1001
|
Horvath TL, Diano S, Leranth C, Garcia-Segura LM, Cowley MA, Shanabrough M, Elsworth JD, Sotonyi P, Roth RH, Dietrich EH, Matthews RT, Barnstable CJ, Redmond DE. Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson's disease. Endocrinology 2003; 144:2757-60. [PMID: 12810526 DOI: 10.1210/en.2003-0163] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Parkinson's disease is characterized by dopamine cell loss of the substantia nigra. Parkinson's disease and the neurotoxin 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine may destroy dopamine neurons through oxidative stress. Coenzyme Q is a cofactor of mitochondrial uncoupling proteins that enhances state-4 respiration and eliminate superoxides. Here we report that short-term oral administration of coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine administration in monkeys.
Collapse
Affiliation(s)
- Tamas L Horvath
- Department of Obstetrics and Gynecology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1002
|
Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 2003; 99:45-53. [PMID: 12804698 DOI: 10.1016/s0163-7258(03)00052-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amphetamine-like psychostimulants are associated with long-term decreases in markers for monoaminergic neurons, suggesting neuronal loss and/or damage within the brain. This long-term "toxicity" results from formation of free radicals, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS), although the mechanism(s) of ROS and RNS formation are unclear. Mitochondria are a major source of ROS and mitochondrial dysfunction has been linked to some neurodegenerative disorders. Amphetamines also inhibit mitochondrial function, although the mechanism involved in the inhibition is uncertain. This review coordinates findings on the multiple pathways for ROS and RNS and describes a hypothesis involving mitochondrial inhibition in the initiation of amphetamine-induced cellular necrosis.
Collapse
Affiliation(s)
- Jeffrey M Brown
- Department of Pharmacology and Experimental Therapeutics, L-613, School of Medicine, Boston University, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
1003
|
Abstract
Reactive oxygen species produced in cells during normal aerobic metabolism have the ability to induce lipid peroxidation and protein oxidation; therefore, their detoxification and elimination are necessary for physiologic cellular activity and survival. The changes in neuronal antioxidant enzymes from fetal life to adulthood have not been fully described. We investigated protein expression, using Western blot analysis, and enzymatic activity of the antioxidant system-copper-zinc superoxide dismutase (SOD), manganese SOD, catalase, and glutathione peroxidase, as well as reduced glutathione level as an indicator of the nonenzymatic system-in CD1 murine brain at embryonic d 18 (E18), and postnatal d 1 (P1), d 4, d 7, d 14, and d 21. Copper-zinc SOD and glutathione peroxidase protein levels were low, whereas manganese SOD and catalase protein levels were high at E18 and P1. Total SOD activity was high at E18 and P1 and paralleled elevated manganese SOD activity; however, copper-zinc SOD activity was relatively unchanged throughout development. Catalase activity doubled and glutathione peroxidase activity tripled between E18 and P1. Reduced glutathione increased between E18 and P1. Except for catalase and manganese SOD, peak protein levels do not occur until later developmental ages. We suggest that as the fetus moves from an in utero hypoxic to a relatively hyperoxic environment with an approximate 4-fold elevation in oxygen concentration, these developmental changes in antioxidant enzymes are compensatory mechanisms aimed at protecting the newborn from oxidative stress. These data will be important in our future understanding of the mechanisms by which hypoxia mediates injury in the immature and the mature brain.
Collapse
Affiliation(s)
- Janine Y Khan
- Department of Pediatrics and Molecular Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
1004
|
Considine MJ, Goodman M, Echtay KS, Laloi M, Whelan J, Brand MD, Sweetlove LJ. Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein. J Biol Chem 2003; 278:22298-302. [PMID: 12672801 DOI: 10.1074/jbc.m301075200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ability of plant mitochondrial uncoupling proteins to catalyze a significant proton conductance in situ is controversial. We have re-examined conditions that lead to uncoupling of mitochondria isolated from the tubers of potato (Solanum tuberosum). Specifically, we have investigated the effect of superoxide. In the absence of superoxide, linoleic acid stimulated a proton leak in mitochondria respiring NADH that was insensitive to GTP. However, when exogenous superoxide was generated by the addition of xanthine and xanthine oxidase, there was an additional linoleic acid-stimulated proton leak that was specifically inhibited by GTP. Under these conditions of assay (NADH as a respiratory substrate, in the presence of linoleic acid and xanthine/xanthine oxidase) there was a higher rate of proton conductance in mitochondria from transgenic potato tubers overexpressing the StUCP gene than those from wild type. The increased proton leak in the transgenic mitochondria was completely abolished by the addition of GTP. This suggests that superoxide and linoleic acid stimulate a proton leak in potato mitochondria that is related to the activity of uncoupling protein. Furthermore, it demonstrates that changes in the amount of StUCP can alter the rate of proton conductance of potato mitochondria.
Collapse
Affiliation(s)
- Michael J Considine
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1005
|
Horvath TL, Diano S, Barnstable C. Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochem Pharmacol 2003; 65:1917-21. [PMID: 12787871 DOI: 10.1016/s0006-2952(03)00143-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Uncoupling proteins (UCPs) are localized in the inner membrane of the mitochondria in diverse tissues and decrease mitochondrial membrane potential. The first of these proteins, UCP1, was discovered in brown adipose tissue, where it has a well-described role in thermogenesis. The functional significance of other UCPs, including UCP2, is less well understood. Here we summarize the recent advancements on the role of UCP2 in the brain and portray this uncoupler as an important player in normal neuronal function as well as a key cell death-suppressing device. These previously unknown functions of UCPs offer new avenues not only for the better understanding of these proteins but also for the furthering of our knowledge on the central nervous system in healthy and disease states.
Collapse
Affiliation(s)
- Tamas L Horvath
- Department of Obstetrics and Gynecology, Yale University School of Medicine, 333 Cedar Street, FMB 339, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
1006
|
Zackova M, Skobisová E, Urbánková E, Jezek P. Activating omega-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3. J Biol Chem 2003; 278:20761-9. [PMID: 12670931 DOI: 10.1074/jbc.m212850200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UCP2 (the lowest Km values: 20 and 29 microm, respectively) for omega-6 polyunsaturated FAs (PUFAs), all-cis-8,11,14-eicosatrienoic and all-cis-6,9,12-octadecatrienoic acids, which are also the most potent agonists of the nuclear PPARbeta receptor in the activation of UCP2 transcription. omega-3 PUFA, cis-5,8,11,14,17-eicosapentaenoic acid had lower affinity (Km, 50 microm), although as an omega-6 PUFA, arachidonic acid exhibited the same low affinity as lauric acid (Km, approximately 200 microm). These findings suggest a possible dual role of some PUFAs in activating both UCPn expression and uncoupling activity. UCP2 (UCP3)-dependent H+ translocation activated by all tested FAs was inhibited by purine nucleotides with apparent affinity to UCP2 (reciprocal Ki) decreasing in order: ADP > ATP approximately GTP > GDP >> AMP. Also [3H]GTP ([3H]ATP) binding to isolated Escherichia coli (Kd, approximately 5 microm) or yeast-expressed UCP2 (Kd, approximately 1.5 microm) or UCP3 exhibited high affinity, similar to UCP1. The estimated number of [3H]GTP high affinity (Kd, <0.4 microm) binding sites was (in pmol/mg of protein) 182 in lung mitochondria, 74 in kidney, 28 in skeletal muscle, and approximately 20 in liver mitochondria. We conclude that purine nucleotides must be the physiological inhibitors of UCPn-mediated uncoupling in vivo.
Collapse
Affiliation(s)
- Markéta Zackova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
1007
|
Crescenzo R, Mainieri D, Solinas G, Montani JP, Seydoux J, Liverini G, Iossa S, Dulloo AG. Skeletal muscle mitochondrial oxidative capacity and uncoupling protein 3 are differently influenced by semistarvation and refeeding. FEBS Lett 2003; 544:138-42. [PMID: 12782304 DOI: 10.1016/s0014-5793(03)00491-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated, in skeletal muscle mitochondria isolated from semistarved and refed rats, the relation between the protein expression of uncoupling protein 3 (UCP3) and mitochondrial oxidative capacity, assessed as state 4 and state 3 respiration rates in presence of substrates that are either non-lipids (glutamate, succinate) or lipids (palmitoyl CoA, palmitoylcarnitine). During semistarvation, when whole-body thermogenesis is diminished, state 3 respiration was lower than in fed controls by about 30% independently of substrate types, while state 4 respiration was lower by 20% only during succinate oxidation, but UCP3 was unaltered. After 5 days of refeeding, when thermogenesis is still diminished, neither state 4, state 3 nor UCP3 were lower than in controls. Refeeding on a high-fat diet, which exacerbates the suppression of thermogenesis, resulted in a two-fold elevation in UCP3 but no change in state 4 or state 3 respiration. These results during semistarvation and refeeding, in line with those previously reported for fasting, are not in support of the hypothesis that UCP3 is a mediator of adaptive thermogenesis pertaining to weight regulation, and underscore the need for caution in interpreting parallel changes in UCP3 and mitochondrial oxidative capacity as the reflection of mitochondrial uncoupling by UCP3.
