1251
|
Ayhan AB, Beyazıt U, Topuz Ş, Tunay ÇZ, Abbas MN, Yılmaz S. Autism Spectrum Disorder and Genetic Testing: Parents' Attitudes-Data from Turkish Sample. J Autism Dev Disord 2020; 51:3331-3340. [PMID: 33222045 DOI: 10.1007/s10803-020-04798-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
We aimed to examine the opinions of parents' having a child with ASD, on genetic testing, in a Turkish sample. 951 parents' attitudes towards genetic testing were included. 89.1% of the parents did not take a genetic test during pregnancy. 87.6% of the parents agreed to take a genetic test if it could explain the cause of ASDs. 93% agreed to take a genetic test, if it would help to have a better treatment in the future. 63.8% of the participants would approve the storage of their DNA samples for the future studies. 94.8% considered being informed about the purpose of taking DNA material for the early diagnosis and 84.2% considered being suggested genetic tests for early diagnosis as important.
Collapse
Affiliation(s)
- Aynur Bütün Ayhan
- Faculty of Health Sciences, Department of Child Development, Ankara University, Ankara, 06290, Turkey
| | - Utku Beyazıt
- Kumluca Faculty of Health Sciences, Department of Child Development, Akdeniz University, Dumlupınar Blvd. Konyaaltı Campus, Antalya, Turkey
| | - Şenay Topuz
- Faculty of Nursing, Department of Midwifery, Ankara University, Ankara, 06230, Turkey
| | | | - Maryam Nazhad Abbas
- Faculty of Nursing, Department of Midwifery, Ankara University, Ankara, 06230, Turkey
| | - Serkan Yılmaz
- Faculty of Nursing, Department of Midwifery, Ankara University, Ankara, 06230, Turkey. .,Institute for Forensic Sciences, Department of Forensic Biology, Ankara University, Ankara, 06590, Turkey.
| |
Collapse
|
1252
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|
1253
|
Virolainen S, Hussien W, Dalibalta S. Autism spectrum disorder in the United Arab Emirates: potential environmental links. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:359-369. [PMID: 32663174 DOI: 10.1515/reveh-2020-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Autism spectrum disorder (ASD) has been experiencing an increase in global prevalence in recent decades. While many factors could account for this reality, certain environmental links have been shown to contribute to ASD development and etiology. The Middle East has had relatively little published research on ASD etiology although statistics indicate that ASD affects 1 in 146 births in the United Arab Emirates (UAE). This review therefore aims to examine potential causes of ASD within the UAE specifically, focusing on environmental links that may contribute to the rise in ASD cases in this population. Significantly, suboptimal breastfeeding practices, high levels of vitamin D deficiency, increased exposure to pollution, pesticides and heavy metals within the UAE may all be potentially important contributing factors to ASD in this population. Our findings support the notion that there are key links between various environmental factors and ASD prevalence in the UAE. The lack of knowledge and much research on ASD within the UAE deeply necessitates further studies on its etiology as it poses a serious public health challenge in the region and globally.
Collapse
Affiliation(s)
| | - Wejdan Hussien
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Sarah Dalibalta
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| |
Collapse
|
1254
|
Benetti E, Giliberti A, Emiliozzi A, Valentino F, Bergantini L, Fallerini C, Anedda F, Amitrano S, Conticini E, Tita R, d’Alessandro M, Fava F, Marcantonio S, Baldassarri M, Bruttini M, Mazzei MA, Montagnani F, Mandalà M, Bargagli E, Furini S, GEN-COVID Multicenter Study, Renieri A, Mari F. Clinical and molecular characterization of COVID-19 hospitalized patients. PLoS One 2020; 15:e0242534. [PMID: 33206719 PMCID: PMC7673557 DOI: 10.1371/journal.pone.0242534] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
Clinical and molecular characterization by Whole Exome Sequencing (WES) is reported in 35 COVID-19 patients attending the University Hospital in Siena, Italy, from April 7 to May 7, 2020. Eighty percent of patients required respiratory assistance, half of them being on mechanical ventilation. Fiftyone percent had hepatic involvement and hyposmia was ascertained in 3 patients. Searching for common genes by collapsing methods against 150 WES of controls of the Italian population failed to give straightforward statistically significant results with the exception of two genes. This result is not unexpected since we are facing the most challenging common disorder triggered by environmental factors with a strong underlying heritability (50%). The lesson learned from Autism-Spectrum-Disorders prompted us to re-analyse the cohort treating each patient as an independent case, following a Mendelian-like model. We identified for each patient an average of 2.5 pathogenic mutations involved in virus infection susceptibility and pinpointing to one or more rare disorder(s). To our knowledge, this is the first report on WES and COVID-19. Our results suggest a combined model for COVID-19 susceptibility with a number of common susceptibility genes which represent the favorite background in which additional host private mutations may determine disease progression.
Collapse
Affiliation(s)
- Elisa Benetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Arianna Emiliozzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Specialized and Internal Medicine, Tropical and Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | | | - Laura Bergantini
- Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialist Medicine, University of Siena, Siena, Italy
| | | | - Federico Anedda
- Department of Emergency and Urgency, Medicine, Surgery and Neurosciences, Unit of Intensive Care Medicine, Siena University Hospital, Siena, Italy
| | - Sara Amitrano
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | - Edoardo Conticini
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | - Miriana d’Alessandro
- Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | - Simona Marcantonio
- Department of Emergency and Urgency, Medicine, Surgery and Neurosciences, Unit of Intensive Care Medicine, Siena University Hospital, Siena, Italy
| | | | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | - Maria Antonietta Mazzei
- Department of Medical, Surgical and Neuro Sciences and Radiological Sciences, Unit of Diagnostic Imaging, University of Siena, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Specialized and Internal Medicine, Tropical and Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | - Marco Mandalà
- Otolaryngology Unit, University of Siena, Siena, Italy
| | - Elena Bargagli
- Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialist Medicine, University of Siena, Siena, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Senese, Italy
| |
Collapse
|
1255
|
Sotgiu S, Manca S, Gagliano A, Minutolo A, Melis MC, Pisuttu G, Scoppola C, Bolognesi E, Clerici M, Guerini FR, Carta A. Immune regulation of neurodevelopment at the mother-foetus interface: the case of autism. Clin Transl Immunology 2020; 9:e1211. [PMID: 33209302 PMCID: PMC7662086 DOI: 10.1002/cti2.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by deficits in social communication and stereotypical behaviours. ASD’s aetiology remains mostly unclear, because of a complex interaction between genetic and environmental factors. Recently, a strong consensus has developed around ASD’s immune‐mediated pathophysiology, which is the subject of this review. For many years, neuroimmunological studies tried to understand ASD as a prototypical antibody‐ or cell‐mediated disease. Other findings indicated the importance of autoimmune mechanisms such as familial and individual autoimmunity, adaptive immune abnormalities and the influence of infections during gestation. However, recent studies have challenged the idea that autism may be a classical autoimmune disease. Modern neurodevelopmental immunology shows the double‐edged nature of many immune effectors, which can be either beneficial or detrimental depending on tissue homeostasis, stressors, neurodevelopmental stage, inherited and de novo gene mutations and other variables. Nowadays, mother–child interactions in the prenatal environment appear to be crucial for the occurrence of ASD. Studies of animal maternal–foetal immune interaction are being fruitfully carried out using different combinations of type and timing of infection, of maternal immune response and foetal vulnerability and of resilience factors to hostile events. The derailed neuroimmune crosstalk through the placenta initiates and maintains a chronic foetal neuroglial activation, eventually causing the alteration of neurogenesis, migration, synapse formation and pruning. The importance of pregnancy can also allow early immune interventions, which can significantly reduce the increasing risk of ASD and its heavy social burden.
