101
|
Lee JU, Kim SH, Lee SH, Ji MJ, Jin JA, So HJ, Song ML, Lee HK, Kang TW. Combinational Pulsing of TAAs Enforces Dendritic Cell-Based Immunotherapy through T-Cell Proliferation and Interferon-γ Secretion in LLC1 Mouse Model. Cancers (Basel) 2024; 16:409. [PMID: 38254898 PMCID: PMC10814594 DOI: 10.3390/cancers16020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
NSCLC, the most common type of lung cancer, is often diagnosed late due to minimal early symptoms. Its high risk of recurrence or metastasis post-chemotherapy makes DC-based immunotherapy a promising strategy, offering targeted cancer destruction, low side effects, memory formation, and overcoming the immune evasive ability of cancers. However, the limited response to DCs pulsed with single antigens remains a significant challenge. To overcome this, we enhanced DC antigen presentation by pulsing with TAAs. Our study focused on enhancing DC-mediated immune response specificity and intensity by combinatorial pulsing of TAAs, selected for their prevalence in NSCLC. We selected four types of TAAs expressed in NSCLC and pulsed DCs with the optimal combination. Next, we administered TAAs-pulsed DCs into the LLC1 mouse model to evaluate their anti-tumor efficacy. Our results showed that TAAs-pulsed DCs significantly reduced tumor size and promoted apoptosis in tumor tissue. Moreover, TAAs-pulsed DCs significantly increased total T cells in the spleen compared to the unpulsed DCs. Additionally, in vitro stimulation of splenocytes from the TAAs-pulsed DCs showed notable T-cell proliferation and increased IFN-γ secretion. Our findings demonstrate the potential of multiple TAA pulsing to enhance the antigen-presenting capacity of DCs, thereby strengthening the immune response against tumors.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Sang-Heon Kim
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Sung-Hoon Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Min-Jae Ji
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Jeong-Ah Jin
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | - Hyung-Joon So
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| | | | - Hong-Ki Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
- EHLCell Clinic, Seoul 06029, Republic of Korea
| | - Tae-Wook Kang
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si 16006, Republic of Korea; (J.-U.L.); (S.-H.K.)
| |
Collapse
|
102
|
Hou C, Wen X, Yan S, Gu X, Jiang Y, Chen F, Liu Y, Zhu Y, Liu X. Network-based pharmacology-based research on the effect and mechanism of the Hedyotis diffusa-Scutellaria Barbata pair in the treatment of hepatocellular carcinoma. Sci Rep 2024; 14:963. [PMID: 38200019 PMCID: PMC10781672 DOI: 10.1038/s41598-023-50696-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedyotis diffusa-Scutellaria officinalis pair (HD-SB) has therapeutic effects on a variety of cancers. Our study was to explore the mechanism of HD-SB in the treatment of hepatocellular carcinoma (HCC). A total of 217 active ingredients of HD-SB and 1196 HCC-related targets were reserved from the TCMSP and the SwissTarget Prediction database, and we got 63 intersection targets from GeneCards. We used a Venn diagram, and Cytoscape found that the three core ingredients were quercetin, luteolin, and baicalein. The PPI analysis showed that the core targets were TP53, CDK2, XPO1, and APP. Molecular docking results showed that these core ingredients had good binding potential with the core targets. HD-SB acts simultaneously on various HCC-related signaling pathways, including proteoglycans in cancer and the P53 signaling pathway. In vitro experiments confirmed that HD-SB can inhibit HepG2 cell proliferation by increasing TP53 and APP levels and decreasing XPO1 and CDK2 levels. This study analyzed active ingredients, core targets, and central mechanisms of HD-SB in the treatment of HCC. It reveals the role of HD-SB in targeting the P53 signaling pathway in the treatment of HCC. We hope that our research could provide a new perspective to the therapy of HCC and find new anticancer drugs.
Collapse
Affiliation(s)
- Changmiao Hou
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiao Wen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Shifan Yan
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiaoxiao Gu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Chen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yanjuan Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yimin Zhu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
| | - Xiehong Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| |
Collapse
|
103
|
Xu Z, Du H, Manyande A, Xiong S. A comprehensive investigation on the interaction between jaceosidin, baicalein and lipoxygenase: Multi-spectroscopic analysis and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123423. [PMID: 37742591 DOI: 10.1016/j.saa.2023.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Lipoxygenase (LOX) has the harmful effect of accelerating lipid oxidation, and polyphenols have the inhibitory effect on lipoxygenase. However, there were rare researches investigated on the interactions between polyphenols and LOX. In this study, the binding mechanisms between polyphenols (Jaceosidin-JSD and baicalein-BCL) and LOX were investigated by multi-spectroscopic analysis and computational study. Both JSD and BCL binding to LOX resulted in static fluorescence quenching, and the complexes of JSD-LOX and BCL-LOX were built at a molar ratio of 1:1, respectively. The binding constants of LOX-JSD (72.18 × 105 L/mol at 298 K) and LOX-BCL (12.43 × 105 L/mol at 298 K) indicated that LOX had stronger binding affinity to JSD compared to BCL. Compared with BCL-LOX, the JSD-LOX system formed more hydrogen bonds which ensured a stronger bond between JSD and LOX. The studies in molecular dynamics also demonstrated that the JSD-LOX complex is more stable, and the addition of JSD is more conducive to the complex formation. The current study provides some new insights for the study on the inhibition of lipid oxidation and affords a new strategy for the discovery of novel food preservatives.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
104
|
Li Y, Liu H, Zhao D, Zhang D. Spleen contributes to chronic restraint stress-induced lung injury through splenic CD11b + cells. Int Immunopharmacol 2024; 126:111258. [PMID: 37992443 DOI: 10.1016/j.intimp.2023.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Chronic stress can induce lung injury. The spleen, as the largest peripheral immune organ, plays a crucial role in various lung diseases. Our previous study found that the spleen underwent significant changes during chronic restraint stress (CRS). However, the exact role of the spleen in CRS-induced lung injury remains unclear. In this study, we found that CRS could increase lung index. CRS could lead to alterations of the lungs such as destruction of alveolar wall, thickening of alveolar septa, dilation of pulmonary capillaries, and increased inflammatory cell infiltration. CRS increases the concentration of malondialdehyde (MDA), decreases the level of surfactant protein A (SP-A), and elevates the levels of pro-inflammatory factors (TNF-α, IL-6, and IL-1β) in the lungs. Additionally, CRS could increase the proportions and numbers of CD11b+Ly6ChiLy6G- monocytes in the lung, while cannot alter proportions and numbers of CD3-NK1.1+ NK cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and CD11b+Ly6G+ neutrophils. Moreover, the levels of inflammatory markers in lung tissues were positively correlated with the proportion of CD11b+Ly6ChiLy6G- monocytes. Interestingly, splenectomy inhibited CRS-induced lung injury and attenuated the alteration in the proportion of CD11b+Ly6ChiLy6G- monocytes in the lungs induced by CRS. Moreover, splenic CD11b+ cells, rather than splenic CD11b- cells, transfused into splenectomized mice, and subsequently exposed to CRS, can cause lung injury. These results suggest that CRS could induce lung injury and CD11b+Ly6ChiLy6G- monocytes aggregation in the lung. The spleen could contribute to CRS-induced lung injury. Furthermore, splenic CD11b+ cells might play an important role in CRS-induced lung injury.
Collapse
Affiliation(s)
- Yu Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Hailing Liu
- Department of Clinical Hematology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danwen Zhao
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danjie Zhang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
105
|
Wang R, Wang C, Lu L, Yuan F, He F. Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives. Pharmacol Res 2024; 199:107032. [PMID: 38061594 DOI: 10.1016/j.phrs.2023.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Cancer is a leading cause of death worldwide. The burden of cancer incidence and mortality is increasing rapidly. New approaches to cancer prevention and treatment are urgently needed. Natural products are reliable and powerful sources for anticancer drug discovery. Baicalin and baicalein, two major flavones isolated from Scutellaria baicalensis Georgi, a multi-purpose traditional medicinal plant in China, exhibit anticancer activities against multiple cancers. Of note, these phytochemicals exhibit extremely low toxicity to normal cells. Besides their cytotoxic and cytostatic activities toward diverse tumor cells, recent studies demonstrated that baicalin and baicalein modulate a variety of tumor stromal cells and extracellular matrix (ECM) in the tumor microenvironment (TME), which is essential for tumorigenesis, cancer progression and metastasis. In this review, we summarize the therapeutic potential and the mechanism of action of baicalin and baicalein in the regulation of tumor microenvironmental immune cells, endothelial cells, fibroblasts, and ECM that reshape the TME and cancer signaling, leading to inhibition of tumor angiogenesis, progression, and metastasis. In addition, we discuss the biotransformation pathways of baicalin and baicalein, related therapeutic challenges and the future research directions to improve their bioavailability and clinical anticancer applications. Recent advances of baicalin and baicalein warrant their continued study as important natural ways for cancer interception and therapy.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyan Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lianheng Lu
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Feng He
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
106
|
Wang L, Ni B, Wang J, Zhou J, Wang J, Jiang J, Sui Y, Tian Y, Gao F, Lyu Y. Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer. Integr Cancer Ther 2024; 23:15347354241302049. [PMID: 39610320 PMCID: PMC11605761 DOI: 10.1177/15347354241302049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Gastrointestinal (GI) cancer stands as one of the most prevalent forms of cancer globally, presenting a substantial medical and economic burden on cancer treatment. Despite advancements in therapies, it continues to exhibit the second highest mortality rate, primarily attributed to drug resistance and post-treatment side effects. There is an urgent need for novel therapeutic approaches to tackle this persistent challenge. Scutellaria baicalensis, widely used in Traditional Chinese Medicine (TCM), holds a profound pharmaceutical legacy. Modern pharmacological studies have unveiled its anticancer, antioxidant, and immune-enhancing properties. S. baicalensis contains hundreds of active ingredients, with flavonoids, polysaccharides, phenylethanoid glycosides, terpenoids, and sterols being the principal components. These constituents contribute to the treatment of GI cancer by inducing apoptosis in tumor cells, arresting the cell cycle, inhibiting tumor proliferation and metastasis, regulating the tumor microenvironment, modulating epigenetics, and reversing drug resistance. Furthermore, the utilization of modern drug delivery technologies can enhance the bioavailability and therapeutic efficacy of TCM. The treatment of GI cancer with S. baicalensis is characterized by its multi-component, multi-target, and multi-pathway advantages, and S. baicalensis has a broad prospect of becoming a clinical adjuvant or even the main therapy for GI cancer.
