1051
|
Selvage DJ, Parsons L, Rivier C. Role played by brainstem neurons in regulating testosterone secretion via a direct neural pathway between the hypothalamus and the testes. Endocrinology 2006; 147:3070-5. [PMID: 16556770 DOI: 10.1210/en.2005-1358] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported anatomical and functional evidence for a direct, inhibitory neural pathway that regulates testosterone (T) secretion independently of the pituitary. This pathway is activated by the intracerebroventricular (icv) administration of agents that stimulate stress responses, such as IL-1beta, corticotropin-releasing factor (CRF), and norepinephrine (NE), which results in a blunted T response to the administration of human chorionic gonadotropin (hCG). Blunting of the T response is mediated by central beta-adrenergic receptor stimulation. CRF, but not ethanol (EtOH) or IL-1beta, acts directly on the paraventricular nucleus of the hypothalamus to activate the pathway. Here we explored the role played by brain areas hypothesized to be part of this pathway, such as neurons in the dorsal pons [including the locus coeruleus (LC) of the brainstem], where NE is produced. Microinfusion of EtOH or IL-1beta, but not CRF, into these neurons activated the pathway. Electrolytic lesions of this region significantly reversed the inhibitory effect of icv-administered EtOH on hCG-induced T release, while having no effect on the ability of IL-1beta or CRF to do so. However, the icv administration of IL-1beta, EtOH, or CRF, in doses that rapidly inhibit the T response to hCG, all caused a significant depletion of NE from the LC. Collectively, these results indicate that in addition to the paraventricular nucleus, the brainstem area containing the LC is part of a neural pathway that connects the brain to the testes independently of the pituitary. We also speculate that EtOH may stimulate this pathway through NE-dependent activation of the dorsal pons.
Collapse
Affiliation(s)
- Daniel J Selvage
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
1052
|
Ulrich-Lai YM, Xie W, Meij JTA, Dolgas CM, Yu L, Herman JP. Limbic and HPA axis function in an animal model of chronic neuropathic pain. Physiol Behav 2006; 88:67-76. [PMID: 16647726 DOI: 10.1016/j.physbeh.2006.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 03/03/2006] [Accepted: 03/08/2006] [Indexed: 11/21/2022]
Abstract
Chronic pain can be considered a form of chronic stress, and chronic pain patients often have disturbances of the hypothalamic-pituitary-adrenal (HPA) axis, including abnormal cortisol levels. In addition, chronic pain patients have an increased incidence of depression and anxiety, stress-related disorders that are frequently accompanied by disturbances in the limbic system (e.g. hippocampus and amygdala) and the HPA axis. Despite the fact that the literature supports a strong link between chronic pain, stress disorders, and limbic dysfunction, the mechanisms underlying the effects of chronic pain on the HPA axis and limbic system are not understood. The current study employs a rodent neuropathic pain model (chronic constriction injury (CCI) of the sciatic nerve) to assess the long-term impact of chronic pain on the HPA axis and limbic system. Adult male rats received CCI or sham surgery; nociceptive behavioral testing confirmed CCI-induced neuropathic pain. Tests of HPA axis function at 13-23 days postsurgery demonstrated that CCI did not affect indices of basal or restraint stress-induced HPA axis activity. CCI increased the expression of corticotrophin releasing hormone mRNA in the central amygdala, and not the paraventricular nucleus of the hypothalamus or the bed nucleus of the stria terminalis. Moreover, glucocorticoid receptor mRNA expression in CCI rats was increased in the medial and central amygdala, unaffected in the paraventricular nucleus, and decreased in the hippocampus. These results suggest that increased nociceptive sensitivity during chronic pain is associated with alterations in the limbic system, but is dissociated from HPA axis activation.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45140, USA.
| | | | | | | | | | | |
Collapse
|
1053
|
Schlotz W, Schulz P, Hellhammer J, Stone AA, Hellhammer DH. Trait anxiety moderates the impact of performance pressure on salivary cortisol in everyday life. Psychoneuroendocrinology 2006; 31:459-72. [PMID: 16377094 DOI: 10.1016/j.psyneuen.2005.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 10/25/2005] [Accepted: 11/09/2005] [Indexed: 11/29/2022]
Abstract
Stress and negative affective states are associated with cortisol in everyday life. However, it remains unclear what types of stressors and which affective states yield these associations, and the effect of trait anxiety is unknown. This study investigates the associations of specific task-related stressors and negative affective states in everyday life with salivary cortisol, and explores the mediating and moderating role of state negative affect and trait anxiety, respectively. Salivary cortisol, subjective stress, and state negative affect were measured three times a day on 2 days in 71 participants in everyday life, using a handheld computer to collect self-reports and time stamps and an electronic device to monitor saliva sampling compliance. Stress measures comprised the experience of performance pressure and failure during daily tasks; measures of negative affect comprised worn-out, tense, unhappy, and angry. Effects were tested using multilevel fixed-occasion models. Momentary performance under pressure was related to higher momentary cortisol measures, while mean task failure was related to lower daily cortisol concentrations. The association of performance pressure with cortisol varied between subjects, and this variation was explained by trait anxiety, yielding stronger associations in participants scoring high on trait anxiety. No evidence was found for a mediating role of state negative affect. These results describe the well-documented associations of everyday stressors and affect with salivary cortisol more precisely, suggesting that performance pressure is a significant condition related to short-term changes in cortisol. Subjects scoring high on trait anxiety seem to process stress-relevant information in a way that amplifies the association of performance pressure with reactions of the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Wolff Schlotz
- Department of Psychobiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany.
| | | | | | | | | |
Collapse
|
1054
|
Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ. Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci 2006; 26:1971-8. [PMID: 16481429 PMCID: PMC6674945 DOI: 10.1523/jneurosci.2173-05.2006] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stress potently modulates anxiety- and depression-related behaviors. In response to stressors, the hypothalamic-pituitary-adrenal (HPA) axis is activated, resulting in the release of glucocorticoids from the adrenal cortex. These hormones act peripherally to restore homeostasis but also feed back to the CNS to control the intensity and duration of the stress response. Glucocorticoids act in limbic areas of the CNS to mediate the psychological and behavioral effects of stress. In this study, we investigate the effect of forebrain-specific disruption of the glucocorticoid receptor (GR) on stress- and anxiety-related behaviors. We demonstrate that mice with disruption of forebrain GR show alterations in stress-induced locomotor activation in a number of anxiety-related behavioral paradigms. These changes are associated with alterations in stress-induced HPA axis activation and, importantly, are not attenuated by chronic treatment with the tricyclic antidepressant imipramine. These data demonstrate the importance of forebrain GR in regulation of physiological and behavioral stress reactivity and suggest that distinct pathways regulate despair- and anxiety-related behaviors.
Collapse
|
1055
|
Peciña S, Schulkin J, Berridge KC. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol 2006; 4:8. [PMID: 16613600 PMCID: PMC1459217 DOI: 10.1186/1741-7007-4-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 04/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior). Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 microl) or amphetamine (20 microg/0.2 microl). Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. RESULTS Microinjections of the highest dose of CRF (500 ng) or amphetamine (20 microg) selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress, or by persistent attempts to ameliorate aversive states. CONCLUSION We conclude that CRF in nucleus accumbens shell amplifies positive motivation for cued rewards, in particular by magnifying incentive salience that is attributed to Pavlovian cues previously associated with those rewards. CRF-induced magnification of incentive salience provides a novel explanation as to why stress may produce cue-triggered bursts of binge eating, drug addiction relapse, or other excessive pursuits of rewards.
Collapse
Affiliation(s)
- Susana Peciña
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jay Schulkin
- Department of Physiology and Biophysics, Georgetown University, CNE Branch, National Institute of Mental Health, USA
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
1056
|
Perrin JS, Segall LA, Harbour VL, Woodside B, Amir S. The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle. Proc Natl Acad Sci U S A 2006; 103:5591-6. [PMID: 16554373 PMCID: PMC1459398 DOI: 10.1073/pnas.0601310103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Indexed: 11/18/2022] Open
Abstract
Daily behavioral and physiological rhythms are linked to circadian oscillations of clock genes in the brain and periphery that are synchronized by the master clock in the suprachiasmatic nucleus. In addition, there are a number of inputs that can influence circadian oscillations in clock gene expression in a tissue-specific manner. Here we identify an influence on the circadian oscillation of the clock protein PER2, endogenous changes in ovarian steroids, within two nuclei of the limbic forebrain: the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala. We show that the daily rhythm of PER2 expression within these nuclei but not in the suprachiasmatic nucleus, dentate gyrus, or basolateral amygdala is blunted in the metestrus and diestrus phases of the estrus cycle. The blunting of the PER2 rhythm at these phases of the cycle is abolished by ovariectomy and restored by phasic estrogen replacement suggesting that fluctuations in estrogen levels or their sequelae are necessary to produce these effects. The finding that fluctuations in ovarian hormones have area-specific effects on clock gene expression in the brain introduces a new level of organizational complexity in the control of circadian rhythms of behavior and physiology.