Collapse
Affiliation(s)
- R Crescenzo
- Department of Medicine, Division of Physiology, University of Fribourg, Chemin du Musée 5, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
1008
|
Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:77-94. [PMID: 12765765 DOI: 10.1016/s0005-2728(03)00027-6] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H(+)/e(-) stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential DeltaPsi, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential DeltaPsi and maintains high DeltaPsi values (150-200 mV). The second occurs only in mitochondria, is suggested to keep DeltaPsi at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of DeltaPsi and the production of reactive oxygen species (ROS) in mitochondria at high DeltaPsi values (150-200 mV) are discussed.
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Fachbereich Chemie, Philipps-Universität, Hans-Meerwein-Strasse, D-35032 Marburg, Germany.
| |
Collapse
|
1009
|
Sullivan PG, Dubé C, Dorenbos K, Steward O, Baram TZ. Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol 2003; 53:711-7. [PMID: 12783416 PMCID: PMC2930774 DOI: 10.1002/ana.10543] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Excitotoxic cell death is the fundamental process responsible for many human neurodegenerative disorders, yet the basic mechanisms involved are not fully understood. Here, we exploited the fact that the immature brain is remarkably resistant to seizure-induced excitotoxic cell death and examined the underlying protective mechanisms. We found that, unlike in the adult, seizures do not increase the formation of reactive oxygen species or result in mitochondrial dysfunction in neonatal brain, because of high levels of the mitochondrial uncoupling protein (UCP2). UCP2 expression and function were basally increased in neonatal brain by the fat-rich diet of maternal milk, and substituting a low-fat diet reduced UCP2, restored mitochondrial coupling, and permitted seizure-induced neuronal injury. Thus, modulation of UCP2 expression and function by dietary fat protects neonatal neurons from excitotoxicity by preventing mitochondrial dysfunction. This mechanism offers novel neuroprotective strategies for individuals, greater than 1% of the world's population, who are affected by seizures.
Collapse
Affiliation(s)
- Patrick G Sullivan
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697-4475, USA
| | | | | | | | | |
Collapse
|
1010
|
Moreno M, Lombardi A, De Lange P, Silvestri E, Ragni M, Lanni A, Goglia F. Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. FASEB J 2003; 17:1112-4. [PMID: 12692085 DOI: 10.1096/fj.02-0839fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the role of uncoupling protein 3 (UCP3) during fasting and examined the effect of triiodothyronine (T3) administration in such a condition. The possible involvement of mitochondrial thioesterase (MTE I) and the role of putative cofactors, such as coenzyme Q (CoQ), was also examined. Here, we report that fasting induced a more than twofold elevation in the expression and activity of MTE I, and an increase in UCP3 expression, without any associated uncoupling activity. Administration of T3 to fasting rats further up-regulated UCP3 as well as MTE I expression, markedly enhanced MTE I enzyme activity and prevented the impairment of the uncoupling activity of UCP3 normally seen during fasting. Indeed, T3-treatment induced an UCP3-dependent decrease in mitochondrial membrane potential, which was abolished by the addition of either GDP or superoxide dismutase (SOD). T3 administration also prevented the marked decrease of CoQ levels observed in fasting rats and this provides evidence that also, in vivo, CoQ represents an essential cofactor for the UCP3-mediated uncoupling. The data also show that MTE I and UCP3 are likely involved in the same biochemical mechanism and that UCP3 postulated functions, such as lipid handling and uncoupling, are not mutually exclusive but may coexist in vivo.
Collapse
Affiliation(s)
- Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italia
| | | | | | | | | | | | | |
Collapse
|
1011
|
Brandalise M, Maia IG, Borecký J, Vercesi AE, Arruda P. Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress. J Bioenerg Biomembr 2003; 35:203-9. [PMID: 13678271 DOI: 10.1023/a:1024603530043] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An Arabidopsis thaliana cDNA clone encoding a plant uncoupling mitochondrial protein (AtPUMP1) was overexpressed in transgenic tobacco plants. Analysis of the AtPUMP1 mRNA content in the transgenic lines, determined by Northern blot, revealed variable levels of transgene expression. Antibody probing of Western blots of mitochondrial proteins from three independent transgenic lines showed significant accumulation of AtPUMP1 in this organelle. Overproduction of AtPUMP1 in transgenic tobacco plants led to a significant increase in tolerance to oxidative stress promoted by exogenous hydrogen peroxide as compared to wild-type control plants. These results provide the first biological evidence for a role of PUMP in protection of plant cells against oxidative stress damage.
Collapse
Affiliation(s)
- Marcos Brandalise
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, C.P. 6010, 13083-970, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
1012
|
Koshkin V, Wang X, Scherer PE, Chan CB, Wheeler MB. Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem 2003; 278:19709-15. [PMID: 12642585 DOI: 10.1074/jbc.m209709200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Excessive free fatty acid (FFA) exposure represents a potentially important diabetogenic condition that can impair insulin secretion from pancreatic beta-cells. Because mitochondrial oxidative phosphorylation is a main link between glucose metabolism and insulin secretion, in the present work we investigated the effects of the FFA oleate (OE) on mitochondrial function in the clonal pancreatic beta-cell line, MIN6. Both the long term (72 h) and short term (immediately after application) impact of OE exposure on beta-cells was investigated. After 72 h of exposure to OE (0.4 mm, 0.5% bovine serum albumin) cells were washed and permeabilized, and mitochondrial function (respiration, phosphorylation, membrane potential formation, production of reactive oxygen species) was measured in the absence or presence of OE. MIN6 cells exposed to OE for 72 h showed impaired glucose-stimulated insulin secretion and decreased cellular ATP. Mitochondria in OE-exposed cells retained normal functional characteristics in FFA-free medium; however, they were significantly more sensitive to the acute uncoupling effect of OE treatment. The mitochondria of OE-exposed cells displayed increased depolarization caused by acute OE treatment, which is attributable to the elevation in the FFA-transporting function of uncoupling protein 2 and the dicarboxylate carrier. These cells also had an increased production of reactive oxygen species in complex I of the mitochondrial respiratory chain that could be activated by FFA. A high level of reduction of respiratory complex I augmented acute FFA-induced uncoupling in a way compatible with activation of mitochondrial uncoupling protein by intramitochondrial superoxide. A stronger augmentation was observed in OE-exposed cells. Together, these events may underlie FFA-induced depression of the ATP/ADP ratio in beta-cells, which accounts for the defective glucose-stimulated insulin secretion associated with lipotoxicity.
Collapse
Affiliation(s)
- Vasilij Koshkin
- Departments of Physiology and Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
1013
|
Abstract
Thyroid hormone (TH/T3) exerts many of its effects on energy metabolism by affecting gene transcription. However, although this is an important target for T3, only a limited number of T3-responsive genes have been identified and studied. Among these, the genes for uncoupling proteins (UCPs) have attracted the interest of scientists. Although the role of UCP1 seems quite well established, uncertainty surrounds the physiological function of the recently discovered UCP1 analogs, UCP2 and UCP3. The literature suggests that T3 affects both the expression and the activity of each of these UCPs but further studies are needed to establish whether the mechanisms activated by the hormone are the same. Recently, because of their larger range of expression, much attention has been devoted to UCP2 and UCP3. Most detailed studies on the involvement of these proteins as mediators of the effects of T3 on metabolism have focused on UCP3 because of its expression in skeletal muscle. T3 seems to be unique in having the ability to stimulate the expression and activity of UCP3 and this may be related to the capacity of T3 to activate the integrated biochemical processes linked to UCP activity, such as those related to fatty acids, coenzyme Q and free radicals.
