101
|
Abstract
Current practice in IBD is to classify patients based on clinical signs and symptoms and provide treatments accordingly. However, the response of IBD patients to available treatments is highly variable, highlighting clinically significant heterogeneity among patients. Thus, more accurate patient stratification is urgently needed to more effectively target therapeutic interventions to specific patients. Here we review the degree of heterogeneity in IBD, discussing how the microbiota, genetics, and immune system may contribute to the variation among patients. We highlight how molecular heterogeneity may relate to clinical phenotype, but in other situations may be independent of clinical phenotype, encouraging future studies to fill the gaps. Finally, we discuss novel stratification methodologies as a foundation for precision medicine, in particular a novel stratification strategy based on conserved genes across species. All of these dimensions of heterogeneity have potential to provide strategies for patient stratification and move IBD practice towards personalised medicine.
Collapse
Affiliation(s)
- Katja A Selin
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
102
|
Takahashi Y, Okamura Y, Harada N, Watanabe M, Miyanishi H, Kono T, Sakai M, Hikima JI. Interleukin-22 Deficiency Contributes to Dextran Sulfate Sodium-Induced Inflammation in Japanese Medaka, Oryzias latipes. Front Immunol 2021; 12:688036. [PMID: 34759916 PMCID: PMC8573258 DOI: 10.3389/fimmu.2021.688036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal tissue forms the first line of defense against pathogenic microorganisms. Cellular damage in the mucosal epithelium may induce the interleukin (IL)-22-related activation of many immune cells, which are essential for maintaining the mucosal epithelial barrier. A previous study on mucosal immunity elucidated that mammalian IL-22 contributes to mucus and antimicrobial peptides (AMPs) production and anti-apoptotic function. IL-22 has been identified in several teleost species and is also induced in response to bacterial infections. However, the roles of IL-22 in teleost immunity and mucus homeostasis are poorly understood. In this study, Japanese medaka (Oryzias latipes) was used as a model fish. The medaka il22, il22 receptor A1 (il22ra1), and il22 binding protein (il22bp) were cloned and characterized. The expression of medaka il22, il22ra1, and il22bp in various tissues was measured using qPCR. These genes were expressed at high levels in the mucosal tissues of the intestines, gills, and skin. The localization of il22 and il22bp mRNA in the gills and intestines was confirmed by in situ hybridizations. Herein, we established IL-22-knockout (KO) medaka using the CRISPR/Cas9 system. In the IL-22-KO medaka, a 4-bp deletion caused a frameshift in il22. To investigate the genes subject to IL-22-dependent regulation, we compared the transcripts of larval medaka between wild-type (WT) and IL-22-KO medaka using RNA-seq and qPCR analyses. The comparison was performed not only in the naïve state but also in the dextran sulfate sodium (DSS)-exposed state. At the transcriptional level, 368 genes, including immune genes, such as those encoding AMPs and cytokines, were significantly downregulated in IL-22-KO medaka compared that in WT medaka in naïve states. Gene ontology analysis revealed that upon DSS stimulation, genes associated with cell death, acute inflammatory response, cell proliferation, and others were upregulated in WT medaka. Furthermore, in DSS-stimulated IL-22-KO medaka, wound healing was delayed, the number of apoptotic cells increased, and the number of goblet cells in the intestinal epithelium decreased. These results suggested that in medaka, IL-22 is important for maintaining intestinal homeostasis, and the disruption of the IL-22 pathway is associated with the exacerbation of inflammatory pathology, as observed for mammalian IL-22.
Collapse
Affiliation(s)
- Yoshie Takahashi
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Nanaki Harada
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mika Watanabe
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
103
|
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are chronic, immune-mediated diseases of the gastrointestinal (GI) tract. Their etiology is complex and involves immune (eg, cytokines) and nonimmune (eg, environment) mediated contributions, causing inflammatory damage to the GI tract. Though cytokines contribute a major role in the inflammatory process of both CD and UC, there are some key differences in which cytokines are involved in the pathobiology of CD and UC. Over the past several years, new biologic-directed therapies have focused on controlling specific aspects of inflammation associated with both conditions. Although these treatments have benefited patients overall, approximately 30% of patients still do not respond to induction (initial) therapy, and up to 50% of patients lose response to treatment over a year. Many of these therapies are administered parenterally and have been associated with adverse events such as serious infections or malignancy. Therefore, there is a significant unmet medical need for these patients to minimize symptoms and promote GI healing. There are several therapeutic agents in the pipeline, including oral, small molecules, which hold much promise. One group of small molecules known as Janus kinase (JAK) inhibitors offers an additional option for treatment of chronic inflammatory conditions, based on currently available data. The article will focus on the potential benefits of JAK inhibitors as oral, small molecules, such as the potential role of selectivity, and potential risks.
Collapse
Affiliation(s)
| | - Bruce R Yacyshyn
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
104
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
105
|
Coculture Strategy for Developing Lactobacillus paracasei PS23 Fermented Milk with Anti-Colitis Effect. Foods 2021; 10:foods10102337. [PMID: 34681392 PMCID: PMC8535234 DOI: 10.3390/foods10102337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Few studies have documented the effects of fermented milk on intestinal colitis, which are mediated by regulating various microbial and inflammatory processes. Here, we investigated the effects of fermented milk with Lactobacillus paracasei PS23 on intestinal epithelial cells in vitro and dextran sulfate sodium (DSS)-induced colitis in vivo. As L. paracasei PS23 grew poorly in milk, a coculture strategy with yogurt culture was provided to produce fermented milk (FM). The results indicated that the coculture exhibited a symbiotic effect, contributing to the better microbial and physicochemical property of the fermented milk products. We further evaluated the anti-colitis effect of fermented milk with L. paracasei PS23 in vitro. Both PS23-fermented milk (PS23 FM) and its heat-killed counterpart (HK PS23 FM) could protect or reverse the increased epithelial permeability by strengthening the epithelial barrier function in vitro by increasing transepithelial electrical resistance (TEER). In vivo analysis of the regulation of intestinal physiology demonstrated that low-dose L. paracasei PS23-fermented ameliorated DSS-induced colitis, with a significant attenuation of the bleeding score and reduction of fecal calprotectin levels. This anti-colitis effect may be exerted by deactivating the inflammatory cascade and strengthening the tight junction through the modification of specific cecal bacteria and upregulation of short-chain fatty acids. Our findings can clarify the role of L. paracasei PS23 in FM products when cocultured with yogurt culture and can elucidate the mechanisms of the anti-colitis effect of L. paracasei PS23 FM, which may be considered for therapeutic intervention.
Collapse
|
106
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions in infectious and sterile inflammation and NAD +-dependent metabolic adaptation. Arch Toxicol 2021; 95:3449-3458. [PMID: 34559251 PMCID: PMC8461142 DOI: 10.1007/s00204-021-03134-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023]
Abstract
Aryl hydrocarbon receptor (AHR) research has shifted from exploring dioxin toxicity to elucidation of various physiologic AHR functions. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert cellular stress-mediated sterile inflammatory responses in exposed human tissues but may be lethal in sensitive species. Inflammation can be thought of as the extreme end of a spectrum ranging from homeostasis to stress responses (sterile inflammation) and to defense against infection (infectious inflammation). Defense against bacterial infection by generation of reactive oxygen species has to be strictly controlled and may use up a considerable amount of energy. NAD+-mediated energy metabolism adapts to various inflammatory responses. As examples, the present commentary tries to integrate responses of AHR and NAD+-consuming enzymes (PARP7/TiPARP, CD38 and sirtuins) into infectious and stress-induced inflammatory responses, the latter exemplified by nonalcoholic fatty liver disease (NAFLD). TCDD toxicity models in sensitive species provide hints to molecular AHR targets of energy metabolism including gluconeogenesis and glycolysis. AHR research remains challenging and promising.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, 72074, Tübingen, Germany.