Collapse
Affiliation(s)
- Jennifer S. Perrin
- Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, QC, Canada H4B 1R6
| | - Lauren A. Segall
- Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, QC, Canada H4B 1R6
| | - Valerie L. Harbour
- Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, QC, Canada H4B 1R6
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, QC, Canada H4B 1R6
| | - Shimon Amir
- Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, QC, Canada H4B 1R6
| |
Collapse
|
1057
|
Romeo RD, Bellani R, Karatsoreos IN, Chhua N, Vernov M, Conrad CD, McEwen BS. Stress history and pubertal development interact to shape hypothalamic-pituitary-adrenal axis plasticity. Endocrinology 2006; 147:1664-74. [PMID: 16410296 DOI: 10.1210/en.2005-1432] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both the magnitude and the duration of the hormonal stress response change dramatically during neonatal development and aging as well as with prior experience with a stressor. However, surprisingly little is known with regard to how pubertal maturation and experience with stress interact to affect hypothalamic-pituitary-adrenal axis responsiveness. Because adolescence is a period of neurodevelopmental vulnerabilities and opportunities that may be especially sensitive to stress, it is imperative to more fully understand these interactions. Thus, we examined hormonal and neural responses in prepubertal (28 d of age) and adult (77 d of age) male rats after exposure to acute (30 min) or more chronic (30 min/d for 7 d) restraint stress. We report here that after acute stress, prepubertal males exhibited a significantly prolonged hormonal stress response (e.g. ACTH and total and free corticosterone) compared with adults. In contrast, after chronic stress, prepubertal males exhibited a higher response immediately after the stressor, but a faster return to baseline, compared with adults. Additionally, we demonstrate that this differential stress reactivity is associated with differential neuronal activation in the paraventricular nucleus of the hypothalamus, as measured by FOS immunohistochemistry. Using triple-label immunofluorescence histochemistry, we found that a larger proportion of CRH, but not arginine vasopressin, cells are activated in the arginine vasopressin in response to both acute and chronic stress in prepubertal animals compared with adults. These data indicate that experience-dependent plasticity of the hypothalamic-pituitary-adrenal neuroendocrine axis is significantly influenced by pubertal maturation.
Collapse
Affiliation(s)
- Russell D Romeo
- Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
1058
|
Ostrander MM, Ulrich-Lai YM, Choi DC, Richtand NM, Herman JP. Hypoactivity of the hypothalamo-pituitary-adrenocortical axis during recovery from chronic variable stress. Endocrinology 2006; 147:2008-17. [PMID: 16396985 PMCID: PMC1815381 DOI: 10.1210/en.2005-1041] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic stress induces both functional and structural adaptations within the hypothalamo-pituitary-adrenocortical (HPA) axis, suggestive of long-term alterations in neuroendocrine reactivity to subsequent stressors. We hypothesized that prior chronic stress would produce persistent enhancement of HPA axis reactivity to novel stressors. Adult male rats were exposed to chronic variable stress (CVS) for 1 wk and allowed to recover. Plasma ACTH and corticosterone levels were measured in control or CVS rats exposed to novel psychogenic (novel environment or restraint) or systemic (hypoxia) stressors at 16 h, 4 d, 7 d, or 30 d after CVS cessation. Plasma ACTH and corticosterone responses to psychogenic stressors were attenuated at 4 d (novel environment and restraint) and 7 d (novel environment only) recovery from CVS, whereas hormonal responses to the systemic stressor were largely unaffected by CVS. CRH mRNA expression was up-regulated in the paraventricular nucleus of the hypothalamus (PVN) at 16 h after cessation of CVS, but no other alterations in PVN CRH or arginine vasopressin mRNA expression were observed. Thus, in contrast to our hypothesis, reductions of HPA axis sensitivity to psychogenic stressors manifested at delayed recovery time points after CVS. The capacity of the HPA axis to respond to a systemic stressor appeared largely intact during recovery from CVS. These data suggest that chronic stress selectively targets brain circuits responsible for integration of psychogenic stimuli, resulting in decreased HPA axis responsiveness, possibly mediated in part by transitory alterations in PVN CRH expression.
Collapse
|
1059
|
Jacobson L, Ansari T, McGuinness OP. Counterregulatory deficits occur within 24 h of a single hypoglycemic episode in conscious, unrestrained, chronically cannulated mice. Am J Physiol Endocrinol Metab 2006; 290:E678-84. [PMID: 16533951 PMCID: PMC1414786 DOI: 10.1152/ajpendo.00383.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.
Collapse
Affiliation(s)
- Lauren Jacobson
- Center for Neuropharmacology and Neuroscience, Albany Medical College, MC-136, Albany, NY 12208, USA.
| | | | | |
Collapse
|
1060
|
Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You ZB. Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J Neurosci 2006; 25:5389-96. [PMID: 15930388 PMCID: PMC6725007 DOI: 10.1523/jneurosci.0955-05.2005] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Footshock stress can reinstate cocaine-seeking behavior through a central action of the stress-associated neurohormone corticotropin-releasing factor (CRF). Here we report (1) that footshock stress releases CRF in the ventral tegmental area (VTA) of the rat brain, (2) that, in cocaine-experienced but not in cocaine-naive rats, this CRF acquires control over local glutamate release, (3) that CRF-induced glutamate release activates the mesocorticolimbic dopamine system, and (4) that, through this circuitry, footshock stress triggers relapse to drug seeking in cocaine-experienced animals. Thus, a long-lasting cocaine-induced neuroadaptation, presumably at the level of glutamate terminals in the VTA, appears to play an important role in stress-induced relapse to drug use. Similar neuroadaptations may be important for the comorbidity between addiction and other stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Bin Wang
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
1061
|
Russell JA, Brunton PJ. Neuroactive steroids attenuate oxytocin stress responses in late pregnancy. Neuroscience 2006; 138:879-89. [PMID: 16310312 DOI: 10.1016/j.neuroscience.2005.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/03/2005] [Accepted: 09/08/2005] [Indexed: 01/27/2023]
Abstract
In late pregnant rats neuroendocrine stress responses, expressed as increased oxytocin secretion and activation of the hypothalamo-pituitary-adrenal axis, are attenuated. These adaptations preserve the oxytocin store for parturition and prevent pre-term birth, and protect the fetuses from adverse programming by exposure to excess glucocorticoid. Mechanisms of adaptations for oxytocin neurones are reviewed, using challenge with systemic interleukin-1beta, simulating activation of immune signaling by infection, as a stressor of special relevance in pregnancy. In virgin rats, systemic interleukin-1beta stimulates the firing of oxytocin neurones, and hence oxytocin secretion, but interleukin-1beta has no effects in late pregnant rats. This lack of response is reversed by naloxone treatment just before interleukin-1beta administration, indicating endogenous opioid suppression of oxytocin responses in late pregnancy. This opioid presynaptically inhibits noradrenergic terminals impinging on oxytocin neurones. Finasteride pretreatment, inhibiting progesterone conversion to allopregnanolone, a positive GABA(A) receptor allosteric modifier, also restores an oxytocin response to interleukin-1beta. This finasteride effect is reversed by allopregnanolone treatment. In virgin rats allopregnanolone attenuates the oxytocin response to interleukin-1beta, which is exaggerated by naloxone. The effects of naloxone and finasteride in late pregnant rats in restoring an oxytocin response to interleukin-1beta are not additive. Accordingly, allopregnanolone may both enhance GABA inhibition of oxytocin neurone responses to interleukin-1beta, and induce opioid suppression of noradrenaline release onto oxytocin neurones.
Collapse
Affiliation(s)
- J A Russell
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, UK.
| | | |
Collapse
|
1062
|
Bernier NJ. The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen Comp Endocrinol 2006; 146:45-55. [PMID: 16410007 DOI: 10.1016/j.ygcen.2005.11.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/26/2005] [Indexed: 11/16/2022]
Abstract
A characteristic feature of the behavioural response to intensely acute or chronic stressors is a reduction in appetite. In fish, as in other vertebrates, the corticotropin-releasing factor (CRF) system plays a key role in coordinating the neuroendocrine, autonomic, and behavioural responses to stress. The following review documents the evidence implicating the CRF system as a mediator of the appetite-suppressing effects of stress in fish. Central injections of CRF or the related peptide, urotensin I (UI), or pharmacological treatments or stressors that result in an increase in forebrain CRF and UI gene expression, can elicit dose-dependent reductions in food intake that are at least partially reversed by pre-treatment with a CRF receptor antagonist. In addition, the appetite suppressing effects of various environmental, pathological, physical, and social stressors are associated with elevated levels of forebrain CRF and UI gene expression and with an activation of the hypothalamic-pituitary-interrenal (HPI) stress axis. In contrast, although stressors can also be associated with an increase in caudal neurosecretory system CRF and UI gene expression and an endocrine role for CRF-related peptides has been suggested, the physiological effects of peripheral CRF-related peptides on the gastrointestinal system and in the regulation of appetite have not been investigated. Overall, while CRF and UI appear to participate in the stress-induced changes in feeding behaviour in fish, the role of other know components of the CRF system is not known. Moreover, the extent to which the anorexigenic effects of CRF-related peptides are mediated through the hypothalamic feeding center, the HPI axis and cortisol, or via actions on descending autonomic pathways remains to be investigated.
Collapse
Affiliation(s)
- Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Ont., Canada N1G 2W1.
| |
Collapse
|
1063
|
Kotlyar M, Brauer LH, al'absi M, Adson DE, Robiner W, Thuras P, Harris J, Finocchi ME, Bronars CA, Candell S, Hatsukami DK. Effect of bupropion on physiological measures of stress in smokers during nicotine withdrawal. Pharmacol Biochem Behav 2006; 83:370-9. [PMID: 16581115 DOI: 10.1016/j.pbb.2006.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 01/11/2006] [Accepted: 02/18/2006] [Indexed: 10/24/2022]
Abstract
Studies suggest that among cigarette smokers trying to quit, stress undermines abstinence. Little research has assessed if therapies that increase smoking cessation rates impact physiological measures of stress response. Forty-three subjects completed this repeated-measures study in which a laboratory assessment was completed at baseline and after 17 days of treatment with either placebo (n=15), bupropion sustained release (150 mg twice daily) (n=14) or bupropion with stress reduction counseling (n=14). All subjects quit smoking 3 days prior to the second laboratory assessment. At each laboratory assessment physiological measures of stress (i.e. blood pressure, heart rate, plasma epinephrine, norepinephrine and cortisol concentrations) were measured during rest periods and in response to a speech, a math and a cold pressor task. Among subjects taking placebo, physiological measures of stress were generally lower at rest and during the stressors after smoking cessation. In those taking bupropion these measures were equivalent at the two assessments. Additionally, compared to placebo, those on bupropion had a greater diastolic blood pressure response to the speech stressor and greater systolic blood pressure response to the math stressor during the second laboratory session. This study suggests that bupropion may be maintaining physiological measures of stress during the nicotine withdrawal period.