Collapse
Affiliation(s)
- A Lanni
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100, Caserta, Italy.
| | | | | | | |
Collapse
|
1014
|
Beal MF. Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S39-47; discussion S47-8. [PMID: 12666097 DOI: 10.1002/ana.10479] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is considerable evidence suggesting that mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Parkinson's disease (PD). This possibility has been strengthened by recent studies in animal models, which have shown that a selective inhibitor of complex I of the electron transport gene can produce an animal model that closely mimics both the biochemical and histopathological findings of PD. Several agents are available that can modulate cellular energy metabolism and that may exert antioxidative effects. There is substantial evidence that mitochondria are a major source of free radicals within the cell. These appear to be produced at both the iron-sulfur clusters of complex I as well as the ubiquinone site. Agents that have shown to be beneficial in animal models of PD include creatine, coenzyme Q(10), Ginkgo biloba, nicotinamide, and acetyl-L-carnitine. Creatine has been shown to be effective in several animal models of neurodegenerative diseases and currently is being evaluated in early stage trials in PD. Similarly, coenzyme Q(10) is also effective in animal models and has shown promising effects both in clinical trials of PD as well as in clinical trials in Huntington's disease and Friedreich's ataxia. Many other agents show good human tolerability. These agents therefore are promising candidates for further study as neuroprotective agents in PD.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
1015
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
1016
|
Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 2003; 278:9796-801. [PMID: 12514170 DOI: 10.1074/jbc.m206913200] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxygen free radicals have been implicated in beta-cell dysfunction and apoptosis associated with type 1 and type 2 diabetes mellitus. The roles of free radicals in diabetes have thus far been defined indirectly by monitoring oxidative tissue damage and the effects of antioxidants, free radical scavengers, and overexpression of superoxide dismutase. We employed the superoxide-mediated oxidation of hydroethidine to ethidium to dynamically and directly assess the relative rates of mitochondrial superoxide anion generation in isolated islets in response to glucose stimulation. Superoxide content of isolated islets increased in response to glucose stimulation. We next compared the oxyradical levels in Zucker lean control and Zucker diabetic fatty rat islets by digital imaging microfluorometry. The superoxide content of Zucker diabetic fatty islets was significantly higher than Zucker lean control islets under resting conditions, relatively insensitive to elevated glucose concentrations, and correlated temporally with a decrease in glucose-induced hyperpolarization of the mitochondrial membrane. Importantly, superoxide levels were elevated in islets from young, pre-diabetic Zucker diabetic fatty animals. Overproduction of superoxide was associated with perturbed mitochondrial morphology and may contribute to abnormal glucose signaling found in the Zucker diabetic fatty model of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Vytautas P Bindokas
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
1017
|
Ito K, Abe Y, Johnston SD, Seymour RS. Ubiquitous expression of a gene encoding for uncoupling protein isolated from the thermogenic inflorescence of the dead horse arum Helicodiceros muscivorus. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1113-1114. [PMID: 12598581 DOI: 10.1093/jxb/erg115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uncoupling proteins (UCPs) are a family of mitochondrial inner membrane proteins that have been implicated in heat production in mammalian cells. The inflorescences of several members of the arum lily family (Araceae) have also been shown to produce heat during flowering, but the involvement of UCP-mediated heat production in plants is not known. In this work a gene has been isolated termed HmUCPa that encodes for a putative uncoupling protein from Helicodiceros muscivorus, a highly thermogenic arum lily. RT-PCR analysis revealed that the expression of HmUCPa was ubiquitously found, both in thermogenic male florets and appendix, and the non-thermogenic female florets, spathe and club-shaped organs of the spadix. These results suggest that HmUCPa is not primarily involved in organ-specific heat production in H. muscivorus.
Collapse
Affiliation(s)
- Kikukatsu Ito
- Cryobiosystem Research Center, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan.
| | | | | | | |
Collapse
|
1018
|
Pilegaard H, Saltin B, Neufer PD. Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes 2003; 52:657-62. [PMID: 12606505 DOI: 10.2337/diabetes.52.3.657] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During short-term fasting, substrate utilization in skeletal muscle shifts from predominantly carbohydrate to fat as a means of conserving glucose. To examine the potential influence of short-term fasting and refeeding on transcriptional regulation in skeletal muscle, muscle biopsies were obtained from nine male subjects at rest, after 20 h of fasting, and 1 h after consuming either a high-carbohydrate (CHO trial) or a low-carbohydrate (FAT trial) meal. Fasting induced an increase in transcription of the pyruvate dehydrogenase kinase 4 (PDK4) (10-fold), lipoprotein lipase (LPL) ( approximately 2-fold), uncoupling protein 3 (UCP3) ( approximately 5-fold), and carnitine palmitoyltransferase I (CPT I) ( approximately 2.5-fold) genes. Surprisingly, transcription of PDK4 and LPL increased further in response to refeeding (both trials) to more than 50-fold and 6- to 10-fold, respectively, over prefasting levels. However, responses varied among subjects with two subjects in particular displaying far greater activation of PDK4 (>100-fold) and LPL (>20-fold) than the other subjects (mean approximately 8-fold and approximately 2-fold, respectively). Transcription of UCP3 decreased to basal levels after the CHO meal but remained elevated after the FAT meal, whereas CPT I remained elevated after both refeeding meals. The present findings demonstrate that short-term fasting/refeeding in humans alters the transcription of several genes in skeletal muscle related to lipid metabolism. Marked heterogeneity in the transcriptional response to the fasting/refeeding protocol suggests that individual differences in genetic profile may play an important role in adaptive molecular responses to metabolic challenges.
Collapse
|
1019
|
Changani KK, Nicholson A, White A, Latcham JK, Reid DG, Clapham JC. A longitudinal magnetic resonance imaging (MRI) study of differences in abdominal fat distribution between normal mice, and lean overexpressers of mitochondrial uncoupling protein-3 (UCP-3). Diabetes Obes Metab 2003; 5:99-105. [PMID: 12630934 DOI: 10.1046/j.1463-1326.2003.00249.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM To characterize evolution and distribution of abdominal adipose fat between 6 and 18 weeks of age in an animal model of energy consumption based on mice overexpressing the mitochondrial uncoupler protein 3 (UCP-3). METHODS T2-weighted multislice MRI was performed six times during the 12 week study; visceral, subcutaneous and intermuscular fat depots were quantified. RESULTS The overexpressor (UCP-3tg) mice consistently have less subcutaneous, visceral, interskeletal muscle and total fat throughout the experiment. Mean (standard error) volumes (ml) of the three distinct depots change between week 6 and week 18 as follows: wild type: subcutaneous 1.93 (0.28) to 6.18 (0.47), visceral 2.15 (0.34) to 6.37 (0.64), intermuscular 0.23 (0.04) to 0.53 (0.03); UCP-3tg: subcutaneous 1.47 (0.17) to 4.07 (0.57), visceral 1.18 (0.04) to 3.69 (0.59), intermuscular 0.23 (0.01) to 0.32 (0.04). Although they eat more (4.3 g compared with 3.4 g per day) the UCP-3tg's always weigh less than controls. In wild-type control animals, increases of all fat pools between week 6 and week 18 is highly significant, as it is for subcutaneous, visceral and total pools in the UCP-3tg animals. The UCP-3tg mice, however, show no significant absolute or relative increase in intermuscular fat; UCP-3 is predominantly overexpressed in skeletal muscle. CONCLUSION MRI provides an excellent approach to comparative studies of fat distribution in animal models of energy expenditure such as the UCP-3tg mouse.
Collapse
|
1020
|
Abstract
Redox signaling provides a quick and efficient mechanism for clonal or colonial organisms to adapt their growth and development to aspects of the environment, e.g. the food supply. A 'signature' of mitochondrial redox signaling, particularly as mediated by reactive oxygen species (ROS), can be elucidated by experimental manipulation of the electron transport chain. The major sites of ROS formation are found at NADH dehydrogenase of complex I and at the interface between coenzyme Q and complex III. Inhibitors of complex III should thus upregulate ROS from both sites; inhibitors of complex I should upregulate ROS from the first but not the second site, while uncouplers of oxidative phosphorylation should downregulate ROS from both sites. To investigate the possibility of such redox signaling, perturbations of colony growth and development were carried out using the hydroid Podocoryna carnea. Oxygen uptake of colonies was measured to determine comparable physiological doses of antimycin A(1) (an inhibitor of complex III), rotenone (an inhibitor of complex I) and carbonyl cyanide m-chlorophenylhydrazone (CCCP; an uncoupler of oxidative phosphorylation). Using these doses, clear effects on colony growth and development were obtained. Treatment with antimycin A(1) results in 'runner-like' colony growth, with widely spaced polyps and stolon branches, while treatment with CCCP results in 'sheet-like' growth, with closely spaced polyps and stolon branches. Parallel results have been obtained previously with azide, an inhibitor of complex IV, and dinitrophenol, another uncoupler of oxidative phosphorylation. Perhaps surprisingly, rotenone produced effects on colony development similar to those of CCCP. Assays of peroxides using 2',7'-dichlorofluorescin diacetate and fluorescent microscopy suggest a moderate difference in ROS formation between the antimycin and rotenone treatments. The second site of ROS formation (the interface between coenzyme Q and complex III) may thus predominate in the signaling that regulates colony development. The fat-rich, brine shrimp diet of these hydroids may be relevant in this context. Acyl CoA dehydrogenase, which catalyzes the first step in the mitochondrial beta-oxidation of fatty acids, carries electrons to coenzyme Q, thus bypassing complex I. These results support a role for redox signaling, mediated by ROS, in colony development. Nevertheless, other redox sensors between complexes I and III may yet be found.