Collapse
Affiliation(s)
- Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yutong Sui
- Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Yaoyao Tian
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Gao
- Mudanjiang Hospital of Chinese Medicine, Mudanjiang, China
| | - Yufeng Lyu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
107
|
Jiang X, Lin J, Zhu Z. Long-chain noncoding RNA LINC01569 upregulates filamin A-interacting protein 1-like to prevent metastasis of triple-negative breast cancer via sponging miR-300. Cancer Biomark 2024; 39:79-94. [PMID: 37955081 PMCID: PMC11002719 DOI: 10.3233/cbm-230261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Long-chain noncoding RNA (lncRNA), LINC01569, is important for regulating the extracellular matrix, which affects cell migration. However, its involvement in the occurrence and development of triple-negative breast cancer (TNBC) remains unclear. OBJECTIVE This study is aimed to investigate the role of LINC01569 on TNBC. METHODS Online database was used for clinical data analysis. Cell viability and migration capability were monitored using cell counting kit-8 and transwell assays, respectively. Luciferase reporter assay and RNA pull-down were used to confirm the binding capability between noncoding RNAs and filamin A-interacting protein 1-like (FILIP1L). Western blotting was used to determine the protein content. RESULTS Compared with normal breast tissue, LINC01569 was significantly reduced in patients with TNBC subtype, and LINC01569 expression gradually decreased with the progression of tumor stage. Patients with TNBC with high lncRNA LINC01569 levels had a better prognosis than did patients with low LINC01569 levels. LINC01569 overexpression inhibited the migration capability, whereas siRNA-mediated LINC01569 downregulation promoted the migration capability in TNBC cells. Using ENCORI and lncRNA SNP online databases, miR-300 was screened as the potential sponge of LINC01569. The binding of LINC01569 to miR-300 was confirmed using the dual-luciferase reporter and RNA pull-down assays. miR-300 was negatively correlated with LINC01569, and miR-300 mimics eliminated the anti-proliferation and anti-migration effects of LINC01569 on TNBC cells. Additionally, FILIP1L was further verified as the downstream target of miR-300. miR-300 mimics blocked LINC01569 upregulation-mediated elevation of FILIP1L. Importantly, the anti-tumor effects mediated by LINC01569 overexpression were abolished by miR-300 mimics and further restored by FILIP1L upregulation. CONCLUSIONS LINC01569 was expressed at a low level in TNBC and could sponge miR-300 to promote FILIP1L expression, reducing the proliferation and metastasis capability of TNBC. Thus, LINC01569 might be a useful biomarker in the diagnosis and prognosis of metastatic TNBC.
Collapse
Affiliation(s)
| | | | - Zhanlin Zhu
- Department of Breast surgery, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
108
|
Feng F, Hu P, Peng L, Chen J, Tao X. Mechanism Research of PZD Inhibiting Lung Cancer Cell Proliferation, Invasion, and Migration based on Network Pharmacology. Curr Pharm Des 2024; 30:1279-1293. [PMID: 38571356 PMCID: PMC11327771 DOI: 10.2174/0113816128296328240329032332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND A classic Chinese medicine decoction, Pinellia ternata (Thunb.) Breit.-Zingiber officinale Roscoe (Ban-Xia and Sheng-Jiang in Chinese) decoction (PZD), has shown significant therapeutic effects on lung cancer. OBJECTIVE This study aimed to explore and elucidate the mechanism of action of PZD on lung cancer using network pharmacology methods. METHODS Active compounds were selected according to the ADME parameters recorded in the TCMSP database. Potential pathways related to genes were identified through GO and KEGG analysis. The compoundtarget network was constructed by using Cytoscape 3.7.1 software, and the core common targets were obtained by protein-protein interaction (PPI) network analysis. Batch molecular docking of small molecule compounds and target proteins was carried out by using the AutoDock Vina program. Different concentrations of PZD water extracts (10, 20, 40, 80, and 160 μg/mL) were used on lung cancer cells. Moreover, MTT and Transwell experiments were conducted to validate the prominent therapeutic effects of PZD on lung cancer cell H1299. RESULTS A total of 381 components in PZD were screened, of which 16 were selected as bioactive compounds. The compound-target network consisting of 16 compounds and 79 common core targets was constructed. MTT experiment showed that the PZD extract could inhibit the cell proliferation of NCI-H1299 cells, and the IC50 was calculated as 97.34 ± 6.14 μg/mL. Transwell and wound-healing experiments showed that the PZD could significantly decrease cell migration and invasion at concentrations of 80 and 160 μg/mL, respectively. The in vitro experiments confirmed that PZD had significant therapeutic effects on lung cancer cells, mainly through the PI3K/AKT signaling pathway. CONCLUSION PZD could inhibit the cell proliferation, migration, and invasion of NCI-H1299 cells partially through the PI3K/AKT signaling pathway. These findings suggested that PZD might be a potential treatment strategy for lung cancer patients.
Collapse
Affiliation(s)
- Fan Feng
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
- Anhui Longruntang Biotechnology Co., Ltd, Anhui 234000, China
| | - Ping Hu
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Lei Peng
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Jun Chen
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Xingkui Tao
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| |
Collapse
|
109
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
110
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
111
|
Liu X, Bishir M, Hodgkinson C, Goldman D, Chang SL. The mechanisms underlying alcohol-induced decreased splenic size: A network meta-analysis study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:72-87. [PMID: 38059389 PMCID: PMC11161039 DOI: 10.1111/acer.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Organ weight change is widely accepted as a measure of toxicologic pathology. We and other groups have shown that excessive alcohol exposure leads to decreased spleen weight in rodents. This study explores the mechanisms underlying alcohol-induced splenic injury through a network meta-analysis. METHODS QIAGEN Ingenuity Pathway Analysis (IPA) and Mammalian Phenotype (MP) Ontology were used to identify alcohol-related molecules associated with the small spleen phenotype. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and IPA bioinformatics tools were then used to analyze the biologic processes and enriched signaling pathways engaging these molecules. In addition, the "downstream effects analysis" algorithm was used to quantify alcohol's effects. RESULTS IPA identified 623 molecules affected by alcohol and a Venn diagram revealed that 26 of these molecules overlapped with those associated with the MP Ontology of small spleen. The 26 molecules are TGFB1, CASP8, MTOR, ESR1, CXCR4, CAMK4, NFKBIA, DRD2, BCL2, FAS, PEBP1, TRAF2, ATM, IGHM, EDNRB, MDM2, GLRA1, PRF1, TLR7, IFNG, ALOX5, FOXO1, IL15, APOE, IKBKG, and RORA. Some of the 26 molecules were also associated with the MP Ontology of abnormal white pulp and red pulp morphology of the spleen, abnormal splenic cell ratio, decreased splenocyte number, abnormal spleen physiology, increased splenocyte apoptosis, and reduced splenocyte proliferation. STRING and IPA "Core Analysis" showed that these molecules were mainly involved in pathways related to cell apoptosis, proliferation, migration, and immune responses. IPA's "Molecular Activity Predictor" tool showed that concurrent effects of activation and inhibition of these molecules led to decreased spleen size by modulating apoptosis, proliferation, and migration of splenocytes. CONCLUSIONS Our network meta-analysis revealed that excessive alcohol exposure can damage the spleen through a variety of molecular mechanisms, thereby affecting immune function and human health. We found that alcohol-mediated splenic atrophy is largely mediated by increased apoptosis signaling, migration of cells, and inhibition of splenocyte proliferation.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, NIAAA, NIH, Rockville, Maryland, USA
| | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Rockville, Maryland, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
112
|
Akunevich AA, Khrustalev VV, Khrustaleva TA, Yermalovich MA. The Agonistic Activity of the Human Epidermal Growth Factor is Reduced by the D46G Substitution. Protein Pept Lett 2024; 31:504-518. [PMID: 39041280 DOI: 10.2174/0109298665297321240708044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment. METHODS EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied. RESULTS The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days. CONCLUSION EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.
Collapse
Affiliation(s)
| | | | | | - Marina Anatolyevna Yermalovich
- Laboratory of Vaccine Controlled Infections, Republican Research and Practical Center for Epidemiology and Microbiology, Filimonava 23, Minsk, 220114, Belarus
| |
Collapse
|
113
|
Chen XD, Wei JX, Wang HY, Peng YY, Tang C, Ding Y, Li S, Long ZY, Lu XM, Wang YT. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats. Neuropharmacology 2023; 240:109728. [PMID: 37742716 DOI: 10.1016/j.neuropharm.2023.109728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1β) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.