Collapse
Affiliation(s)
- Michael Kotlyar
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1064
|
Conrad CD. What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? BEHAVIORAL AND COGNITIVE NEUROSCIENCE REVIEWS 2006; 5:41-60. [PMID: 16816092 PMCID: PMC1512384 DOI: 10.1177/1534582306289043] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic stress produces consistent and reversible changes within the dendritic arbors of CA3 hippocampal neurons, characterized by decreased dendritic length and reduced branch number. This chronic stress-induced dendritic retraction has traditionally corresponded to hippocampus-dependent spatial memory deficits. However, anomalous findings have raised doubts as to whether a CA3 dendritic retraction is sufficient to compromise hippocampal function. The purpose of this review is to outline the mechanism underlying chronic stress-induced CA3 dendritic retraction and to explain why CA3 dendritic retraction has been thought to mediate spatial memory. The anomalous findings provide support for a modified hypothesis, in which chronic stress is proposed to induce CA3 dendritic retraction, which then disrupts hypothalamic-pituitary-adrenal axis activity, leading to dysregulated glucocorticoid release. The combination of hippocampal CA3 dendritic retraction and elevated glucocorticoid release contributes to impaired spatial memory. These findings are presented in the context of clinical conditions associated with elevated glucocorticoids.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Deparment of Psychology, Arizona State University, Box 1104, Tempe, 85287-1104, USA.
| |
Collapse
|
1065
|
Boorse GC, Denver RJ. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides. Gen Comp Endocrinol 2006; 146:9-18. [PMID: 16413023 DOI: 10.1016/j.ygcen.2005.11.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/18/2005] [Accepted: 11/26/2005] [Indexed: 12/01/2022]
Abstract
Peptides of the corticotropin-releasing factor (CRF) family are expressed throughout the central nervous system (CNS) and in peripheral tissues where they play diverse roles in physiology, behavior, and development. Current data supports the existence of four paralogous genes in vertebrates that encode CRF, urocortin/urotensin 1, urocortin 2 or urocortin 3. Corticotropin-releasing factor is the major hypophysiotropin for adrenocorticotropin, and also functions as a thyrotropin-releasing factor in non-mammalian species. In the CNS, CRF peptides function as neurotransmitters/neuromodulators. Recent work shows that CRF peptides are also expressed at diverse sites outside of the CNS in mammals, and we found widespread expression of CRF and urocortins, CRF receptors and CRF binding protein (CRF-BP) genes in the frog Xenopus laevis. The functions of CRF peptides expressed in the periphery in non-mammalian species are largely unexplored. We recently found that CRF acts as a cytoprotective agent in the X. laevis tadpole tail, and that the CRF-BP can block CRF action and hasten tail muscle cell death. The expression of the CRF-BP is strongly upregulated in the tadpole tail at metamorphic climax where it may neutralize CRF bioactivity, thus promoting tail resorption. Corticotropin-releasing factor and urocortins are also known to be cytoprotective in mammalian cells. Thus, CRF peptides may play diverse roles in physiology and development, and these functions likely arose early in vertebrate evolution.
Collapse
Affiliation(s)
- Graham C Boorse
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
1066
|
Lovallo WR. Cortisol secretion patterns in addiction and addiction risk. Int J Psychophysiol 2006; 59:195-202. [PMID: 16434116 PMCID: PMC2257874 DOI: 10.1016/j.ijpsycho.2005.10.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 10/15/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
Addiction to alcohol or nicotine involves altered functioning of the brain's motivational systems. Altered functioning of the hypothalamic-pituitary-adrenocortical (HPA) axis may hold clues to the nature of the motivational changes accompanying addiction and vulnerability to addiction. Alcohol and nicotine show at least three forms of interaction with HPA functioning. Acute intake of both substances causes stress-like cortisol responses. Their persistent use may dysregulate the HPA. Finally, the risk for dependence and for relapse after quitting may be associated with deficient cortisol reactivity to a variety of stressors. The HPA is regulated at the hypothalamus by diurnal and metabolic signals, but during acute emotional states, its regulation is superseded by signals from the limbic system and prefrontal cortex. This top-down organization makes the HPA responsive to inputs that reflect motivational processes. The HPA is accordingly a useful system for studying psychophysiological reactivity in persons who may vary in cognitive, emotional, and behavioral tendencies associated with addiction and risk for addiction. Chronic, heavy intake of alcohol and nicotine may cause modifications in these frontal-limbic interactions and may account for HPA response differences in seen in alcoholics and smokers. In addition, preexisting alterations in frontal-limbic interactions with the HPA may reflect addiction-proneness, as shown in studies of offspring of alcohol- and drug-abusing parents. Continuing research on the relationship between HPA function, stress responsivity, and the addictions may yield insights into how the brain's motivational systems support addictions and risk for addictions.
Collapse
Affiliation(s)
- William R Lovallo
- Behavioral Sciences Laboratories (151A), Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, Oklahoma 73104, United States.
| |
Collapse
|
1067
|
Fenoglio KA, Chen Y, Baram TZ. Neuroplasticity of the hypothalamic-pituitary-adrenal axis early in life requires recurrent recruitment of stress-regulating brain regions. J Neurosci 2006; 26:2434-42. [PMID: 16510721 PMCID: PMC2408688 DOI: 10.1523/jneurosci.4080-05.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/18/2006] [Accepted: 01/21/2006] [Indexed: 01/18/2023] Open
Abstract
An eloquent example of experience-induced neuroplasticity involves the enduring effects of daily "handling" of rat pups on the expression of genes regulating hormonal and behavioral responses to stress. Handling-evoked augmentation of maternal care of pups induces long-lasting reduction of hypothalamic corticotropin releasing hormone (CRH) expression and upregulates hippocampal glucocorticoid receptor levels. These changes promote a lifelong attenuation of hormonal stress responses. We have found previously that handling-evoked downregulation of CRH expression occurs already by postnatal day 9, implicating it as an early step in this experience-induced neuroplasticity. Here, we investigated the neuronal pathways and cellular mechanisms involved. CRH mRNA expression in hypothalamic paraventricular nucleus (PVN) diminished after daily handling but not after handling once only, indicating that "recurrent" handling was required for this effect. Return of handled pups to their cage provoked a burst of nurturing behavior in dams that, in turn, induced transient, coordinate Fos expression in selected regions of the pups' brains. These included central nucleus of the amygdala (ACe) and bed nucleus of the stria terminals (BnST), regions that are afferent to PVN and influence CRH expression there. Whereas handling once sufficed to evoke Fos expression within ACe and BnST, expression in thalamic paraventricular nucleus, a region involved in storing and processing stress-related experience, required recurrent handling. Fos induction in all three regions elicited reduced transcription factor phosphorylation, followed by attenuated activation of CRH gene transcription within the PVN. These studies provide a neurobiological foundation for the profound neuroplasticity of stress-related genes evoked by early-life experience.
Collapse
|
1068
|
Abstract
Emotionally-salient stressors are processed by cortical and limbic circuits that provide important regulatory input to the hypothalamic-pituitary-adrenal (HPA) axis. However, exposure to chronic or severe stress may cause disregulation of the axis and a variety of physiological and psychological symptoms. The mechanisms that underlie stress-induced alterations in HPA axis function are not well characterized, but one possibility is that severe stress causes plastic changes in limbic inputs to the hypothalamus. We examined plasticity within the bed nucleus of stria terminalis (BNST) and the hypothalamic paraventricular nucleus (PVN) with a stimulating electrode in the BNST and a recording electrode in the PVN. High-frequency BNST stimulation produced long-lasting suppression of evoked field potentials recorded from the PVN, and this effect was blocked by administration of MK-801. Accordingly, rapid glutamate-mediated neuroplasticity in the BNST to PVN neurocircuitry may contribute to plasticity in limbic regulation of the HPA axis.
Collapse
Affiliation(s)
- J L Tartar
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611-2250, USA
| | | | | |
Collapse
|
1069
|
Trnecková L, Armario A, Hynie S, Sída P, Klenerová V. Differences in the brain expression of c-fos mRNA after restraint stress in Lewis compared to Sprague–Dawley rats. Brain Res 2006; 1077:7-15. [PMID: 16487948 DOI: 10.1016/j.brainres.2006.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 12/15/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
In order to study the contribution of genetic factors to the pattern of stress-induced brain activation, we studied the expression of c-fos mRNA, a marker of neuronal activity, in male Sprague-Dawley and Lewis strains, the latter being known to have a deficient responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis. Immobilization (IMO) alone or combined with the immersion into water at 21 degrees C was applied for 15 or 60 min. The expression of c-fos mRNA was quantified by in situ hybridization in those brain areas that represent important parts of neuronal circuits activated by stress: medial prefrontal cortex, medial amygdala, lateral septum ventral part, paraventricular nucleus of the hypothalamus and locus coeruleus. While in controls, c-fos mRNA was not detectable in tested brain areas, both types of stressors induced a strong expression of this immediate early gene. There were only small differences in c-fos mRNA expression related to the type of stressor or the length of exposure to them. However, there were remarkable differences in the expression between the two rat strains. When compared to Sprague-Dawley rats, Lewis rats showed a reduced c-fos mRNA expression after both stressors in most brain areas, which may be related to the reduced responsiveness of HPA axis and also with other abnormal responses in this strain. However, this hyporesponsiveness was not observed in all brain areas studied, suggesting that there is not a generalized defective c-fos response to stress in Lewis rats and that some responses to stress may be normal in this strain.