Collapse
Affiliation(s)
- Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
1021
|
Hesselink MKC, Greenhaff PL, Constantin-Teodosiu D, Hultman E, Saris WHM, Nieuwlaat R, Schaart G, Kornips E, Schrauwen P. Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo. J Clin Invest 2003; 111:479-86. [PMID: 12588886 PMCID: PMC152374 DOI: 10.1172/jci16653] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Accepted: 11/19/2002] [Indexed: 01/27/2023] Open
Abstract
Phosphocreatine (PCr) resynthesis rate following intense anoxic contraction can be used as a sensitive index of in vivo mitochondrial function. We examined the effect of a diet-induced increase in uncoupling protein 3 (UCP3) expression on postexercise PCr resynthesis in skeletal muscle. Nine healthy male volunteers undertook 20 one-legged maximal voluntary contractions with limb blood flow occluded to deplete muscle PCr stores. Exercise was performed following 7 days consumption of low-fat (LF) or high-fat (HF) diets. Immediately following exercise, blood flow was reinstated, and muscle was sampled after 20, 60, and 120 seconds of recovery. Mitochondrial coupling was assessed by determining the rate of PCr resynthesis during recovery. The HF diet increased UCP3 protein content by approximately 44% compared with the LF diet. However, this HF diet-induced increase in UCP3 expression was not associated with any changes in the rate of muscle PCr resynthesis during conditions of maximal flux through oxidative phosphorylation. Muscle acetylcarnitine, free-creatine, and lactate concentrations during recovery were unaffected by the HF diet. Taken together, our findings demonstrate that increasing muscle UCP3 expression does not diminish the rate of PCr resynthesis, allowing us to conclude that the primary role of UCP3 in humans is not uncoupling.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
1022
|
Jones TE, Baar K, Ojuka E, Chen M, Holloszy JO. Exercise induces an increase in muscle UCP3 as a component of the increase in mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2003; 284:E96-101. [PMID: 12388129 DOI: 10.1152/ajpendo.00316.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have indicated that exercise acutely induces large increases in uncoupling protein-3 (UCP3) in skeletal muscle, whereas endurance training results in marked decreases in muscle UCP3. Because UCP3 expression appears to be regulated by the same mechanism as other mitochondrial constituents, it seemed unlikely that exercise would result in such large and divergent changes in mitochondrial composition. The purpose of this study was to test the hypothesis that major changes in UCP3 protein concentration do not occur independently of mitochondrial biogenesis and that UCP3 increases as a component of the exercise-induced increase in mitochondria. We found a large increase in UCP3 mRNA immediately and 3 h after a bout of swimming. UCP3 protein concentration was increased approximately 35% 18 h after a single exercise bout, approximately 63% after 3 days, and approximately 84% after 10 days of exercise. These increases in UCP3 roughly paralleled those of other mitochondrial marker proteins. Our results are consistent with the interpretation that endurance exercise induces an adaptive increase in mitochondria that have a normal content of UCP3.
Collapse
MESH Headings
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Ion Channels
- Male
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/ultrastructure
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Physical Conditioning, Animal
- Physical Exertion/physiology
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Swimming
- Uncoupling Protein 3
Collapse
Affiliation(s)
- Terry E Jones
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
1023
|
Oxidative phosphorylation, mitochondrial proton cycling, free-radical production and aging. ADVANCES IN CELL AGING AND GERONTOLOGY 2003. [DOI: 10.1016/s1566-3124(03)14003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
1024
|
Barnstable CJ, Li M, Reddy R, Horvath TL. Mitochondrial Uncoupling Proteins: Regulators of Retinal Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:269-75. [PMID: 15180273 DOI: 10.1007/978-1-4615-0067-4_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Affiliation(s)
- Colin J Barnstable
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
1025
|
Chen Q, Crosby M, Almasan A. Redox Regulation of Apoptosis before and after Cytochrome C Release. ACTA ACUST UNITED AC 2003; 7:1-9. [PMID: 16467897 PMCID: PMC1343461 DOI: 10.1080/12265071.2003.9647675] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Programmed cell death, or apoptosis, is one of the most studied areas of modern biology. Apoptosis is a genetically regulated process, which plays an essential role in the development and homeostasis of higher organisms. Mitochondria, known to play a central role in regulating cellular metabolism, was found to be critical for regulating apoptosis induced under both physiological and pathological conditions. Mitochondria are a major source of reactive oxygen species (ROS) but they can also serve as its target during the apoptosis process. Release of apoptogenic factors from mitochondria, the best known of which is cytochrome c, leads to assembly of a large apoptosis-inducing complex called the apoptosome. Cysteine proteases (called caspases) are recruited to this complex and, following their activation by proteolytic cleavage, activate other caspases, which in turn target for specific cleavage a large number of cellular proteins. The redox regulation of apoptosis during and after cytochrome c release is an area of intense investigation. This review summarizes what is known about the biological role of ROS and its targets in apoptosis with an emphasis on its intricate connections to mitochondria and the basic components of cell death.
Collapse
Affiliation(s)
- Quan Chen
- *To whom correspondence should be addressed, Tel: 86-10-6252-9232, Fax: +6256-5689, E-mail:
| | | | | |
Collapse
|
1026
|
Mitchell JB, Xavier S, DeLuca AM, Sowers AL, Cook JA, Krishna MC, Hahn SM, Russo A. A low molecular weight antioxidant decreases weight and lowers tumor incidence. Free Radic Biol Med 2003; 34:93-102. [PMID: 12498984 DOI: 10.1016/s0891-5849(02)01193-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stable free radical nitroxides are potent antioxidants possessing superoxide dismutase- and catalase-mimetic activity that protect cells and animals against a variety of oxidative insults. Tempol, as a representative nitroxide, was evaluated for its influence on weight maintenance and spontaneous tumor incidence in C3H mice. Tempol administered in either the drinking water or food did not show any untoward effects and prevented animals from becoming obese. Tempol-treated animals' leptin levels were reduced. Long-term treatment with Tempol significantly decreased tumorigenesis when compared to controls (10 vs. 40%, respectively). Selected tissues from Tempol-treated animals exhibited elevated levels of mitochrondrial uncoupling protein-2 (UCP-2) and HSP70. The present data suggest that nitroxides upregulate UCP-2, obviate weight gain, and decrease age-related spontaneous tumor incidence. As a class, nitroxides may provide overall health benefits by contributing to decreased obesity and tumor incidence.
Collapse
Affiliation(s)
- James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1027
|
Echtay KS, Murphy MP, Smith RAJ, Talbot DA, Brand MD. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem 2002; 277:47129-35. [PMID: 12372827 DOI: 10.1074/jbc.m208262200] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide did not need to be exported or to cycle across the inner membrane to cause uncoupling. We conclude that superoxide (or its products) exerts its uncoupling effect by activating the proton transport mechanism of uncoupling proteins at the matrix side of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Karim S Echtay
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
1028
|
Brand MD, Pamplona R, Portero-Otín M, Requena JR, Roebuck SJ, Buckingham JA, Clapham JC, Cadenas S. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem J 2002; 368:597-603. [PMID: 12193161 PMCID: PMC1223005 DOI: 10.1042/bj20021077] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Revised: 08/16/2002] [Accepted: 08/23/2002] [Indexed: 11/17/2022]
Abstract
Five markers of different kinds of oxidative damage to proteins [glutamic semialdehyde, aminoadipic semialdehyde, N (epsilon)-(carboxymethyl)lysine, N (epsilon)-(carboxyethyl)lysine and N (epsilon)-(malondialdehyde)lysine] and phospholipid fatty acyl composition were identified and measured in skeletal muscle mitochondria isolated from mice genetically engineered to underexpress or overexpress uncoupling protein 3 (UCP3). Mitochondria from UCP3-underexpressing mice had significantly higher levels of oxidative damage than wild-type controls, suggesting that UCP3 functions in vivo as part of the antioxidant defences of the cell, but mitochondria from UCP3-overexpressing mice had unaltered oxidative damage, suggesting that mild uncoupling in vivo beyond the normal basal uncoupling provides little protection against oxidative stress. Mitochondria from UCP3-underexpressing mice showed little change, but mitochondria from UCP3-overexpressing mice showed marked changes in mitochondrial phospholipid fatty acyl composition. These changes were very similar to those previously found to correlate with basal proton conductance in mitochondria from a range of species and treatments, suggesting that high protein expression, or some secondary result of uncoupling, may cause the observed correlation between basal proton conductance and phospholipid fatty acyl composition.