| |
Collapse
|
107
|
Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, Wang S, Wang Y. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B 2021; 11:2798-2818. [PMID: 34589398 PMCID: PMC8463263 DOI: 10.1016/j.apsb.2020.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ADR, adverse drug reaction
- AIE, aggregation-induced emission
- Active target
- BSA, bovine serum albumin
- CAM, cell adhesion molecule
- CD, Crohn's disease
- CRD, cysteine-rich domain
- CS, chondroitin sulfate
- CT, computed tomography
- CTLD, c-type lectin-like domain
- Cell adhesion molecule
- Crohn's disease
- DCs, dendritic cells
- DSS, dextran sulfate sodium salt
- Drug delivery
- EGF, epidermal growth factor
- EPR, enhanced permeability and retention
- FNII, fibronectin type II domain
- FR, folate receptor
- FRET, fluorescence resonance energy transfer
- GIT, gastrointestinal tract
- HA, hyaluronic acid
- HUVEC, human umbilical vein endothelial cells
- IBD, inflammatory bowel disease
- ICAM, intercellular adhesion molecule
- Inflammatory bowel disease
- LMWC, low molecular weight chitosan
- LPS, lipopolysaccharide
- MAP4K4, mitogen-activated protein kinase kinase kinase kinase 4
- MGL, macrophage galactose lectin
- MPO, myeloperoxidase
- MPS, mononuclear phagocyte system
- MR, mannose receptor
- MRI, magnetic resonance imaging
- PAMAM, poly(amidoamine)
- PEI, polyethylenimine
- PSGL-1, P-selectin glycoprotein ligand-1
- PepT1, peptide transporter 1
- QDs, quantum dots
- RES, reticuloendothelial system
- Receptor-mediated target
- Targeted therapy
- TfR, transferrin receptor
- UC, ulcerative colitis
- Ulcerative colitis
- VCAM, vascular cell adhesion molecule
Collapse
|
108
|
Dong JY, Xia KJ, Liang W, Liu LL, Yang F, Fang XS, Xiong YJ, Wang L, Zhou ZJ, Li CY, Zhang WD, Wang JY, Chen DP. Ginsenoside Rb1 alleviates colitis in mice via activation of endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 signaling pathway. Acta Pharmacol Sin 2021; 42:1461-1471. [PMID: 33268823 PMCID: PMC8379258 DOI: 10.1038/s41401-020-00561-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is regulated by ER-resident E3 ubiquitin ligase Hrd1, which has been implicated in inflammatory bowel disease (IBD). Ginsenoside Rb1 (GRb1) is the major ginsenoside in ginseng with multiple pharmacological activities. In this study we investigated the role of Hrd1 in IBD and its regulation by GRb1. Two mouse colitis models were established to mimic human IBD: drinking water containing dextran sodium sulfate (DSS) as well as intra-colonic infusion of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Colitis mice were treated with GRb1 (20, 40 mg·kg-1·d-1, ig) or a positive control drug sulfasalazine (500 mg·kg-1·d-1, ig) for 7 days. The model mice showed typical colitis symptoms and pathological changes in colon tissue. In addition to significant inflammatory responses and cell apoptosis in colon tissue, colon epithelial expression of Hrd1 was significantly decreased, the expression of ER stress markers GRP78, PERK, CHOP, and caspase 12 was increased, and the expression of Fas was increased (Fas was removed by Hrd1-induced ubiquitination). These changes were partially, or completely, reversed by GRb1 administration, whereas injection of Hrd1 inhibitor LS102 (50 mg·kg-1· d-1, ip, for 6 days) exacerbated colitis symptoms in colitis mice. GRb1 administration not only normalized Hrd1 expression at both the mRNA and protein levels, but also alleviated the ER stress response, Fas-related apoptosis, and other colitis symptoms. In intestinal cell line IEC-6, the expression of Hrd1 was significantly decreased by LPS treatment, but was normalized by GRb1 (200 μM). GRb1 alleviated LPS-induced ER stress and cell apoptosis in IEC-6 cells, and GRb1 action was inhibited by knockdown of Hrd1 using small interfering RNA. In summary, these results reveal a pathological role of Hrd1 in colitis, and provide a novel insight into alternative treatment of colitis using GRb1 activating Hrd1 signaling pathway.
Collapse
|
109
|
Rae J, Hackney J, Huang K, Keir M, Herman A. Identification of an IL-22-Dependent Gene Signature as a Pharmacodynamic Biomarker. Int J Mol Sci 2021; 22:8205. [PMID: 34360971 PMCID: PMC8347589 DOI: 10.3390/ijms22158205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Interleukin-22 (IL-22) plays a role in epithelial barrier function and repair, and may provide benefits in conditions like inflammatory bowel disease. However, limited human data are available to assess the clinical effect of IL-22 administration. This study used a human intestinal cell line to identify an IL-22-dependent gene signature that could serve as a pharmacodynamic biomarker for IL-22 therapy. The response to IL-22Fc (UTTR1147A, an Fc-stabilized version of IL-22) was assessed in HT-29 cells by microarray, and the selected responsive genes were confirmed by qPCR. HT-29 cells demonstrated dose-dependent increases in STAT3 phosphorylation and multiple gene expression changes in response to UTTR1147A. Genes were selected that were upregulated by UTTR1147A, but to a lesser extent by IL-6, which also signals via STAT3. IL-1R1 was highly upregulated by UTTR1147A, and differential gene expression patterns were observed in response to IL-22Fc in the presence of IL-1β. An IL-22-dependent gene signature was identified that could serve as a pharmacodynamic biomarker in intestinal biopsies to support the clinical development of an IL-22 therapeutic. The differential gene expression pattern in the presence of IL-1β suggests that an inflammatory cytokine milieu in the disease setting could influence the clinical responses to IL-22.
Collapse
Affiliation(s)
- Julie Rae
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Jason Hackney
- Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (J.H.); (K.H.)
| | - Kevin Huang
- Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (J.H.); (K.H.)
| | - Mary Keir
- OMNI Biomarker Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Ann Herman
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| |
Collapse
|
110
|
Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. Int Rev Immunol 2021; 41:326-345. [PMID: 34289794 DOI: 10.1080/08830185.2021.1954638] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tryptophan is an essential amino acid, going through three different metabolic pathways in the intestines. Indole pathway in the gut microbiota, serotonin system in the enterochromaffin cells and kynurenine pathway in the immune cells and intestinal lining are the three arms of tryptophan metabolism in the intestines. Clinical, in vivo and in vitro studies showed that each one of these arms has a significant impact on IBD. This review explains how different metabolites of tryptophan are involved in the pathophysiology of IBD and colorectal cancer, as a major complication of IBD. Indole metabolites alleviate colitis and protect against colorectal cancer while serotonin arm follows a more complicated and receptor-specific pattern. Indole metabolites and kynurenine interact with aryl hydrocarbon receptor (AHR) to induce T regulatory cells differentiation, confine Th17 and Th1 response and produce anti-inflammatory mediators. Kynurenine decreases tumor-infiltrating CD8+ cells and mediates tumor cells immune evasion. Serotonin system also increases colorectal cancer cells proliferation and metastasis while, indole metabolites can profoundly decrease colorectal cancer growth. Targeted therapy for tryptophan metabolites may improve the management of IBD and colorectal cancer, e.g. supplementation of indole metabolites such as indole-3-carbinol (I3C), inhibition of kynurenine monooxygenase (KMO) and selective stimulation or inhibition of specific serotonergic receptors can mitigate colitis. Furthermore, it will be explained how indole metabolites supplementation, inhibition of indoleamine 2,3-dioxygenase 1 (IDO1), KMO and serotonin receptors can protect against colorectal cancer. Additionally, extensive molecular interactions between tryptophan metabolites and intracellular signaling pathways will be thoroughly discussed.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
111
|
Stavreva DA, Collins M, McGowan A, Varticovski L, Raziuddin R, Brody DO, Zhao J, Lee J, Kuehn R, Dehareng E, Mazza N, Pegoraro G, Hager GL. Mapping multiple endocrine disrupting activities in Virginia rivers using effect-based assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145602. [PMID: 33592464 PMCID: PMC8026610 DOI: 10.1016/j.scitotenv.2021.145602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 06/01/2023]
Abstract
Water sources are frequently contaminated with natural and anthropogenic substances having known or suspected endocrine disrupting activities; however, these activities are not routinely measured and monitored. Phenotypic bioassays are a promising new approach for detection and quantitation of endocrine disrupting chemicals (EDCs). We developed cell lines expressing fluorescent chimeric constructs capable of detecting environmental contaminants which interact with multiple nuclear receptors. Using these assays, we tested water samples collected in the summers of 2016, 2017 and 2018 from two major Virginia rivers. Samples were concentrated 200× and screened for contaminants interacting with the androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR) and thyroid receptors. Among 45 tested sites, over 70% had AR activity and 60% had AhR activity. Many sites were also positive for GR and TRβ activation (22% and 42%, respectively). Multiple sites were positive for more than one type of contaminants, indicating presence of complex mixtures. These activities may negatively impact river ecosystems and consequently human health.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Michael Collins
- Center for Natural Capital, PO Box 901, Orange, VA, United States
| | - Andrew McGowan
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Razi Raziuddin
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Owen Brody
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Jerry Zhao
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Johnna Lee
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Riley Kuehn
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Elisabeth Dehareng
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Nicholas Mazza
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
112
|
Verma P, Srivastava A, Srikanth CV, Bajaj A. Nanoparticle-mediated gene therapy strategies for mitigating inflammatory bowel disease. Biomater Sci 2021; 9:1481-1502. [PMID: 33404019 DOI: 10.1039/d0bm01359e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder of the gastrointestinal tract (GIT) where Ulcerative Colitis (UC) displays localized inflammation in the colon, and Crohn's Disease (CD) affects the entire GIT. Failure of current therapies and associated side-effects bring forth serious social, economic, and health challenges. The gut epithelium provides the best target for gene therapy delivery vehicles to combat IBD. Gene therapy involving the use of nucleic acid (NA) therapeutics faces major challenges due to the hydrophilic, negative-charge, and degradable nature of NAs. Recent success in the engineering of biomaterials for gene therapy and their emergence in clinical trials for various diseases is an inspiration for scientists to develop gene therapy vehicles that can be easily targeted to the desired tissues for IBD. Advances in nanotechnology have enabled the formulations of numerous nanoparticles for NA delivery to mitigate IBD that still faces challenges of stability in the GIT, poor therapeutic efficacy, and targetability. This review presents the challenges of gene therapeutics, gastrointestinal barriers, and recent advances in the engineering of nanoparticles for IBD treatment along with future directions for successful translation of nanoparticle-mediated gene therapeutics in clinics.