Collapse
Affiliation(s)
- Stefano Sotgiu
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Salvatorica Manca
- Unità Operativa di Neuropsichiatria Infanzia e Adolescenza (UONPIA) ASSL Sassari Sassari Italy
| | - Antonella Gagliano
- Child & Adolescent Neuropsychiatry Unit Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | - Alessandra Minutolo
- Child & Adolescent Neuropsychiatry Unit Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | - Maria Clotilde Melis
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Giulia Pisuttu
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Chiara Scoppola
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi - ONLUS Milan Italy.,Department of Pathophysiology and Transplantation University of Milano Milan Italy
| | | | - Alessandra Carta
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| |
Collapse
|
1256
|
Parnell E, Shapiro LP, Voorn RA, Forrest MP, Jalloul HA, Loizzo DD, Penzes P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2020; 768:145306. [PMID: 33189799 DOI: 10.1016/j.gene.2020.145306] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The synaptic regulator, kalirin, plays a key role in synaptic plasticity and formation of dendritic arbors and spines. Dysregulation of the KALRN gene has been linked to various neurological disorders, including autism spectrum disorder, Alzheimer's disease, schizophrenia, addiction and intellectual disabilities. Both genetic and molecular studies highlight the importance of normal KALRN expression for healthy neurodevelopment and function. This review aims to give an in-depth analysis of the structure and molecular mechanisms of kalirin function, particularly within the brain. These data are correlated to genetic evidence of patient mutations within KALRN and animal models of Kalrn that together give insight into the manner in which this gene may be involved in neurodevelopment and the etiology of disease. The emerging links to human disease from post-mortem, genome wide association (GWAS) and exome sequencing studies are examined to highlight the disease relevance of kalirin, particularly in neurodevelopmental diseases. Finally, we will discuss efforts to pharmacologically regulate kalirin protein activity and the implications of such endeavors for the treatment of human disease. As multiple disease states arise from deregulated synapse formation and altered KALRN expression and function, therapeutics may be developed to provide control over KALRN activity and thus synapse dysregulation. As such, a detailed understanding of how kalirin regulates neuronal development, and the manner in which kalirin dysfunction promotes neurological disease, may support KALRN as a valuable therapeutic avenue for future pharmacological intervention.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Lauren P Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Roos A Voorn
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Daniel D Loizzo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Northwestern University Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
1257
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
1258
|
Yamada S, Nomura S. Review of Single-Cell RNA Sequencing in the Heart. Int J Mol Sci 2020; 21:E8345. [PMID: 33172208 PMCID: PMC7664385 DOI: 10.3390/ijms21218345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology is a powerful, rapidly developing tool for characterizing individual cells and elucidating biological mechanisms at the cellular level. Cardiovascular disease is one of the major causes of death worldwide and its precise pathology remains unclear. scRNA-seq has provided many novel insights into both healthy and pathological hearts. In this review, we summarize the various scRNA-seq platforms and describe the molecular mechanisms of cardiovascular development and disease revealed by scRNA-seq analysis. We then describe the latest technological advances in scRNA-seq. Finally, we discuss how to translate basic research into clinical medicine using scRNA-seq technology.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
1259
|
Guo H, Zhang Q, Dai R, Yu B, Hoekzema K, Tan J, Tan S, Jia X, Chung WK, Hernan R, Alkuraya FS, Alsulaiman A, Al-Muhaizea MA, Lesca G, Pons L, Labalme A, Laux L, Bryant E, Brown NJ, Savva E, Ayres S, Eratne D, Peeters H, Bilan F, Letienne-Cejudo L, Gilbert-Dussardier B, Ruiz-Arana IL, Merlini JM, Boizot A, Bartoloni L, Santoni F, Karlowicz D, McDonald M, Wu H, Hu Z, Chen G, Ou J, Brasch-Andersen C, Fagerberg CR, Dreyer I, Chun-Hui Tsai A, Slegesky V, McGee RB, Daniels B, Sellars EA, Carpenter LA, Schaefer B, Sacoto MJG, Begtrup A, Schnur RE, Punj S, Wentzensen IM, Rhodes L, Pan Q, Bernier RA, Chen C, Eichler EE, Xia K. NCKAP1 Disruptive Variants Lead to a Neurodevelopmental Disorder with Core Features of Autism. Am J Hum Genet 2020; 107:963-976. [PMID: 33157009 PMCID: PMC7674997 DOI: 10.1016/j.ajhg.2020.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.
Collapse
Affiliation(s)
- Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Qiumeng Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Rujia Dai
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bin Yu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Senwei Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiangbin Jia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10027, USA
| | - Rebecca Hernan
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10027, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon 69000, France
| | - Linda Pons
- Department of Medical Genetics, Lyon University Hospital, Lyon 69000, France
| | - Audrey Labalme
- Department of Medical Genetics, Lyon University Hospital, Lyon 69000, France
| | - Linda Laux
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Emily Bryant
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Natasha J Brown
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3010, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Elena Savva
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3010, Australia
| | - Samantha Ayres
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Melbourne Genomics Health Alliance, Melbourne, VIC 3010, Australia
| | - Dhamidhu Eratne
- Melbourne Genomics Health Alliance, Melbourne, VIC 3010, Australia; Neuropsychiatry, Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven 3000, Belgium
| | - Frédéric Bilan
- Service de Génétique, CHU de Poitiers, Poitiers 86000, France
| | | | | | - Inge-Lore Ruiz-Arana
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jenny Meylan Merlini
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Alexia Boizot
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Lucia Bartoloni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Danielle Karlowicz
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Huidan Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Guodong Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jianjun Ou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | | | | | - Inken Dreyer
- Department of Pediatrics, Hospital Sønderjylland, Aabenraa 6200, Denmark
| | - Anne Chun-Hui Tsai
- Department of Pediatrics/Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73019, USA; Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Valerie Slegesky
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Rose B McGee
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brina Daniels
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Elizabeth A Sellars
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Lori A Carpenter
- Saint Francis Health System, Inc. St Francis Health Systems, Tulsa, OK 74101, USA
| | | | | | | | | | | | | | | | - Qian Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Raphael A Bernier
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Chao Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan 410078, China; CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200000, China.
| |
Collapse
|
1260
|
Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R, Zavattari P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. Int J Mol Sci 2020; 21:ijms21218290. [PMID: 33167418 PMCID: PMC7663950 DOI: 10.3390/ijms21218290] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. This review aims to provide a summary of the literature regarding ASD candidate genes, mainly focusing on synapse formation and functionality and relevant epigenetic and environmental aspects acting in concert to determine ASD onset.
Collapse
Affiliation(s)
- Elena Masini
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Ana Florencia Vega-Benedetti
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Marinella Carta
- Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy;
| | - Giuseppe Doneddu
- Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy;
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy;
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
- Correspondence:
| |
Collapse
|
1261
|
|
1262
|
Affiliation(s)
- Scott M Myers
- Geisinger Autism & Developmental Medicine Institute, Danville, PA 17822, USA.
| | - Thomas D Challman
- Geisinger Autism & Developmental Medicine Institute, Danville, PA 17822, USA
| | | | - David H Ledbetter
- Geisinger Autism & Developmental Medicine Institute, Danville, PA 17822, USA
| |
Collapse
|
1263
|
Comprehensive in silico mutational-sensitivity analysis of PTEN establishes signature regions implicated in pathogenesis of Autism Spectrum Disorders. Genomics 2020; 113:999-1017. [PMID: 33152507 DOI: 10.1016/j.ygeno.2020.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023]
Abstract
An extensively studied cancer and Autism Spectrum Disorders (ASD) gene like PTEN provided an exclusive opportunity to map its mutational-landscape, compare and establish plausible genotypic predictors of ASD-associated phenotypic outcomes. Our exhaustive in silico analysis on 4252 SNPs using >30 tools identified increased mutational-density in exon7. Phosphatase domain, although evolutionarily conserved, had the most nsSNPs localised within signature regions. The evolutionarily variable C-terminal side contained the highest truncating-SNPs outside signature regions of C2 domain and most PTMs within C-tail site which displayed maximum intolerance to polymorphisms, and permitted benign but destabilising nsSNPs that enhanced its intrinsically-disordered nature. ASD-associated SNPs localised within ATP-binding motifs and Nuclear-Localising-Sequences were the most potent triggers of ASD manifestation. These, along with variations within P, WPD and TI loops, M1 within phosphatase domain, M2 and MoRFs of C2 domain, caused severe long-range conformational fluctuations altering PTEN's dynamic stability- not observed in variations outside signature regions. 3'UTR-SNPs affected 44 strong miRNA brain-specific targets; several 5' UTR-SNPs targeted transcription-factor POLR2A and 10 pathogenic Splice-Affecting-Variants were identified.
Collapse
|
1264
|
Clemens AW, Gabel HW. Emerging Insights into the Distinctive Neuronal Methylome. Trends Genet 2020; 36:816-832. [PMID: 32839016 PMCID: PMC7572801 DOI: 10.1016/j.tig.2020.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022]
Abstract
The genomes of mammalian neurons are enriched for unique forms of DNA methylation, including exceptionally high levels of non-CG methylation. Here, we review recent studies defining how non-CG methylation accumulates in neurons and is read out by the critical regulator of neuronal transcription, MeCP2. We discuss the role of gene expression and genome architecture in establishing non-CG methylation and highlight emerging mechanistic insights into how non-CG methylation and MeCP2 control transcription. Further, we describe the cell type-specific functions of this methylation and explore growing evidence that disruption of this regulatory pathway contributes to neurodevelopmental disorders. These findings uncover how the distinctive epigenome in neurons facilitates the development and function of the complex mammalian brain.
Collapse
Affiliation(s)
- Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110-1093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110-1093, USA.
| |
Collapse
|
1265
|
Ní Ghrálaigh F, Gallagher L, Lopez LM. Autism spectrum disorder genomics: The progress and potential of genomic technologies. Genomics 2020; 112:5136-5142. [DOI: 10.1016/j.ygeno.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
|
1266
|
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat Med 2020; 26:1754-1765. [PMID: 33077954 PMCID: PMC7871900 DOI: 10.1038/s41591-020-1090-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shreyas Panchagnula
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of Radiology, Geisinger, Danville, PA, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - August A Allocco
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Rebecca L Walker
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Dunbar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sierra Conine
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Xue Zeng
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Michael C Sierant
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - William Sullivan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Helena Perez Peña
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, UK
| | - James R Broach
- Institute for Personalized Medicine, The Penn State College of Medicine, Hershey, PA, USA
| | | | | | - Christine Hehnly
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering and Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Li Ge
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Boris Keren
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J Schiff
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering and Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - David D Limbrick
- Department of Neurological Surgery and Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory Heuer
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin Medical School, Madison, WI, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, UK
| | - Bulent Guclu
- Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Yener Sahin
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Charles C Duncan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L J Apuzzo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ellen J Hoffman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Laura R Ment
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
1267
|
Kassee C, Babinski S, Tint A, Lunsky Y, Brown HK, Ameis SH, Szatmari P, Lai MC, Einstein G. Physical health of autistic girls and women: a scoping review. Mol Autism 2020; 11:84. [PMID: 33109257 PMCID: PMC7590704 DOI: 10.1186/s13229-020-00380-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is a growing recognition of sex and gender influences in autism. Increasingly, studies include comparisons between sexes or genders, but few have focused on clarifying the characteristics of autistic girls'/women's physical health. METHODS A scoping review was conducted to determine what is currently known about the physical health of autistic girls/women. We screened 1112 unique articles, with 40 studies meeting the inclusion criteria. We used a convergent iterative process to synthesize this content into broad thematic areas. RESULTS Autistic girls/women experience more overall physical health challenges compared to non-autistic girls/women and to autistic boys/men. Emerging evidence suggests increased prevalence of epilepsy in autistic girls/women compared to non-autistic girls/women and to autistic boys/men. The literature also suggests increased endocrine and reproductive health conditions in autistic girls/women compared to non-autistic girls/women. Findings regarding gastrointestinal, metabolic, nutritional, and immune-related conditions are preliminary and inconsistent. LIMITATIONS The literature has substantial heterogeneity in how physical health conditions were assessed and reported. Further, our explicit focus on physical health may have constrained the ability to examine interactions between mental and physical health. The widely differing research aims and methodologies make it difficult to reach definitive conclusions. Nevertheless, in keeping with the goals of a scoping review, we were able to identify key themes to guide future research. CONCLUSIONS The emerging literature suggests that autistic girls/women have heightened rates of physical health challenges compared to non-autistic girls/women and to autistic boys/men. Clinicians should seek to provide holistic care that includes a focus on physical health and develop a women's health lens when providing clinical care to autistic girls/women.