Collapse
Affiliation(s)
- Lenka Trnecková
- Laboratory of Biochemical Neuropharmacology, Charles University in Prague, First Faculty of Medicine, Institute of Medical Biochemistry, Albertov 4, 128 00 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
1070
|
Lovallo WR, Farag NH, Vincent AS, Thomas TL, Wilson MF. Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacol Biochem Behav 2006; 83:441-7. [PMID: 16631247 PMCID: PMC2249754 DOI: 10.1016/j.pbb.2006.03.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 03/05/2006] [Indexed: 11/20/2022]
Abstract
Caffeine elevates cortisol secretion, and caffeine is often consumed in conjunction with exercise or mental stress. The interactions of caffeine and stress on cortisol secretion have not been explored adequately in women. We measured cortisol levels at eight times on days when healthy men and women consumed caffeine (250 mg x 3) and underwent either mental stress or dynamic exercise protocols, followed by a midday meal, in a double blind, placebo-controlled, crossover design. Men and women had similar cortisol levels at the predrug baselines, but they responded differently to mental stress and exercise. The cortisol response to mental stress was smaller in women than in men (p=.003). Caffeine acted in concert with mental stress to further increase cortisol levels (p=.011), the effect was similar in men and women. Exercise alone did not increase cortisol, but caffeine taken before exercise elevated cortisol in both men and women (ps<.05). After a postexercise meal, the women had a larger cortisol response than the men, and this effect was greater after caffeine (p<.01). Cortisol release in response to stress and caffeine therefore appears to be a function of the type of stressor and the sex of the subject. However, repeated caffeine doses increased cortisol levels across the test day without regard to the sex of the subject or type of stressor employed (p<.00001). Caffeine may elevate cortisol by stimulating the central nervous system in men but may interact with peripheral metabolic mechanisms in women.
Collapse
Affiliation(s)
- William R Lovallo
- Veterans Affairs Medical Center, Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
1071
|
Zhang TY, Bagot R, Parent C, Nesbitt C, Bredy TW, Caldji C, Fish E, Anisman H, Szyf M, Meaney MJ. Maternal programming of defensive responses through sustained effects on gene expression. Biol Psychol 2006; 73:72-89. [PMID: 16513241 DOI: 10.1016/j.biopsycho.2006.01.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2005] [Indexed: 11/21/2022]
Abstract
There are profound maternal effects on individual differences in defensive responses and reproductive strategies in species ranging literally from plants to insects to birds. Maternal effects commonly reflect the quality of the environment and are most likely mediated by the quality of the maternal provision (egg, propagule, etc.), which in turn determines growth rates and adult phenotype. In this paper we review data from the rat that suggest comparable forms of maternal effects on defensive responses stress, which are mediated by the effects of variations in maternal behavior on gene expression. Under conditions of environmental adversity maternal effects enhance the capacity for defensive responses in the offspring. In mammals, these effects appear to 'program' emotional, cognitive and endocrine systems towards increased sensitivity to adversity. In environments with an increased level of adversity, such effects can be considered adaptive, enhancing the probability of offspring survival to sexual maturity; the cost is that of an increased risk for multiple forms of pathology in later life.
Collapse
Affiliation(s)
- Tie-Yuan Zhang
- McGill Program for the Study of Behavior, Genes and Environment, McGill University, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1072
|
Wang J, Palkovits M, Usdin TB, Dobolyi A. Forebrain projections of tuberoinfundibular peptide of 39 residues (TIP39)-containing subparafascicular neurons. Neuroscience 2006; 138:1245-63. [PMID: 16458435 DOI: 10.1016/j.neuroscience.2005.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/20/2022]
Abstract
Neurons containing tuberoinfundibular peptide of 39 residues (TIP39) constitute a rostro-caudally elongated group of cells in the posterior thalamus. These neurons are located in the rostral part of the subparafascicular nucleus and in the subparafascicular area, caudally. Projections of the caudally located TIP39 neurons have been previously identified by their disappearance following lesions. We have now mapped the projections of the rat rostral subparafascicular neurons using injections of the anterograde tracer biotinylated dextran amine and the retrograde tracer cholera toxin B subunit, and confirmed the projections from more caudal areas previously inferred from lesion studies. Neurons from both the rostral subparafascicular nucleus and the subparafascicular area project to the medial prefrontal, insular, ecto- and perirhinal cortex, nucleus of the diagonal band, septum, central and basomedial amygdaloid nuclei, fundus striati, basal forebrain, midline and intralaminar thalamic nuclei, hypothalamus, subthalamus and the periaqueductal gray. The subparafascicular area projects more densely to the amygdala and the hypothalamus. In contrast, only the rostral part of the subparafascicular nucleus projects significantly to the superficial layers of prefrontal, insular, ectorhinal and somatosensory cortical areas. Double labeling showed that anterogradely labeled fibers from the rostral part of the subparafascicular nucleus contain TIP39 in many forebrain areas, but do not in hypothalamic areas. Injections of the retrograde tracer cholera toxin B subunit into the lateral septum and the fundus striati confirmed that they were indeed target regions of both the rostral subparafascicular nucleus and the subparafascicular area. In contrast, TIP39 neurons did not project to the anterior hypothalamic nucleus. Our data provide an anatomical basis for the potential involvement of rostral subparafascicular neurons in limbic and autonomic regulation, with TIP39 cells being major subparafascicular output neurons projecting to forebrain regions.
Collapse
Affiliation(s)
- J Wang
- Laboratory of Genetics, National Institute of Mental Health, Building 35, Room 1B215, 35 Convent Drive, Bethesda, MD 20892-3728, USA
| | | | | | | |
Collapse
|
1073
|
Pace TWW, Gaylord R, Topczewski F, Girotti M, Rubin B, Spencer RL. Immediate-early gene induction in hippocampus and cortex as a result of novel experience is not directly related to the stressfulness of that experience. Eur J Neurosci 2006; 22:1679-90. [PMID: 16197508 DOI: 10.1111/j.1460-9568.2005.04354.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stressful quality of an experience, as perceived by rats, is believed to be largely represented by the magnitude of a hypothalamic-pituitary-adrenal (HPA) axis response. The hippocampus may be especially important for assessing the stressfulness of psychological stressors such as novel experience. If such is the case then experience-dependent immediate-early gene expression levels within the hippocampus may parallel relative levels of HPA axis activity. We examined this prospect in rats that were placed in four different novel environments (empty housing tub, circular arena, elevated pedestal or restraint tube). Restraint and pedestal produced the largest magnitude of increased ACTH and corticosterone secretion, arena an intermediate level (Experiment 2) and tub the least magnitude of increase. We saw a very similar experience-dependent pattern of relative Fos protein, c-fos mRNA and zif268 mRNA expression in the paraventricular nucleus of the hypothalamus. However, in hippocampus (and select regions of cortex), immediate-early gene expression was associated with the exploratory potential of the novel experience rather than level of HPA axis activity; pedestal and arena elicited the greatest immediate-early gene expression, tub an intermediate level and restraint the least amount of expression. We conclude that the stressfulness of psychological stressors is not represented by the amount of immediate-early gene induction elicited in hippocampus and cortex, nor does there appear to be a general enhancing or depressive influence of acute stress on immediate-early gene induction in those brain regions.
Collapse
Affiliation(s)
- Thaddeus W W Pace
- Department of Psychology, Campus Box 345, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
1074
|
Poulin JF, Chevalier B, Laforest S, Drolet G. Enkephalinergic afferents of the centromedial amygdala in the rat. J Comp Neurol 2006; 496:859-76. [PMID: 16628615 DOI: 10.1002/cne.20956] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The connectivity of the amygdaloid complex has been extensively explored with both anterograde and retrograde tracers. Even though the afferents of the centromedial amygdala [comprising the central (CEA) and medial (MEA) amygdaloid nuclei] are well established, relatively little is known about the neuropeptide phenotype of these connections. In this study, we first examined the distribution of mu-opioid receptor (MOR) and delta-opioid receptor (DOR) in the amygdala via in situ hybridization and immunohistochemistry. We then investigated the distribution of Met-enkephalin (ENK) and Leu-ENK fibers with immunohistochemistry and examined the distribution of preproenkephalin mRNA in the amygdala by using in situ hybridization. Finally, we examined the ENK projections to the CEA and MEA by using stereotaxic injections of the retrograde tracer cholera toxin subunit B or fluorogold revealed by immunohistochemistry combined with in situ hybridization to identify ENKergic neurons. Our results indicate that the centromedial amygdala receives ENK afferents, as indicated by the presence of MOR, DOR, and ENK fibers in the CEA and MEA, originating primarily from the bed nucleus of the stria terminalis (BST) and from other amygdaloid nuclei. The posterior BST, the basomedial nucleus (BMA), and the cortical nucleus of the amygdala (COA) were found to be the major ENK afferents of the MEA, whereas the anterolateral BST, the COA, the MEA, and the BMA provided the main ENKergic innervation of the CEA. In addition, we found that the ventromedial nucleus of the hypothalamus and the pontine parabrachial nucleus provide a moderate ENK input to the CEA and MEA. The functional implications of these connections in stress, anxiety, and nociception are discussed.