Collapse
Affiliation(s)
- Priyanka Verma
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, By-pass Road, Bhauri, Bhopal-462030, India
| | - C V Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad- Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
113
|
Hossein-Khannazer N, Zian Z, Bakkach J, Kamali AN, Hosseinzadeh R, Anka AU, Yazdani R, Azizi G. Features and roles of T helper 22 cells in immunological diseases and malignancies. Scand J Immunol 2021; 93:e13030. [PMID: 33576072 DOI: 10.1111/sji.13030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
T helper 22 (Th22) cell populations are a newly identified subset of CD4+ T cells that primarily mediate biological effects on the epithelial barrier through interleukin (IL)-22. Although, new studies showed that both Th22 and IL-22 are closely associated with the pathogenesis of inflammatory, autoimmune and allergic disease as well as malignancies. In this review, we aim to describe the development and characteristics of Th22 cells as well as their roles in the immunopathogenesis of immune-related disorders and cancer.
Collapse
Affiliation(s)
- Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Joaira Bakkach
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co, Alborz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
114
|
Giménez-Arnau AM, DeMontojoye L, Asero R, Cugno M, Kulthanan K, Yanase Y, Hide M, Kaplan AP. The Pathogenesis of Chronic Spontaneous Urticaria: The Role of Infiltrating Cells. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2195-2208. [PMID: 33823316 DOI: 10.1016/j.jaip.2021.03.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Chronic spontaneous urticaria is characterized by a perivascular non-necrotizing cellular infiltrate around small venules of the skin. It consists primarily of CD4(+) lymphocytes, a prominence of the T helper (Th)2 subtype but also Th1 cells, with Th17 cell-derived cytokines elevated in plasma. There are also neutrophils, eosinophils, basophils, and monocytes. Chemokines derived from mast cells and activated endothelial cells drive the process. Although the role of the cellular infiltrate has not previously been addressed, each constituent can contribute to the overall pathogenesis. It is of interest that CSU responds to corticosteroid, yet, short-term steroids do not affect autoimmunity or degranulation of mast cells, and act on margination of cells along the endothelium and chemotaxis to enter the surrounding dermis. In this review, we address each cell's contribution to the overall inflammatory response, as it is currently understood, with a view toward development of therapeutic options that impede the function of critical cells and/or their secretory products.
Collapse
Affiliation(s)
- Ana M Giménez-Arnau
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Universitat Autònoma, Barcelona, Spain
| | - Laurence DeMontojoye
- Department of Dermatology, Cliniques Universitaires Saint Luc and Institute of Experimental Clinical Research, Pneumology, ENT, and Dermatology Pole, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Massimo Cugno
- Medicina Interna, Dipartmento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Kanokvalai Kulthanan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yuhki Yanase
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Allen P Kaplan
- Divison of Pulmonary and Critical Care Medicine and Allergy and Immunology, Department of Medicine, The Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
115
|
Ihekweazu FD, Engevik MA, Ruan W, Shi Z, Fultz R, Engevik KA, Chang-Graham AL, Freeborn J, Park ES, Venable S, Horvath TD, Haidacher SJ, Haag AM, Goodwin A, Schady DA, Hyser JM, Spinler JK, Liu Y, Versalovic J. Bacteroides ovatus Promotes IL-22 Production and Reduces Trinitrobenzene Sulfonic Acid-Driven Colonic Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:704-719. [PMID: 33516788 PMCID: PMC8027925 DOI: 10.1016/j.ajpath.2021.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
The intestinal microbiota influences the development and function of the mucosal immune system. However, the exact mechanisms by which commensal microbes modulate immunity is not clear. We previously demonstrated that commensal Bacteroides ovatus ATCC 8384 reduces mucosal inflammation. Herein, we aimed to identify immunomodulatory pathways employed by B. ovatus. In germ-free mice, mono-association with B. ovatus shifted the CD11b+/CD11c+ and CD103+/CD11c+ dendritic cell populations. Because indole compounds are known to modulate dendritic cells, B. ovatus cell-free supernatant was screened for tryptophan metabolites by liquid chromatography-tandem mass spectrometry and larger quantities of indole-3-acetic acid were detected. Analysis of cecal and fecal samples from germ-free and B. ovatus mono-associated mice confirmed that B. ovatus could elevate indole-3-acetic acid concentrations in vivo. Indole metabolites have previously been shown to stimulate immune cells to secrete the reparative cytokine IL-22. Addition of B. ovatus cell-free supernatant to immature bone marrow-derived dendritic cells stimulated IL-22 secretion. The ability of IL-22 to drive repair in the intestinal epithelium was confirmed using a physiologically relevant human intestinal enteroid model. Finally, B. ovatus shifted the immune cell populations in trinitrobenzene sulfonic acid-treated mice and up-regulated colonic IL-22 expression, effects that correlated with decreased inflammation. Our data suggest that B. ovatus-produced indole-3-acetic acid promotes IL-22 production by immune cells, yielding beneficial effects on colitis.
Collapse
Affiliation(s)
- Faith D Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas.
| | - Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, Texas
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Robert Fultz
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Jasmin Freeborn
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - Evelyn S Park
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Annie Goodwin
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Deborah A Schady
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
| | - James Versalovic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
116
|
Schulz-Kuhnt A, Neurath MF, Wirtz S, Atreya I. Innate Lymphoid Cells as Regulators of Epithelial Integrity: Therapeutic Implications for Inflammatory Bowel Diseases. Front Med (Lausanne) 2021; 8:656745. [PMID: 33869257 PMCID: PMC8044918 DOI: 10.3389/fmed.2021.656745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The occurrence of epithelial defects in the gut relevantly contributes to the pathogenesis of inflammatory bowel diseases (IBD), whereby the impairment of intestinal epithelial barrier integrity seems to represent a primary trigger as well as a disease amplifying consequence of the chronic inflammatory process. Besides epithelial cell intrinsic factors, accumulated and overwhelmingly activated immune cells and their secretome have been identified as critical modulators of the pathologically altered intestinal epithelial cell (IEC) function in IBD. In this context, over the last 10 years increasing levels of attention have been paid to the group of innate lymphoid cells (ILCs). This is in particular due to a preferential location of these rather newly described innate immune cells in close proximity to mucosal barriers, their profound capacity to secrete effector cytokines and their numerical and functional alteration under chronic inflammatory conditions. Aiming on a comprehensive and updated summary of our current understanding of the bidirectional mucosal crosstalk between ILCs and IECs, this review article will in particular focus on the potential capacity of gut infiltrating type-1, type-2, and type-3 helper ILCs (ILC1s, ILC2s, and ILC3s, respectively) to impact on the survival, differentiation, and barrier function of IECs. Based on data acquired in IBD patients or in experimental models of colitis, we will discuss whether the different ILC subgroups could serve as potential therapeutic targets for maintenance of epithelial integrity and/or mucosal healing in IBD.