Collapse
Affiliation(s)
- Caroline Kassee
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Stephanie Babinski
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Sociology, University of Toronto, Toronto, Canada
| | - Ami Tint
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Yona Lunsky
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hilary K Brown
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Health and Society, University of Toronto Scarborough, Toronto, Canada
| | - Stephanie H Ameis
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Canada
| | - Peter Szatmari
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Canada
| | - Meng-Chuan Lai
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada.
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Canada.
- Department of Psychology, University of Toronto, Toronto, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| | - Gillian Einstein
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| |
Collapse
|
1268
|
Cardoso-Moreira M, Sarropoulos I, Velten B, Mort M, Cooper DN, Huber W, Kaessmann H. Developmental Gene Expression Differences between Humans and Mammalian Models. Cell Rep 2020; 33:108308. [PMID: 33113372 PMCID: PMC7610014 DOI: 10.1016/j.celrep.2020.108308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/16/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Identifying the molecular programs underlying human organ development and how they differ from model species is key for understanding human health and disease. Developmental gene expression profiles provide a window into the genes underlying organ development and a direct means to compare them across species. We use a transcriptomic resource covering the development of seven organs to characterize the temporal profiles of human genes associated with distinct disease classes and to determine, for each human gene, the similarity of its spatiotemporal expression with its orthologs in rhesus macaque, mouse, rat, and rabbit. We find clear associations between spatiotemporal profiles and the phenotypic manifestations of diseases. We also find that half of human genes differ from their mouse orthologs in their temporal trajectories in at least one of the organs. These include more than 200 genes associated with brain, heart, and liver disease for which mouse models should undergo extra scrutiny.
Collapse
Affiliation(s)
- Margarida Cardoso-Moreira
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| | - Ioannis Sarropoulos
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Britta Velten
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
1269
|
Hamada N, Iwamoto I, Kawamura N, Nagata KI. Heterotrimeric G-protein, Gi1, is involved in the regulation of proliferation, neuronal migration, and dendrite morphology during cortical development in vivo. J Neurochem 2020; 157:1167-1181. [PMID: 33025585 DOI: 10.1111/jnc.15205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Heterotrimeric G-proteins are composed of α, β, and γ subunits, and function as signal transducers. Critical roles of the α-subunits of Gi/o family heterotrimeric G-proteins, Gαi2, and Gαo1, have so far been reported in brain development and neurodevelopmental disorders. In this study, we tried to clarify the role of Gαi1, α-subunit of another Gi/o family member Gi1, during corticogenesis, based on the recent identification of its gene abnormalities in neurodevelopmental disorders. In western blot analyses, Gαi1 was found to be expressed in mouse brain in a developmental stage-dependent manner. Morphological analyses revealed that Gαi1 was broadly distributed in cerebral cortex with relatively high expression in the ventricular zone (VZ) at embryonic day (E) 14. Meanwhile, Gαi1 was enriched in membrane area of yet unidentified early mitotic cells in the VZ and the marginal zone at E14. Acute knockdown of Gαi1 with in utero electroporation in cerebral cortex caused cell cycle elongation of the neural progenitor cells and promoted their cell cycle exit. Gαi1-deficient cortical neurons also exhibited delayed radial migration during corticogenesis, with abnormally elongated leading processes and hampered nucleokinesis. In addition, silencing of Gαi1 prevented basal dendrite development. The migration and dendritic phenotypes were at least partially rescued by an RNAi-resistant version of Gαi1. Collectively, these results strongly suggest a crucial role of Gi1 in cortical development, and disturbance of its function may cause deficits in synaptic network formation, leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Noriko Kawamura
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
1270
|
Troisi J, Autio R, Beopoulos T, Bravaccio C, Carraturo F, Corrivetti G, Cunningham S, Devane S, Fallin D, Fetissov S, Gea M, Giorgi A, Iris F, Joshi L, Kadzielski S, Kraneveld A, Kumar H, Ladd-Acosta C, Leader G, Mannion A, Maximin E, Mezzelani A, Milanesi L, Naudon L, Peralta Marzal LN, Perez Pardo P, Prince NZ, Rabot S, Roeselers G, Roos C, Roussin L, Scala G, Tuccinardi FP, Fasano A. Genome, Environment, Microbiome and Metabolome in Autism (GEMMA) Study Design: Biomarkers Identification for Precision Treatment and Primary Prevention of Autism Spectrum Disorders by an Integrated Multi-Omics Systems Biology Approach. Brain Sci 2020; 10:743. [PMID: 33081368 PMCID: PMC7603049 DOI: 10.3390/brainsci10100743] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD) affects approximately 1 child in 54, with a 35-fold increase since 1960. Selected studies suggest that part of the recent increase in prevalence is likely attributable to an improved awareness and recognition, and changes in clinical practice or service availability. However, this is not sufficient to explain this epidemiological phenomenon. Research points to a possible link between ASD and intestinal microbiota because many children with ASD display gastro-intestinal problems. Current large-scale datasets of ASD are limited in their ability to provide mechanistic insight into ASD because they are predominantly cross-sectional studies that do not allow evaluation of perspective associations between early life microbiota composition/function and later ASD diagnoses. Here we describe GEMMA (Genome, Environment, Microbiome and Metabolome in Autism), a prospective study supported by the European Commission, that follows at-risk infants from birth to identify potential biomarker predictors of ASD development followed by validation on large multi-omics datasets. The project includes clinical (observational and interventional trials) and pre-clinical studies in humanized murine models (fecal transfer from ASD probands) and in vitro colon models. This will support the progress of a microbiome-wide association study (of human participants) to identify prognostic microbiome signatures and metabolic pathways underlying mechanisms for ASD progression and severity and potential treatment response.
Collapse
Affiliation(s)
- Jacopo Troisi
- Theoreo srl spin off company of the University of Salerno, Via degli Ulivi, 3, 84090 Montecorvino Pugliano (SA), Italy;
| | - Reija Autio
- Faculty of Social Sciences, Health Sciences Unit, Tampere University, Arvo Ylpön Katu 34, 33014 Tampere, Finland;
| | - Thanos Beopoulos
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | - Carmela Bravaccio
- Department of science medicine translational, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
| | | | - Giulio Corrivetti
- Azienda Sanitaria Locale (ASL) Salerno, Via Nizza, 146, 84125 Salerno (SA), Italy;
| | - Stephen Cunningham
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Samantha Devane
- Massachusetts General Hospital, Fruit Street, 55, Boston, MA 02114, USA; (S.D.); (S.K.)
| | - Daniele Fallin
- John Hopkins School of Public Health and the Wendy Klag Center for Autism and Developmental Disabilities, 615 N. Wolfe St, Baltimore, MD 21205, USA; (D.F.); (C.L.-A.)
| | - Serguei Fetissov
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Inserm UMR 1239, Rouen University of Normandy, 25 rue Tesnière, 76130 Mont-Saint-Aignan, France;
| | - Manuel Gea
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | | | - François Iris
- Bio-Modeling System, 3, Rue De L’arrivee. 75015 Paris, France; (T.B.); (M.G.); (F.I.)
| | - Lokesh Joshi
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Sarah Kadzielski
- Massachusetts General Hospital, Fruit Street, 55, Boston, MA 02114, USA; (S.D.); (S.K.)
| | - Aletta Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Himanshu Kumar
- Danone Nutricia Research, Uppsalalaan, 12, 3584 CT Utrecht, The Netherlands; (H.K.); (R.G.)
| | - Christine Ladd-Acosta
- John Hopkins School of Public Health and the Wendy Klag Center for Autism and Developmental Disabilities, 615 N. Wolfe St, Baltimore, MD 21205, USA; (D.F.); (C.L.-A.)
| | - Geraldine Leader
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Arlene Mannion
- National University of Ireland Galaway, University Road, Galaway, Ireland; (S.C.); (L.J.); (G.L.); (A.M.)
| | - Elise Maximin
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Alessandra Mezzelani
- Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy; (A.M.); (L.M.)
| | - Luciano Milanesi
- Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy; (A.M.); (L.M.)
| | - Laurent Naudon
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Naika Z. Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (A.K.); (L.N.P.M.); (P.P.P.); (N.Z.P.)
| | - Sylvie Rabot
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Guus Roeselers
- Danone Nutricia Research, Uppsalalaan, 12, 3584 CT Utrecht, The Netherlands; (H.K.); (R.G.)
| | | | - Lea Roussin
- Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (L.N.); (S.R.); (L.R.)
| | - Giovanni Scala
- Theoreo srl spin off company of the University of Salerno, Via degli Ulivi, 3, 84090 Montecorvino Pugliano (SA), Italy;
| | | | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 3, 84125 Salerno (SA), Italy;
| |
Collapse
|
1271
|
Environmental Epigenetics of Diesel Particulate Matter Toxicogenomics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207386. [PMID: 33050454 PMCID: PMC7650680 DOI: 10.3390/ijerph17207386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by disruptions in social communication and behavioral flexibility. Both genetic and environmental factors contribute to ASD risk. Epidemiologic studies indicate that roadway vehicle exhaust and in utero exposure to diesel particulate matter (DPM) are associated with ASD. Using the Comparative Toxicogenomics Database (CTD), we identified genes connected to DPM exposure and ASD, extracted the known enhancers/promoters of the identified genes, and integrated this with Assay for Transposase Accessible Chromatin (ATAC-seq) data from DPM-exposed human neural progenitor cells. Enhancer/promoter elements with significantly different chromosome accessibility revealed enriched DNA sequence motifs with transcription factor binding sites for EGR1. Variant extraction for linkage disequilibrium blocks of these regions followed by analysis through Genome Wide Association Studies (GWAS) revealed multiple neurological trait associations including exploratory eye movement and brain volume measurement. This approach highlights the effects of pollution on the regulatory regions of genes implicated in ASD by genetic studies, indicating convergence of genetic and environmental factors on molecular networks that contribute to ASD. Integration of publicly available data from the CTD, cell culture exposure studies, and phenotypic genetics synergize extensive evidence of chemical exposures on gene regulation for altered brain development.