Collapse
Affiliation(s)
- Martin D Brand
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, U.K.
| | | | | | | | | | | | | | | |
Collapse
|
1029
|
Stoppani J, Hildebrandt AL, Sakamoto K, Cameron-Smith D, Goodyear LJ, Neufer PD. AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. Am J Physiol Endocrinol Metab 2002; 283:E1239-48. [PMID: 12388122 DOI: 10.1152/ajpendo.00278.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AMP-activated protein kinase (AMPK) has recently emerged as a key signaling protein in skeletal muscle, coordinating the activation of both glucose and fatty acid metabolism in response to increased cellular energy demand. To determine whether AMPK signaling may also regulate gene transcription in muscle, rats were given a single subcutaneous injection (1 mg/g) of the AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR). AICAR injection activated (P < 0.05) AMPK-alpha 2 ( approximately 2.5-fold) and transcription of the uncoupling protein-3 (UCP3, approximately 4-fold) and hexokinase II (HKII, approximately 10-fold) genes in both red and white skeletal muscle. However, AICAR injection also elicited (P < 0.05) an acute drop (60%) in blood glucose and a sustained (2-h) increase in blood lactate, prompting concern regarding the specificity of AICAR on transcription. To maximize AMPK activation in muscle while minimizing potential systemic counterregulatory responses, a single-leg arterial infusion technique was employed in fully conscious rats. Relative to saline-infused controls, single-leg arterial infusion of AICAR (0.125, 0.5, and 2.5 micro g. g(-1). min(-1) for 60 min) induced a dose-dependent increase (2- to 4-fold, P < 0.05) in UCP3 and HKII transcription in both red and white skeletal muscle. Importantly, AICAR infusion activated transcription only in muscle from the infused leg and had no effect on blood glucose or lactate levels. These data provide evidence that AMPK signaling is linked to the transcriptional regulation of select metabolic genes in skeletal muscle.
Collapse
Affiliation(s)
- James Stoppani
- The John B. Pierce Laboratory and Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut 06519, USA
| | | | | | | | | | | |
Collapse
|
1030
|
Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 2002; 368:545-53. [PMID: 12180906 PMCID: PMC1222999 DOI: 10.1042/bj20021121] [Citation(s) in RCA: 507] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Accepted: 08/15/2002] [Indexed: 02/07/2023]
Abstract
Several lines of evidence indicate that mitochondrial reactive oxygen species (ROS) generation is the major source of oxidative stress in the cell. It has been shown that ROS production accompanies cytochrome c release in different apoptotic paradigms, but the site(s) of ROS production remain obscure. In the current study, we demonstrate that loss of cytochrome c by mitochondria oxidizing NAD(+)-linked substrates results in a dramatic increase of ROS production and respiratory inhibition. This increased ROS production can be mimicked by rotenone, a complex I inhibitor, as well as other chemical inhibitors of electron flow that act further downstream in the electron transport chain. The effects of cytochrome c depletion from mitoplasts on ROS production and respiration are reversible upon addition of exogenous cytochrome c. Thus in these models of mitochondrial injury, a primary site of ROS generation in both brain and heart mitochondria is proximal to the rotenone inhibitory site, rather than in complex III. ROS production at complex I is critically dependent upon a highly reduced state of the mitochondrial NAD(P)(+) pool and is achieved upon nearly complete inhibition of the respiratory chain. Redox clamp experiments using the acetoacetate/L-beta-hydroxybutyrate couple in the presence of a maximally inhibitory rotenone concentration suggest that the site is approx. 50 mV more electronegative than the NADH/NAD(+) couple. In the absence of inhibitors, this highly reduced state of mitochondria can be induced by reverse electron flow from succinate to NAD(+), accounting for profound ROS production in the presence of succinate. These results lead us to propose a model of thermodynamic control of mitochondrial ROS production which suggests that the ROS-generating site of complex I is the Fe-S centre N-1a.
Collapse
Affiliation(s)
- Yulia Kushnareva
- Mitochondrial Biology, MitoKor, 11494 Sorrento Valley Road, San Diego, CA 92024, U.S.A
| | | | | |
Collapse
|
1031
|
Abstract
The uncoupling proteins (UCPs) are transporters, present in the mitochondrial inner membrane, that mediate a regulated discharge of the proton gradient that is generated by the respiratory chain. This energy-dissipatory mechanism can serve functions such as thermogenesis, maintenance of the redox balance, or reduction in the production of reactive oxygen species. Some UCP homologs may not act as true uncouplers, however, and their activity has yet to be defined. The UCPs are integral membrane proteins, each with a molecular mass of 31-34 kDa and a tripartite structure in which a region of around 100 residues is repeated three times; each repeat codes for two transmembrane segments and a long hydrophilic loop. The functional carrier unit is a homodimer. So far, 45 genes encoding members of the UCP family have been described, and they can be grouped into six families. Most of the described genes are from mammals, but UCP genes have also been found in fish, birds and plants, and there is also functional evidence to suggest their presence in fungi and protozoa. UCPs are encoded in their mature form by nuclear genes and, unlike many nuclear-encoded mitochondrial proteins, they lack a cleavable mitochondrial import signal. The information for mitochondrial targeting resides in the first loop that protrudes into the mitochondrial matrix; the second matrix loop is essential for insertion of the protein into the inner mitochondrial membrane. UCPs are regulated at both the transcriptional level and by activation and inhibition in the mitochondrion.
Collapse
Affiliation(s)
- Amalia Ledesma
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez 144, 28006 Madrid, Spain
| | - Mario García de Lacoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez 144, 28006 Madrid, Spain
| | - Eduardo Rial
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez 144, 28006 Madrid, Spain
| |
Collapse
|
1032
|
St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277:44784-90. [PMID: 12237311 DOI: 10.1074/jbc.m207217200] [Citation(s) in RCA: 1122] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.
Collapse
Affiliation(s)
- Julie St-Pierre
- MRC (Medical Research Council) Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, England.
| | | | | | | |
Collapse
|
1033
|
Joseph JW, Koshkin V, Zhang CY, Wang J, Lowell BB, Chan CB, Wheeler MB. Uncoupling protein 2 knockout mice have enhanced insulin secretory capacity after a high-fat diet. Diabetes 2002; 51:3211-9. [PMID: 12401712 DOI: 10.2337/diabetes.51.11.3211] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Uncoupling protein 2 (UCP2) may act as an important regulator of insulin secretion. In this study, beta-cell function in UCP2-deficient mice was examined after a 45% high-fat diet (HFD) to assess its role during the development of diet-induced type 2 diabetes. HFD-fed UCP2 (-/-) mice have lower fasting blood glucose and elevated insulin levels when compared with wild-type (WT) mice. UCP2 (-/-) mice also have enhanced beta-cell glucose sensitivity compared with WT mice after HFD, a result that is due in part to the deterioration of glucose responsiveness in WT mice. HFD-fed UCP2 (-/-) mice have increased insulin secretory capacity as a result of increased pancreatic beta-cell mass and insulin content per islet. Islets from WT mice exposed to 0.5 mmol/l palmitate for 48 h have significantly reduced mitochondrial membrane potential, ATP concentrations, and glucose responsiveness compared with UCP2 (-/-) islets, suggesting that elevated UCP2 in WT mice increases proton leak and decreases mitochondrial ATP production. Highly increased carnitine palmitoyl transferase-1 gene expression in UCP2 (-/-) mice is suggestive of enhanced fatty acid oxidizing capacity, particularly after HFD stress. These results further establish UCP2 as a component in glucose sensing and suggest a possible new aspect of UCP2 function during the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Jamie W Joseph
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
1034
|
Abstract
Bw gain is controlled by energy intake on one hand and expenditure on the other. The components of energy expenditure are basal metabolism, exercise induced thermogenesis and adaptive thermogenesis. In this short review we shall discuss the main determinants of adaptive thermogenesis.