Collapse
Affiliation(s)
- Xing-Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jing-Xiang Wei
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
114
|
Nisenbaum E, Wiefels M, Telischi J, Marasigan M, Kanumuri V, Pena S, Thielhelm T, Bracho O, Bhatia R, Scaglione T, Telischi F, Fernandez-Valle C, Liu XZ, Luther E, Morcos J, Ivan M, Dinh CT. Cytokine Profiling of Cyst Fluid and Tumor-Associated Macrophages in Cystic Vestibular Schwannoma. Otol Neurotol 2023; 44:1073-1081. [PMID: 37853737 PMCID: PMC10669777 DOI: 10.1097/mao.0000000000004032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND The vestibular schwannoma (VS) secretome can initiate monocyte recruitment and macrophage polarization to M1 (proinflammatory) and/or M2 (protumorigenic) phenotypes, which in turn secrete additional cytokines that contribute to the tumor microenvironment. Profiling cyst fluid and cerebrospinal fluid (CSF) in cystic VS provides a unique opportunity to understand mechanisms that may contribute to tumor progression and cyst formation. HYPOTHESIS Cystic VSs secrete high levels of cytokines into cyst fluid and express abundant M1 and M2 macrophages. METHODS Tumor, CSF, and cyst fluid were prospectively collected from 10 cystic VS patients. Eighty cytokines were measured in fluid samples using cytokine arrays and compared with normal CSF from normal donors. Immunofluorescence was performed for CD80 + M1 and CD163 + M2 macrophage markers. Demographic, audiometric, and radiographic information was obtained through retrospective chart review. RESULTS Cyst fluid expressed more osteopontin and monocyte chemotactic protein-1 (MCP-1; p < 0.0001), when compared with normal CSF. Cyst fluid also expressed more protein ( p = 0.0020), particularly MCP-1 ( p < 0.0001), than paired CSF from the same subjects. MCP-1 expression in cyst fluid correlated with CD80 + staining in VS tissue ( r = 0.8852; p = 0.0015) but not CD163 + staining. CONCLUSION Cyst fluid from cystic VS harbored high levels of osteopontin and MCP-1, which are cytokines important in monocyte recruitment and macrophage polarization. MCP-1 may have a significant role in molding the tumor microenvironment, by polarizing monocytes to CD80 + M1 macrophages in cystic VS. Further investigations into the role of cytokines and macrophages in VS may lead to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Matthew Wiefels
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julia Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mikhail Marasigan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivek Kanumuri
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Stefanie Pena
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Torin Thielhelm
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olena Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rita Bhatia
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tricia Scaglione
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Evan Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacques Morcos
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Ivan
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine T. Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
115
|
Kuring JK, Mathias JL, Ward L, Tachas G. Inflammatory markers in persons with clinically-significant depression, anxiety or PTSD: A systematic review and meta-analysis. J Psychiatr Res 2023; 168:279-292. [PMID: 37931509 DOI: 10.1016/j.jpsychires.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Depression, anxiety and PTSD appear to be risk factors for dementia, but it is unclear whether they are causal or prodromal. The inflammatory-mediated neurodegeneration hypothesis suggests a causal link, proposing that mental illness is associated with an inflammatory response which, in turn, triggers neurodegenerative changes that lead to dementia. Existing meta-analyses have yet to examine inflammatory markers in depression, anxiety or PTSD with the view to exploring the inflammatory-mediated neurodegeneration hypothesis. The current meta-analysis therefore examined whether: a) depression, anxiety and PTSD are individually associated with inflammation, independently of comorbid mental illnesses and physical health problems with known inflammatory responses, and b) there are any similarities in the inflammatory profiles of these disorders in order to provide a basis for exploring inflammation in people with dementia who have a history of clinically-significant anxiety, depression or PTSD. METHODS PubMed, EMBASE, PsycINFO and CINAHL searches identified 64 eligible studies. RESULTS Depression is associated with an inflammatory response, with tentative evidence to suggest anxiety and PTSD are also associated with inflammation. However, the specific response may differ across these disorders. LIMITATIONS The data for anxiety, PTSD and multiple inflammatory markers were limited. CONCLUSIONS Depression, anxiety, and PTSD each appear to be associated with an inflammatory response in persons who do not have comorbid mental or physical health problems that are known to be associated with inflammation. Whether this inflammatory response underlies the increased risk of dementia in persons with a history of depression and anxiety, and possibly PTSD, remains to be determined.
Collapse
Affiliation(s)
- J K Kuring
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia
| | - J L Mathias
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - L Ward
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia
| | - G Tachas
- Antisense Therapeutics Ltd, Melbourne, Australia
| |
Collapse
|
116
|
Zhang J, Song L, Li G, Liang A, Cai X, Huang Y, Zhu X, Zhou X. Comprehensive assessment of base excision repair (BER)-related lncRNAs as prognostic and functional biomarkers in lung adenocarcinoma: implications for personalized therapeutics and immunomodulation. J Cancer Res Clin Oncol 2023; 149:17199-17213. [PMID: 37789154 DOI: 10.1007/s00432-023-05435-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer, and comprehending its molecular mechanisms is pivotal for advancing treatment efficacy. This study aims to explore the prognostic and functional significance of base excision repair (BER)-related long non-coding RNAs (BERLncs) in LUAD. METHODS A risk score model for BERLncs was developed using the least absolute shrinkage and selection operator regression and Cox regression analysis. Model validation and prognostic evaluation were performed using Kaplan-Meier and receiver-operating characteristic curve analyses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to elucidate the potential biological functions of BERLncs. Comparative analyses were carried out to investigate disparities in tumor mutation burden (TMB), immune infiltration, tumor immune dysfunction and exclusion (TIDE) score, chemosensitivity, and immune checkpoint gene expression between the two risk groups. RESULTS A predictive risk score model comprising 19 BERLncs was successfully developed. Patients were divided into high-risk and low-risk groups according to the median risk score. The high-risk subgroup exhibited significantly inferior overall survival. Functional enrichment analysis revealed pathways associated with lung cancer development, notably the neuroactive ligand-receptor interaction pathway. High-risk patients demonstrated elevated TMB, diminished TIDE scores, and an immunosuppressive tumor microenvironment, while low-risk patients displayed potential benefits from immunotherapy. Additionally, the risk model identified potential anticancer agents. CONCLUSION The risk score model based on BERLncs shows promise as a prognostic biomarker for LUAD patients, providing valuable insights for clinical decision-making, therapeutic strategies, and understanding of underlying biological mechanisms.
Collapse
Affiliation(s)
- Junzheng Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Lu Song
- Department of Clinical Laboratory, Qingdao City Sixth People's Hospital, Qingdao, China
| | - Guanrong Li
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Anqi Liang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaoting Cai
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yaqi Huang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
117
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 2023; 12:2284486. [PMID: 38126031 PMCID: PMC10732641 DOI: 10.1080/2162402x.2023.2284486] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Compelling evidence supports the hypothesis that stress negatively impacts cancer development and prognosis. Irrespective of its physical, biological or psychological source, stress triggers a physiological response that is mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic adrenal medullary axis. The resulting release of glucocorticoids and catecholamines into the systemic circulation leads to neuroendocrine and metabolic adaptations that can affect immune homeostasis and immunosurveillance, thus impairing the detection and eradication of malignant cells. Moreover, catecholamines directly act on β-adrenoreceptors present on tumor cells, thereby stimulating survival, proliferation, and migration of nascent neoplasms. Numerous preclinical studies have shown that blocking adrenergic receptors slows tumor growth, suggesting potential clinical benefits of using β-blockers in cancer therapy. Much of these positive effects of β-blockade are mediated by improved immunosurveillance. The present trial watch summarizes current knowledge from preclinical and clinical studies investigating the anticancer effects of β-blockers either as standalone agents or in combination with conventional antineoplastic treatments or immunotherapy.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département d’anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
118
|
Li S, Yi Z, Li M, Zhu Z. Baicalein improves the chemoresistance of ovarian cancer through regulation of CirSLC7A6. J Ovarian Res 2023; 16:212. [PMID: 37940982 PMCID: PMC10631197 DOI: 10.1186/s13048-023-01285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE The present study aimed to investigate whether baicalein improves the sensitivity of resistant ovarian cancer cells to cisplatin. METHODS Transcriptomic sequencing and bioinformatics analysis were used to screen differentially expressed CirSLC7A6 in A2780 and A2780/CDDP cells. RT-qPCR was performed to examine the expression levels of CirSLC7A6, miR-2682-5p, and SLC7A6. Cell proliferation and apoptosis were examined using a Cell Counting Kit-8 assay and flow cytometry, and cell migration and invasion were analyzed using wound healing and Transwell assays. Cell suspensions were inoculated into the subcutaneous tissues of the bilateral interscapular region of nude mice. Saline, cisplatin, baicalein and cisplatin plus baicalein were intraperitoneally injected to observe the effects on tumor growth. Toxicity analyses in the liver and kidney were performed using H&E staining. RT-qPCR and immunohistochemistry were used to detect the expression of CirSLC7A6, miR-2682-5p, and SLC7A6 in tumor tissues, and western blot analysis was carried out to measure protein expression levels. RESULTS CirSLC7A6 was markedly upregulated in A2780/CDDP cells compared with the A2780 cells. CirSLC7A6 knockdown notably increased the expression of miR-2682-5p and decreased SLC7A6 expression. The rates of inhibition and apoptosis in the group treated with a combination of cisplatin and baicalein were significantly higher than those of the cisplatin and baicalein groups of A2780/CDDP shCirSLC7A6 cells. In A2780/CDDP shCirSLC7A6 cells, migration and invasion were significantly higher in the cisplatin and baicalein groups, compared with the combined treatment group. In the A2780/CDDP shCirSLC7A6 cell xenograft, the tumor weight of the combined treatment group was significantly lower than that of the cisplatin and baicalein groups. In addition, the combination of cisplatin and baicalein did not induce higher levels of toxicity in the liver or kidney. Baicalein alone and in combination with cisplatin notably reduced the expression of CirSLC7A6 and SLC7A6, and increased the expression of miR-2682-5p in the A2780/CDDP shCirSLC7A6 cell xenograft. In A2780/CDDP shCirSLC7A6 cells, the expression levels of P-Akt, P-mTOR, P-Erk, Bcl-2 and MMP2 were lower in the combined treatment group than in the control group. CONCLUSIONS Treatment with baicalein improved the sensitivity of ovarian cancer cells to cisplatin and inhibited cell proliferation, metastasis and tumor growth.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China
| | - Zhihui Yi
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China.