Collapse
|
1272
|
Rodgers CC. Continuous electronic fetal monitoring during prolonged labor may be a risk factor for having a child diagnosed with autism spectrum disorder. Med Hypotheses 2020; 145:110339. [PMID: 33126162 DOI: 10.1016/j.mehy.2020.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
In just 50 years the prevalence of autism spectrum disorder has vaulted from extremely rare to common in every community. During this time, a large body of scientific literature has been amassed regarding what environmental, genetic, maternal, or obstetric factors may be at work. The hypothesis presented here identifies two developments in today's childbirth experience that, in combination, may provide the key: 1) a significant increase in the mean duration of labor and 2) the adoption of continuous electronic fetal monitoring utilizing Doppler ultrasound as the standard of care even in low-risk pregnancies. Together, these two factors have created an unprecedented fetal environment that has the potential to affect neuronal migration and cause non-inherited genetic disruptions. This paper will briefly describe the nature and history of contributing factors, why there may be a link between evolving maternal characteristics, obstetric trends and the increase in autism, as well as the means by which the hypothesis can be tested.
Collapse
|
1273
|
Chen S, Wang J, Cicek E, Roeder K, Yu H, Devlin B. De novo missense variants disrupting protein-protein interactions affect risk for autism through gene co-expression and protein networks in neuronal cell types. Mol Autism 2020; 11:76. [PMID: 33032641 PMCID: PMC7545940 DOI: 10.1186/s13229-020-00386-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Whole-exome sequencing studies have been useful for identifying genes that, when mutated, affect risk for autism spectrum disorder (ASD). Nonetheless, the association signal primarily arises from de novo protein-truncating variants, as opposed to the more common missense variants. Despite their commonness in humans, determining which missense variants affect phenotypes and how remains a challenge. We investigate the functional relevance of de novo missense variants, specifically whether they are likely to disrupt protein interactions, and nominate novel genes in risk for ASD through integrated genomic, transcriptomic, and proteomic analyses. METHODS Utilizing our previous interactome perturbation predictor, we identify a set of missense variants that are likely disruptive to protein-protein interactions. For genes encoding the disrupted interactions, we evaluate their expression patterns across developing brains and within specific cell types, using both bulk and inferred cell-type-specific brain transcriptomes. Connecting all disrupted pairs of proteins, we construct an "ASD disrupted network." Finally, we integrate protein interactions and cell-type-specific co-expression networks together with published association data to implicate novel genes in ASD risk in a cell-type-specific manner. RESULTS Extending earlier work, we show that de novo missense variants that disrupt protein interactions are enriched in individuals with ASD, often affecting hub proteins and disrupting hub interactions. Genes encoding disrupted complementary interactors tend to be risk genes, and an interaction network built from these proteins is enriched for ASD proteins. Consistent with other studies, genes identified by disrupted protein interactions are expressed early in development and in excitatory and inhibitory neuronal lineages. Using inferred gene co-expression for three neuronal cell types-excitatory, inhibitory, and neural progenitor-we implicate several hundred genes in risk (FDR [Formula: see text]0.05), ~ 60% novel, with characteristics of genuine ASD genes. Across cell types, these genes affect neuronal morphogenesis and neuronal communication, while neural progenitor cells show strong enrichment for development of the limbic system. LIMITATIONS Some analyses use the imperfect guilt-by-association principle; results are statistical, not functional. CONCLUSIONS Disrupted protein interactions identify gene sets involved in risk for ASD. Their gene expression during brain development and within cell types highlights how they relate to ASD.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15213, USA
| | - Ercument Cicek
- Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Kathryn Roeder
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
1274
|
Wang L, Zhang Y, Li K, Wang Z, Wang X, Li B, Zhao G, Fang Z, Ling Z, Luo T, Xia L, Li Y, Guo H, Hu Z, Li J, Sun Z, Xia K. Functional relationships between recessive inherited genes and genes with de novo variants in autism spectrum disorder. Mol Autism 2020; 11:75. [PMID: 33023636 PMCID: PMC7541261 DOI: 10.1186/s13229-020-00382-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Both de novo variants and recessive inherited variants were associated with autism spectrum disorder (ASD). This study aimed to use exome data to prioritize recessive inherited genes (RIGs) with biallelically inherited variants in autosomes or X-linked inherited variants in males and investigate the functional relationships between RIGs and genes with de novo variants (DNGs).
Methods We used a bioinformatics pipeline to analyze whole-exome sequencing data from 1799 ASD quads (containing one proband, one unaffected sibling, and their parents) from the Simons Simplex Collection and prioritize candidate RIGs with rare biallelically inherited variants in autosomes or X-linked inherited variants in males. The relationships between RIGs and DNGs were characterized based on different genetic perspectives, including genetic variants, functional networks, and brain expression patterns. Results Among the biallelically or hemizygous constrained genes that were expressed in the brain, ASD probands carried significantly more biallelically inherited protein-truncating variants (PTVs) in autosomes (p = 0.038) and X-linked inherited PTVs in males (p = 0.026) than those in unaffected siblings. We prioritized eight autosomal, and 13 X-linked candidate RIGs, including 11 genes already associated with neurodevelopmental disorders. In total, we detected biallelically inherited variants or X-linked inherited variants of these 21 candidate RIGs in 26 (1.4%) of 1799 probands. We then integrated previously reported known or candidate genes in ASD, ultimately obtaining 70 RIGs and 87 DNGs for analysis. We found that RIGs were less likely to carry multiple recessive inherited variants than DNGs were to carry multiple de novo variants. Additionally, RIGs and DNGs were significantly co-expressed and interacted with each other, forming a network enriched in known functional ASD clusters, although RIGs were less likely to be enriched in these functional clusters compared with DNGs. Furthermore, although RIGs and DNGs presented comparable expression patterns in the human brain, RIGs were less likely to be associated with prenatal brain regions, the middle cortical layers, and excitatory neurons than DNGs. Limitations The RIGs analyzed in this study require functional validation, and the results should be replicated in more patients with ASD. Conclusions ASD RIGs were functionally associated with DNGs; however, they exhibited higher heterogeneity than DNGs.
Collapse
Affiliation(s)
- Lin Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomeng Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghuan Fang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengbao Ling
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Luo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai, China. .,School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
1275
|
Klin A, Micheletti M, Klaiman C, Shultz S, Constantino JN, Jones W. Affording autism an early brain development re-definition. Dev Psychopathol 2020; 32:1175-1189. [PMID: 32938507 PMCID: PMC7880583 DOI: 10.1017/s0954579420000802] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The national priority to advance early detection and intervention for children with autism spectrum disorder (ASD) has not reduced the late age of ASD diagnosis in the US over several consecutive Centers for Disease Control and Prevention (CDC) surveillance cohorts, with traditionally under-served populations accessing diagnosis later still. In this review, we explore a potential perceptual barrier to this enterprise which views ASD in terms that are contradicted by current science, and which may have its origins in the current definition of the condition and in its historical associations. To address this perceptual barrier, we propose a re-definition of ASD in early brain development terms, with a view to revisit the world of opportunities afforded by current science to optimize children's outcomes despite the risks that they are born with. This view is presented here to counter outdated notions that potentially devastating disability is determined the moment a child is born, and that these burdens are inevitable, with opportunities for improvement being constrained to only alleviation of symptoms or limited improvements in adaptive skills. The impetus for this piece is the concern that such views of complex neurodevelopmental conditions, such as ASD, can become self-fulfilling science and policy, in ways that are diametrically opposed to what we currently know, and are learning every day, of how genetic risk becomes, or not, instantiated as lifetime disabilities.