Collapse
Affiliation(s)
- Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
117
|
Xu B, Zhang X, Gao Y, Song J, Shi B. Microglial Annexin A3 promoted the development of melanoma via activation of hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway. J Clin Lab Anal 2021; 35:e23622. [PMID: 33118214 PMCID: PMC7891517 DOI: 10.1002/jcla.23622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Melanoma, a relatively common malignancy, has become one of the tumors with the fastest rising incidence in recent years. The purpose of this study was to investigate the effect of Microglial Annexin A3 (ANXA3) on melanoma. METHODS Serum samples were obtained from 20 patients with melanoma or 20 healthy controls. Kaplan-Meier survival analysis was performed. Transcriptome were used to analyze the correlation between ANXA3 expression and overall survival in patients with melanoma. Human melanoma cell lines WM-115 cells were transfected with ANXA3, si-ANXA3, ANXA3 + si-hypoxia inducible factor-1α (HIF-1α), si-ANXA3 + HIF-1α, and negative plasmids. Cell proliferation assay, cell invasion assay, and wound healing assay were performed on WM-115 cells. Lactate dehydrogenase (LDH) and caspase-3/9 activities were detected by commercial kits. Western blot and RT-PCR were used to detect the protein and mRNA expression of relation factors. RESULTS ANXA3 expression was up-regulated in patients with melanoma in comparison with healthy controls. Over-expression of ANXA3 promoted cell growth and migration, and reduced cytotoxicity of WM-115 cells. Overall survival (OS) and disease-free survival (DFS) of patients with high ANXA3 expression were both lower than those of patients with low ANXA3 expression. Down-regulation of ANXA3 reduced cell growth and migration, and promoted cytotoxicity of WM-115 cells. ANXA3 induced vascular endothelial growth factor (VEGF) signaling pathway by activation of HIF-1α. CONCLUSION In conclusion, our results indicated that ANXA3 promoted cell growth and migration of melanoma via activation of HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
- Bin Xu
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Xiping Zhang
- Department of Tumor SurgeryZhejiang Cancer HospitalHangzhouChina
| | - Yuan Gao
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Jianfei Song
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Bailing Shi
- Department of SurgeryThe Third Affiliated Hospital of ZhejiangChinese Medical UniversityHangzhouChina
| |
Collapse
|
118
|
Xuan X, Zhang L, Tian C, Wu T, Ye H, Cao J, Chen F, Liang Y, Yang H, Huang C. Interleukin-22 and connective tissue diseases: emerging role in pathogenesis and therapy. Cell Biosci 2021; 11:2. [PMID: 33407883 PMCID: PMC7788945 DOI: 10.1186/s13578-020-00504-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023] Open
Abstract
Interleukin-22 (IL-22), a member of the IL-10 family of cytokines, is produced by a number of immune cells involved in the immune microenvironment of the body. IL-22 plays its pivotal roles by binding to the IL-22 receptor complex (IL-22R) and subsequently activating the IL-22R downstream signalling pathway. It has recently been reported that IL-22 also contributes to the pathogenesis of many connective tissue diseases (CTDs). In this review, we will discuss the role of IL-22 in several CTDs, such as system lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, systemic sclerosis and dermatomyositis, suggesting that IL-22 may be a potential therapeutic target in CTDs.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Lin Zhang
- Department of Gerontology, Jinan City People's Hospital, Jinan, 271199, Shandong, China
| | - Chunxia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haihua Ye
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Juanmei Cao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fangqi Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan Liang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Huilan Yang
- Department of Dermatology, General Hospital of Southern Theatre Command, Guangzhou, 510000, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
119
|
Wu WJH, Zegarra-Ruiz DF, Diehl GE. Intestinal Microbes in Autoimmune and Inflammatory Disease. Front Immunol 2020; 11:597966. [PMID: 33424846 PMCID: PMC7786055 DOI: 10.3389/fimmu.2020.597966] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses resulting in excessive and uncontrolled tissue inflammation. Multiple factors including genetic variation, environmental stimuli, and infection are all thought to contribute to continued inflammation and pathology. Current evidence supports the microbiota as one such factor with emerging data linking commensal organisms to the onset and progression of disease. In this review, we will discuss links between the microbiota and specific diseases as well as highlight common pathways that link intestinal microbes with multiple autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Wan-Jung H. Wu
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Daniel F. Zegarra-Ruiz
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
120
|
Diet Rich in Simple Sugars Promotes Pro-Inflammatory Response via Gut Microbiota Alteration and TLR4 Signaling. Cells 2020; 9:cells9122701. [PMID: 33339337 PMCID: PMC7766268 DOI: 10.3390/cells9122701] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is a strong modifier of microbiome and mucosal microenvironment in the gut. Recently, components of western-type diets have been associated with metabolic and immune diseases. Here, we studied how high-sugar diet (HSD) consumption influences gut mucosal barrier and immune response under steady state conditions and in a mouse model of acute colitis. We found that HSD significantly increased gut permeability, spleen weight, and neutrophil levels in spleens of healthy mice. Subsequent dextran sodium sulfate administration led to severe colitis. In colon, HSD significantly promoted neutrophil infiltration and increased the levels of IL-6, IL-1β, and TNF-α. Moreover, HSD-fed mice had significantly higher abundance of pathobionts, such as Escherichia coli and Candida, in fecal samples. Although germ-free mice colonized with microbiota of conventionally reared mice that consumed different diets had equally severe colitis, mice colonized with HSD microbiota showed markedly increased infiltration of neutrophils to the gut. The induction of colitis in Toll-like receptor 4 (TLR4)-deficient HSD-fed mice led to significantly milder colitis than in wild-type mice. In conclusion, our results suggested a significant role of HSD in disruption of barrier integrity and balanced mucosal and systemic immune response. In addition, these processes seemed to be highly influenced by resident potentially pathogenic microbiota or metabolites via the TLR4 signaling pathway.
Collapse
|
121
|
Sakemi R, Mitsuyama K, Morita M, Yoshioka S, Kuwaki K, Tokuyasu H, Fukunaga S, Mori A, Araki T, Yoshimura T, Yamasaki H, Tsuruta K, Morita T, Yamasaki S, Mizoguchi A, Sou S, Torimura T. Altered serum profile of the interleukin-22 system in inflammatory bowel disease. Cytokine 2020; 136:155264. [PMID: 32920320 DOI: 10.1016/j.cyto.2020.155264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM Interleukin-22 (IL-22), plays a vital role in the mucosal repair of inflammatory bowel disease (IBD). Serum levels of IL-22 and IL-22 binding protein (IL-22BP), a soluble inhibitory IL-22 receptor, were measured in patients with IBD to investigate the profile of IL-22 in the systemic circulation. METHODS Blood samples from 92 healthy subjects, 98 patients with ulcerative colitis (UC), and 105 patients with Crohn's disease (CD) were analyzed for serum levels of IL-22, IL-22BP, human β-defensin 2 (hBD-2), and serum inflammatory parameters. Disease activity was assessed by the partial Mayo score and Harvey-Bradshaw index for UC and CD, respectively. RESULTS Serum IL-22 level was lower in UC (P < 0.001) and CD (P < 0.001) vs control and its decrease was more pronounced in CD than in UC (P = 0.019). Serum IL-22BP level was lower in UC (P < 0.001) and CD (P < 0.001) vs control and correlated with inflammatory parameters (albumin and C-reactive protein (CRP) in UC; hemoglobin, albumin, and CRP in CD). Serum IL-22/IL-22BP ratios were higher in UC (P = 0.009) vs control and correlated with inflammatory parameters (albumin and CRP). Serum hBD-2 level was higher only in CD (P = 0.015) but did not correlate with serum IL-22 levels, IL-22BP levels, IL-22/IL-22BP ratios, or inflammatory parameters. CONCLUSIONS Dysregulation of the IL-22 system in the blood may play a role in the pathogenesis of IBD. Further studies are needed to understand the pathogenic and clinical significance of the blood IL-22 system in IBD.