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China.
| |
Collapse
|
119
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
120
|
Yang J, Jiang W. A meta-analysis of the association between post-traumatic stress disorder and cancer risk. Front Psychiatry 2023; 14:1281606. [PMID: 37965365 PMCID: PMC10642749 DOI: 10.3389/fpsyt.2023.1281606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Several studies have investigated the link between post-traumatic stress disorder (PTSD) and cancer risk but reported mixed results. The objective of our study was to investigate the association between PTSD and cancer risk. METHODS Studies published in English about the relationship between PTSD and cancer incidence were systematically searched. We performed a meta-analysis to estimate the relative risks (RR) and 95% confidence intervals (CI) for cancer incidence. RESULT A total of 3,129 articles were screened. Finally, 8 articles and 11 studies were included in the meta-analysis. We found that PTSD was not associated with cancer risk compared with controls. For site-specific cancer, our results showed that women with PTSD were associated with higher risk of ovarian cancer than controls. However, PTSD was not associated with the risk of gastrointestinal cancer, breast cancer and lung cancer. CONCLUSION These analyzes based on studies published in English suggest that PTSD is associated with ovarian cancer risk, although the evidence base is very limited. Future studies are needed to investigate the mechanisms that PTSD diagnosis influenced cancer incidence depending on types of cancer.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
121
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
122
|
Hajiabadi S, Alidadi S, Montakhab Farahi Z, Ghahramani Seno MM, Farzin H, Haghparast A. Immunotherapy with STING and TLR9 agonists promotes synergistic therapeutic efficacy with suppressed cancer-associated fibroblasts in colon carcinoma. Front Immunol 2023; 14:1258691. [PMID: 37901237 PMCID: PMC10611477 DOI: 10.3389/fimmu.2023.1258691] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023] Open
Abstract
The innate immune sensing of nucleic acids using effective immunoadjuvants is critical for increasing protective immune responses against cancer. Stimulators of interferon genes (STING) and toll-like receptor 9 (TLR9) agonists are considered promising candidates in several preclinical tumor models with the potential to be used in clinical settings. However, the effects of such treatment on tumor stroma are currently unknown. In this study, we investigated the immunotherapeutic effects of ADU-S100 as a STING agonist and CpG ODN1826 as a TLR9 agonist in a preclinical model of colon carcinoma. Tumor-bearing mice were treated intratumorally on days 10 and 16 post-tumor inoculation with ADU-S100 and CpG ODN1826. Cytokine profiles in the tumor and spleen, tumor cell apoptosis, the infiltration of immune cells, and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) were evaluated to identify the immunological mechanisms after treatment. The powerful antitumor activity of single and combination treatments, the upregulation of the expression of pro-inflammatory cytokines in the tumor and spleen, and the recruitment and infiltration of the TME by immune cells revealed the synergism of immunoadjuvants in the eradication of the colon carcinoma model. Remarkably, the significant downregulation of CAFs in the TME indicated that suppression of tumorigenesis occurred after immunoadjuvant therapy. The results illustrate the potential of targeting the STING and TLR9 pathways as powerful immunoadjuvants in the treatment of preclinical colon carcinoma and the possibility of harnessing these pathways in future therapeutic approaches.
Collapse
Affiliation(s)
- Sare Hajiabadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohreh Montakhab Farahi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hamidreza Farzin
- Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
123
|
Wang J, Zhu F, Huang W, Yang C, Chen Z, Lei Y, Wang Y, Meng Y, Liu Y, Liu X, Sun B, Li H. Acupuncture at ST36 ameliorates experimental autoimmune encephalomyelitis via affecting the function of B cells. Int Immunopharmacol 2023; 123:110748. [PMID: 37531831 DOI: 10.1016/j.intimp.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Acupuncture at ST36 can alleviate a variety of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), while the specific mechanism for the treatment of EAE is not clear. In this study, we found that acupuncture at ST36 can significantly increase the excitability of splenic sympathetic nerve, and promote the differentiation of peripheral B and CD4+T cells in the anti-inflammatory direction. After blocking the splenic sympathetic nerve with 6-OHDA, this anti-inflammatory effect of acupuncture is partially reversed. In addition, the results of western blot and qPCR showed that acupuncture at ST36 simultaneously activated the β2-AR-cAMP signaling pathway in the splenic B and CD4+T cells, and this activation was more significant in B cells. In vitro, when CD4+T cells were cultured alone, norepinephrine (NE) had no significant effect on their differentiation. While in the presence of B cells, NE significantly promotes the anti-inflammatory differentiation of B and CD4+T cells. Therefore, the above results reveal that acupuncture can relieve EAE by stimulating the sympathetic nerves of spleen, mainly through acting on B cells to mediate anti-inflammatory effects, and indirectly affecting the function of CD4+T cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Fangyi Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Lei
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
124
|
Zhou Y, Chen K, Lin WK, Liu J, Kang W, Zhang Y, Yang R, Jin L, Cheng Y, Xu A, Wang W. Photo-Enhanced Synergistic Induction of Ferroptosis for Anti-Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2300994. [PMID: 37432874 PMCID: PMC11468986 DOI: 10.1002/adhm.202300994] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023]
Abstract
Ferroptosis as programmed cell death received considerable attention in cancer research. Recently, studies have associated ferroptosis with photodynamic therapy (PDT) because PDT promotes glutathione (GSH) deletion, glutathione peroxidase 4 (GPX4) degradation, and lipid peroxide accumulation. However, PDT-induced ferroptosis may be potentially prevented by ferroptosis suppressor protein 1 (FSP1). To address this limitation, herein, a novel strategy is developed to trigger ferroptosis by PDT and FSP1 inhibition. For enhancement of this strategy, a photoresponsive nanocomplex, self-assembled by BODIPY-modified poly(amidoamine) (BMP), is utilized to stably encapsulate the inhibitor of FSP1 (iFSP1) and chlorin e6 (Ce6). The nanosystem promotes intracellular delivery, penetration, and accumulation of ferroptosis inducers in tumors with light irradiation. The nanosystem presents high-performance triggering of ferroptosis and immunogenic cell death (ICD) in vitro and in vivo. Importantly, the nanoparticles increase tumor infiltration of CD8+ T cells and further enhance the efficacy of anti-PD-L1 immunotherapy. The study suggests the potential of photo-enhanced synergistic induction of ferroptosis by the photoresponsive nanocomplexes in cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Kang Chen
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Wing Kak Lin
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Jinzhao Liu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Weirong Kang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai201203China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
125
|
Gao X, Zuo S. Immune landscape and immunotherapy of hepatocellular carcinoma: focus on innate and adaptive immune cells. Clin Exp Med 2023; 23:1881-1899. [PMID: 36773210 PMCID: PMC10543580 DOI: 10.1007/s10238-023-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is responsible for roughly 90% of all cases of primary liver cancer, and the cases are on the rise. The treatment of advanced HCC is a serious challenge. Immune checkpoint inhibitor (ICI) therapy has marked a watershed moment in the history of HCC systemic treatment. Atezolizumab in combination with bevacizumab has been approved as a first-line treatment for advanced HCC since 2020; however, the combination therapy is only effective in a limited percentage of patients. Considering that the tumor immune microenvironment (TIME) has a great impact on immunotherapies for HCC, an in-depth understanding of the immune landscape in tumors and the current immunotherapeutic approaches is extremely necessary. We elaborate on the features, functions, and cross talk of the innate and adaptive immune cells in HCC and highlight the benefits and drawbacks of various immunotherapies for advanced HCC, as well as future projections. HCC consists of a heterogeneous group of cancers with distinct etiologies and immune microenvironments. Almost all the components of innate and adaptive immune cells in HCC have altered, showing a decreasing trend in the number of tumor suppressor cells and an increasing trend in the pro-cancer cells, and there is also cross talk between various cell types. Various immunotherapies for HCC have also shown promising efficacy and application prospect. There are multilayered interwoven webs among various immune cell types in HCC, and emerging evidence demonstrates the promising prospect of immunotherapeutic approaches for HCC.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China.
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
126
|
Zhou Y, Zhang A, Fang C, Yuan L, Shao A, Xu Y, Zhou D. Oxidative stress in pituitary neuroendocrine tumors: Affecting the tumor microenvironment and becoming a new target for pituitary neuroendocrine tumor therapy. CNS Neurosci Ther 2023; 29:2744-2759. [PMID: 37341156 PMCID: PMC10493678 DOI: 10.1111/cns.14315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Pituitary adenomas (PAs), or pituitary neuroendocrine tumors (PitNETs), are commonly found in the anterior pituitary gland. Although the majority of PitNETs are benign and stable, several tumors have malignant characteristics. The tumor microenvironment (TME) plays an important role in the process of tumorigenesis and is composed of several types of cells. Various cells in the TME are significantly affected by oxidative stress. It has been reported that immunotherapeutic strategies have good effects in several cancers. However, the clinical potential of immunotherapies in PitNETs has not yet been fully discussed. Oxidative stress can regulate PitNET cells and immune cells in the TME, thus affecting the immune status of the TME of PitNETs. Therefore, modulation of oxidative stress-regulated immune cells using a combination of several agents and the immune system to suppress PitNETs is a promising therapeutic direction. In this review, we systematically analyzed the oxidative stress process within PitNET cells and various immune cells to elucidate the potential value of immunotherapy.
Collapse
Affiliation(s)
- Yuhang Zhou
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yuan
- School of Public Health, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Danyang Zhou
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
127
|
Amatya S, Tietje-Mckinney D, Mueller S, Petrillo MG, Woolard MD, Bharrhan S, Orr AW, Kevil CG, Cidlowski JA, Cruz-Topete D. Adipocyte Glucocorticoid Receptor Inhibits Immune Regulatory Genes to Maintain Immune Cell Homeostasis in Adipose Tissue. Endocrinology 2023; 164:bqad143. [PMID: 37738419 PMCID: PMC10558062 DOI: 10.1210/endocr/bqad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood. We performed in vivo studies using adipocyte-specific GR knockout mice in conjunction with in vitro studies to understand the contribution of adipocyte GR in regulating adipose tissue immune homeostasis. Our findings show that adipocyte-specific GR signaling regulates adipokines at both mRNA and plasma levels and immune regulatory (Coch, Pdcd1, Cemip, and Cxcr2) mRNA gene expression, which affects myeloid immune cell presence in white adipose tissue. We found that, in adipocytes, GR directly influences Cxcr2. This chemokine receptor promotes immune cell migration, indirectly affecting Pdcd1 and Cemip gene expression in nonadipocyte or stromal cells. Our findings suggest that GR adipocyte signaling suppresses inflammatory signals, maintaining immune homeostasis. We also found that GR signaling in adipose tissue in response to stress is sexually dimorphic. Understanding the molecular relationship between GR signaling and adipose tissue inflammation could help develop potential targets to improve local and systemic inflammation, insulin sensitivity, and metabolic health.