Collapse
Affiliation(s)
- Ami Klin
- Marcus Autism Center, Atlanta, Georgia
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Children’s Healthcare of Atlanta, Atlanta, Georgia
- Emory Center for Translational Social Neuroscience, Atlanta, Georgia
| | - Megan Micheletti
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Cheryl Klaiman
- Marcus Autism Center, Atlanta, Georgia
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Sarah Shultz
- Marcus Autism Center, Atlanta, Georgia
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - John N. Constantino
- Departments of Psychiatry and Pediatrics, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St Louis,MO
| | - Warren Jones
- Marcus Autism Center, Atlanta, Georgia
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Children’s Healthcare of Atlanta, Atlanta, Georgia
- Emory Center for Translational Social Neuroscience, Atlanta, Georgia
| |
Collapse
|
1276
|
Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, Mirceta M, Mojarad BA, Yin Y, Dov A, Chandrakumar I, Prasolava T, Shum N, Hamdan O, Pellecchia G, Howe JL, Whitney J, Klee EW, Baheti S, Amaral DG, Anagnostou E, Elsabbagh M, Fernandez BA, Hoang N, Lewis MES, Liu X, Sjaarda C, Smith IM, Szatmari P, Zwaigenbaum L, Glazer D, Hartley D, Stewart AK, Eberle MA, Sato N, Pearson CE, Scherer SW, Yuen RKC. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 2020; 586:80-86. [PMID: 32717741 PMCID: PMC9348607 DOI: 10.1038/s41586-020-2579-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
Tandem DNA repeats vary in the size and sequence of each unit (motif). When expanded, these tandem DNA repeats have been associated with more than 40 monogenic disorders1. Their involvement in disorders with complex genetics is largely unknown, as is the extent of their heterogeneity. Here we investigated the genome-wide characteristics of tandem repeats that had motifs with a length of 2-20 base pairs in 17,231 genomes of families containing individuals with autism spectrum disorder (ASD)2,3 and population control individuals4. We found extensive polymorphism in the size and sequence of motifs. Many of the tandem repeat loci that we detected correlated with cytogenetic fragile sites. At 2,588 loci, gene-associated expansions of tandem repeats that were rare among population control individuals were significantly more prevalent among individuals with ASD than their siblings without ASD, particularly in exons and near splice junctions, and in genes related to the development of the nervous system and cardiovascular system or muscle. Rare tandem repeat expansions had a prevalence of 23.3% in children with ASD compared with 20.7% in children without ASD, which suggests that tandem repeat expansions make a collective contribution to the risk of ASD of 2.6%. These rare tandem repeat expansions included previously undescribed ASD-linked expansions in DMPK and FXN, which are associated with neuromuscular conditions, and in previously unknown loci such as FGF14 and CACNB1. Rare tandem repeat expansions were associated with lower IQ and adaptive ability. Our results show that tandem DNA repeat expansions contribute strongly to the genetic aetiology and phenotypic complexity of ASD.
Collapse
Affiliation(s)
- Brett Trost
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Worrawat Engchuan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Charlotte M Nguyen
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bhooma Thiruvahindrapuram
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Ian Backstrom
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mila Mirceta
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bahareh A Mojarad
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yue Yin
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alona Dov
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Induja Chandrakumar
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tanya Prasolava
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Natalie Shum
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Omar Hamdan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanna Pellecchia
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph Whitney
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric W Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Saurabh Baheti
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David G Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute and Azrieli Centre for Autism Research, McGill University, Montreal, Quebec, Canada
| | - Bridget A Fernandez
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ny Hoang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - M E Suzanne Lewis
- Medical Genetics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Isabel M Smith
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - David Glazer
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - A Keith Stewart
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Nozomu Sato
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher E Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K C Yuen
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
1277
|
Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, Gallone G, Lelieveld SH, Martin HC, McRae JF, Short PJ, Torene RI, de Boer E, Danecek P, Gardner EJ, Huang N, Lord J, Martincorena I, Pfundt R, Reijnders MRF, Yeung A, Yntema HG, Vissers LELM, Juusola J, Wright CF, Brunner HG, Firth HV, FitzPatrick DR, Barrett JC, Hurles ME, Gilissen C, Retterer K. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 2020; 586:757-762. [PMID: 33057194 PMCID: PMC7116826 DOI: 10.1038/s41586-020-2832-5] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/17/2020] [Indexed: 01/28/2023]
Abstract
De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.
Collapse
Affiliation(s)
- Joanna Kaplanis
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kaitlin E Samocha
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Laurens Wiel
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Ruth Y Eberhardt
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Giuseppe Gallone
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stefan H Lelieveld
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jeremy F McRae
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick J Short
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Elke de Boer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petr Danecek
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eugene J Gardner
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ni Huang
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jenny Lord
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Iñigo Martincorena
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot R F Reijnders
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alison Yeung
- Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Helger G Yntema
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- MHENS School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Helen V Firth
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jeffrey C Barrett
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
1278
|
Wang T, Hoekzema K, Vecchio D, Wu H, Sulovari A, Coe BP, Gillentine MA, Wilfert AB, Perez-Jurado LA, Kvarnung M, Sleyp Y, Earl RK, Rosenfeld JA, Geisheker MR, Han L, Du B, Barnett C, Thompson E, Shaw M, Carroll R, Friend K, Catford R, Palmer EE, Zou X, Ou J, Li H, Guo H, Gerdts J, Avola E, Calabrese G, Elia M, Greco D, Lindstrand A, Nordgren A, Anderlid BM, Vandeweyer G, Van Dijck A, Van der Aa N, McKenna B, Hancarova M, Bendova S, Havlovicova M, Malerba G, Bernardina BD, Muglia P, van Haeringen A, Hoffer MJV, Franke B, Cappuccio G, Delatycki M, Lockhart PJ, Manning MA, Liu P, Scheffer IE, Brunetti-Pierri N, Rommelse N, Amaral DG, Santen GWE, Trabetti E, Sedláček Z, Michaelson JJ, Pierce K, Courchesne E, Kooy RF, Nordenskjöld M, Romano C, Peeters H, Bernier RA, Gecz J, Xia K, Eichler EE. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat Commun 2020; 11:4932. [PMID: 33004838 PMCID: PMC7530681 DOI: 10.1038/s41467-020-18723-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.
Collapse
Affiliation(s)
- Tianyun Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Davide Vecchio
- Rare Disease and Medical Genetics, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Huidan Wu
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Amy B Wilfert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Luis A Perez-Jurado
- Paediatric and Reproductive Genetics unit, Women's and Children's Hospital, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM) and CIBERER, Barcelona, Spain
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Yoeri Sleyp
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | | | - Lin Han
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bing Du
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chris Barnett
- Paediatric and Reproductive Genetics unit, Women's and Children's Hospital, Adelaide, SA, Australia
- Adelaide Medical School and the Robinson Research Institute, the University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth Thompson
- Paediatric and Reproductive Genetics unit, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Marie Shaw
- Adelaide Medical School and the Robinson Research Institute, the University of Adelaide, Adelaide, SA, Australia
| | - Renee Carroll
- Adelaide Medical School and the Robinson Research Institute, the University of Adelaide, Adelaide, SA, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rachael Catford
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Elizabeth E Palmer
- Genetics of Learning Disability Service, Hunter New England Health Service, Waratah, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Xiaobing Zou
- Children Development Behavior Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianjun Ou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Honghui Li
- Key Laboratory of Developmental Disorders in Children, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Brooke McKenna
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Marketa Havlovicova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Paul J Lockhart
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melanie A Manning
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Pengfei Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Nanda Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry Center, Nijmegen, Netherlands
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Zdeněk Sedláček
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Karen Pierce
- Department of Neurosciences, UC San Diego Autism Center, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Department of Neurosciences, UC San Diego Autism Center, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Jozef Gecz
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School and the Robinson Research Institute, the University of Adelaide, Adelaide, SA, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Kun Xia
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
1279
|
Feng G, Jensen FE, Greely HT, Okano H, Treue S, Roberts AC, Fox JG, Caddick S, Poo MM, Newsome WT, Morrison JH. Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. Proc Natl Acad Sci U S A 2020; 117:24022-24031. [PMID: 32817435 PMCID: PMC7533691 DOI: 10.1073/pnas.2006515117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recently developed new genome-editing technologies, such as the CRISPR/Cas system, have opened the door for generating genetically modified nonhuman primate (NHP) models for basic neuroscience and brain disorders research. The complex circuit formation and experience-dependent refinement of the human brain are very difficult to model in vitro, and thus require use of in vivo whole-animal models. For many neurodevelopmental and psychiatric disorders, abnormal circuit formation and refinement might be at the center of their pathophysiology. Importantly, many of the critical circuits and regional cell populations implicated in higher human cognitive function and in many psychiatric disorders are not present in lower mammalian brains, while these analogous areas are replicated in NHP brains. Indeed, neuropsychiatric disorders represent a tremendous health and economic burden globally. The emerging field of genetically modified NHP models has the potential to transform our study of higher brain function and dramatically facilitate the development of effective treatment for human brain disorders. In this paper, we discuss the importance of developing such models, the infrastructure and training needed to maximize the impact of such models, and ethical standards required for using these models.
Collapse
Affiliation(s)
- Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Henry T Greely
- Center for Law and the Biosciences, Stanford University, Stanford, CA 94305
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjukuku, 160-8592 Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 351-0106 Saitama, Wakoshi, Japan
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, 37073 Goettingen, Germany
| | - Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sarah Caddick
- The Gatsby Charitable Foundation, SW1V 1AP London, United Kingdom
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - William T Newsome
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - John H Morrison
- California National Primate Research Center, University of California, Davis, CA 95616;
- Department of Neurology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
1280
|
Trobiani L, Meringolo M, Diamanti T, Bourne Y, Marchot P, Martella G, Dini L, Pisani A, De Jaco A, Bonsi P. The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neurosci Biobehav Rev 2020; 119:37-51. [PMID: 32991906 DOI: 10.1016/j.neubiorev.2020.09.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
Abstract
The genetics underlying autism spectrum disorder (ASD) is complex and heterogeneous, and de novo variants are found in genes converging in functional biological processes. Neuronal communication, including trans-synaptic signaling involving two families of cell-adhesion proteins, the presynaptic neurexins and the postsynaptic neuroligins, is one of the most recurrently affected pathways in ASD. Given the role of these proteins in determining synaptic function, abnormal synaptic plasticity and failure to establish proper synaptic contacts might represent mechanisms underlying risk of ASD. More than 30 mutations have been found in the neuroligin genes. Most of the resulting residue substitutions map in the extracellular, cholinesterase-like domain of the protein, and impair protein folding and trafficking. Conversely, the stalk and intracellular domains are less affected. Accordingly, several genetic animal models of ASD have been generated, showing behavioral and synaptic alterations. The aim of this review is to discuss the current knowledge on ASD-linked mutations in the neuroligin proteins and their effect on synaptic function, in various brain areas and circuits.