Collapse
Affiliation(s)
- Ryosuke Sakemi
- Department of Gastroenterology, Tobata Kyoritsu Hospital, 2-5-1 Sawami, Tobata-ku, Kitakyushu 804-0093, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Masaru Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kotaro Kuwaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hidenori Tokuyasu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shuhei Fukunaga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Tetsuhiro Yoshimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hiroshi Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Taku Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Sayo Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Suketo Sou
- Department of Gastroenterology, Tobata Kyoritsu Hospital, 2-5-1 Sawami, Tobata-ku, Kitakyushu 804-0093, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
122
|
Bock KW. Aryl hydrocarbon receptor (AHR), integrating energy metabolism and microbial or obesity-mediated inflammation. Biochem Pharmacol 2020; 184:114346. [PMID: 33227291 DOI: 10.1016/j.bcp.2020.114346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AHR) has been characterized as multifunctional sensor, integrator and ligand-activated transcription factor of the bHLH/PAS family. Regulation of inflammatory diseases and energy metabolism are among the putative functions of AHR. Challenges in AHR research include marked species differences, and cell, tissue and context dependence of AHR functions. The commentary is focused on AHR's role in the integration between energy expenditure and microbial and non-infectious inflammation, the latter exemplified by obesity-mediated nonalcoholic fatty liver disease. One of the mechanisms controlling energy-consuming inflammation is represented by a signalsome that is involved in retinoic acid-triggered neutrophil differentiation and regulation of the NADPH oxidase complex (NOX). Established signalsome components are AHR, CD38, multiple protein kinases and adaptors. To prevent chronic inflammatory diseases, the complex interplay between a range of inflammatory responses and energy expenditure must be precisely regulated. Surviving an infection requires both pathogen clearance and tissue protection from inflammatory damage. Defenses are energy-consuming anabolic programs. Therefore, anti-inflammatory, catabolic tolerance programs by metabolic reprogramming of macrophages have evolved. Therapeutic options of AHR agonists to reduce chronic inflammatory diseases are discussed.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
123
|
Fischer F, Romero R, Hellhund A, Linne U, Bertrams W, Pinkenburg O, Eldin HS, Binder K, Jacob R, Walker A, Stecher B, Basic M, Luu M, Mahdavi R, Heintz-Buschart A, Visekruna A, Steinhoff U. Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota. Gut Microbes 2020; 12:1-17. [PMID: 33079623 PMCID: PMC7583510 DOI: 10.1080/19490976.2020.1829962] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Although it is generally accepted that dietary fiber is health promoting, the underlying immunological and molecular mechanisms are not well defined, especially with respect to cellulose, the most ubiquitous dietary fiber. Here, the impact of dietary cellulose on intestinal microbiota, immune responses and gene expression in health and disease was examined. Lack of dietary cellulose disrupted the age-related diversification of the intestinal microbiota, which subsequently remained in an immature state. Interestingly, one of the most affected microbial genera was Alistipes which is equipped with enzymes to degrade cellulose. Absence of cellulose changed the microbial metabolome, skewed intestinal immune responses toward inflammation, altered the gene expression of intestinal epithelial cells and mice showed increased sensitivity to colitis induction. In contrast, mice with a defined microbiota including A. finegoldii showed enhanced colonic expression of intestinal IL-22 and Reg3γ restoring intestinal barrier function. This study supports the epidemiological observations and adds a causal explanation for the health promoting effects of the most common biopolymer on earth.
Collapse
Affiliation(s)
- Florence Fischer
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Rossana Romero
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Anne Hellhund
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Uwe Linne
- Core Facility for Mass Spectrometry and Elemental Analysis, Philipps University, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps University, Marburg, Germany
| | - Olaf Pinkenburg
- Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Hosam Shams Eldin
- Experimental Animal Facility, Biomedical Research Center, Philipps University, Marburg, Germany
| | - Kai Binder
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University, Marburg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Munich, Germany
| | - Bärbel Stecher
- Max Von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilians-University München and German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Marijana Basic
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Maik Luu
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Rouzbeh Mahdavi
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Anna Heintz-Buschart
- Department Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle/Saale, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| |
Collapse
|
124
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
125
|
Tosti N, Cremonesi E, Governa V, Basso C, Kancherla V, Coto-Llerena M, Amicarella F, Weixler B, Däster S, Sconocchia G, Majno PE, Christoforidis D, Tornillo L, Terracciano L, Ng CKY, Piscuoglio S, von Flüe M, Spagnoli G, Eppenberger-Castori S, Iezzi G, Droeser RA. Infiltration by IL22-Producing T Cells Promotes Neutrophil Recruitment and Predicts Favorable Clinical Outcome in Human Colorectal Cancer. Cancer Immunol Res 2020; 8:1452-1462. [PMID: 32839156 DOI: 10.1158/2326-6066.cir-19-0934] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/19/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Immune cell infiltration in colorectal cancer effectively predicts clinical outcome. IL22, produced by immune cells, plays an important role in inflammatory bowel disease, but its relevance in colorectal cancer remains unclear. Here, we addressed the prognostic significance of IL22+ cell infiltration in colorectal cancer and its effects on the composition of tumor microenvironment. Tissue microarrays (TMA) were stained with an IL22-specific mAb, and positive immune cells were counted by expert pathologists. Results were correlated with clinicopathologic data and overall survival (OS). Phenotypes of IL22-producing cells were assessed by flow cytometry on cell suspensions from digested specimens. Chemokine production was evaluated in vitro upon colorectal cancer cell exposure to IL22, and culture supernatants were used to assess neutrophil migration in vitro Evaluation of a testing (n = 425) and a validation TMA (n = 89) revealed that high numbers of IL22 tumor-infiltrating immune cells were associated with improved OS in colorectal cancer. Ex vivo analysis indicated that IL22 was produced by CD4+ and CD8+ polyfunctional T cells, which also produced IL17 and IFNγ. Exposure of colorectal cancer cells to IL22 promoted the release of the neutrophil-recruiting chemokines CXCL1, CXCL2, and CXCL3 and enhanced neutrophil migration in vitro Combined survival analysis revealed that the favorable prognostic significance of IL22 in colorectal cancer relied on the presence of neutrophils and was enhanced by T-cell infiltration. Altogether, colorectal cancer-infiltrating IL22-producing T cells promoted a favorable clinical outcome by recruiting beneficial neutrophils capable of enhancing T-cell responses.
Collapse
Affiliation(s)
- Nadia Tosti
- Institute of Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
| | | | - Valeria Governa
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Camilla Basso
- Department of Surgery, Ente Ospedaliero Cantonale and Università Svizzera Italiana, Lugano, Switzerland
| | - Venkatesh Kancherla
- Institute of Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
| | | | - Benjamin Weixler
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Silvio Däster
- Department of Colorectal Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Pietro Edoardo Majno
- Department of Surgery, Ente Ospedaliero Cantonale and Università Svizzera Italiana, Lugano, Switzerland
| | - Dimitri Christoforidis
- Department of Surgery, Ente Ospedaliero Cantonale and Università Svizzera Italiana, Lugano, Switzerland
| | - Luigi Tornillo
- Institute of Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Institute of Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, Visceral Surgery Research Laboratory, Clarunis, Basel, Switzerland
| | - Markus von Flüe
- Department of Biomedicine, Visceral Surgery Research Laboratory, Clarunis, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, Clarunis, University of Basel, Basel, Switzerland
| | - Giulio Spagnoli
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | - Giandomenica Iezzi
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Surgery, Ente Ospedaliero Cantonale and Università Svizzera Italiana, Lugano, Switzerland
| | - Raoul Andre Droeser
- University Center for Gastrointestinal and Liver Diseases, Clarunis, University of Basel, Basel, Switzerland.
| |
Collapse
|
126
|
Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, Wang J, Ye X, Zhu J, Shang L. IL-17 is a potential biomarker for predicting the severity and outcomes of pulmonary contusion in trauma patients. Biomed Rep 2020; 14:5. [PMID: 33235720 PMCID: PMC7678624 DOI: 10.3892/br.2020.1381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary contusion (PC) is very common in blunt chest trauma, and always results in negative pulmonary outcomes, such as pneumonia, acute respiratory distress syndrome (ARDS), respiratory failure or even death. However, there are no effective biomarkers which can be used to predict the outcomes in these patients. The present study aimed to determine the value of interleukin (IL)-17 and IL-22 in predicting the severity and outcomes of PC in trauma patients. All trauma patients admitted to The First Affiliated Hospital of Guangxi Medical University between January 2015 and December 2017, were studied. Patients aged >14 years old with a diagnosis of PC upon their admission to the emergency department were included. Patients with PC were enrolled as the PC group, patients without PC were enrolled as the non-PC group, and healthy individuals were selected as the control group. Clinical information, including sociodemographic parameters, clinical data, biological findings and therapeutic interventions were recorded for all patients who were enrolled. Blood samples were collected and stored according to the established protocols. PC volume was measured by computed tomography and plasma cytokine levels were assayed by ELISA. A total of 151 patients with PC (PC group) and 159 patients without PC (non-PC group) were included in the present study. In addition, 50 healthy individuals were used as the control group. The primary cause of PC was motor vehicle crashes. PC patients had more rib fractures, but similar injury severity scores compared with other patients. More patients received Pleurocan drainage treatment and had pneumonia complications in the PC group compared with the other two groups. PC patients had a high incidence of ARDS and admission to the intensive care unit (ICU). PC patients also experienced longer periods on mechanical ventilation and had longer stays in the ICU and hospital. PC volume was effective in predicting the outcomes of PC patients. IL-22 levels were similar in the PC group and non-PC group. However, IL-17 could be used as a biomarker to predict the severity of PC, and was strongly associated with PC volume. IL-17 was significantly associated with pro-inflammatory complications in PC patients and could be used as a biomarker for predicting in-patient outcomes of patients with PC. In conclusion, IL-17 is a potential biomarker for predicting the severity and outcomes of PC in trauma patients.