Collapse
Affiliation(s)
- Shripa Amatya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Dylan Tietje-Mckinney
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Schaefer Mueller
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Maria G Petrillo
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew D Woolard
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Anthony Wayne Orr
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Christopher G Kevil
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - John A Cidlowski
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
128
|
Chen L, Gao W, Lin L, Sha C, Li T, Chen Q, Wei H, Yang M, Xing J, Zhang M, Zhao S, Xu W, Li Y, Long L, Zhu X. A methylation- and immune-related lncRNA signature to predict ovarian cancer outcome and uncover mechanisms of chemoresistance. J Ovarian Res 2023; 16:186. [PMID: 37674251 PMCID: PMC10483746 DOI: 10.1186/s13048-023-01260-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/13/2023] [Indexed: 09/08/2023] Open
Abstract
Tumor-associated lncRNAs regulated by epigenetic modification switches mediate immune escape and chemoresistance in ovarian cancer (OC). However, the underlying mechanisms and concrete targets have not been systematically elucidated. Here, we discovered that methylation modifications played a significant role in regulating immune cell infiltration and sensitizing OC to chemotherapy by modulating immune-related lncRNAs (irlncRNAs), which represent tumor immune status. Through deep analysis of the TCGA database, a prognostic risk model incorporating four methylation-related lncRNAs (mrlncRNAs) and irlncRNAs was constructed. Twenty-one mrlncRNA/irlncRNA pairs were identified that were significantly related to the overall survival (OS) of OC patients. Subsequently, we selected four lncRNAs to construct a risk signature predictive of OS and indicative of OC immune infiltration, and verified the robustness of the risk signature in an internal validation set. The risk score was an independent prognostic factor for OC prognosis, which was demonstrated via multifactorial Cox regression analysis and nomogram. Moreover, risk scores were negatively related to the expression of CD274, CTLA4, ICOS, LAG3, PDCD1, and PDCD1LG2 and negatively correlated with CD8+, CD4+, and Treg tumor-infiltrating immune cells. In addition, a high-risk score was associated with a higher IC50 value for cisplatin, which was associated with a significantly worse clinical outcome. Next, a competing endogenous RNA (ceRNA) network and a signaling pathway controlling the infiltration of CD8+ T cells were explored based on the lncRNA model, which suggested a potential therapeutic target for immunotherapy. Overall, this study constructed a prognostic model by pairing mrlncRNAs and irlncRNAs and revealed the critical role of the FTO/RP5-991G20.1/hsa-miR-1976/MEIS1 signaling pathway in regulating immune function and enhancing anticancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, Taixing People's Hospital, Taixing, Jiangsu, China
| | - Wujiang Gao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, Yangzhou First People's Hospital, Yangzhou, Jiangsu, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Chunli Sha
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, The First People's Hospital of Nantong City, Nantong, Jiangsu, China
| | - Taoqiong Li
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Qi Chen
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Hong Wei
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Meiling Yang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
- Department of Gynaecology and Obstetrics, The First People's Hospital of Nantong City, Nantong, Jiangsu, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China
| | - Wenlin Xu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China.
| | - Yuefeng Li
- Medical school, Jiangsu University, No. 301, Xuefu Road, Zhenjiang City, 212031, Jiangsu Province, China.
| | - Lulu Long
- Oncology Department, Affiliated People's Hospital of jiangsu university, No. 8, Dianli Road, Zhenjiang City, 212001, Jiangsu Province, China.
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20, Zhengdong Road, Zhenjiang City, 212001, Jiangsu Province, China.
| |
Collapse
|
129
|
Szardenings M, Delaroque N, Kern K, Ramirez-Caballero L, Puder M, Ehrentreich-Förster E, Beige J, Zürner S, Popp G, Wolf J, Borte S. Detection of Antibodies against Endemic and SARS-CoV-2 Coronaviruses with Short Peptide Epitopes. Vaccines (Basel) 2023; 11:1403. [PMID: 37766081 PMCID: PMC10535424 DOI: 10.3390/vaccines11091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Coronavirus proteins are quite conserved amongst endemic strains (eCoV) and SARS-CoV-2. We aimed to evaluate whether peptide epitopes might serve as useful diagnostic biomarkers to stratify previous infections and COVID-19. (2) Methods: Peptide epitopes were identified at an amino acid resolution that applied a novel statistical approach to generate data sets of potential antibody binding peptides. (3) Results: Data sets from more than 120 COVID-19 or eCoV-infected patients, as well as vaccinated persons, have been used to generate data sets that have been used to search in silico for potential epitopes in proteins of SARS-CoV-2 and eCoV. Peptide epitopes were validated with >300 serum samples in synthetic peptide micro arrays and epitopes specific for different viruses, in addition to the identified cross reactive epitopes. (4) Conclusions: Most patients develop antibodies against non-structural proteins, which are useful general markers for recent infections. However, there are differences in the epitope patterns of COVID-19, and eCoV, and the S-protein vaccine, which can only be explained by a high degree of cross-reactivity between the viruses, a pre-existing immune response against some epitopes, and even an alternate processing of the vaccine proteins.
Collapse
Affiliation(s)
- Michael Szardenings
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Nicolas Delaroque
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Karolin Kern
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Lisbeth Ramirez-Caballero
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Marcus Puder
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Eva Ehrentreich-Förster
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Am Mühlenberg 13, 14476 Potsdam, Germany;
| | - Joachim Beige
- Martin-Luther-University Halle/Wittenberg, Medical Clinic 2, 06112 Halle, Germany;
| | - Sebastian Zürner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- WINF/Informationsmanagement, University Leipzig, Grimmaische Straße 12, 04109 Leipzig, Germany
| | - Georg Popp
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Johannes Wolf
- Department of Laboratory Medicine, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany; (J.W.); (S.B.)
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany; (J.W.); (S.B.)
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany
| |
Collapse
|
130
|
Li Y, Wan H, Ma R, Liu T, Chen Y, Dong Y. Chronic Stress That Changed Intestinal Permeability and Induced Inflammation Was Restored by Estrogen. Int J Mol Sci 2023; 24:12822. [PMID: 37629009 PMCID: PMC10454097 DOI: 10.3390/ijms241612822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic psychological stress affects the health of humans and animals (especially females or pregnant bodies). In this study, a stress-induced model was established by placing eight-week-old female and pregnant mice in centrifuge tubes for 4 h to determine whether chronic stress affects the intestinal mucosal barrier and microbiota composition of pregnant mice. Compared with the control group, we found that norepinephrine (NE), corticosterone (CORT), and estradiol (E2) in plasma increased significantly in the stress group. We then observed a decreased down-regulation of anti-inflammatory cytokines and up-regulation of pro-inflammatory cytokines, which resulted in colonic mucosal injury, including a reduced number of goblet cells, proliferating cell nuclear antigen-positive cells, caspase-3, and expression of tight junction mRNA and protein. Moreover, the diversity and richness of the colonic microbiota decreased in pregnant mice. Bacteroidetes decreased, and pernicious bacteria were markedly increased. At last, we found E2 protects the intestinal epithelial cells after H2O2 treatment. Results suggested that 25 pg/mL E2 provides better protection for intestinal barrier after chronic stress, which greatly affected the intestinal mucosal barrier and altered the colonic microbiota composition.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Huayun Wan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Ruiqin Ma
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Tianya Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Yaoxing Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
| | - Yulan Dong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (H.W.); (R.M.); (T.L.); (Y.C.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
131
|
Ahn YM, Shin S, Jang JH, Jung J. Bojungikgi-tang improves skin barrier function and immune response in atopic dermatitis mice fed a low aryl hydrocarbon receptor ligand diet. Chin Med 2023; 18:100. [PMID: 37573390 PMCID: PMC10423424 DOI: 10.1186/s13020-023-00806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a transcription factor that plays a crucial role in regulating the immune system and maintaining skin barrier function. AhR signaling is pivotal in the pathogenesis of inflammatory diseases such as atopic dermatitis (AD), and the absence of AhR ligands further contributes to the progression or worsening of AD symptoms. METHODS AD was induced with 2,4-dinitrochlorobenzene (DNCB), and Bojungikgi-tang (BJIKT) was administered orally daily for 10 weeks. Serum IgE, splenocyte IL-4, and IFN-γ levels, skin barrier genes, and AhR target gene expressions were analyzed using RNA-sequencing analysis. Spleen tissues were extracted for fluorescence-activated cell sorting (FACS) analysis to analyze the effect of BJIKT on immune responses. A correlation analysis was conducted to analyze the correlation between immune markers and skin barrier genes and AhR target genes. RESULTS BJIKT effectively improved AD symptoms in AD mice fed a low AhR ligand diet by reducing neutrophil and eosinophil counts, lowering IgE levels in the blood, and decreasing IL-4 and IFN-γ levels in the splenocytes. Additionally, BJIKT significantly reduced epithelial skin thickness and transepidermal water loss (TEWL) values and reversed the decreased expression of skin barrier genes. BJIKT also considerably altered the expression of AhR target genes, including Ahr, Ahrr, cytochrome P450 1A1 (CYP1A1), and CYP1B1. Furthermore, AhR target pathway genes were negatively correlated with immune cell subtypes, including CD4 + and CD8 + T cells and macrophages (CD11b + F4/80 +) at the systemic level. CONCLUSIONS BJIKT can regulate AhR activation and may help reduce inflammation in AD by regulating the expression of skin barrier genes and immune responses.
Collapse
Affiliation(s)
- You Mee Ahn
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Ji-Hye Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Jeeyoun Jung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
132
|
Heyburn L, Batuure A, Wilder D, Long J, Sajja VS. Neuroinflammation Profiling of Brain Cytokines Following Repeated Blast Exposure. Int J Mol Sci 2023; 24:12564. [PMID: 37628746 PMCID: PMC10454588 DOI: 10.3390/ijms241612564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to use of explosive devices and heavy weapons systems in modern conflicts, the effect of BW on the brain and body is of increasing concern. These exposures have been commonly linked with neurodegenerative diseases and psychiatric disorders in veteran populations. A likely neurobiological link between exposure to blasts and the development of neurobehavioral disorders, such as depression and PTSD, could be neuroinflammation triggered by the blast wave. In this study, we exposed rats to single or repeated BW (up to four exposures-one per day) at varied intensities (13, 16, and 19 psi) to mimic the types of blast exposures that service members may experience in training and combat. We then measured a panel of neuroinflammatory markers in the brain tissue with a multiplex cytokine/chemokine assay to understand the pathophysiological process(es) associated with single and repeated blast exposures. We found that single and repeated blast exposures promoted neuroinflammatory changes in the brain that are similar to those characterized in several neurological disorders; these effects were most robust after 13 and 16 psi single and repeated blast exposures, and they exceeded those recorded after 19 psi repeated blast exposures. Tumor necrosis factor-alpha and IL-10 were changed by 13 and 16 psi single and repeated blast exposures. In conclusion, based upon the growing prominence of negative psychological health outcomes in veterans and soldiers with a history of blast exposures, identifying the molecular etiology of these disorders, such as blast-induced neuroinflammation, is necessary for rationally establishing countermeasures and treatment regimens.