Collapse
Affiliation(s)
- Laura Trobiani
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Maria Meringolo
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Dept. Systems Medicine, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Tamara Diamanti
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Yves Bourne
- Lab. "Architecture et Fonction des Macromolécules Biologiques", CNRS/Aix Marseille Univ, Faculté des Sciences - Campus Luminy, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
| | - Pascale Marchot
- Lab. "Architecture et Fonction des Macromolécules Biologiques", CNRS/Aix Marseille Univ, Faculté des Sciences - Campus Luminy, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
| | - Giuseppina Martella
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Dept. Systems Medicine, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Luciana Dini
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonio Pisani
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Dept. Systems Medicine, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella De Jaco
- Dept. Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Paola Bonsi
- Lab. Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
1281
|
Rein B, Yan Z. 16p11.2 Copy Number Variations and Neurodevelopmental Disorders. Trends Neurosci 2020; 43:886-901. [PMID: 32993859 DOI: 10.1016/j.tins.2020.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Copy number variations (CNVs) of the human 16p11.2 genetic locus are associated with a range of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and epilepsy. In this review, we delineate genetic information and diverse phenotypes in individuals with 16p11.2 CNVs, and synthesize preclinical findings from transgenic mouse models of 16p11.2 CNVs. Mice with 16p11.2 deletions or duplications recapitulate many core behavioral phenotypes, including social and cognitive deficits, and exhibit altered synaptic function across various brain areas. Mechanisms of transcriptional dysregulation and cortical maldevelopment are reviewed, along with potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Benjamin Rein
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
1282
|
Smith M. MRNA Transcription, Translation, and Defects in Developmental Cognitive and Behavioral Disorders. Front Mol Biosci 2020; 7:577710. [PMID: 33102526 PMCID: PMC7545264 DOI: 10.3389/fmolb.2020.577710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 12/03/2022] Open
Abstract
The growth of expertise in molecular techniques, their application to clinical evaluations, and the establishment of databases with molecular genetic information has led to greater insights into the roles of molecular processes related to gene expression in neurodevelopment and functioning. The goal of this review is to examine new insights into messenger RNA transcription, translation, and cellular protein synthesis and the relevance of genetically determined alterations in these processes in neurodevelopmental, cognitive, and behavioral disorders.
Collapse
|
1283
|
Agam G, Taylor Z, Vainer E, Golan HM. The influence of choline treatment on behavioral and neurochemical autistic-like phenotype in Mthfr-deficient mice. Transl Psychiatry 2020; 10:316. [PMID: 32948746 PMCID: PMC7501861 DOI: 10.1038/s41398-020-01002-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Imbalanced one carbon metabolism and aberrant autophagy is robustly reported in patients with autism. Polymorphism in the gene methylenetetrahydrofolate reductase (Mthfr), encoding for a key enzyme in this pathway is associated with an increased risk for autistic-spectrum-disorders (ASDs). Autistic-like core and associated behaviors have been described, with contribution of both maternal and offspring Mthfr+/- genotype to the different domains of behavior. Preconception and prenatal supplementation with methyl donor rich diet to human subjects and mice reduced the risk for developing autism and autistic-like behavior, respectively. Here we tested the potential of choline supplementation to Mthfr-deficient mice at young-adulthood to reduce behavioral and neurochemical changes reminiscent of autism characteristics. We show that offspring of Mthfr+/- mothers, whether wildtype or heterozygote, exhibit autistic-like behavior, altered brain p62 protein levels and LC3-II/LC3-I levels ratio, both, autophagy markers. Choline supplementation to adult offspring of Mthfr+/- mothers for 14 days counteracted characteristics related to repetitive behavior and anxiety both in males and in females and improved social behavior solely in male mice. Choline treatment also normalized deviant cortical levels of the autophagy markers measured in male mice. The results demonstrate that choline supplementation even at adulthood, not tested previously, to offspring of Mthfr-deficient mothers, attenuates the autistic-like phenotype. If this proof of concept is replicated it might promote translation of these results to treatment recommendation for children with ASDs bearing similar genetic/metabolic make-up.
Collapse
Affiliation(s)
- Galila Agam
- grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zoe Taylor
- grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ella Vainer
- grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel
| | - Hava M. Golan
- grid.7489.20000 0004 1937 0511Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
1284
|
Bai D, Marrus N, Kei Yip BH, Reichenberg A, Constantino JN, Sandin S. Inherited Risk for Autism Through Maternal and Paternal Lineage. Biol Psychiatry 2020; 88:480-487. [PMID: 32430199 PMCID: PMC7483301 DOI: 10.1016/j.biopsych.2020.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is highly familial, with a positively skewed male-to-female ratio that is purported to arise from the so-called female protective effect. A serious implication of a female protective effect is that familial ASD liability would be expected to aggregate asymptomatically in sisters of affected probands, who would incur elevated rates of ASD among their offspring. Currently, there exist no data on second-generation recurrence rates among families affected by ASD. METHODS We analyzed data from the Swedish National Patient Register and the Multi-Generation Register for a cohort of children born between 2003 and 2012. ASD was ascertained in both the child and parental generations. RESULTS Among 847,732 children, 13,103 (1.55%) children in the cohort were diagnosed with ASD. Among their maternal/paternal aunts and uncles, 1744 (0.24%) and 1374 (0.18%) were diagnosed with ASD, respectively. Offspring of mothers with a sibling(s) diagnosed with ASD had higher rates of ASD than the general population (relative risk, 3.05; 95% confidence interval, 2.52-3.64), but not more than would be predicted for second-degree relatives within a generation, and only slightly more than was observed for fathers with siblings with ASD (relative risk, 2.08; 95% confidence interval, 1.53-2.67). Models adjusting for temporal trends and for psychiatric history in the parental generation did not alter the results. CONCLUSIONS These findings establish a robust general estimate of ASD transmission risk for siblings of individuals affected by ASD, the first ever reported. Our findings do not suggest female protective factors as the principal mechanism underlying the male sex bias in ASD.
Collapse
Affiliation(s)
- Dan Bai
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Hon Kei Yip
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA,Seaver Autism Center for Research and Treatment at Mount Sinai, New York, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sven Sandin
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
1285
|
Hacohen-Kleiman G, Moaraf S, Kapitansky O, Gozes I. Sex-and Region-Dependent Expression of the Autism-Linked ADNP Correlates with Social- and Speech-Related Genes in the Canary Brain. J Mol Neurosci 2020; 70:1671-1683. [PMID: 32926339 DOI: 10.1007/s12031-020-01700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
The activity-dependent neuroprotective protein (ADNP) syndrome is an autistic-like disorder, instigated by mutations in ADNP. This syndrome is characterized by developmental delays, impairments in speech, motor function, abnormal hearing, and intellectual disabilities. In the Adnp-haploinsufficient mouse model, many of these impediments are evident, appearing in a sex-dependent manner. In zebra finch songbird (ZF; Taeniopygia guttata), an animal model used for song/language studies, ADNP mRNA most robust expression is observed in the cerebrum of young males, potentially corroborating with male ZF exclusive singing behavior and developed cerebral song system. Herein, we report a similar sex-dependent ADNP expression profile, with the highest expression in the cerebrum (qRT-PCR) in the brain of another songbird, the domesticated canary (Serinus canaria domestica). Additional analyses for the mRNA transcripts of the ADNP regulator, vasoactive intestinal peptide (VIP), sister gene ADNP2, and speech-related Forkhead box protein P2 (FoxP2) revealed multiple sex and brain region-dependent positive correlations between the genes (including ADNP). Parallel transcript expression patterns for FoxP2 and VIP were observed alongside specific FoxP2 increase in males compared with females as well as VIP/ADNP2 correlations. In spatial view, a sexually independent extensive form of expression was found for ADNP in the canary cerebrum (RNA in situ hybridization). The songbird cerebral mesopallium area stood out as a potentially high-expressing ADNP tissue, further strengthening the association of ADNP with sense integration and auditory memory formation, previously implicated in mouse and human.
Collapse
Affiliation(s)
- Gal Hacohen-Kleiman
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Natural and Life Sciences, The Open University of Israel, 43107, Ra'anana, Israel
| | - Stan Moaraf
- Department of Natural and Life Sciences, The Open University of Israel, 43107, Ra'anana, Israel
- School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Oxana Kapitansky
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
1286
|
Wilkinson B, Coba MP. Molecular architecture of postsynaptic Interactomes. Cell Signal 2020; 76:109782. [PMID: 32941943 DOI: 10.1016/j.cellsig.2020.109782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
The postsynaptic density (PSD) plays an essential role in the organization of the synaptic signaling machinery. It contains a set of core scaffolding proteins that provide the backbone to PSD protein-protein interaction networks (PINs). These core scaffolding proteins can be seen as three principal layers classified by protein family, with DLG proteins being at the top, SHANKs along the bottom, and DLGAPs connecting the two layers. Early studies utilizing yeast two hybrid enabled the identification of direct protein-protein interactions (PPIs) within the multiple layers of scaffolding proteins. More recently, mass-spectrometry has allowed the characterization of whole interactomes within the PSD. This expansion of knowledge has further solidified the centrality of core scaffolding family members within synaptic PINs and provided context for their role in neuronal development and synaptic function. Here, we discuss the scaffolding machinery of the PSD, their essential functions in the organization of synaptic PINs, along with their relationship to neuronal processes found to be impaired in complex brain disorders.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
1287
|
Presynaptic dysfunction in CASK-related neurodevelopmental disorders. Transl Psychiatry 2020; 10:312. [PMID: 32929080 PMCID: PMC7490425 DOI: 10.1038/s41398-020-00994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
CASK-related disorders are genetically defined neurodevelopmental syndromes. There is limited information about the effects of CASK mutations in human neurons. Therefore, we sought to delineate CASK-mutation consequences and neuronal effects using induced pluripotent stem cell-derived neurons from two mutation carriers. One male case with autism spectrum disorder carried a novel splice-site mutation and a female case with intellectual disability carried an intragenic tandem duplication. We show reduction of CASK protein in maturing neurons from the mutation carriers, which leads to significant downregulation of genes involved in presynaptic development and of CASK protein interactors. Furthermore, CASK-deficient neurons showed decreased inhibitory presynapse size as indicated by VGAT staining, which may alter the excitatory-inhibitory (E/I) balance in developing neural circuitries. Using in vivo magnetic resonance spectroscopy quantification of GABA in the male mutation carrier, we further highlight the possibility to validate in vitro cellular data in the brain. Our data show that future pharmacological and clinical studies on targeting presynapses and E/I imbalance could lead to specific treatments for CASK-related disorders.