Collapse
MESH Headings
- Afferent Pathways/anatomy & histology
- Afferent Pathways/metabolism
- Amygdala/anatomy & histology
- Amygdala/metabolism
- Animals
- Cholera Toxin
- Enkephalin, Leucine/metabolism
- Enkephalin, Methionine/metabolism
- Fluorescent Dyes
- Immunohistochemistry
- In Situ Hybridization
- Male
- Nerve Fibers/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Jean-François Poulin
- Centre de Recherche du CHUQ (CHUL), Neurosciences, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
1075
|
Peters EMJ, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol 2006; 15:1-13. [PMID: 16364026 DOI: 10.1111/j.0906-6705.2005.00372.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress has long been discussed controversially as a cause of hair loss. However, solid proof of stress-induced hair growth inhibition had long been missing. If psychoemotional stress can affect hair growth, this must be mediated via definable neurorendocrine and/or neuroimmunological signaling pathways. Revisiting and up-dating relevant background data on neural mechanisms of hair growth control, we sketch essentials of hair follicle (HF) neurobiology and discuss the modulation of murine hair growth by neuropeptides, neurotransmitters, neurotrophins, and mast cells. Exploiting an established mouse model for stress, we summarize recent evidence that sonic stress triggers a cascade of molecular events including plasticity of the peptidergic peri- and interfollicular innervation and neuroimmune crosstalk. Substance P (SP) and NGF (nerve growth factor) are recruited as key mediators of stress-induced hair growth-inhibitory effects. These effects include perifollicular neurogenic inflammation, HF keratinocyte apoptosis, inhibition of proliferation within the HF epithelium, and premature HF regression (catagen induction). Intriguingly, most of these effects can be abrogated by treatment of stressed mice with SP-receptor neurokinin-1 receptor (NK-1) antagonists or NGF-neutralizing antibodies - as well as, surprisingly, by topical minoxidil. Thus there is now solid in vivo-evidence for the existence of a defined brain- HF axis. This axis can be utilized by psychoemotional and other stressors to prematurely terminate hair growth. Stress-induced hair growth inhibition can therefore serve as a highly instructive model for exploring the brain-skin connection and provides a unique experimental model for dissecting general principles of skin neuroendocrinology and neuroimmunology well beyond the HF.
Collapse
Affiliation(s)
- Eva M J Peters
- Biomedical Research Center, Psychoneuroimmunology Research Group, Internal Medicine, Psychosomatics, University Medicine Berlin, Charité Virchow Campus, Germany.
| | | | | |
Collapse
|
1076
|
Parsons MP, Li S, Kirouac GJ. The paraventricular nucleus of the thalamus as an interface between the orexin and CART peptides and the shell of the nucleus accumbens. Synapse 2006; 59:480-90. [PMID: 16565962 DOI: 10.1002/syn.20264] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) receives afferents from the brainstem and has been thought to relay arousal related information to specific limbic forebrain areas, including the nucleus accumbens. More recent anatomical observations suggest that the PVT also receives afferents from various hypothalamic nuclei. The present anatomical experiments investigated the innervation of the PVT by fibers immunoreactive for orexin and cocaine and amphetamine related transcript (CART), two feeding-related peptides highly concentrated in the hypothalamus. Emphasis was placed on identifying the relationship between these neuropeptides and PVT neurons projecting to the shell of the nucleus accumbens (NacSh). Infusion of a retrograde tracer into the NacSh labeled numerous cells of the midline and intralaminar thalamus, most of which were restricted to the PVT. The retrograde tracer, orexin fibers, and CART fibers were immunopositive throughout the entire PVT whereas no overlap between signals was evident within adjacent thalamic regions. High-magnification light and confocal microscopy showed that both orexin and CART fibers made frequent contact with retrogradely labeled neurons throughout the anteroposterior PVT. Furthermore, single PVT cells retrogradely labeled from the NacSh were apposed by both orexin and CART fibers. The present experiments provide the first evidence suggesting a role for the PVT as a relay of hypothalamic activity to the nucleus accumbens. The PVT may function to link visceral arousal signals with limbic regions involved in behavioral responses.
Collapse
Affiliation(s)
- Matthew P Parsons
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, A1B 3V6, Canada
| | | | | |
Collapse
|
1077
|
Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1201-13. [PMID: 16271821 DOI: 10.1016/j.pnpbp.2005.08.006] [Citation(s) in RCA: 963] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/17/2022]
Abstract
Limbic dysfunction and hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation are key features of affective disorders. The following review summarizes our current understanding of the relationship between limbic structures and control of ACTH and glucocorticoid release, focusing on the hippocampus, medial prefrontal cortex and amygdala. In general, the hippocampus and anterior cingulate/prelimbic cortex inhibit stress-induced HPA activation, whereas the amygdala and perhaps the infralimbic cortex may enhance glucocorticoid secretion. Several characteristics of limbic-HPA interaction are notable: first, in all cases, the role of given limbic structures is both region- and stimulus-specific. Second, limbic sites have minimal direct projections to HPA effector neurons of the paraventricular nucleus (PVN); hippocampal, cortical and amygdalar efferents apparently relay with neurons in the bed nucleus of the stria terminalis, hypothalamus and brainstem to access corticotropin releasing hormone neurons. Third, hippocampal, cortical and amygdalar projection pathways show extensive overlap in regions such as the bed nucleus of the stria terminalis, hypothalamus and perhaps brainstem, implying that limbic information may be integrated at subcortical relay sites prior to accessing the PVN. Fourth, these limbic sites also show divergent projections, with the various structures having distinct subcortical targets. Finally, all regions express both glucocorticoid and mineralocorticoid receptors, allowing for glucocorticoid modulation of limbic signaling patterns. Overall, the influence of the limbic system on the HPA axis is likely the end result of the overall patterning of responses to given stimuli and glucocorticoids, with the magnitude of the secretory response determined with respect to the relative contributions of the various structures.
Collapse
Affiliation(s)
- James P Herman
- Department of Psychiatry, Psychiatry North, ML 0506 2170 East Galbraith Road, University of Cincinnati College of Medicine, OH 45237-0506, USA.
| | | | | | | |
Collapse
|
1078
|
Romeo RD, Bellani R, McEwen BS. Stress-induced progesterone secretion and progesterone receptor immunoreactivity in the paraventricular nucleus are modulated by pubertal development in male rats. Stress 2005; 8:265-71. [PMID: 16423715 DOI: 10.1080/10253890500489320] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Male rats show a differential adrenocortical response to stress before and after pubertal development, such that prepubertal animals have a more prolonged stress-induced corticosterone response compared to adults. Whether pubertal maturation affects other adrenocortical responses to stress is currently unknown. To address this question, we assessed stress-induced progesterone secretion in both intact and gonadectomized prepubertal (28 days of age) and adult (77 days of age) male rats either before or after exposure to a 30 min session of restraint stress. We found that prepubertal males show a greater and more prolonged stress-induced progesterone response compared to adults. We also found a similar effect in castrated prepubertal and adult males, indicating the differential stress-induced progesterone response is not gonadal in origin. We also examined progesterone receptor (PR) levels by immunohistochemistry in the paraventricular nucleus (PVN) of the hypothalamus, a key regulatory nucleus of the hypothalamic-pituitary-adrenal (HPA) axis, and found lower PR protein expression in the PVN of prepubertal compared to adult males. These data indicate that in addition to corticosterone, stress-induced adrenocortical progesterone levels are differentially affected by pubertal maturation. Furthermore, these data raise the possibility of different progesterone sensitivity of the PVN before and after puberty. The significance of this differential response is presently unknown. However, given the pleiotropic effects of progesterone on male physiology and behaviour, it is likely that the disparate post-stress exposure to progesterone affects the prepubertal and adult male differently.
Collapse
Affiliation(s)
- Russell D Romeo
- The Rockefeller University, Laboratory of Neuroendocrinology, New York, NY 10021, USA.
| | | | | |
Collapse
|
1079
|
Williamson M, Bingham B, Viau V. Central organization of androgen-sensitive pathways to the hypothalamic-pituitary-adrenal axis: implications for individual differences in responses to homeostatic threat and predisposition to disease. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1239-48. [PMID: 16214282 DOI: 10.1016/j.pnpbp.2005.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/28/2022]
Abstract
Despite clear evidence of the potency by which sex steroids operate on the hypothalamic-pituitary-adrenal (HPA) axis and genuine sex differences in disorders related to HPA dysfunction, the biological significance of this remains largely ignored. Stress-induced increases in circulating glucocorticoid levels serve to meet the metabolic demands of homeostatic threat head-on. Thus, the nature of the stress-adrenal axis is to protect the organism. As one develops, matures, and ages, still newer and competing physiological and environmental demands are encountered. These changing constraints are also met by shifts in sex steroid release, placing this class of steroids beyond the traditional realm of reproductive function. Here we focus on the dose-related and glucocorticoid-interactive nature by which testosterone operates on stress-induced HPA activation. This provides an overview on how to exploit these characteristics towards developing an anatomical framework of testosterone's actions in the brain, and expands upon the idea that centrally projecting arginine vasopressin circuits in the brain act to register and couple testosterone's effects on neuroendocrine and behavioural responses to stress. More generally, the work presented here underscores how a dual adrenal and gonadal systems approach assist in unmasking the bases by which individuals resist or succumb to stress.
Collapse
Affiliation(s)
- Martin Williamson
- Department of Cellular and Physiological Sciences, Division of Anatomy and Cell Biology, The University of British Columbia, 2177 Wesbrook Mall, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
1080
|
McDougall SJ, Widdop RE, Lawrence AJ. Central autonomic integration of psychological stressors: Focus on cardiovascular modulation. Auton Neurosci 2005; 123:1-11. [PMID: 16289941 DOI: 10.1016/j.autneu.2005.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/14/2005] [Accepted: 09/28/2005] [Indexed: 02/04/2023]
Abstract
During stress the sympathoadrenal system and the hypothalamo-pituitary-adrenal axis act in a coordinated manner to force changes within an animal's current physiological and behavioral state. Such changes have been described as 'fight flight' or stress responses. The central nervous system may generate a stress response by different neural circuits, this being dependent upon the type of stressor presented. For instance, the central control of the autonomic function during physical stress would seem to be based on existing homeostatic mechanisms. In contrast, with exposure to psychological stress the means by which autonomic outflow is regulated has not been fully established. This review discusses recent observations of autonomic flow, cardiovascular components in particular, during psychological stress and the possible implications these may have for our understanding of the central nervous system. In addition, an update of recent findings concerning several regions thought to be important to the regulation of autonomic function during psychological stress exposure is provided.