Collapse
|
133
|
Yang J, Zhang S, Jiang W. Impact of Beta Blockers on Breast Cancer Incidence and Prognosis. Clin Breast Cancer 2023; 23:664-671.e21. [PMID: 37353431 DOI: 10.1016/j.clbc.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Several studies have investigated the link between beta blockers (BB) and breast cancer outcomes but have reported mixed results. Our aim was to investigate the relationship between BB and breast cancer outcomes. Literatures investigating the relationship between BB and breast cancer outcomes were searched through PubMed and Embase. A total 43 articles were included by meta-analysis. We found BB increased breast cancer risk (n = 22, RR: 1.169, 95% CI: 1.063-1.285). We also found BB were associated with a lower overall survival (OS, n = 19, RR: 1.125, 95% CI: 1.078-1.173) and a higher recurrence risk (n = 8, RR: 1.130, 95% CI: 1.040-1.227) for breast cancer. Interestingly, subgroup analyses found only selective BB increased breast cancer risk (n = 5, RR: 1.766, 95% CI: 1.148-2.718) and recurrence risk (n = 2, RR: 1.168 -, 95% CI: 1.026-1.328) while only nonselective BB were associated with a lower OS (n = 4, RR: 1.135, 95% CI: 1.073-1.202) for breast cancer. Moreover, we found BB were associated with a significantly lower OS (n = 3, RR: 2.751, 95% CI: 1.213-6.238) and higher recurrence (n = 2, RR: 1.284, 95% CI: 1.102-1.497) only in luminal breast cancer while with a higher PFS (n = 2, RR: 0.585, 95% CI: 0.343-0.997) in Her2+ breast cancer. No significant differences in terms of CSM (n = 19, RR: 1.009, 95% CI: 0.947-1.077), PFS (n = 4, RR: 0.932, 95% CI: 0.616-1.305), and DFS (n = 2, RR: 0.776, 95% CI: 0.512-1.176) were observed. Our results provide evidence of the relationship between BB and breast cancer incidence and prognosis.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Provice, China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi Provice, China
| | - Wei Jiang
- Department of Oncology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi Provice, China.
| |
Collapse
|
134
|
Radzevičiūtė-Valčiukė E, Želvys A, Mickevičiūtė E, Gečaitė J, Zinkevičienė A, Malyško-Ptašinskė V, Kašėta V, Novickij J, Ivaškienė T, Novickij V. Calcium Electrochemotherapy for Tumor Eradication and the Potential of High-Frequency Nanosecond Protocols. Pharmaceuticals (Basel) 2023; 16:1083. [PMID: 37630998 PMCID: PMC10460074 DOI: 10.3390/ph16081083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium electroporation (CaEP) is an innovative approach to treating cancer, involving the internalization of supraphysiological amounts of calcium through electroporation, which leads to cell death. CaEP enables the replacement of chemotherapeutics (e.g., bleomycin). Here, we present a standard microsecond (μsCaEP) and novel high-frequency nanosecond protocols for calcium electroporation (nsCaEP) for the elimination of carcinoma tumors in C57BL/6J mice. We show the efficacy of CaEP in eliminating tumors and increasing their survival rates in vivo. The antitumor immune response after the treatment was observed by investigating immune cell populations in tumors, spleens, lymph nodes, and blood, as well as assessing antitumor antibodies. CaEP treatment resulted in an increased percentage of CD4+ and CD8+ central memory T cells and decreased splenic myeloid-derived suppressor cells (MDSC). Moreover, increased levels of antitumor IgG antibodies after CaEP treatment were detected. The experimental results demonstrated that the administration of CaEP led to tumor growth delay, increased survival rates, and stimulated immune response, indicating a potential synergistic relationship between CaEP and immunotherapy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Eglė Mickevičiūtė
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Tatjana Ivaškienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
135
|
Kawanishi H, Hori H, Yoshida F, Itoh M, Lin M, Niwa M, Narita M, Otsuka T, Ino K, Imai R, Fukudo S, Kamo T, Kunugi H, Kim Y. Suicidality in civilian women with PTSD: Possible link to childhood maltreatment, proinflammatory molecules, and their genetic variations. Brain Behav Immun Health 2023; 30:100650. [PMID: 37363341 PMCID: PMC10285106 DOI: 10.1016/j.bbih.2023.100650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/24/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD) is a robust risk factor for suicide. Studies have suggested an association between suicide and elevated inflammatory markers, although such evidence in PTSD is scarce. Suicide risk, PTSD, and inflammatory molecules are all shown to be associated with childhood maltreatment and genetic factors. Methods We examined the association between suicidal ideation/risk and inflammatory markers in 83 civilian women with PTSD, and explored the possible influence of childhood maltreatment and inflammatory genes. Suicidal ideation and risk were assessed using the Beck Depression Inventory-II and the Mini-International Neuropsychiatric Interview. Childhood maltreatment history was assessed with the Childhood Trauma Questionnaire (CTQ). Blood levels of high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6) and high-sensitivity tumor necrosis factor-α were measured. Genetic polymorphisms of CRP rs2794520 and IL6 rs1800796 were genotyped. Results Suicidal ideation was significantly positively correlated with hsCRP (p = 0.002) and IL-6 (p = 0.015) levels. Suicide risk weighted score was significantly positively correlated with hsCRP (p = 0.016) levels. The risk alleles of CRP rs2794520 and IL6 rs1800796 leading to increased respective protein levels were dose-dependently associated with higher risk of suicide (p = 0.007 and p = 0.029, respectively). The CTQ total score was significantly correlated with suicidal ideation and risk, but not with inflammatory marker levels. Furthermore, a multivariate regression analysis controlling for PTSD severity and potential confounders revealed that rs2794520 and rs1800796, but not hsCRP or IL-6 levels, significantly predicted suicidal ideation (p < 0.001) and risk (p = 0.007), respectively. Conclusion Genetic variations within inflammatory genes might be useful in detecting PTSD patients at high risk of suicide.
Collapse
Affiliation(s)
- Hitomi Kawanishi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Madoka Niwa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Megumi Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takeshi Otsuka
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Keiko Ino
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Risa Imai
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Risa Irinaka Mental Clinic, Nagoya, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiko Kamo
- Wakamatsu-cho Mental and Skin Clinic, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
136
|
Cai J, Hu Q, He Z, Chen X, Wang J, Yin X, Ma X, Zeng J. Scutellaria baicalensis Georgi and Their Natural Flavonoid Compounds in the Treatment of Ovarian Cancer: A Review. Molecules 2023; 28:5082. [PMID: 37446743 DOI: 10.3390/molecules28135082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer in women with a high mortality rate, and the treatment of OC is prone to high recurrence rates and side effects. Scutellaria baicalensis (SB) is a herbal medicine with good anti-cancer activity, and several studies have shown that SB and its flavonoids have some anti-OC properties. This paper elucidated the common pathogenesis of OC, including cell proliferation and cell cycle regulation, cell invasion and metastasis, apoptosis and autophagy, drug resistance and angiogenesis. The mechanisms of SB and its flavonoids, wogonin, baicalein, baicalin, Oroxylin A, and scutellarein, in the treatment of OC, are revealed, such as wogonin inhibits proliferation, induces apoptosis, inhibits invasion and metastasis, and increases the cytotoxicity of the drug. Baicalein also inhibits vascular endothelial growth factor (VEGF) expression etc. Analyzing their advantages and disadvantages in treating OC provides a new perspective on the role of SB and its flavonoids in OC treatment. It serves as a resource for future OC research and development.
Collapse
Affiliation(s)
- Jiaying Cai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhelin He
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
137
|
Huang Q, Mo J, Yang H, Ji Y, Huang R, Liu Y, Pan Y. Analysis of m7G-Related signatures in the tumour immune microenvironment and identification of clinical prognostic regulators in breast cancer. BMC Cancer 2023; 23:583. [PMID: 37353728 DOI: 10.1186/s12885-023-11012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Breast cancer is a malignant tumour that seriously threatens women's life and health and exhibits high inter-individual heterogeneity, emphasising the need for more in-depth research on its pathogenesis. While internal 7-methylguanosine (m7G) modifications affect RNA processing and function and are believed to be involved in human diseases, little is currently known about the role of m7G modification in breast cancer. METHODS AND RESULTS We elucidated the expression, copy number variation incidence and prognostic value of 24 m7G-related genes (m7GRGs) in breast cancer. Subsequently, based on the expression of these 24 m7GRGs, consensus clustering was used to divide tumour samples from the TCGA-BRCA dataset into four subtypes based on significant differences in their immune cell infiltration and stromal scores. Differentially expressed genes between subtypes were mainly enriched in immune-related pathways such as 'Ribosome', 'TNF signalling pathway' and 'Salmonella infection'. Support vector machines and multivariate Cox regression analysis were applied based on these 24 m7GRGs, and four m7GRGs-AGO2, EIF4E3, DPCS and EIF4E-were identified for constructing the prediction model. An ROC curve indicated that a nomogram model based on the risk model and clinical factors had strong ability to predict the prognosis of breast cancer. The prognoses of patients in the high- and low-TMB groups were significantly different (p = 0.03). Moreover, the four-gene signature was able to predict the response to chemotherapy. CONCLUSIONS In conclusion, we identified four different subtypes of breast cancer with significant differences in the immune microenvironment and pathways. We elucidated prognostic biomarkers associated with breast cancer and constructed a prognostic model involving four m7GRGs. In addition, we predicted the candidate drugs related to breast cancer based on the prognosis model.
Collapse
Affiliation(s)
- Qinghua Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Jianlan Mo
- Department of Anesthesiology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huawei Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Yinan Ji
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Rong Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China
| | - Yan Liu
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China.
- Department of BreastBone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530000, China.
| | - You Pan
- Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, China.
