and Device Laboratory, Department of Physics, Indian Institute of Technology, Jodhpur, 342037, India
| | - Akhilesh Pandey
- Solid State Physics Laboratory (SSPL), Defence Research & Development Organization (DRDO), Delhi, 110054, India
| | - Ambesh Dixit
- Advanced Materials and Device Laboratory, Department of Physics, Indian Institute of Technology, Jodhpur, 342037, India
| |
Collapse
|