Collapse
Affiliation(s)
- Stuart J McDougall
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
1081
|
Day TA. Defining stress as a prelude to mapping its neurocircuitry: no help from allostasis. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1195-200. [PMID: 16213079 DOI: 10.1016/j.pnpbp.2005.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
The way in which researchers conceptualise and thus define stress shapes the way in which they approach the task of mapping the brain's stress control pathways. Unfortunately, much of the research currently being done on stress neurocircuitry is occurring within a poorly developed conceptual framework, a framework that limits the depth of the questions that our studies ask, and even our ability to fully appreciate and make use of the data that they yield. Consequently, any attempt to improve our conceptual framework merits close attention. In that regard it is notable that in recent years it has been argued that the concept of homeostasis should be supplemented by the concepts of allostasis (literally 'stability through change') and allostatic load (in effect, the cost of allostasis). One of the purported benefits of this change has been that it will clarify the concept of stress. A close review of the arguments leads us to conclude that the introduction of the concept of allostasis has largely occurred as a result of misunderstandings and misapprehensions concerning the concept of homeostasis. In terms of understanding how the organism operates, it is not clear that the concepts of 'allostasis' or 'allostatic load' offer us anything that was not already apparent, or at least readily derivable, from an accurate reading of the original concept of homeostasis. Not surprisingly then, these more recently proposed concepts also offer little help in clarifying our understanding of stress. Indeed, rather than clarifying the concept of stress, the primary effort appears to be directed at subsuming the concept of stress within the concept of allostasis, which has the inadvertent effect of collapsing the study of homeostatic responses and stress responses together. This seems to be out of step with the fact that there is now considerable evidence that the brain does indeed possess certain pathways that merit the title of 'stress neurocircuitry'. The attempt to subsume the concept of stress within the concept of allostasis is also counter-productive in that it distracts stress researchers from the important task of developing conceptual frameworks that allow us to tackle fundamental issues such as how the organism differentiates stressful from non-stressful challenges.
Collapse
Affiliation(s)
- Trevor A Day
- School of Biomedical Sciences, University of Newcastle, and the Hunter Medical Research Institute, NSW 2308, Australia.
| |
Collapse
|
1082
|
Abstract
The amygdala plays a crucial role in the orchestration and modulation of the organism response to aversive, stressful events. This response could be conceived as the result of two interdependent components. The first is represented by sets of visceral and motor responses aimed at helping the organism to cope with the present event. The second is the acquisition and modulation of memories relative to the stressful stimulus and its context. This latter component contributes to the instatement of conditioned stress responses that are essential to the capability of the organism to predict future exposures to similar stimuli in order to avoid them or counteract them effectively. In the amygdala, these two components become fully integrated. Massive networks link the amygdala to the hypothalamus, midbrain and brainstem. These networks convey visceral, humoral and nociceptive information to the amygdala and mediate its effects on the hypothalamic-pituitary-adrenal axis as well on autonomic and motor centers. On the other hand, interactions between the amygdala and interconnected cortical networks play a crucial role in acquisition, consolidation and extinction of learning relative to the stressful stimulus. Within the scope of this review, current evidence relative to the interaction between the amygdala and cortical networks will be considered in relationship to the integration of the conditioned response to stress.
Collapse
Affiliation(s)
- Sabina Berretta
- Harvard Medical School, Department of Psychiatry, 25 Shattuck Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
1083
|
Walker CD. Nutritional aspects modulating brain development and the responses to stress in early neonatal life. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1249-63. [PMID: 16253410 DOI: 10.1016/j.pnpbp.2005.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Nutrition is one of the critical factors insuring adequate growth and development in all species. In particular, brain development is sensitive to specific nutrient intake such as proteins and lipids, which are important for cell membrane formation and myelinization. Carbohydrate intake insures adequate short-term energy supply, but has important effects on the activity of the hypothalamic-pituitary-adrenal (HPA) axis to regulate stress responsiveness. This review focuses on the effects of carbohydrates and fat on the activity of the HPA axis as well as other brain-related functions such as pain modulation, neuropeptide and neurotransmitters release, and some aspects related to cognitive functions. The role of leptin, DHA and AA as mediators of the effects of fat on the brain is discussed.
Collapse
Affiliation(s)
- Claire-Dominique Walker
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, 6875 Lasalle Blvd, Verdun, QC, Canada H4H 1R3.
| |
Collapse
|
1084
|
Burow A, Day HE, Campeau S. A detailed characterization of loud noise stress: Intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Res 2005; 1062:63-73. [PMID: 16256084 PMCID: PMC2409188 DOI: 10.1016/j.brainres.2005.09.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/15/2005] [Accepted: 09/25/2005] [Indexed: 11/26/2022]
Abstract
The present studies were undertaken to help determine the putative neural circuits mediating activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and the release of adrenocorticotropin hormone (ACTH) and corticosterone in response to the perceived threat of loud noise. This experiment involved placing rats in acoustic chambers overnight to avoid any handling and context changes prior to noise exposure, which was done for 30 min (between 9:00 and 10:00 am) at intensities of 80, 85, 90, 95, 100, 105, and 110 dBA in different groups (n = 8), and included a background condition (60 dBA ambient noise). This manipulation produced a noise-intensity-related increase in plasma ACTH and corticosterone levels, with levels beginning to rise at approximately 85 dBA. c-fos mRNA induction was very low in the brains of the control and 80 dBA groups, but several brain regions displayed a noise-intensity-related induction. Of these, several forebrain regions displayed c-fos mRNA induction highly correlated (r > 0.70) with that observed in the paraventricular hypothalamic nucleus and plasma ACTH levels. These regions included the ventrolateral septum, the anteroventral subiculum, several preoptic nuclei, the anterior bed nucleus of the stria terminalis (BNST), the anterior paraventricular nucleus of the thalamus, and the medial subdivision of the medial geniculate body. Together with prior findings with audiogenic stress, the present results suggest that either or both the anterior BNST or the lateral septum is ideally situated to trigger HPA axis activation by stimuli that are potentially threatening.
Collapse
Affiliation(s)
- Andrew Burow
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, Muenzinger Bldg., Rm. D244, UCB 345, Boulder, CO 80309, USA
| | - Heidi E.W. Day
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, Muenzinger Bldg., Rm. D244, UCB 345, Boulder, CO 80309, USA
| | - Serge Campeau
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, Muenzinger Bldg., Rm. D244, UCB 345, Boulder, CO 80309, USA
| |
Collapse
|
1085
|
Romeo RD. Neuroendocrine and behavioral development during puberty: a tale of two axes. VITAMINS AND HORMONES 2005; 71:1-25. [PMID: 16112263 DOI: 10.1016/s0083-6729(05)71001-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Puberty is marked by dramatic changes in neuroendocrine function. These changes have profound effects on the structure and function of the maturing nervous system, resulting in altered physiological and behavioral potentials in the adult organism. Indeed, the changes in neurobehavioral development during puberty rival those occurring during neonatal development. This review discusses the pubertal maturation of the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes; specifically, how the pubertal rise in gonadal hormones influences the development of various steroid-dependent motivated behaviors in adulthood, as well as the differences in stress reactivity in prepubertal and adult animals. We conclude that puberty represents another significant and perhaps critical period of neurobehavioral development. Furthermore, we suggest that perturbations of the developing nervous system during this period of maturation may result in deleterious outcomes in the future physiological and behavioral function of an individual on reaching adulthood.
Collapse
Affiliation(s)
- Russell D Romeo
- Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
1086
|
Weidenfeld J, Newman ME, Itzik A, Feldman S. Adrenocortical axis responses to adrenergic and glutamate stimulation are regulated by the amygdala. Neuroreport 2005; 16:1245-9. [PMID: 16012358 DOI: 10.1097/00001756-200508010-00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have examined the effect of lesions of the central and medial amygdala on the pituitary-adrenal responses to noradrenergic stimulation and to the injection of glutamate into the paraventricular nucleus. Bilateral lesions of the amygdalar nuclei inhibited adrenocorticotrophic hormone and corticosterone responses to electrical stimulation of the ventral noradrenergic bundle, and to the injection of the alpha1-adrenergic agonist phenylephrine or glutamate. These results suggest that the amygdala may facilitate the stimulatory roles of noradrenaline and glutamate on the adrenocortical axis. The data contribute to understanding the mechanisms by which the amygdala is involved in the function of this axis.
Collapse
Affiliation(s)
- Joseph Weidenfeld
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Hebrew University--Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
1087
|
Benarroch EE. Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res 2005; 15:254-63. [PMID: 16032381 DOI: 10.1007/s10286-005-0290-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 04/21/2005] [Indexed: 02/07/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is a complex effector structure that initiates endocrine and autonomic responses to stress. It receives inputs from visceral receptors, circulating hormones such as angiotensin II, and limbic circuits and contains neurons that release vasopressin, activate the adrenocortical axis, and activate preganglionic sympathetic or parasympathetic outflows. The neurochemical control of the different subgroups of PVN neurons is complex. The PVN has been implicated in the pathophysiology of congestive heart failure and the metabolic syndrome.
Collapse
Affiliation(s)
- Eduardo E Benarroch
- Mayo Clinic, Dept. of Neurology, 811 Guggenheim Building, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
1088
|
Watts AG. Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: a complexity beyond negative feedback. Front Neuroendocrinol 2005; 26:109-30. [PMID: 16289311 DOI: 10.1016/j.yfrne.2005.09.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/14/2005] [Indexed: 11/19/2022]
Abstract
This review will examine our current knowledge of a fundamental property of CRH neuroendocrine neurons: how the major endpoint of the HPA axis--adrenal glucocorticoids--interacts with the mechanisms controlling the expression of the genes that encode ACTH secretogogues. A great deal of work over the past 25 years has led to the notion that this question has an ostensibly simple answer: glucocorticoids inhibit peptide gene expression using "negative feedback" at the CRH neuron and elsewhere. However, closely examining how glucocorticoids act in different physiological circumstances reveals a much more complex set of answers, particularly if we consider how the processes that control peptide synthesis and release are coupled. Out of this examination emerges a more flexible and complex framework for examining the integrative mechanisms controlling the CRH neuron. Although we will mostly focus on the Crh gene, relevant aspects of the vasopressin (Avp) and pro-enkephalin (pEnk) gene regulatory mechanisms will also be discussed.