Collapse
|
1288
|
Age and Sex-Dependent ADNP Regulation of Muscle Gene Expression Is Correlated with Motor Behavior: Possible Feedback Mechanism with PACAP. Int J Mol Sci 2020; 21:ijms21186715. [PMID: 32937737 PMCID: PMC7555576 DOI: 10.3390/ijms21186715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/− heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.
Collapse
|
1289
|
Maekawa M, Ohnishi T, Toyoshima M, Shimamoto-Mitsuyama C, Hamazaki K, Balan S, Wada Y, Esaki K, Takagai S, Tsuchiya KJ, Nakamura K, Iwata Y, Nara T, Iwayama Y, Toyota T, Nozaki Y, Ohba H, Watanabe A, Hisano Y, Matsuoka S, Tsujii M, Mori N, Matsuzaki H, Yoshikawa T. A potential role of fatty acid binding protein 4 in the pathophysiology of autism spectrum disorder. Brain Commun 2020; 2:fcaa145. [PMID: 33225276 PMCID: PMC7667725 DOI: 10.1093/braincomms/fcaa145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by difficulties in social communication and interaction, as well as repetitive and characteristic patterns of behaviour. Although the pathogenesis of autism spectrum disorder is unknown, being overweight or obesity during infancy and low weight at birth are known as risks, suggesting a metabolic aspect. In this study, we investigated adipose tissue development as a pathophysiological factor of autism spectrum disorder by examining the serum levels of adipokines and other metabolic markers in autism spectrum disorder children (n = 123) and typically developing children (n = 92) at 4–12 years of age. Among multiple measures exhibiting age-dependent trajectories, the leptin levels displayed different trajectory patterns between autism spectrum disorder and typically developing children, supporting an adipose tissue-dependent mechanism of autism spectrum disorder. Of particular interest, the levels of fatty acid binding protein 4 (FABP4) were significantly lower in autism spectrum disorder children than in typically developing subjects, at preschool age (4–6 years old: n = 21 for autism spectrum disorder and n = 26 for typically developing). The receiver operating characteristic curve analysis discriminated autism spectrum disorder children from typically developing children with a sensitivity of 94.4% and a specificity of 75.0%. We re-sequenced the exons of the FABP4 gene in a Japanese cohort comprising 659 autism spectrum disorder and 1000 control samples, and identified two rare functional variants in the autism spectrum disorder group. The Trp98Stop, one of the two variants, was transmitted to the proband from his mother with a history of depression. The disruption of the Fabp4 gene in mice evoked autism spectrum disorder-like behavioural phenotypes and increased spine density on apical dendrites of pyramidal neurons, which has been observed in the postmortem brains of autism spectrum disorder subjects. The Fabp4 knockout mice had an altered fatty acid composition in the cortex. Collectively, these results suggest that an ‘adipo-brain axis’ may underlie the pathophysiology of autism spectrum disorder, with FABP4 as a potential molecule for use as a biomarker.
Collapse
Affiliation(s)
- Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Correspondence to: Motoko Maekawa, Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan. E-mail:
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuina Wada
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Kayoko Esaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shu Takagai
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry, Hirosaki University School of Medicine, Aomori, Japan
| | - Yasuhide Iwata
- Department of Psychiatry and Neurology, Fukude Nishi Hospital, Shizuoka, Japan
| | - Takahiro Nara
- Department of Rehabilitation, Miyagi Children's Hospital, Miyagi, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yayoi Nozaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shigeru Matsuoka
- Department of Clinical Pharmacology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Tsujii
- School of Contemporary Sociology, Chukyo University, Aichi, Japan
| | - Norio Mori
- Department of Psychiatry and Neurology, Fukude Nishi Hospital, Shizuoka, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Correspondence may also be addressed to: Takeo Yoshikawa. E-mail:
| |
Collapse
|
1290
|
Rein B, Ma K, Yan Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc 2020; 15:3464-3477. [PMID: 32895524 DOI: 10.1038/s41596-020-0382-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and other behavioral abnormalities. The three-chamber social preference test is often used to assess social deficits in mouse models of ASD. However, varying and often contradicting phenotypic descriptions of ASD mouse models can be found in the scientific literature, and the substantial variability in the methods used by researchers to assess social deficits in mice could be a contributing factor. Here we describe a standardized three-chamber social preference protocol, which is sensitive and reliable at detecting social preference deficits in several mouse models of ASD. This protocol comprises three phases that can all be completed within 1 d. The test mouse is first habituated to the apparatus containing two empty cups in the side chambers, followed by the pre-test phase in which the mouse can interact with two identical inanimate objects placed in the cups. During the test phase, the mouse is allowed to interact with a social stimulus (an unfamiliar wild-type (WT) mouse) contained in one cup and a novel non-social stimulus contained in the other cup. The protocol is thus designed to assess preference between social and non-social stimuli under conditions of equal salience. The broad implementation of the three-chamber social preference protocol presented here should improve the accuracy and consistency of assessments for social preference deficits associated with ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- Benjamin Rein
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
1291
|
Lalli MA, Avey D, Dougherty JD, Milbrandt J, Mitra RD. High-throughput single-cell functional elucidation of neurodevelopmental disease-associated genes reveals convergent mechanisms altering neuronal differentiation. Genome Res 2020; 30:1317-1331. [PMID: 32887689 PMCID: PMC7545139 DOI: 10.1101/gr.262295.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
The overwhelming success of exome- and genome-wide association studies in discovering thousands of disease-associated genes necessitates developing novel high-throughput functional genomics approaches to elucidate the molecular mechanisms of these genes. Here, we have coupled multiplexed repression of neurodevelopmental disease–associated genes to single-cell transcriptional profiling in differentiating human neurons to rapidly assay the functions of multiple genes in a disease-relevant context, assess potentially convergent mechanisms, and prioritize genes for specific functional assays. For a set of 13 autism spectrum disorder (ASD)–associated genes, we show that this approach generated important mechanistic insights, revealing two functionally convergent modules of ASD genes: one that delays neuron differentiation and one that accelerates it. Five genes that delay neuron differentiation (ADNP, ARID1B, ASH1L, CHD2, and DYRK1A) mechanistically converge, as they all dysregulate genes involved in cell-cycle control and progenitor cell proliferation. Live-cell imaging after individual ASD-gene repression validated this functional module, confirming that these genes reduce neural progenitor cell proliferation and neurite growth. Finally, these functionally convergent ASD gene modules predicted shared clinical phenotypes among individuals with mutations in these genes. Altogether, these results show the utility of a novel and simple approach for the rapid functional elucidation of neurodevelopmental disease-associated genes.
Collapse
Affiliation(s)
- Matthew A Lalli
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Denis Avey
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
1292
|
SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. J Neurosci 2020; 40:7980-7994. [PMID: 32887745 DOI: 10.1523/jneurosci.1367-20.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate SYNGAP1 protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in SYNGAP1 null neurons. We conclude that SYNGAP1 regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of SYNGAP1-related disorders.SIGNIFICANCE STATEMENT SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt SYNGAP1 protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that SYNGAP1 regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of SYNGAP1 disorders.
Collapse
|
1293
|
Breen MS, Garg P, Tang L, Mendonca D, Levy T, Barbosa M, Arnett AB, Kurtz-Nelson E, Agolini E, Battaglia A, Chiocchetti AG, Freitag CM, Garcia-Alcon A, Grammatico P, Hertz-Picciotto I, Ludena-Rodriguez Y, Moreno C, Novelli A, Parellada M, Pascolini G, Tassone F, Grice DE, Di Marino D, Bernier RA, Kolevzon A, Sharp AJ, Buxbaum JD, Siper PM, De Rubeis S. Episignatures Stratifying Helsmoortel-Van Der Aa Syndrome Show Modest Correlation with Phenotype. Am J Hum Genet 2020; 107:555-563. [PMID: 32758449 DOI: 10.1016/j.ajhg.2020.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023] Open
Abstract
Helsmoortel-Van der Aa syndrome (HVDAS) is a neurodevelopmental condition associated with intellectual disability/developmental delay, autism spectrum disorder, and multiple medical comorbidities. HVDAS is caused by mutations in activity-dependent neuroprotective protein (ADNP). A recent study identified genome-wide DNA methylation changes in 22 individuals with HVDAS, adding to the group of neurodevelopmental disorders with an epigenetic signature. This methylation signature segregated those with HVDAS into two groups based on the location of the mutations. Here, we conducted an independent study on 24 individuals with HVDAS and replicated the existence of the two mutation-dependent episignatures. To probe whether the two distinct episignatures correlate with clinical outcomes, we used deep behavioral and neurobiological data from two prospective cohorts of individuals with a genetic diagnosis of HVDAS. We found limited phenotypic differences between the two HVDAS-affected groups and no evidence that individuals with more widespread methylation changes are more severely affected. Moreover, in spite of the methylation changes, we observed no profound alterations in the blood transcriptome of individuals with HVDAS. Our data warrant caution in harnessing methylation signatures in HVDAS as a tool for clinical stratification, at least with regard to behavioral phenotypes.