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000, P.R. China.
| |
Collapse
|
138
|
Yang J, Wang Q, Jiang W. Association between immune cells in peripheral blood and psychiatric symptoms. Front Psychiatry 2023; 14:1198734. [PMID: 37398592 PMCID: PMC10311026 DOI: 10.3389/fpsyt.2023.1198734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND There are bidirectional associations between immunological dysfunction and psychiatric symptoms. However, the associations between the levels of immune cells in the peripheral blood and psychiatric symptoms remain unclear. The present study aimed to evaluate levels of immune cells in peripheral blood in people with positive psychiatric symptoms. METHODS This retrospective study analyzed data from routine blood tests and psychopathology and sleep quality assessments. Data were compared between a group of 45 patients with de novo psychological symptoms and 225 matched controls. RESULTS Patients with psychiatric symptoms had higher white blood cell and neutrophil counts compared with controls. However, in a subgroup analysis, neutrophil counts were significantly higher than in controls only in patients with multiple psychiatric symptoms. Furthermore, monocyte counts were significantly higher in patients with multiple psychiatric symptoms than in controls. Further, sleep quality was lower in patients with psychiatric symptoms than in controls. CONCLUSION White blood cell and neutrophil counts in the peripheral blood of patients with psychiatric symptoms were significantly higher and sleep quality was significantly lower than in controls. Participants with multiple psychiatric symptoms showed more significant differences in peripheral blood immune cell counts than other subgroups. These results provided evidence for the relationship between psychiatric symptoms, immunity, and sleep.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Wang
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
139
|
Kusakabe Y, Moriya SS, Sugiyama T, Miyata Y. Isolation and identification of the new baicalin target protein to develop flavonoid structure-based therapeutic agents. Bioorg Med Chem 2023; 90:117362. [PMID: 37320992 DOI: 10.1016/j.bmc.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Proteins are vital constituents of all living organisms. As many therapeutic agents alter the activity of functional proteins, identifying functional target proteins of small bioactive molecules isessential for the rational design of stronger medicines. Flavonoids with antioxidant, anti-allergy, and anti-inflammatory effects are expected to have preventive effects for several diseases closely related to oxidation and inflammation, including heart disease, cancer, neurodegenerative disorders, and eye diseases. Therefore, identifying the proteins involved in the pharmacological actions of flavonoids, and designing a flavonoid structure-based medicine that strongly and specifically inhibits flavonoid target proteins, could aid the development of more effective medicines for treating heart disease, cancer, neurodegenerative disorders, and ocular diseases with few side effects. To isolate the flavonoid target protein, we conducted a novel affinity chromatography in a column wherein baicalin, a representative flavonoid, was attached to Affi-Gel 102. Through affinity chromatography and nano LC-MS/MS, we identified GAPDH as a flavonoid target protein. Then, we performed fluorescence quenching and an enzyme inhibition assay to experimentally confirmbaicalin's binding affinity for, and inhibition of, GAPDH. We also conducted in silico docking simulations to visualize the binding modes of baicalin and the newly identified flavonoid target protein, GAPDH. From the results of this study, it was considered that one of the reasons why baicalin exhibits the effects on cancer and neurodegenerative diseases is that it inhibits the activity of GAPDH. In summary, we showed that Affi-Gel102 could quickly and accurately isolate the target protein for bioactive small molecules, without the need for isotopic labeling or a fluorescent probe. By using the method presented here, it was possible to easily isolate the target protein of a medicine containing a carboxylic acid.
Collapse
Affiliation(s)
- Yoshio Kusakabe
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan.
| | | | - Toru Sugiyama
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoshiki Miyata
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
140
|
Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:210. [PMID: 37217462 PMCID: PMC10203321 DOI: 10.1038/s41392-023-01480-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Over decades, researchers have focused on the epigenetic control of DNA-templated processes. Histone modification, DNA methylation, chromatin remodeling, RNA modification, and noncoding RNAs modulate many biological processes that are crucial to the development of cancers. Dysregulation of the epigenome drives aberrant transcriptional programs. A growing body of evidence suggests that the mechanisms of epigenetic modification are dysregulated in human cancers and might be excellent targets for tumor treatment. Epigenetics has also been shown to influence tumor immunogenicity and immune cells involved in antitumor responses. Thus, the development and application of epigenetic therapy and cancer immunotherapy and their combinations may have important implications for cancer treatment. Here, we present an up-to-date and thorough description of how epigenetic modifications in tumor cells influence immune cell responses in the tumor microenvironment (TME) and how epigenetics influence immune cells internally to modify the TME. Additionally, we highlight the therapeutic potential of targeting epigenetic regulators for cancer immunotherapy. Harnessing the complex interplay between epigenetics and cancer immunology to develop therapeutics that combine thereof is challenging but could yield significant benefits. The purpose of this review is to assist researchers in understanding how epigenetics impact immune responses in the TME, so that better cancer immunotherapies can be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
141
|
Lu X, Wu K, Jiang S, Li Y, Wang Y, Li H, Li G, Liu Q, Zhou Y, Chen W, Mao H. Therapeutic mechanism of baicalein in peritoneal dialysis-associated peritoneal fibrosis based on network pharmacology and experimental validation. Front Pharmacol 2023; 14:1153503. [PMID: 37266145 PMCID: PMC10229821 DOI: 10.3389/fphar.2023.1153503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Baicalein (5,6,7-trihydroxyflavone) is a traditional Chinese medicine with multiple pharmacological and biological activities including anti-inflammatory and anti-fibrotic effects. However, whether baicalein has a therapeutic impact on peritoneal fibrosis has not been reported yet. In the present study, network pharmacology and molecular docking approaches were performed to evaluate the role and the potential mechanisms of baicalein in attenuating peritoneal dialysis-associated peritoneal fibrosis. The results were validated in both animal models and the cultured human mesothelial cell line. Nine intersection genes among baicalein targets and the human peritoneum RNA-seq dataset including four encapsulating peritoneal sclerosis samples and four controls were predicted by network analysis. Among them, MMP2, BAX, ADORA3, HIF1A, PIM1, CA12, and ALOX5 exhibited higher expression in the peritoneum with encapsulating peritoneal sclerosis compared with those in the control, which might be crucial targets of baicalein against peritoneal fibrosis. Furthermore, KEGG and GO enrichment analyses suggested that baicalein played an anti-peritoneal fibrosis role through the regulating cell proliferation, inflammatory response, and AGE-RAGE signaling pathway. Moreover, molecular docking analysis revealed a strong potential binding between baicalein and MMP2, which was consistent with the predictive results. Importantly, using a mouse model of peritoneal fibrosis by intraperitoneally injecting 4.25% glucose dialysate, we found that baicalein treatment significantly attenuated peritoneal fibrosis, as evident by decreased collagen deposition, protein expression of α-SMA and fibronectin, and peritoneal thickness, at least, by reducing the expression of MMP2, suggesting that baicalein may have therapeutic potential in suppressing peritoneal dialysis-related fibrosis.
Collapse
Affiliation(s)
- Xiaohui Lu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Kefei Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Simin Jiang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Guanglan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
142
|
Niknam B, Baghaei K, Mahmoud Hashemi S, Hatami B, Reza Zali M, Amani D. Human Wharton's jelly mesenchymal stem cells derived-exosomes enriched by miR-124 promote an anti-fibrotic response in an experimental model of liver fibrosis. Int Immunopharmacol 2023; 119:110294. [PMID: 37167639 DOI: 10.1016/j.intimp.2023.110294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Liver fibrosis is a significant challenge to global health that results in organ failure through inflammation and the release of fibrotic biomarkers. Due to the lack of effective treatments for liver fibrosis, anti-fibrotic and anti-inflammatory therapies are being developed. Since there has been an association between aberrant expression of miR-124 and liver disease progression, we investigated whether delivery of miR-124 through human Wharton's jelly mesenchymal stem cells derived-exosomes (hWJMSC-Exo) can improve liver fibrosis. METHODS We established a 6-week carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis, then we administered hWJMSC-Exo and miR-124-3p-enriched exosomes (ExomiR-124) for three weeks. The extent of fibrosis and inflammation was assessed by histology, biochemistry, Real-time PCR, immunohistochemistry, and Enzyme-linked immunoassays (ELISA). The inflammatory status of the spleen was also investigated using flow cytometry. RESULTS Based on the gene and protein expression measurement of IL-6, IL-17, TGF-β, STAT3, α-SMA, and COL1, In vivo administration of Exo and ExomiR-124 effectively reduce collagen accumulation and inhibition of inflammation. Regarding histopathology findings, the therapeutic effect of ExomiR-124 against liver fibrosis was significantly greater than hWJMSC-Exo. In addition, we found that Exo and ExomiR-124 was capable of phenotype switching of splenic monocytes from inflammatory Ly6Chi to restorative Ly6Clo. CONCLUSIONS MSC-derived exosomes demonstrated anti-inflammatory effect via different aspects. Aside from the therapeutic approach, enrichment of exosomes as a nanocarrier by miR-124 revealed the down-regulation of STAT3, which plays a crucial role in liver fibrosis. The anti-inflammatory and anti-fibrotic properties of ExomiR-124 could be a promising option in liver fibrosis combination therapies.