Collapse
Affiliation(s)
- Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quanlin Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daqing Luo
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenhui Pan
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuqing Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Junxuan Wang
- Department of Medical Records, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
127
|
Song D, Lai L, Ran Z. Metabolic Regulation of Group 3 Innate Lymphoid Cells and Their Role in Inflammatory Bowel Disease. Front Immunol 2020; 11:580467. [PMID: 33193381 PMCID: PMC7649203 DOI: 10.3389/fimmu.2020.580467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammatory disorder of the intestine. IBD is associated with complex pathogenesis, and considerable data suggest that innate lymphoid cells contribute to the development and progression of the condition. Group 3 innate lymphoid cells (ILC3s) not only play a protective role in maintaining intestinal homeostasis and gut barrier function, but also a pathogenic role in intestinal inflammation. ILC3s can sense environmental and host-derived signals and combine these cues to modulate cell expansion, migration and function, and transmit information to the broader immune system. Herein, we review current knowledge of how ILC3s can be regulated by dietary nutrients, microbiota and their metabolites, as well as other metabolites. In addition, we describe the phenotypic and functional alterations of ILC3s in IBD and discuss the therapeutic potential of ILC3s in the treatment of IBD.
Collapse
Affiliation(s)
| | | | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
128
|
Kunkl M, Amormino C, Frascolla S, Sambucci M, De Bardi M, Caristi S, Arcieri S, Battistini L, Tuosto L. CD28 Autonomous Signaling Orchestrates IL-22 Expression and IL-22-Regulated Epithelial Barrier Functions in Human T Lymphocytes. Front Immunol 2020; 11:590964. [PMID: 33178223 PMCID: PMC7592429 DOI: 10.3389/fimmu.2020.590964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
IL-22 is a member of the IL-10 cytokine family involved in host protection against extracellular pathogens, by promoting epithelial cell regeneration and barrier functions. Dysregulation of IL-22 production has also frequently been observed in acute respiratory distress syndrome (ARDS) and several chronic inflammatory and autoimmune diseases. We have previously described that human CD28, a crucial co-stimulatory receptor necessary for full T cell activation, is also able to act as a TCR independent signaling receptor and to induce the expression of IL-17A and inflammatory cytokines related to Th17 cells, which together with Th22 cells represent the main cellular source of IL-22. Here we characterized the role of CD28 autonomous signaling in regulating IL-22 expression in human CD4+ T cells. We show that CD28 stimulation in the absence of TCR strongly up-regulates IL-22 gene expression and secretion. As recently observed for IL-17A, we also found that CD28-mediated regulation of IL-22 transcription requires the cooperative activities of both IL-6-activated STAT3 and RelA/NF-κB transcription factors. CD28-mediated IL-22 production also promotes the barrier functions of epithelial cells by inducing mucin and metalloproteases expression. Finally, by using specific inhibitory drugs, we also identified CD28-associated class 1A phosphatidylinositol 3-kinase (PI3K) as a pivotal mediator of CD28-mediated IL-22 expression and IL-22-dependent epithelial cell barrier functions.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Simone Frascolla
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
129
|
Shin DW, Lim BO. Nutritional Interventions Using Functional Foods and Nutraceuticals to Improve Inflammatory Bowel Disease. J Med Food 2020; 23:1136-1145. [PMID: 33047999 DOI: 10.1089/jmf.2020.4712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract, the second largest organ in the body, plays an important role in nutrient and mineral intake through the intestinal barrier. Dysfunction of intestinal permeability and related disorders commonly occur in patients with inflammatory bowel disease (IBD), one of the health problems in the Western societies that are considered to be mainly due to the Western diet. Although the exact etiology of IBD has not been elucidated, environmental and genetic factors may be involved in its pathogenesis. Many synthetic or biological drugs, such as 5-aminosalicylic acid corticosteroids as anti-inflammatory drugs, have been used clinically to treat IBD. However, their long-term use exhibits some adverse health consequences. Therefore, many researchers have devised alternative therapies to overcome this problem. Many studies have revealed that some functional nutrients in nature can relieve gastrointestinal inflammation by controlling proinflammatory cytokines. In this study, we review the ability of functional nutraceuticals such as phytochemicals, fatty acids, and bioactive peptides in improving IBD by regulating its underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea.,Research Institute of Inflammatory Disease, Konkuk University, Chungju, Korea
| |
Collapse
|
130
|
Yang Y, Wang J, Xu J, Liu Q, Wang Z, Zhu X, Ai X, Gao Q, Chen X, Zou J. Characterization of IL-22 Bioactivity and IL-22-Positive Cells in Grass Carp Ctenopharyngodon idella. Front Immunol 2020; 11:586889. [PMID: 33178219 PMCID: PMC7593840 DOI: 10.3389/fimmu.2020.586889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin (IL)-22 plays an important role in regulating inflammation and clearance of infectious pathogens. IL-22 homologs have been discovered in fish, but the functions and sources of IL-22 have not been fully characterized. In this study, an IL-22 homolog was identified in grass carp and its bioactivities were investigated. The grass carp IL-22 was constitutively expressed in tissues, with the highest expression detected in the gills and hindgut. It was upregulated in the spleen after infection with Flavobacterium columnare and grass carp reovirus and in the primary head kidney and spleen leukocytes stimulated with LPS and IL-34. Conversely, it was downregulated by Th2 cytokines such as IL-4/13B and IL-10. The recombinant IL-22 produced in bacteria showed a stimulatory effect on the expression of inflammatory cytokines and STAT3 in the primary head kidney leukocytes and CIK cells. Moreover, the IL-22-positive cells were found to be induced in the hindgut and head kidney 24 h after infection by F. columnare. Our data suggest that IL-22 plays an important role in regulating mucosal and systemic immunity against bacterial and viral infection.
Collapse
Affiliation(s)
- Yibin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiawen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
131
|
Bertani L, Rossari F, Barberio B, Demarzo MG, Tapete G, Albano E, Baiano Svizzero G, Ceccarelli L, Mumolo MG, Brombin C, de Bortoli N, Bellini M, Marchi S, Bodini G, Savarino E, Costa F. Novel Prognostic Biomarkers of Mucosal Healing in Ulcerative Colitis Patients Treated With Anti-TNF: Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio. Inflamm Bowel Dis 2020; 26:1579-1587. [PMID: 32232392 DOI: 10.1093/ibd/izaa062] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Anti-tumor necrosis factor drugs (anti-TNFs) are widely used for the treatment of ulcerative colitis (UC). However, many patients experience loss of response during the first year of therapy. An early predictor of clinical remission and mucosal healing is needed. The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are markers of subclinical inflammation poorly evaluated in UC patients treated with anti-TNFs. The aim of this multicenter study was to evaluate whether NLR and PLR could be used as prognostic markers of anti-TNF treatment response. METHODS Patients with UC who started anti-TNF treatment in monotherapy were evaluated. Patients with concomitant corticosteroid treatment ≥20 mg were excluded. We calculated NLR, PLR, and fecal calprotectin before treatment and after induction. The values of NLR and PLR were correlated with clinical remission and mucosal healing at the end of follow-up (54 weeks) using the Mann-Whitney U test and then multivariate analysis was conducted. RESULTS Eighty-eight patients were included. Patients who reached mucosal healing after 54 weeks of therapy displayed lower levels of both baseline NLR and PLR (P = 0.0001 and P = 0.04, respectively); similar results were obtained at week 8 (P = 0.0001 and P = 0.001, respectively). Patients who presented with active ulcers at baseline endoscopic evaluation had higher baseline NLR and PLR values compared with those without detected ulcers (P = 0.002 and P = 0.0007, respectively). CONCLUSIONS BothNLR and PLR showed a promising role as early predictors of therapeutic response to anti-TNF therapy in UC patients. If confirmed in larger studies, classification and regression trees proposed in this article could be useful to guide clinical decisions regarding anti-TNF treatment.