Collapse
Affiliation(s)
- Alan G Watts
- The Neuroscience Research Institute, and The Department of Biological Sciences, USC College, University of Southern California, Los Angeles, USA.
| |
Collapse
|
1089
|
Szyf M, Weaver ICG, Champagne FA, Diorio J, Meaney MJ. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 2005; 26:139-62. [PMID: 16303171 DOI: 10.1016/j.yfrne.2005.10.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 12/26/2022]
Abstract
Increased levels of pup licking/grooming and arched-back nursing by rat mothers over the first week of life alter the epigenome at a glucocorticoid receptor gene promoter in the hippocampus of the offspring. Differences in the DNA methylation pattern between the offspring of High and Low licking/grooming--arched-back mothers emerge over the first week of life, are reversed with cross-fostering, persist into adulthood and are associated with altered histone acetylation and transcription factor (NGFI-A) binding to the glucocorticoid receptor promoter. Central infusion of the adult offspring with the histone deacetylase inhibitor trichostatin A removes the previously defined epigenomic group differences in histone acetylation, DNA methylation, NGFI-A binding, glucocorticoid receptor expression, and hypothalamic-pituitary-adrenal responses to stress, thus suggesting a causal relation between the epigenomic state, glucocorticoid receptor expression and the effects of maternal care on stress responses in the offspring. These findings demonstrate that an epigenomic state of a gene can be established through a behavioral mode of programming and that in spite of the inherent stability of this epigenomic mark, it is dynamic and potentially reversible.
Collapse
Affiliation(s)
- Moshe Szyf
- McGill Program for the Study of Behavior, Genes and Environment, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
1090
|
Mikkelsen JD, Søderman A, Kiss A, Mirza N. Effects of benzodiazepines receptor agonists on the hypothalamic–pituitary–adrenocortical axis. Eur J Pharmacol 2005; 519:223-30. [PMID: 16125698 DOI: 10.1016/j.ejphar.2005.06.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/23/2005] [Accepted: 06/30/2005] [Indexed: 11/20/2022]
Abstract
Previous studies have demonstrated that classical benzodiazepines decrease hypothalamic-pituitary-adrenocortical cortex (HPA) axis activity. Paradoxically, high doses of benzodiazepines also stimulate basal circulating corticosterone levels in some conditions. Because benzodiazepine agonists display little selectivity to any of the alpha subtypes of the gamma-amino butyric acid (GABA)(A) receptor to which they bind, we propose that the unequivocal results are due to an alpha subtype-dependent modulation of the hypothalamic-pituitary-adrenocortical cortex axis output. To test this, basal hormonal output and induction of Fos in the hypothalamic paraventricular nucleus were measured after administration of various benzodiazepine ligands in mice. Zolpidem, a selective alpha1 subtype agonist, produced a very strong increase in plasma adrenocorticotropic hormone and corticosterone whereas the inverse agonist FG7142 induced a small rise in plasma corticosterone. More surprisingly, the non-selective full agonists diazepam and zopiclone induced a lower increase in circulating corticosterone than after zolpidem. In contrast, the alpha(2,3,5)-selective benzodiazepine agonist and alpha1 antagonist L-838,417 had no effect on corticosterone levels. Strong induction of Fos in the paraventricular nucleus was found in response to zolpidem, diazepam, and zopiclone, but not after L-838,417. Finally, pre-administration of L-838,417 prior to zolpidem strongly inhibited the effect of zolpidem on corticosterone. Likewise, the non-selective agonists diazepam and zopiclone at a dose that alone had no effect on corticosterone also inhibited the effect of zolpidem. Taken together, these results suggest that benzodiazepine ligands modulate the hypothalamic-pituitary-adrenocortical cortex axis through partly opposite mechanisms; and that the net effect is dependent on the composition of the GABA(A) receptor subunits to which they bind.
Collapse
Affiliation(s)
- Jens D Mikkelsen
- Department of Functional Neuroanatomy and Biomarkers, NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark.
| | | | | | | |
Collapse
|
1091
|
Ortega VA, Renner KJ, Bernier NJ. Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems. ACTA ACUST UNITED AC 2005; 208:1855-66. [PMID: 15879066 DOI: 10.1242/jeb.01577] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To assess whether the brain's monoaminergic and/or corticotropin-releasing factor (CRF) systems may be involved in mediating the appetite-suppressing effects of high environmental ammonia levels, we exposed rainbow trout to one of four NH4Cl treatments (0, 500, 750, 1000 micromol l(-1)) for 24 or 96 h and monitored changes in food intake, brain serotonin (5-HT) and dopamine (DA) activity, CRF and urotensin I (UI) mRNA levels, and plasma cortisol levels. Food intake decreased in a dose-dependent manner after 24 h of ammonia exposure and partially recovered in all groups after 96 h. Ammonia also elicited dose-dependent increases in serotonergic activity in the hypothalamus (HYP), telencephalon (TEL) and posterior brain (PB). Whereas the increase in serotonergic activity was timed with the 24 h food intake inhibition, TEL and PB serotonergic activity increased after 96 h. In the PB, exogenous ammonia also elicited dose-dependent increases in dopaminergic activity after both 24 and 96 h of exposure. Transient increases in TEL CRF and UI mRNA levels, HYP UI mRNA levels, and plasma cortisol concentrations were evidence that the hypothalamic-pituitary-interrenal (HPI) stress axis was primarily stimulated in the first 24 h of ammonia exposure when food intake was depressed. Overall, the transient nature of the appetite suppression during chronic ammonia exposure, and the time-dependent changes in brain monoaminergic and CRF systems, implicate 5-HT, DA, CRF and UI as potential mediators of the appetite-suppressing effects of ammonia. Among these anorexigenic signals, our results specifically identify hypothalamic 5-HT as a potentially key neurobiological substrate for the regulation of food intake during exposure to high external ammonia concentrations.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | | |
Collapse
|
1092
|
Gaab J, Rohleder N, Nater UM, Ehlert U. Psychological determinants of the cortisol stress response: the role of anticipatory cognitive appraisal. Psychoneuroendocrinology 2005; 30:599-610. [PMID: 15808930 DOI: 10.1016/j.psyneuen.2005.02.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Psychosocial stress is a potent activator of the hypothalamus-pituitary-adrenal (HPA) axis. While the physiological mechanisms of HPA axis responses to stress as well as its short and long-term consequences have been extensively examined, less is known why someone elicits an acute neuroendocrine stress response, i.e. what are the psychological processes involved and how are they related to the acute neuroendocrine stress response. To examine this question, a questionnaire to assess anticipatory cognitive appraisal processes was developed and administered to 81 male healthy subjects in a standardized psychosocial stress situation (Trier social stress test). Cortisol stress responses were assessed with repeated measurement of salivary free cortisol. Hierarchical regression analyses show that anticipatory cognitive appraisal, in contrast to general personality factors and retrospective stress appraisal is an important determinant of the cortisol stress response, explaining up to 35% of the variance of the salivary cortisol response. The reported results emphasize the importance of psychological stress processing for the understanding of psychobiological stress responses. Since stress and its biological consequences have been shown to be associated with the onset and the maintenance of somatic illnesses and psychiatric disorders, psychological processes are prime targets for prevention and intervention.
Collapse
Affiliation(s)
- J Gaab
- Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zürich, Zürichbergstr. 43, Zürich CH-8044, Switzerland.
| | | | | | | |
Collapse
|
1093
|
Wüst S, Entringer S, Federenko IS, Schlotz W, Hellhammer DH. Birth weight is associated with salivary cortisol responses to psychosocial stress in adult life. Psychoneuroendocrinology 2005; 30:591-8. [PMID: 15808929 DOI: 10.1016/j.psyneuen.2005.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 12/16/2022]
Abstract
Fetal programming of the hypothalamus-pituitary-adrenal (HPA) axis was proposed as one mechanism underlying the link between prenatal stress, adverse birth outcomes (particularly low birth weight) and an enhanced vulnerability for several diseases later in life. In recent studies, birth weight was significantly related to basal cortisol levels as well as to cortisol responses to pharmacological stimulation. In order to investigate the association between cortisol responses to psychological challenge, birth weight and length of gestation, 106 young healthy males were exposed to the 'Trier Social Stress Test'. Salivary cortisol responses to the stress exposure were significantly and inversely related to the subjects' birth weight, while the analysis of the impact of gestational age yielded inconsistent results. This finding is consistent with the concept of fetal programming of the HPA axis and provides the first preliminary evidence for an association between birth weight and adrenocortical responses to psychosocial stress. As the investigated subjects were twins, possible implications of this sample characteristic for the present findings are discussed.
Collapse
Affiliation(s)
- Stefan Wüst
- Department of Psychobiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany.
| | | | | | | | | |
Collapse
|
1094
|
de Medeiros MA, Carlos Reis L, Eugênio Mello L. Stress-induced c-Fos expression is differentially modulated by dexamethasone, diazepam and imipramine. Neuropsychopharmacology 2005; 30:1246-56. [PMID: 15714225 DOI: 10.1038/sj.npp.1300694] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immobilization stress upregulates c-Fos expression in several CNS areas. Repeated stress or the use of drugs can modulate stress-induced c-Fos expression. Here, we investigated in 40 different areas of the rat brain the effects of dexamethasone (SDX, a synthetic glucocorticoid), diazepam (SBDZ, a benzodiazepine), and imipramine (IMI, an antidepressant) on the c-Fos expression induced by restraint stress. Wistar rats were divided into four groups and submitted to 20 days of daily injection of saline (three first groups) or imipramine, 15 mg/kg, i.p. On day 21, animals were submitted to injections of saline (somatosensory, SS), SDX (1 mg/kg, i.p.), SBDZ (5 mg/kg, i.p.), or IMI (15 mg/kg, i.p.) before being submitted to restraint. Immediately after stress, the animals were perfused and their brains processed with immunohistochemistry for c-Fos (Ab-5 Oncogene Science). Dexamethasone reduced stress-induced c-Fos expression in SS cortex, hippocampus, paraventricular nucleus of the hypothalamus (PVH), and locus coeruleus (LC), whereas diazepam reduced c-Fos staining in the SS cortex, hippocampus, bed nucleus of stria terminalis, septal area, and hypothalamus (preoptic area and supramammillary nucleus). Chronic administration of imipramine decreased staining in the hippocampus, PVH, and LC, while increasing it in the nucleus raphe pallidus. We conclude that dexamethasone, diazepam and imipramine differentially modulate stress-induced Fos expression. The present study provides an important comparative background that may help in the further understanding of the effects of these compounds and on the brain activation as well as on the behavioral, neuroendocrine, and autonomic responses to stress.