Collapse
Affiliation(s)
- A P Russell
- Department of Medical Biochemistry, University Medical Center, Geneva, Switzerland
| | | |
Collapse
|
1035
|
Hourton-Cabassa C, Mesneau A, Miroux B, Roussaux J, Ricquier D, Zachowski A, Moreau F. Alteration of plant mitochondrial proton conductance by free fatty acids. Uncoupling protein involvement. J Biol Chem 2002; 277:41533-8. [PMID: 12196511 DOI: 10.1074/jbc.m202805200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized the uncoupling activity of the plant uncoupling protein from Solanum tuberosum (StUCP) using mitochondria from intact potato tubers or from yeast (Saccharomyces cerevisiae) expressing the StUCP gene. Compared with mitochondria from transfected yeast, StUCP is present at very low levels in intact potato mitochondrial membranes (at least thirty times lower) as shown by immunodetection with anti-UCP1 antibodies. Under conditions that ruled out undesirable effects of nucleotides and free fatty acids on uncoupling activity measurement in plant mitochondria, the linoleic acid-induced depolarization in potato mitochondria was insensitive to the nucleotides ATP, GTP, or GDP. In addition, sensitivity to linoleic acid was similar in potato and in control yeast mitochondria, suggesting that uncoupling occurring in potato mitochondria was because of a UCP-independent proton diffusion process. By contrast, yeast mitochondria expressing StUCP exhibited a higher sensitivity to free fatty acids than those from the control yeast and especially a marked proton conductance in the presence of low amounts of linoleic acid. However, this fatty acid-induced uncoupling was also insensitive to nucleotides. Altogether, these results suggest that uncoupling of oxidative phosphorylation and heat production cannot be the dominant feature of StUCP expressed in native potato tissues. However, it could play a role in preventing reactive oxygen species production as proposed for mammalian UCP2 and UCP3.
Collapse
Affiliation(s)
- Cecile Hourton-Cabassa
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes UMR 7632 CNRS/UPMC, Tour 53 (case 154), 4 place Jussieu, 75252 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
1036
|
Abstract
Calorie-restricted feeding retards the rate of ageing in mammalian and invertebrate species. The molecular mechanisms underlying this effect include a lower rate of accrual of tissue oxidative damage that is associated with a significantly lower rate of mitochondrial free radical generation in rodent species. To identify the important sites of control and regulation for mitochondrial free radical generation during ageing and calorie-restricted feeding, metabolic control analysis is being applied to the study of mitochondrial bioenergetics. With ageing an increase in the mitochondrial proton leak is observed in mouse hepatocytes and in rat skeletal muscle. Limited data suggest that calorie-restricted feeding lowers the inner mitochondrial membrane potential and this may explain the reduced rate of free radical generation. A lowered unsaturation/saturation index is observed for mitochondrial membrane lipids in calorie-restricted rodents resulting in an altered membrane structure and function. Plasma concentrations of insulin and triiodothyronine are significantly lower under calorie-restricted feeding conditions and these hormones exert transcriptional control over desaturase enzymes that are important in the control of membrane lipid unsaturation. A loss of double bonds should make the mitochondrial membranes more resistant to peroxidation damage and would also reduce the proton conductance of the membrane, raising the membrane potential at a given respiration rate. This effect however, appears to be offset by other membrane changes that may include increased activity of uncoupling proteins. These unidentified adaptations increase the proton leak in calorie-restricted animals resulting in a lowering of the membrane potential and ROS generation.
Collapse
Affiliation(s)
- B J Merry
- School of Biological Sciences, University of Liverpool, Liverpool L69 3GS, UK.
| |
Collapse
|
1037
|
Abstract
Five mitochondrial uncoupling proteins exist in the human gemone: UCP2, expressed ubiquitously; UCP1, exclusively in brown adipose tissue (BAT); UCP3, predominantly in muscle; UCP4 and BMCP (UCP5), in brain. UCP4 is the ancestral prototype from which the other UCPn diverged. Findings on the level of organism and reconstituted recombinant proteins demonstrated that UCPn exhibit a protonophoric function, documented by overexpression in mice, L6 myotubes, INS1 cells, muscle, and yeast. In a few cases (yeast), this protonophoric function was correlated with elevated fatty acid (FA) levels. Reconstituted UCPn exhibited nucleotide-sensitive FA induced H(+) uniport. Two mechanisms, local buffering or FA cycling were suggested as an explanation. A basic UCPn role with mild uncoupling is to accelerate metabolism and reduce reactive oxygen species. UCP2 (UCP3) roles were inferred from transcriptional up-regulation mediated by FAs via peroxisome proliferator-activated receptors, cytokines, leptin signalling via hypothalamic pathway, and by thyroide and beta2 adrenergic stimulation. The latter indicated a role in catecholamine-induced thermogenesis in skeletal muscle. UCP2 (UCP3) may contribute to body weight regulation, although obesity was not induced in knockout (KO) mice. An obesity reduction in middle-aged humans was associated with the less common allele of -866 G/A polymorphism in the ucp2 gene promoter enhancing the exon 8 insertion: deletion transcript ratio. Up-regulated UCP2 transcription by pyrogenic cytokines (tumour necrosis factor alpha (TNFalpha)) suggested a role in fever. UCP2 could induce type 2 diabetes as developed from obesity due to up-regulated UCP2 transcription by FAs in pancreatic beta-cells. UCPn might be pro-apoptotic as well as anti-apoptotic, depending on transcriptional and biochemical regulation.
Collapse
Affiliation(s)
- Petr Jezek
- Department of Membrane Transport Biophysics No. 375, Institute of Physiology, Academy of Sciences, Vídenská 1083, Prague 4, Czech Republic.
| |
Collapse
|
1038
|
Abstract
Understanding the pathogenesis of non-alcoholic steatohepatitis has recently assumed great importance with the recognition that it has the potential to progress to fibrosis and cirrhosis. The 'two-hit' model of pathogenesis was proposed in 1998, with the first 'hit' - steatosis - increasing the sensitivity of the liver to the second 'hits' mediating liver injury. The main aim of this chapter is to review this model in the light of studies that have been published over the subsequent 4 years. Particular attention will be focused on the role of insulin resistance and recent advances in our understanding of the basic cellular mechanisms linking obesity and insulin resistance. Based on this information I will propose a modification of the two-hit model that places more emphasis on the role of free fatty acids. This model will provide the basis for further research and enable the rational design of treatment strategies.
Collapse
Affiliation(s)
- C P Day
- Centre for Liver Research, Floor 4 William Leech Building, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
1039
|
Jekabsons MB, Echtay KS, Brand MD. Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies. Biochem J 2002; 366:565-71. [PMID: 12030845 PMCID: PMC1222799 DOI: 10.1042/bj20020469] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Revised: 05/13/2002] [Accepted: 05/27/2002] [Indexed: 11/17/2022]
Abstract
Experiments were performed to test the hypothesis that recombinant human uncoupling protein-2 (UCP2) ectopically expressed in bacterial inclusion bodies binds nucleotides in a manner identical with the nucleotide-inhibited uncoupling that is observed in kidney mitochondria. For this, sarkosyl-solubilized UCP2 inclusion bodies were treated with the polyoxyethylene ether detergent C12E9 and hydroxyapatite. Protein recovered from hydroxyapatite chromatography was approx. 90% pure UCP2, as judged by Coomassie Blue and silver staining of polyacrylamide gels. Using fluorescence resonance energy transfer, N-methylanthraniloyl-tagged purine nucleoside di- and tri-phosphates exhibited enhanced fluorescence with purified UCP2. Dissociation constants determined by least-squares non-linear regression indicated that the affinity of UCP2 for these fluorescently tagged nucleotides was 3-5 microM or perhaps an order of magnitude stronger, depending on the model used. Competition experiments with [8-14C]ATP demonstrated that UCP2 binds unmodified purine and pyrimidine nucleoside triphosphates with 2-5 microM affinity. Affinities for ADP and GDP were approx. 10-fold lower. These data indicate that: UCP2 (a) is at least partially refolded from sarkosyl-solubilized bacterial inclusion bodies by a two-step treatment with C12E9 detergent and hydroxyapatite; (b) binds purine and pyrimidine nucleoside triphosphates with low micromolar affinity; (c) binds GDP with the same affinity as GDP inhibits superoxide-stimulated uncoupling by kidney mitochondria; and (d) exhibits a different nucleotide preference than kidney mitochondria.