Collapse
Affiliation(s)
- Lorenzo Bertani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Rossari
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Maria Giulia Demarzo
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - Gherardo Tapete
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Eleonora Albano
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Baiano Svizzero
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Linda Ceccarelli
- Department of General Surgery and Gastroenterology, IBD Unit, Pisa University Hospital, Pisa, Italy
| | - Maria Gloria Mumolo
- Department of General Surgery and Gastroenterology, IBD Unit, Pisa University Hospital, Pisa, Italy
| | - Chiara Brombin
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola de Bortoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Bellini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Santino Marchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giorgia Bodini
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Francesco Costa
- Department of General Surgery and Gastroenterology, IBD Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
132
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
133
|
Coletta M, Paroni M, Alvisi MF, De Luca M, Rulli E, Mazza S, Facciotti F, Lattanzi G, Strati F, Abrignani S, Fantini MC, Vecchi M, Geginat J, Caprioli F. Immunological Variables Associated With Clinical and Endoscopic Response to Vedolizumab in Patients With Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:1190-1201. [PMID: 32100016 DOI: 10.1093/ecco-jcc/jjaa035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIMS Vedolizumab [VDZ] is a monoclonal antibody directed against the α4β7 integrin heterodimer, approved for patients with inflammatory bowel diseases [IBD]. This study aimed at identifying immunological variables associated with response to vedolizumab in patients with ulcerative colitis [UC] and Crohn's disease [CD]. METHODS This is a phase IV explorative prospective interventional trial. IBD patients received open-label VDZ at Weeks 0, 2, 6, and 14. Patients with a clinical response at Week 14 were maintained with VDZ up to Week 54. At Weeks 0 and 14, their peripheral blood was obtained and endoscopy with biopsies was performed. The Week 14 clinical response and remission, Week 54 clinical remission, and Week 14 endoscopic response were evaluated as endpoints of the study. The expression of surface markers, chemokine receptors, and α4β7 heterodimer in peripheral blood and lamina propria lymphocytes was assessed by flow cytometry. A panel of soluble mediators was assessed in sera at baseline and at Week 14 by 45-plex. RESULTS A total of 38 IBD patients [20 UC, 18 CD] were included in the study. At Week 14, the clinical response and remission rates were 87% and 66%, respectively. Higher baseline levels of circulating memory Th1 cells were strongly associated with clinical response at Week 14 [p = 0.0001], whereas reduced baseline levels of lamina propria memory Th17 and Th1/17 cells were associated with endoscopic response. Immunological clusters were found to be independently associated with vedolizumab outcomes at multivariable analysis. A panel of soluble markers, including IL17A, TNF, CXCL1, CCL19 for CD and G-CSF and IL7 for UC, associated with vedolizumab-induced Week 54 clinical remission. CONCLUSIONS The results of this exploratory study uncovered a panel of circulating and mucosal immunological variables associated with response to treatment with vedolizumab.
Collapse
Affiliation(s)
- Marina Coletta
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare 'Enrica ed Romeo Invernizzi' [INGM], Milan, Italy.,Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Francesca Alvisi
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Matilde De Luca
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Rulli
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefano Mazza
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare 'Enrica ed Romeo Invernizzi' [INGM], Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare 'Enrica ed Romeo Invernizzi' [INGM], Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
134
|
Bock KW. Aryl hydrocarbon receptor (AHR)-mediated inflammation and resolution: Non-genomic and genomic signaling. Biochem Pharmacol 2020; 182:114220. [PMID: 32941865 DOI: 10.1016/j.bcp.2020.114220] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Inflammation, an old medical problem, is being recognized as an active, well orchestrated biological process. When dysregulated, chronic inflammation may ensue, leading to tissue-dependent diseases. Depending upon the ligand and cellular context, aryl hydrocarbon receptor (AHR) may accelerate or attenuate inflammation and subsequent resolution. Three examples are discussed in which AHR modulates inflammation by a mixture of genomic and non-genomic signaling pathways: (i) AHR-agonistic bacterial virulence factors are leading to both microbial defense and resolution of inflammatory responses. (ii) TCDD-mediated persistent AHR activation initially leads to inflammation by non-genomic signaling, and may potentially lead to chronic inflammation. (iii) AHR may modulate anti-inflammatory actions in obesity-mediated non-alcoholic fatty liver disease (NAFLD): Hepatic lipotoxicity triggers generation of danger-associated molecular patterns (DAMPs) that facilitate the development of hepatitis. AHR is mainly involved in the resolution phase by induction of lipoxin A4 and Il-22. Moderate AHR activation by phytochemicals and microbial AHR ligands may facilitate resolution. In control of inflammation, AHR appears to integrate environmental conditions with coordinated cellular functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
135
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
136
|
Powell DN, Swimm A, Sonowal R, Bretin A, Gewirtz AT, Jones RM, Kalman D. Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc Natl Acad Sci U S A 2020; 117:21519-21526. [PMID: 32817517 PMCID: PMC7474656 DOI: 10.1073/pnas.2003004117] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium is a highly dynamic structure that rejuvenates in response to acute stressors and can undergo alterations in cellular composition as animals age. The microbiota, acting via secreted factors related to indole, appear to regulate the sensitivity of the epithelium to stressors and promote epithelial repair via IL-22 and type I IFN signaling. As animals age, the cellular composition of the intestinal epithelium changes, resulting in a decreased proportion of goblet cells in the colon. We show that colonization of young or geriatric mice with bacteria that secrete indoles and various derivatives or administration of the indole derivative indole-3 aldehyde increases proliferation of epithelial cells and promotes goblet cell differentiation, reversing an effect of aging. To induce goblet cell differentiation, indole acts via the xenobiotic aryl hydrocarbon receptor to increase expression of the cytokine IL-10. However, the effects of indoles on goblet cells do not depend on type I IFN or on IL-22 signaling, pathways responsible for protection against acute stressors. Thus, indoles derived from the commensal microbiota regulate intestinal homeostasis, especially during aging, via mechanisms distinct from those used during responses to acute stressors. Indoles may have utility as an intervention to limit the decline of barrier integrity and the resulting systemic inflammation that occurs with aging.
Collapse
Affiliation(s)
- Domonica N Powell
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Alyson Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Robert Sonowal
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Alexis Bretin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA 30303
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA 30303
| | - Rheinallt M Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
137
|
Porter AC, Aubrecht J, Birch C, Braun J, Cuff C, Dasgupta S, Gale JD, Hinton R, Hoffmann SC, Honig G, Linggi B, Schito M, Casteele NV, Sauer JM. Biomarkers of Crohn's Disease to Support the Development of New Therapeutic Interventions. Inflamm Bowel Dis 2020; 26:1498-1508. [PMID: 32840322 PMCID: PMC7500523 DOI: 10.1093/ibd/izaa215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Currently, 2 coprimary end points are used by health authorities to determine the effectiveness of therapeutic interventions in patients with Crohn's disease (CD): symptomatic remission (patient-reported outcome assessment) and endoscopic remission (ileocolonoscopy). However, there is lack of accepted biomarkers to facilitate regulatory decision-making in the development of novel therapeutics for the treatment of CD. METHODS With support from the Helmsley Charitable Trust, Critical Path Institute formed the Crohn's Disease Biomarkers preconsortium (CDBpC) with members from the pharmaceutical industry, academia, and nonprofit organizations to evaluate the CD biomarker landscape. Biomarkers were evaluated based on biological relevance, availability of biomarker assays, and clinical validation data. RESULTS The CDBpC identified the most critical need as pharmacodynamic/response biomarkers to monitor disease activity in response to therapeutic intervention. Fecal calprotectin (FC) and serum C-reactive protein (CRP) were identified as biomarkers ready for the regulatory qualification process. A number of exploratory biomarkers and potential panels of these biomarkers was also identified for additional development. Given the different factors involved in CD and disease progression, a combination of biomarkers, including inflammatory, tissue injury, genetic, and microbiome-associated biomarkers, will likely have the most utility. CONCLUSIONS The primary focus of the Inflammatory Bowel Disease Regulatory Science Consortium will be development of exploratory biomarkers and the qualification of FC and CRP for IBD. The Inflammatory Bowel Disease Regulatory Science Consortium, focused on tools to support IBD drug development, will operate in the precompetitive space to share data, biological samples for biomarker testing, and assay information for novel biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeremy D Gale
- Pfizer Worldwide, Research, Development and Medical, Cambridge, MA, USA
| | - Robert Hinton
- The David R Clare and Margaret C Clare Foundation, Morristown, NJ, USA
| | | | | | | | | | - Niels Vande Casteele
- Department of Medicine, University of California San Diego, CA, USA,Robarts Clinical Trials Inc., London, ON, Canada
| | - John-Michael Sauer
- Critical Path Institute, AZ, USA,Address correspondence to: John-Michael Sauer, Critical Path Institute, 1730 E. River Rd Suite 200, Tucson, Arizona 85718, USA. E-mail:
| |
Collapse
|
138
|
Rannug A. How the AHR Became Important in Intestinal Homeostasis-A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int J Mol Sci 2020; 21:ijms21165681. [PMID: 32784381 PMCID: PMC7461111 DOI: 10.3390/ijms21165681] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since the 1970s, when profound immunosuppression caused by exogenous dioxin-like compounds was first observed, the involvement of the aryl hydrocarbon receptor (AHR) in immunomodulation has been the focus of considerable research interest. Today it is established that activation of this receptor by its high-affinity endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ), plays important physiological roles in maintaining epithelial barriers. In the gut lumen, the small amounts of FICZ that are produced from L-tryptophan by microbes are normally degraded rapidly by the inducible cytochrome P4501A1 (CYP1A1) enzyme. This review describes how when the metabolic clearance of FICZ is attenuated by inhibition of CYP1A1, this compound passes through the intestinal epithelium to immune cells in the lamina propria. FICZ, the level of which is thus modulated by this autoregulatory loop involving FICZ itself, the AHR and CYP1A1, plays a central role in maintaining gut homeostasis by potently up-regulating the expression of interleukin 22 (IL-22) by group 3 innate lymphoid cells (ILC3s). IL-22 stimulates various epithelial cells to produce antimicrobial peptides and mucus, thereby both strengthening the epithelial barrier against pathogenic microbes and promoting colonization by beneficial bacteria. Dietary phytochemicals stimulate this process by inhibiting CYP1A1 and causing changes in the composition of the intestinal microbiota. The activity of CYP1A1 can be increased by other microbial products, including the short-chain fatty acids, thereby accelerating clearance of FICZ. In particular, butyrate enhances both the level of the AHR and CYP1A1 activity by stimulating histone acetylation, a process involved in the daily cycle of the FICZ/AHR/CYP1A1 feedback loop. It is now of key interest to examine the potential involvement of FICZ, a major physiological activator of the AHR, in inflammatory disorders and autoimmunity.