Collapse
Affiliation(s)
- Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lara Tang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle Mendonca
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mafalda Barbosa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anne B Arnett
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Evangeline Kurtz-Nelson
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics Unit, Bambino Gesù Children's Hospital, 00145 Rome, Italy
| | - Agatino Battaglia
- Department of Developmental Neuroscience, IRCCS "Stella Maris Foundation," 56128 Pisa, Italy
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt Goethe University, Deutschordenstr. 50, 60528 Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt Goethe University, Deutschordenstr. 50, 60528 Frankfurt am Main, Germany
| | - Alicia Garcia-Alcon
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid 28007, Spain
| | - Paola Grammatico
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Irva Hertz-Picciotto
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Yunin Ludena-Rodriguez
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Carmen Moreno
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid 28007, Spain
| | - Antonio Novelli
- Laboratory of Medical Genetics Unit, Bambino Gesù Children's Hospital, 00145 Rome, Italy
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid 28007, Spain
| | - Giulia Pascolini
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Flora Tassone
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Dorothy E Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| | - Raphael A Bernier
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
1294
|
Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e375. [PMID: 31999079 PMCID: PMC8286808 DOI: 10.1002/wdev.375] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Ashley G Anderson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
1295
|
Mota Vieira M, Nguyen TA, Wu K, Badger JD, Collins BM, Anggono V, Lu W, Roche KW. An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKIIα Phosphorylation of GluN2A and NMDA Receptor Trafficking. Cell Rep 2020; 32:108104. [PMID: 32877683 PMCID: PMC11497419 DOI: 10.1016/j.celrep.2020.108104] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022] Open
Abstract
Rare variants in GRIN genes, which encode NMDAR subunits, are strongly associated with neurodevelopmental disorders. Among these, GRIN2A, which encodes the GluN2A subunit of NMDARs, is widely accepted as an epilepsy-causative gene. Here, we functionally characterize the de novo GluN2A-S1459G mutation identified in an epilepsy patient. We show that S1459 is a CaMKIIα phosphorylation site, and that endogenous phosphorylation is regulated during development and in response to synaptic activity in a dark rearing model. GluN2A-S1459 phosphorylation results in preferential binding of NMDARs to SNX27 and a corresponding decrease in PSD-95 binding, which consequently regulates NMDAR trafficking. Furthermore, the epilepsy-associated GluN2A-S1459G variant displays defects in interactions with both SNX27 and PSD-95, resulting in trafficking deficits, reduced spine density, and decreased excitatory synaptic transmission. These data demonstrate a role for CaMKIIα phosphorylation of GluN2A in receptor targeting and implicate NMDAR trafficking defects as a link to epilepsy.
Collapse
Affiliation(s)
- Marta Mota Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Thien A Nguyen
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, NINDS, NIH, Bethesda, MD 20892, USA
| | - John D Badger
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Wei Lu
- Synapse and Neural Circuit Research Section, NINDS, NIH, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
1296
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
1297
|
Moyses-Oliveira M, Yadav R, Erdin S, Talkowski ME. New gene discoveries highlight functional convergence in autism and related neurodevelopmental disorders. Curr Opin Genet Dev 2020; 65:195-206. [PMID: 32846283 DOI: 10.1016/j.gde.2020.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
Abstract
Over the last two years, remarkable gene discovery efforts have implicated disruption of pathways involving gene regulatory functions and neuronal processes in autism spectrum disorder (ASD), and more broadly defined neurodevelopmental disorders (NDDs). Functional studies in the developing brain and across cell types demonstrate that the spatiotemporal expression patterns of many of these genes coalesce on subnetworks with distinct developmental trajectories. Here, we review the convergent biological processes derived from gene discovery and functional genomics in ASD and NDD from 2018-2020. We further probe the mechanistic insights that suggest these frequently perturbed pathways are interconnected and, ultimately, converge on specific functional deficits in human neurodevelopment.
Collapse
Affiliation(s)
- Mariana Moyses-Oliveira
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
1298
|
Activity-dependent neuroprotective protein (ADNP)-end-binding protein (EB) interactions regulate microtubule dynamics toward protection against tauopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:65-90. [PMID: 33453943 DOI: 10.1016/bs.pmbts.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 1102-amino-acid activity-dependent neuroprotective protein (ADNP) was originally discovered by expression cloning through the immunological identification of its 8-amino-acid sequence NAPVSIPQ (NAP), constituting the smallest active neuroprotective fragment of the protein. ADNP expression is essential for brain formation and cognitive function and is dysregulated in a variety of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and schizophrenia). ADNP has been found to be mutated in autism, with an estimated prevalence of 0.17% (together, these autism cases now constitute ADNP syndrome cases) and our recent results showed somatic mutations in ADNP in Alzheimer's disease brains correlating with tauopathy. Furthermore, Adnp haploinsufficiency in mice causes an age-dependent reduction in cognitive functions coupled with tauopathy-like features such as an increased formation of tangle-like structures, defective axonal transport, and Tau hyperphosphorylation. ADNP and its derived peptides, NAP and SKIP, directly interact with end-binding proteins (EBs), which decorate plus-tips of the growing axonal cytoskeleton-microtubules (MTs). Functionally, NAP and SKIP are neuroprotective and stimulate axonal transport. Clinical trials have suggested the potential efficacy of NAP (davunetide, CP201) for improving cognitive performance/functional activities of daily living in amnestic mild cognitive impairment (aMCI) and schizophrenia patients, respectively. However, NAP was not found to be an effective treatment (though well-tolerated) for progressive supranuclear palsy (PSP) patients. Here we review the molecular mechanism of NAP activity on MTs and how NAP modulates the MT-Tau-EBs crosstalk. We offer a molecular explanation for the different protective potency of NAP in selected tauopathies (aMCI vs. PSP) expressing different ratios/pathologies of the alternatively spliced Tau mRNA and its resulting protein (aMCI expressing similar quantities of the dynamic Tau 3-MT binding isoform (Tau3R) and the Tau 4-MT binding isoform (Tau4R) and PSP enriched in Tau4R pathology). We reveal the direct effect of truncated ADNPs (resulting from de novo autism and newly discovered Alzheimer's disease-related somatic mutations) on MT dynamics. We show that the peptide SKIP affects MT dynamics and MT-Tau association. Since MT impairment is linked with neurodegenerative and neurodevelopmental conditions, the current study implicates a paucity/dysregulation of MT-interacting endogenous proteins, like ADNP, as a contributing mechanism and provides hope for NAP and SKIP as MT-modulating drug candidates.
Collapse
|
1299
|
Heyne HO, Baez-Nieto D, Iqbal S, Palmer DS, Brunklaus A, May P, Johannesen KM, Lauxmann S, Lemke JR, Møller RS, Pérez-Palma E, Scholl UI, Syrbe S, Lerche H, Lal D, Campbell AJ, Wang HR, Pan J, Daly MJ. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci Transl Med 2020; 12:eaay6848. [PMID: 32801145 DOI: 10.1126/scitranslmed.aay6848] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 07/22/2020] [Indexed: 12/30/2022]
Abstract
Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF (n = 518) and GOF (n = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCNxA/CACNA1x family genes.
Collapse
Affiliation(s)
- Henrike O Heyne
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 5WR36M Helsinki, Finland
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sumaiya Iqbal
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Duncan S Palmer
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow G51 4TF, UK
- School of Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, Belvaux, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Eduardo Pérez-Palma
- Cologne Center for Genomics (CCG), University of Cologne, 50923, Germany
- Genomic Medicine Institute, Lemer Research Institute Cleveland Clinic, OH G92J47, USA
| | - Ute I Scholl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care and BIH Center for Regenerative Therapies, 10178 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Dennis Lal
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics (CCG), University of Cologne, 50923, Germany
- Genomic Medicine Institute, Lemer Research Institute Cleveland Clinic, OH G92J47, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH G92J47, USA
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jen Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 5WR36M Helsinki, Finland
| |
Collapse
|
1300
|
Timpano S, Picketts DJ. Neurodevelopmental Disorders Caused by Defective Chromatin Remodeling: Phenotypic Complexity Is Highlighted by a Review of ATRX Function. Front Genet 2020; 11:885. [PMID: 32849845 PMCID: PMC7432156 DOI: 10.3389/fgene.2020.00885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to determine the genetic etiology of intellectual disability (ID) and neurodevelopmental disorders (NDD) has improved immensely over the last decade. One prevailing metric from these studies is the large percentage of genes encoding epigenetic regulators, including many members of the ATP-dependent chromatin remodeling enzyme family. Chromatin remodeling proteins can be subdivided into five classes that include SWI/SNF, ISWI, CHD, INO80, and ATRX. These proteins utilize the energy from ATP hydrolysis to alter nucleosome positioning and are implicated in many cellular processes. As such, defining their precise roles and contributions to brain development and disease pathogenesis has proven to be complex. In this review, we illustrate that complexity by reviewing the roles of ATRX on genome stability, replication, and transcriptional regulation and how these mechanisms provide key insight into the phenotype of ATR-X patients.
Collapse
Affiliation(s)
- Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|