Collapse
Affiliation(s)
- Mika B Jekabsons
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|
1040
|
Murakami K, Mizushige K, Noma T, Tsuji T, Kimura S, Kohno M. Perindopril effect on uncoupling protein and energy metabolism in failing rat hearts. Hypertension 2002; 40:251-5. [PMID: 12215462 DOI: 10.1161/01.hyp.0000029094.85023.01] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uncoupling proteins, inner mitochondrial membrane proton transporters, are important for regulating myocardial energy efficiency. We investigated the effects of the ACE inhibitor perindopril on cardiac performance, myocardial energy efficiency, and uncoupling protein expression in an aortic regurgitation rat model. Twenty male Sprague-Dawley rats, in which aortic regurgitation was produced, were divided into untreated and perindopril-treated (5 mg x kg(-1) x d(-1)) rats. The treatments were initiated 3 days after operation. Ten control rats were sham-operated. Measurements of blood pressure and echocardiography were repeated before and 100 days after operation (endpoint). Left ventricular uncoupling protein-2 expression, creatine phosphate, and adenosine triphosphate were measured at endpoint. In perindopril-treated rats, systolic and diastolic blood pressure decreased after treatment (92+/-4/65+/-2 mm Hg). At endpoint, left ventricular end-diastolic dimension in untreated (10.7+/-0.2 mm) and treated rats (9.2+/-0.2 mm) was increased, and fractional shortening was reduced in untreated rats (28+/-1%) but did not change in treated rats (36+/-2%). Uncoupling protein-2 mRNA expression increased in untreated rats (3.7-fold) and was suppressed by perindopril (1.5-fold). The creatine phosphate was reduced in untreated rats (10.6+/-0.7 micro mol/g) but not in treated rats (15.9+/-2.0 micro mol/g). In the chronic stage of aortic regurgitation, perindopril improved cardiac performance and myocardial energy efficiency, in which the suppression of uncoupling protein-2 may play an important role.
Collapse
Affiliation(s)
- Kazushi Murakami
- Second Department of Internal Medicine, Kagawa Medical University, Kita, Kagawa, Japan.
| | | | | | | | | | | |
Collapse
|
1041
|
Abstract
In this Perspective, the author discusses some of the bioenergetic consequences of the various alterations in mitochondrial function that have been hypothesized to be associated with human aging and aging-related disease. Special focus is afforded to neurodegenerative disease.
Collapse
|
1042
|
Boutilier RG, St-Pierre J. Adaptive plasticity of skeletal muscle energetics in hibernating frogs:mitochondrial proton leak during metabolic depression. J Exp Biol 2002; 205:2287-96. [PMID: 12110662 DOI: 10.1242/jeb.205.15.2287] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe common frog (Rana temporaria) spends the coldest months of each year overwintering in ice-covered ponds where temperatures can vary from 0.5 to 4.0°C. Over the course of a winter season, the animals enter progressively into a state of metabolic depression that relies almost exclusively on aerobic production of ATP. However, if aerobic metabolism is threatened, for example by increasingly hypoxic conditions, decreases in the animal's metabolic rate can reach upwards of 75% compared with the 50%decrease seen during normoxia. Under these conditions, the major proportion of the overall reduction in whole-animal metabolic rate can be accounted for by metabolic suppression of the skeletal muscle (which makes up approximately 40%of body mass). Little is known about the properties of mitochondria during prolonged periods of metabolic depression, so we have examined several aspects of mitochondrial metabolism in the skeletal muscle of frogs over periods of hibernation of up to 4 months. Mitochondria isolated from the skeletal muscle of frogs hibernating in hypoxic water show a considerable reorganisation of function compared with those isolated from normoxic submerged animals at the same temperature (3°C). Both the active (state 3) and resting (state 4)respiration rates of mitochondria decrease during hypoxic, but not normoxic,hibernation. In addition, the affinity of mitochondria for oxygen increases during periods of acute hypoxic stress during normoxic hibernation as well as during long-term hibernation in hypoxic water. The decrease in mitochondrial state 4 respiration rates during hypoxic hibernation evidently occurs through a reduction in electron-transport chain activity, not through a lowered proton conductance of the mitochondrial inner membrane. The reduced aerobic capacity of frog skeletal muscle during hypoxic hibernation is accompanied by lowered activities of key enzymes of mitochondrial metabolism caused by changes in the intrinsic properties of the mitochondria. In the absence of oxygen, the mitochondrial F1Fo-ATPase (the ATP synthase) begins to run backwards as it actively pumps protons from the matrix in an attempt to maintain the mitochondrial membrane potential. At this time, the ATP synthase functions as an ATPase to preserve a certain proton-motive force. Frogs limit ATP wastage during anoxia by a profound inhibition of the ATP synthase. Taken together, our studies show that protonmotive force is lowered aerobically by restricting electron supply and during anoxia by restricting mitochondrial ATPase activity.
Collapse
Affiliation(s)
- Robert G Boutilier
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
1043
|
Sbraccia P, D'Adamo M, Leonetti F, Buongiorno A, Silecchia G, Basso MS, Tamburrano G, Lauro D, Federici M, Di Daniele N, Lauro R. Relationship between plasma free fatty acids and uncoupling protein-3 gene expression in skeletal muscle of obese subjects: in vitro evidence of a causal link. Clin Endocrinol (Oxf) 2002; 57:199-207. [PMID: 12153598 DOI: 10.1046/j.1365-2265.2002.01593.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate whether skeletal muscle uncoupling protein-2 (UCP2) and uncoupling protein-3 (UCP3) gene expression is altered in massive obesity and whether it correlates with in vivo insulin sensitivity and with metabolic and hormonal status. DESIGN Quantification of UCP2 and UCP3 gene expression in skeletal muscle of obese and lean subjects displaying different degrees of insulin sensitivity. PATIENTS Fourteen obese and 10 age- and sex-matched healthy control subjects with a mean body mass index (BMI) of 43.6 +/- 1.4 and 22.8 +/- 1.8 (+/- SEM), respectively. MEASUREMENTS Insulin sensitivity by glucose clamp, body composition by bio-impedance, fasting plasma glucose, insulin, leptin and free fatty acids (FFA). Skeletal muscle UCP2 and UCP3 mRNA levels by quantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS No significant differences in UCP2 or UCP3 mRNA levels were found between obese and control subjects. No significant correlation was observed, in both groups, between UCP2 or UCP3 mRNA levels and both anthropometrical and metabolic parameters. In contrast, a highly significant correlation was observed between skeletal muscle UCP3, but not UCP2, mRNA levels and plasma FFA in the obese, but not in the lean, group. Furthermore, exposure of human myocytes to FFA for 24 h strongly induced both UCP3 and peroxisome proliferator-activated receptor-gamma (PPARgamma) but not UCP2 gene expression. CONCLUSIONS FFA levels correlate strongly with skeletal muscle UCP3 mRNA levels in obese, but not in lean, subjects; in addition, in human myocytes, high FFA concentrations promote UCP3 expression. Our studies therefore provide evidence that supports a role for increased plasma FFA concentrations in the regulation of human skeletal muscle UCP3 gene expression.
Collapse
Affiliation(s)
- Paolo Sbraccia
- Loboratory of Molecular Medicine, Department of Internal Medicine, University of Rome 'Tor Vergata', Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1044
|
Couplan E, del Mar Gonzalez-Barroso M, Alves-Guerra MC, Ricquier D, Goubern M, Bouillaud F. No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J Biol Chem 2002; 277:26268-75. [PMID: 12011051 DOI: 10.1074/jbc.m202535200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The phenotypes observed in mice whose uncoupling protein (Ucp2) gene had been invalidated by homologous recombination (Ucp2(-/-) mice) are consistent with an increase in mitochondrial membrane potential in macrophages and pancreatic beta cells. This could support an uncoupling (proton transport) activity of UCP2 in the inner mitochondrial membrane in vivo. We used mitochondria from lung or spleen, the two organs expressing the highest level of UCP2, to compare the proton leak of the mitochondrial inner membrane of wild-type and Ucp2(-/-) mice. No difference was observed under basal conditions. Previous reports have concluded that retinoic acid and superoxide activate proton transport by UCP2. Spleen mitochondria showed a higher sensitivity to retinoic acid than liver mitochondria, but this was not caused by UCP2. In contrast with a previous report, superoxide failed to increase the proton leak rate in kidney mitochondria, where no UCP2 expression was detected, and also in spleen mitochondria, which does not support stimulation of UCP2 uncoupling activity by superoxide. Finally, no increase in the ATP/ADP ratio was observed in spleen or lung of Ucp2(-/-) mice. Therefore, no evidence could be gathered for the uncoupling activity of the UCP2 present in spleen or lung mitochondria. Although this may be explained by difficulties with isolated mitochondria, it may also indicate that UCP2 has another physiological significance in spleen and lung.