Collapse
Affiliation(s)
- Bahare Niknam
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
143
|
Xing P, Zhong Y, Cui X, Liu Z, Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol Res 2023; 191:106766. [PMID: 37061144 DOI: 10.1016/j.phrs.2023.106766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Digestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xingda Wu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
144
|
Qiang N, Ao J, Nakamura M, Chiba T, Kusakabe Y, Kaneko T, Kurosugi A, Kogure T, Ma Y, Zhang J, Ogawa K, Kan M, Iwanaga T, Sakuma T, Kanayama K, Kanzaki H, Kojima R, Nakagawa R, Kondo T, Nakamoto S, Muroyama R, Kato J, Mimura N, Ma A, Jin J, Kato N. Alteration of the tumor microenvironment by pharmacological inhibition of EZH2 in hepatocellular carcinoma. Int Immunopharmacol 2023; 118:110068. [PMID: 37001386 DOI: 10.1016/j.intimp.2023.110068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive component 2 is overexpressed in a variety of cancers and recognized as a therapeutic target molecule. However, EZH2 possesses immunomodulatory functions in the tumor microenvironment (TME). The impact of EZH2 on TME of hepatocellular carcinoma (HCC) using immunocompetent mouse model was evaluated in the present study. UNC1999, an EZH2 inhibitor, impaired growth of the murine HCC cells (H22 cells) and induced apoptosis in a dose-dependent manner. Although UNC1999 significantly inhibited the growth of H22 cells-derived and Hepa1-6 cells-derived tumors in nonobese diabetic/severe combined immunodeficiency mice, its antitumor effect was diminished in allogenic BALB/c and C57BL/6 mice. Flow cytometric analyses of TME cells in BALB/c mice demonstrated a significant decrease in the number of interferon‑γ+ CD8+ T cells and regulatory T cells and a significant increase in the number of myeloid-derived suppressor cells (MDSCs). Administration of Gr-1 neutralizing antibody concomitant with UNC1999 restored antitumor effect accompanied by an increase in the number of CD8+ T cells followed by a decrease in the number of MDSCs. Chemokine antibody array demonstrated an enhanced expression of chemokines responsible for MDSCs recruitment such as C5a, CCL8, and CCL9. In conclusion, the study results demonstrated that EZH2 inhibitor contributed to attenuation of tumor immunity caused by TME arrangement. Combination therapy with EZH2 inhibitors and agents that reduce MDSCs might represent a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Na Qiang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akane Kurosugi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadayoshi Kogure
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yaojia Ma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiaqi Zhang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoyasu Kan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takafumi Sakuma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
145
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
146
|
Mazurakova A, Koklesova L, Vybohova D, Samec M, Kudela E, Biringer K, Šudomová M, Hassan STS, Kello M, Büsselberg D, Golubnitschaja O, Kubatka P. Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells. Front Pharmacol 2023; 14:1160068. [PMID: 37089930 PMCID: PMC10115970 DOI: 10.3389/fphar.2023.1160068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Significant limitations of the reactive medical approach in breast cancer management are clearly reflected by alarming statistics recorded worldwide. According to the WHO updates, breast malignancies become the leading cancer type. Further, the portion of premenopausal breast cancer cases is permanently increasing and demonstrates particularly aggressive patterns and poor outcomes exemplified by young patients with triple-negative breast cancer that lacks targeted therapy. Accumulating studies suggest the crucial role of stem cells in tumour biology, high metastatic activity, and therapy resistance of aggressive breast cancer. Therefore, targeting breast cancer stem cells is a promising treatment approach in secondary and tertiary breast cancer care. To this end, naturally occurring substances demonstrate high potential to target cancer stem cells which, however, require in-depth analysis to identify effective anti-cancer agents for cost-effective breast cancer management. The current article highlights the properties of flavonoids particularly relevant for targeting breast cancer stem cells to mitigate therapy resistance. The proposed approach is conformed with the principles of 3P medicine by applying predictive diagnostics, patient stratification and treatments tailored to the individualised patient profile. Expected impacts are very high, namely, to overcome limitations of reactive medical services improving individual outcomes and the healthcare economy in breast cancer management. Relevant clinical applications are exemplified in the paper.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- *Correspondence: Peter Kubatka, ; Alena Mazurakova,
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Desanka Vybohova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- *Correspondence: Peter Kubatka, ; Alena Mazurakova,
| |
Collapse
|
147
|
Morshed AKMH, Paul S, Hossain A, Basak T, Hossain MS, Hasan MM, Hasibuzzaman MA, Rahaman TI, Mia MAR, Shing P, Sohel M, Bibi S, Dey D, Biswas P, Hasan MN, Ming LC, Tan CS. Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives. Cancers (Basel) 2023; 15:2128. [PMID: 37046789 PMCID: PMC10093079 DOI: 10.3390/cancers15072128] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Despite significant therapeutic advancements for cancer, an atrocious global burden (for example, health and economic) and radio- and chemo-resistance limit their effectiveness and result in unfavorable health consequences. Natural compounds are generally considered safer than synthetic drugs, and their use in cancer treatment alone, or in combination with conventional therapies, is increasingly becoming accepted. Interesting outcomes from pre-clinical trials using Baicalein in combination with conventional medicines have been reported, and some of them have also undergone clinical trials in later stages. As a result, we investigated the prospects of Baicalein, a naturally occurring substance extracted from the stems of Scutellaria baicalensis Georgi and Oroxylum indicum Kurz, which targets a wide range of molecular changes that are involved in cancer development. In other words, this review is primarily driven by the findings from studies of Baicalein therapy in several cancer cell populations based on promising pre-clinical research. The modifications of numerous signal transduction mechanisms and transcriptional agents have been highlighted as the major players for Baicalein's anti-malignant properties at the micro level. These include AKT serine/threonine protein kinase B (AKT) as well as PI3K/Akt/mTOR, matrix metalloproteinases-2 & 9 (MMP-2 & 9), Wnt/-catenin, Poly(ADP-ribose) polymerase (PARP), Mitogen-activated protein kinase (MAPK), NF-κB, Caspase-3/8/9, Smad4, Notch 1/Hes, Signal transducer and activator of transcription 3 (STAT3), Nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap 1), Adenosine monophosphate-activated protein kinase (AMPK), Src/Id1, ROS signaling, miR 183/ezrin, and Sonic hedgehog (Shh) signaling cascades. The promise of Baicalein as an anti-inflammatory to anti-apoptotic/anti-angiogenic/anti-metastatic medicinal element for treating various malignancies and its capability to inhibit malignant stem cells, evidence of synergistic effects, and design of nanomedicine-based drugs are altogether well supported by the data presented in this review study.
Collapse
Affiliation(s)
- A K M Helal Morshed
- Pathology and Pathophysiology, Academy of Medical Science, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Supti Paul
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arafat Hossain
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tuli Basak
- Department of Genetic Engineering and Biotechnology, Faculty of Science and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Md. Sanower Hossain
- Centre for Sustainability of Ecosystem and Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Gambang, Kuantan 26300, Malaysia
| | - Md. Mehedi Hasan
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Al Hasibuzzaman
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Pollob Shing
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia;
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| |
Collapse
|
148
|
Levesque P, Desmeules C, Béchard L, Huot-Lavoie M, Demers MF, Roy MA, Deslauriers J. Sex-specific immune mechanisms in PTSD symptomatology and risk: A translational overview and perspectives. Brain Res Bull 2023; 195:120-129. [PMID: 36822271 DOI: 10.1016/j.brainresbull.2023.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Altered immune function in patients with posttraumatic stress disorder (PTSD) may play a role in the disorder pathophysiology and onset. Women are more likely to develop PTSD, suggesting potential sex-specific inflammatory mechanisms underlying the dichotomous prevalence and risk of PTSD in men and women. In this review we examine the available literature to better assess the state of knowledge in the field. In humans, increased systemic inflammation is found in both men and women with PTSD, but seems to be at a greater extend in women. Despite the existence of few clinical studies taking account of sex as a factor in the observed immune changes in PTSD, challenges in the study of sex-specific immune function in humans include: controlling for confounding variates such as the type of trauma and the ethnicity; and limited methodologies available to study central nervous system (CNS)-relevant changes. Thus, preclinical studies are a valuable tool to provide us with key insights on sex-specific peripheral and CNS immune mechanisms underlying PTSD. Available preclinical studies reported increased systemic and CNS inflammation, as well as elevated trafficking of monocytes from the periphery to the brain in both male and female rodents. To date, psychological trauma-induced inflammation is more robust in female vs male rodents. Limitations of preclinical studies include animal models hardly applicable to female rodents, and hormonal changes across estrus phases that may affect immune function. The present review: (1) highlights the key findings from both human and animal studies, (2) provides guidance to address limitations; and (3) discusses the gap of knowledge on the complex intertwined interaction between the brain, neurovascular, and systemic units.
Collapse
Affiliation(s)
- Pascal Levesque
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Charles Desmeules
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Laurent Béchard
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Maxime Huot-Lavoie
- Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Marie-France Demers
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Marc-André Roy
- Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Jessica Deslauriers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
149
|
Chuang TC, Fang GS, Hsu SC, Lee YJ, Shao WS, Wang V, Lee SL, Kao MC, Ou CC. Baicalein suppresses HER2-mediated malignant transformation of HER2-overexpressing ovarian cancer cells by downregulating HER2 gene expression. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988316 DOI: 10.1002/tox.23790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The upregulation of the HER2 oncogene is associated with a variety of human cancers and is associated with poor prognosis. Baicalein is reported to have anti-tumor activity, but the molecular mechanism of this effect in HER2-positive cancer cells has not been studied. In this study, our data showed that baicalein can inhibit the proliferation and transformation potential of ovarian cancer cells overexpressing HER2. Baicalein treatment caused a dose-dependent inhibition of HER2 gene expression at the transcriptional level. Baicalein acted on ovarian cancer cells overexpressing HER2 to downregulate the PI3K/Akt signaling pathway downstream of HER2 and inhibit the expression or activity of downstream targets, such as VEGF and cyclin D1 and MMP2. Oral administration of baicalein supplemented with a pharmaceutical excipient significantly inhibited the growth of HER2-overexpressing ovarian SKOV-3 cancer xenografts in mice. These results suggest that downregulation of HER2 gene expression by baicalein at the transcriptional level contributes to inhibit the in vitro and in vivo proliferation and HER2-mediated malignant transformation of HER2-overexpressing ovarian cancer cells.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Guan-Shiun Fang
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei, Taiwan, R.O.C
| | - Yi-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wei-Syun Shao
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei, Taiwan, R.O.C
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chien-Chih Ou
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
150
|
Espíndola C. Some Nanocarrier's Properties and Chemical Interaction Mechanisms with Flavones. Molecules 2023; 28:molecules28062864. [PMID: 36985836 PMCID: PMC10051830 DOI: 10.3390/molecules28062864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Flavones such as 7,8-dihydroxyflavone (tropoflavin), 5,6,7-trihydroxyflavone (baicalein), 3',4',5,6-tetrahydroxyflavone (luteolin), 3,3',4',5,5',7-hexahydroxyflavone (myricetin), 4',5,7-trihydroxyflavone (apigenin), and 5,7-dihydroxyflavone (chrysin) are important both for their presence in natural products and for their pharmacological applications. However, due to their chemical characteristics and their metabolic processes, they have low solubility and low bioavailability. Knowledge about the physicochemical properties of nanocarriers and the possible mechanisms of covalent and non-covalent interaction between nanoparticles (NPs) and drugs is essential for the design of nanocarriers to improve the bioavailability of molecules with pharmacological potential, such as tropoflavin, baicalein, luteolin, myricetin, apigenin, and chrysin. The parameters of characterization of some NPs of these flavones, such as size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE), and % release/time, utilized in biomedical applications and the covalent and non-covalent interactions existing between the polymeric NPs and the drug were analyzed. Similarly, the presence of functional groups in the functionalized carbon nanotubes (CNTs), as well as the effect of pH on the % adsorption of flavonoids on functionalized multi-walled carbon nanotubes (MWCNT-COOH), were analyzed. Non-covalent interaction mechanisms between polymeric NPs and flavones, and covalent interaction mechanisms that could exist between the NPs and the amino and hydroxyl functional groups, are proposed.
Collapse
Affiliation(s)
- Cecilia Espíndola
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| |
Collapse
|