Collapse
Affiliation(s)
- Magda Alves de Medeiros
- Department of Physiological Sciences, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
1095
|
Walf AA, Frye CA. Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic-pituitary-adrenal axis activity. Neuropsychopharmacology 2005; 30:1288-301. [PMID: 15756306 DOI: 10.1038/sj.npp.1300708] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variations in estradiol (E(2)) may influence expression of stress-related anxiety and depression symptoms among women. Effects of E(2) and stress on anxiety and depressive behavior were investigated using an animal model. E(2) was administered subcutaneously (0, 2, 5, 10, 20, 50 mug/rat) to ovariectomized rats 2 days before testing. In experiment 1, open field (anxiety), elevated plus maze (anxiety), or forced swim test (depressive) behavior was evaluated following 20 min of restraint or no such stressor. Rats administered 5 or 10 mug E(2), which produced physiological plasma E(2) concentrations, showed significantly less anxiety and depressive behavior and lower corticosterone levels compared to vehicle, lower, or higher E(2) dosages. Restraint stress prior to behavioral testing attenuated the antianxiety and antidepressive effects of 5 or 10 mug E(2). In experiment 2, effects of adrenalectomy or sham surgery and vehicle or corticosterone replacement in their drinking water on behavior and neuroendocrine measures of rats administered 0, 10, or 50 mug E(2) were examined. E(2), 10 mug, compared to vehicle or 50 mug, reduced anxiety and depressive behavior of sham and adrenalectomized rats administered the low dosage of corticosterone, but not vehicle or the high dosage of corticosterone, suggesting that there may be an optimal level of corticosterone necessary for E(2) to exert these effects. Together, these data suggest that E(2) may have dose-dependent effects on anxiety and depressive behavior of female rodents, which may depend on the tone of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Alicia A Walf
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
1096
|
Abstract
In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.
Collapse
Affiliation(s)
- E Ron de Kloet
- Department of Medical Pharmacology, Leiden Amsterdam Center for Drug Research and Leiden University Medical Center, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
1097
|
Bernier NJ, Craig PM. CRF-related peptides contribute to stress response and regulation of appetite in hypoxic rainbow trout. Am J Physiol Regul Integr Comp Physiol 2005; 289:R982-90. [PMID: 15932968 DOI: 10.1152/ajpregu.00668.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia stress suppresses appetite in a variety of fish species, but the mechanisms mediating this response are not known. Therefore, given their anorexigenic and hypophysiotropic properties, we investigated the contribution of forebrain corticotropin-releasing factor (CRF) and urotensin I (UI) to the regulation of food intake and the hypothalamic-pituitary-interrenal (HPI) stress axis in hypoxic rainbow trout. Exposure to 50 and 35% O(2) saturation for 24 h decreased food intake by 28 and 48%, respectively. The 35% O(2) treatment also increased forebrain CRF and UI mRNA levels, plasma cortisol, and lactate. Exposure for 72 h to the same conditions resulted in similar reductions in food intake, increases in plasma cortisol proportional to the hypoxia severity, and increases in forebrain CRF and UI mRNA levels in the 50% O(2) treatment. Relative to saline-infused fish, chronic intracranial infusion of the CRF receptor antagonist alpha-helical CRF((9-41)) reduced the appetite-suppressing effects of 24-h exposure to 35% O(2) and blocked the hypoxia-induced increase in plasma cortisol. Finally, forebrain microdissection revealed that 50 and 35% O(2) exposure for 24 h specifically increases preoptic area CRF and UI mRNA levels in proportion to the severity of the hypoxic challenge and either has no effect or elicits small decreases in other forebrain regions. These results show that CRF-related peptides play a physiological role in regulating the HPI axis and in mediating at least a portion of the reduction in food intake under hypoxic conditions in rainbow trout and demonstrate that the response of forebrain CRF and UI neurons to this stressor is region specific.
Collapse
Affiliation(s)
- Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|
1098
|
Simmons DA, Broderick PA. Cytokines, stressors, and clinical depression: augmented adaptation responses underlie depression pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:793-807. [PMID: 15923072 DOI: 10.1016/j.pnpbp.2005.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2005] [Indexed: 12/01/2022]
Abstract
By influencing the central nervous system, cytokines, which regulate immune function innately and adaptively, may play a key role in mediating depression-like neuro-behavioral changes. However, the similarity between cytokine and stressor-effects in animal models raises a question about the degree to which behavioral and neurochemical outcomes of cytokine challenge represent depressive disorder per se. The present review attempts to illustrate the degree of overlap between cytokines and stressors with respect to their effects on neurochemistry and behavior in animal models. The review also shows how short-term effects of cytokine exposure in typical animals may be discerned from characteristics that might otherwise be described as depression-like. By comparing outcomes of immune challenge in typical rodent strains (e.g., Sprague-Dawley [SD], Wistar) and an accepted animal model of depression (e.g., Fawn Hooded [FH] rodent strain), differences between short-term effects of cytokines and depression-like characteristics in rodents are demonstrated. Additionally, because it is known that preexisting vulnerability to depression may affect outcomes of immune challenge, we further compare immunological, biochemical and behavioral effects of cytokines between SD and FH rodent strains. Interestingly, the acute neurochemical and behavioral effects of the cytokine interleukin 1alpha (IL-1alpha) reveal stressor-like responses during behavioral habituation in both strains, though this appears to a stronger degree in FH animals. Further, the subacute response to IL-1alpha vastly differed between strains, indicating differences in adaptive mechanisms. Thus, stressor-like effects of immune challenge, particularly in FH animals, provide validation for recent "cross-sensitization" models of depression pathogenesis that incorporate immune factors.
Collapse
Affiliation(s)
- Donn A Simmons
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
1099
|
MacLullich AMJ, Deary IJ, Starr JM, Ferguson KJ, Wardlaw JM, Seckl JR. Plasma cortisol levels, brain volumes and cognition in healthy elderly men. Psychoneuroendocrinology 2005; 30:505-15. [PMID: 15721061 DOI: 10.1016/j.psyneuen.2004.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 10/19/2004] [Accepted: 12/20/2004] [Indexed: 11/29/2022]
Abstract
PURPOSE In ageing animals, exposure to chronic high levels of glucocorticoids is associated with cognitive impairment and hippocampal atrophy. However, there are few studies examining relationships among glucocorticoids, brain volumes and cognitive function in healthy older humans. This study examined the hypotheses that higher plasma cortisol levels and altered sensitivity to glucocorticoids are associated with worse cognition and more brain atrophy in elderly men. MATERIALS AND METHODS Ninety-seven healthy men aged 65-70 had plasma cortisol measured at 09:00, 14:30 h, and post-dexamethasone (0.25mg, 09:00 h), and had dermal sensitivity to glucocorticoids measured. They also underwent cognitive testing, with scores adjusted for estimated prior mental ability, and had MRI measurements of intracranial area (a validated estimate of intracranial capacity), and hippocampus, temporal lobe and frontal lobe volumes. RESULTS Plasma cortisol levels at 09:00 h were significantly and negatively correlated with a summary General Cognitive Factor accounting for 51% of the variance of cognitive function (rho=-0.22, p=0.035), and specific cognitive tests: delayed paragraph recall (rho=-0.28, p=0.036) and processing speed (rho=-0.23, p=0.026). Regional brain volumes adjusted for intracranial area generally did not correlate with cortisol levels. Tissue glucocorticoid sensitivity did not correlate with any measure of cognition or brain volume. CONCLUSIONS In healthy older men, higher plasma cortisol levels are associated with worse ageing-related overall cognitive change but not ageing-related brain atrophy.
Collapse
Affiliation(s)
- Alasdair M J MacLullich
- Geriatric Medicine, University of Edinburgh, Room SU220, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | | | | | | | | | |
Collapse
|
1100
|
Abstract
As befits a system essential for survival, neuroendocrine regulation of the hypothalamic--pituitary--adrenocortical (HPA) axis is characterized by tight control as well as plasticity. Stimulus-specific afferents code for specific hypothalamic corticotropin (ACTH) secretagogues, which have combinatorial effects on ACTH secretion, resulting in a glucocorticoid response that is tailored to stimulus intensity. Chronic stress-induced stimulation of HPA activity alters ACTH secretagogue expression and hypothalamic afferent activity to maintain adrenocortical responsiveness. Rigorous control of circadian HPA activity optimizes the balance between beneficial and adverse effects of glucocorticoids (largely mediated by glucocorticoid receptors) by minimizing circadian nadir glucocorticoid secretion (an effect mediated by mineralocorticoid receptors). HPA activity also is controlled by other glucocorticoid-regulated factors, such as immune and metabolic status. Dysregulation of these control mechanisms is likely to contribute to a variety of diseases.
Collapse
Affiliation(s)
- Lauren Jacobson
- Center for Neuropharmacology and Neuroscience, Albany Medical College, MC-136, Albany, NY 12208, USA.
| |
Collapse
|