Collapse
Affiliation(s)
- Elodie Couplan
- Ceremod CNRS UPR9078, 9 rue Jules Hetzel, Meudon 92190, France
| | | | | | | | | | | |
Collapse
|
1045
|
Curtin NA, Clapham JC, Barclay CJ. Excess recovery heat production by isolated muscles from mice overexpressing uncoupling protein-3. J Physiol 2002; 542:231-5. [PMID: 12096064 PMCID: PMC2290402 DOI: 10.1113/jphysiol.2002.021964] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Contractile and energetic performance of bundles of muscle fibres from the soleus of mice overexpressing uncoupling protein 3 (UCP-3tg) were compared with the performance of bundles from wild-type mice. Force and heat production were measured during a series of thirty 0.2 s isometric tetani at L(o), the length optimal for force. UCP-3tg fibres were as strong as the wild-type and maintained force in the series equally well; in the first tetanus force was 116.9 +/- 15.1 and 133.3 +/- 19.7 mN x mm(-2) respectively (all values means +/- S.E.M., n = 6 for UCP-3tg and n = 5 for wild-type). Heat production was partitioned into initial heat (due to contractile ATPases and the creatine kinase reaction) and recovery heat (due to other ATP-supplying processes) and expressed relative to the first cycle total heat. Initial heat production was similar for the UCP-3tg and wild-type fibres, decreasing during the series from 0.799 +/- 0.052 to 0.661 +/- 0.061 relative units (UCP-3tg), and from 0.806 +/- 0.024 to 0.729 +/- 0.039 relative units (wild-type). In both types the recovery heat was small at the start of the series and increased as the series progressed. At the end of the series, recovery heat production by UCP-3tg fibres, 1.575 +/- 0.246 relative units, was twice that of the wild-type fibres, 0.729 +/- 0.072 relative units. The extra recovery heat represents inefficient recovery in UCP-3tg fibres. This is the first direct evidence of enhanced energy dissipation as heat when UCP-3tg is overexpressed.
Collapse
Affiliation(s)
- N A Curtin
- Biological Structure and Function Section, Division of Biomedical Sciences, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London SW7 2AZ, UK.
| | | | | |
Collapse
|
1046
|
Gardner R, Salvador A, Moradas-Ferreira P. Why does SOD overexpression sometimes enhance, sometimes decrease, hydrogen peroxide production? A minimalist explanation. Free Radic Biol Med 2002; 32:1351-7. [PMID: 12057773 DOI: 10.1016/s0891-5849(02)00861-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxic effects of superoxide dismutase (SOD) overexpression are commonly attributed to increased hydrogen peroxide (H(2)O(2)) production. Still, published experiments yield contradictory evidence on whether SOD overexpression increases or decreases H(2)O(2) production. We analyzed this issue using a minimal mathematical model. The most relevant mechanisms of superoxide consumption are treated as pseudo first-order processes, and both superoxide production and the activity of enzymes other than SOD were considered constant. Even within this simple framework, SOD overexpression may increase, hold constant, or decrease H(2)O(2) production. At normal SOD levels, the outcome depends on the ratio between the rate of processes that consume superoxide without forming H(2)O(2) and the rate of processes that consume superoxide with high (>/= 1) H(2)O(2) yield. In cells or cellular compartments where this ratio is exceptionally low (< 1), a modest decrease in H(2)O(2) production upon SOD overexpression is expected. Where the ratio is higher than unity, H(2)O(2) production should increase, but at most linearly, with SOD activity. The results are consistent with the available experimental observations. According to the minimal model, only where most superoxide is eliminated through H(2)O(2)-free processes does SOD activity have the moderately large influence on H(2)O(2) production observed in some experiments.
Collapse
Affiliation(s)
- Rui Gardner
- Unidade de Stress em Microorganismos, Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | | | | |
Collapse
|
1047
|
Roussel D, Harding M, Runswick MJ, Walker JE, Brand MD. Does any yeast mitochondrial carrier have a native uncoupling protein function? J Bioenerg Biomembr 2002; 34:165-76. [PMID: 12171066 DOI: 10.1023/a:1016027302232] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we explore the hypothesis that some member of the mitochondrial carrier family has specific uncoupling activity that is responsible for the basal proton conductance of mitochondria. Twenty-seven of the 35 yeast mitochondrial carrier genes were independently disrupted in Saccharomyces cerevisiae. Six knockout strains did not grow on nonfermentable carbon sources such as lactate. Mitochondria were isolated from the remaining 21 strains, and their proton conductances were measured. None of the 21 carriers contributed significantly to the basal proton leak of yeast mitochondria. A possible exception was the succinate/fumarate carrier encoded by the Xc2 gene, but deletion of this gene also affected yeast growth and respiratory chain activity, suggesting a more general alteration in mitochondrial function. If a specific protein is responsible for the basal proton conductance of yeast mitochondria, its identity remains unknown.
Collapse
Affiliation(s)
- Damien Roussel
- MRC Dunn Human Nutrition Unit, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
1048
|
Flachs P, Novotný J, Baumruk F, Bardová K, Bourová L, Miksík I, Sponarová J, Svoboda P, Kopecký J. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem J 2002; 364:369-76. [PMID: 12023879 PMCID: PMC1222581 DOI: 10.1042/bj20011438] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocytes of aP2-Ucp1 transgenic mice, overexpressing the UCP1 gene from the aP2 gene promoter, reflecting the magnitude of UCP1 expression, the impaired stimulation of cAMP levels by noradrenaline and the reduction of the ATP/ADP ratio in different fat depots. Thus only subcutaneous but not epididymal fat was affected. UCP1 also down-regulated the expression of hormone-sensitive lipase and lowered its activity, and altered the expression of trimeric G-proteins in adipocytes. The adipose tissue content of the stimulatory G-protein alpha subunit was increased while that of the inhibitory G-protein alpha subunits decreased in response to UCP1 expression. Our results support the idea that the energy status of cells, and the ATP/ADP ratio in particular, modulates the lipolytic effects of noradrenaline in adipose tissue in vivo. They also demonstrate changes at the G-protein level that tend to overcome the reduction of lipolysis when ATP level in adipocytes is low. Therefore, respiratory uncoupling may exert a broad effect on hormonal signalling in adipocytes.
Collapse
Affiliation(s)
- Pavel Flachs
- Department of Adipose Tissue Biology and Center for Integrated Genomics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1803, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
1049
|
Ricquier D, Miroux B, del Mar Gonzalez-Barroso M, Bouillaud F. Couplage respiratoire, UCP et ion superoxyde. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002185537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
1050
|
Bouaziz N, Redon M, Quéré L, Remacle J, Michiels C. Mitochondrial respiratory chain as a new target for anti-ischemic molecules. Eur J Pharmacol 2002; 441:35-45. [PMID: 12007918 DOI: 10.1016/s0014-2999(02)01490-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vascular diseases like thrombosis, myocardial infarction, cerebral ischemia or chronic venous insufficiency affect a high proportion of the population. They are all associated with more or less pronounced ischemic conditions. We have previously shown that some venotropic drugs display an anti-ischemic activity, i.e. they prevent the hypoxia-induced decrease in ATP content in cultured cells. The effect is due to the fact that these molecules maintain mitochondrial respiratory activity during hypoxia. Among them is bilobalide. Starting from the 3D structure of bilobalide, we designed new molecules presenting the same chemical features. They were synthesized and tested for their biological activity. As the parent compound, two of them, malonic acid dicyclopent-2-enyl ester (MRC2P119) and 2-oxo-3-oxa-bicyclo[3.1.0]hexane-1-carboxylic acid allyl ester (MRC2P57), were able to markedly increase the respiratory control ratio of isolated mitochondria. They are able to prevent the inhibition of complex I by amytal and of complex III by myxothiazol, but not the uncoupling of the respiration by carbonylcyanide m-chlorophenyl hydrazone (m-CCP). Moreover, MRC2P119 and MRCP2P57 inhibit, in a dose-dependent way, the hypoxia-induced decrease in ATP content in endothelial cells as well as the subsequent activation of these cells as evidenced by an inhibition of the increase in neutrophil adherence to the endothelial cells induced by hypoxia. Finally, MRC2P119 prevent the hypoxia- and the hypoxia-reoxygenation-induced decrease in viability of SH-SY5Y neuroblastoma cells. In conclusion, we identified two new molecules, which display anti-ischemic properties when tested in vitro on endothelial and neuronal cell types. This anti-ischemic activity is probably due to a protection of complexes I and III of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Najat Bouaziz
- Laboratoire de Biochimie et Biologie Cellulaire, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | |
Collapse
|