Collapse
Affiliation(s)
- Agneta Rannug
- Karolinska Institutet, Institute of Environmental Medicine, 171 77 Stockholm, Sweden
| |
Collapse
|
139
|
Li G, Zhang L, Han N, Zhang K, Li H. Increased Th17 and Th22 Cell Percentages Predict Acute Lung Injury in Patients with Sepsis. Lung 2020; 198:687-693. [PMID: 32462370 DOI: 10.1007/s00408-020-00362-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE This study was conducted to investigate the percentages of Th22 and Th17 cells in the peripheral blood of septic patients with and without acute lung injury (ALI) and their clinical significance. METHODS A total of 479 patients were divided into non-ALI and ALI groups. The percentages of Th22 and Th17 cells and the levels of interleukin 22 (IL-22), 6 (IL-6), and 17 (IL-17) were determined. Receiver operating characteristic curve analysis was performed to assess the diagnostic value of Th22 and Th17 cells to predict sepsis-induced ALI. RESULTS The lung injury prediction score (LIPS), IL-6, IL-17, and IL-22 levels and the percentages of Th17 and Th22 cells were significantly higher in the ALI group (P < 0.05). They were significant factors affecting sepsis-induced ALI (P < 0.05). Multivariate logistic regression analysis showed that the LIPS (OR = 1.130), IL-17 (OR = 1.982), IL-22 (OR = 2.612) and the percentages of Th17 (OR = 2.211) and Th22 (OR = 3.230) cells were independent risk factors for ALI. The area under the curve of Th22 cells was 0.844 to predict ALI with a cutoff value of 6.81%. The sensitivity and specificity for early diagnosis of sepsis-induced ALI by the Th22 cell percentage were 78.72% and 89.13%, respectively. CONCLUSIONS Th22 and Th17 cells in peripheral blood are significantly increased in septic patients with ALI and they may be used as biomarkers for early diagnosis of sepsis-induced ALI.
Collapse
Affiliation(s)
- Gang Li
- Department of Emergency Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, China.
| | - Liangtian Zhang
- Department of Critical Care Medicine, Chunan First People's Hospital, Zhejiang Provincial People's Hospital Chunan Branch, Chunan, China
| | - Nannan Han
- Department of Emergency Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, China
| | - Ke Zhang
- Department of Emergency Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, China
| | - Hengjie Li
- Department of Emergency Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, China
| |
Collapse
|
140
|
Kale SD, Mehrkens BN, Stegman MM, Kastelberg B, Carnes H, McNeill RJ, Rizzo A, Karyala SV, Coutermarsh-Ott S, Fretz JA, Sun Y, Koff JL, Rajagopalan G. "Small" Intestinal Immunopathology Plays a "Big" Role in Lethal Cytokine Release Syndrome, and Its Modulation by Interferon-γ, IL-17A, and a Janus Kinase Inhibitor. Front Immunol 2020; 11:1311. [PMID: 32676080 PMCID: PMC7333770 DOI: 10.3389/fimmu.2020.01311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor T cell (CART) therapy, administration of certain T cell-agonistic antibodies, immune check point inhibitors, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) and Toxic shock syndrome (TSS) caused by streptococcal as well as staphylococcal superantigens share one common complication, that is T cell-driven cytokine release syndrome (CRS) accompanied by multiple organ dysfunction (MOD). It is not understood whether the failure of a particular organ contributes more significantly to the severity of CRS. Also not known is whether a specific cytokine or signaling pathway plays a more pathogenic role in precipitating MOD compared to others. As a result, there is no specific treatment available to date for CRS, and it is managed only symptomatically to support the deteriorating organ functions and maintain the blood pressure. Therefore, we used the superantigen-induced CRS model in HLA-DR3 transgenic mice, that closely mimics human CRS, to delineate the immunopathogenesis of CRS as well as to validate a novel treatment for CRS. Using this model, we demonstrate that (i) CRS is characterized by a rapid rise in systemic levels of several Th1/Th2/Th17/Th22 type cytokines within a few hours, followed by a quick decline. (ii) Even though multiple organs are affected, small intestinal immunopathology is the major contributor to mortality in CRS. (iii) IFN-γ deficiency significantly protected from lethal CRS by attenuating small bowel pathology, whereas IL-17A deficiency significantly increased mortality by augmenting small bowel pathology. (iv) RNA sequencing of small intestinal tissues indicated that IFN-γ-STAT1-driven inflammatory pathways combined with enhanced expression of pro-apoptotic molecules as well as extracellular matrix degradation contributed to small bowel pathology in CRS. These pathways were further enhanced by IL-17A deficiency and significantly down-regulated in mice lacking IFN-γ. (v) Ruxolitinib, a selective JAK-1/2 inhibitor, attenuated SAg-induced T cell activation, cytokine production, and small bowel pathology, thereby completely protecting from lethal CRS in both WT and IL-17A deficient HLA-DR3 mice. Overall, IFN-γ-JAK-STAT-driven pathways contribute to lethal small intestinal immunopathology in T cell-driven CRS.
Collapse
Affiliation(s)
- Shiv D Kale
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Brittney N Mehrkens
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Molly M Stegman
- College of Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bridget Kastelberg
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Henry Carnes
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Rachel J McNeill
- Research and Graduate Studies, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amy Rizzo
- Office of the University Veterinarian, Virginia Tech, Blacksburg, VA, United States
| | - Saikumar V Karyala
- Genomics Sequencing Center, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jackie A Fretz
- Histology and Histomorphometry Laboratory, Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Ying Sun
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Jonathan L Koff
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Govindarajan Rajagopalan
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
141
|
Ahn D, Prince A. Participation of the IL-10RB Related Cytokines, IL-22 and IFN-λ in Defense of the Airway Mucosal Barrier. Front Cell Infect Microbiol 2020; 10:300. [PMID: 32637365 PMCID: PMC7318800 DOI: 10.3389/fcimb.2020.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The airway epithelial barrier is a major barrier protecting against clinically significant infections of the lung. Its integrity is often compromised due to mechanical, chemical, or infectious causes. Opportunistic bacterial pathogens are poised to cause parenchymal infection and become difficult to eradicate due to adaptive metabolic changes, biofilm formation, and the acquisition of antimicrobial resistance and fitness genes. Enhancing mucosal defenses by modulating the cytokines that regulate barrier functions, such as interleukin-22 (IL-22) and interferon-λ (IFN-λ), members of the IL-10 family of cytokines, is an attractive approach to prevent these infections that are associated with high morbidity and mortality. These cytokines both signal through the cognate receptor IL-10RB, have related protein structures and common downstream signaling suggesting shared roles in host respiratory defense. They are typically co-expressed in multiple models of infections, but with differing kinetics. IL-22 has an important role in the producing antimicrobial peptides, upregulating expression of junctional proteins in the airway epithelium and working in concert with other inflammatory cytokines such as IL-17. Conversely, IFN-λ, a potent antiviral in influenza infection with pro-inflammatory properties, appears to decrease junctional integrity allowing for bacterial and immune cell translocation. The effects of these cytokines are pleotropic, with pathogen and tissue specific consequences. Understanding how these cytokines work in the mucosal defenses of the respiratory system may suggest potential targets to prevent invasive infections of the damaged lung.
Collapse
Affiliation(s)
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
142
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions: Balancing opposing processes including inflammatory reactions. Biochem Pharmacol 2020; 178:114093. [PMID: 32535108 DOI: 10.1016/j.bcp.2020.114093] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AHR) research has shifted from exploring dioxin toxicity to elucidation of physiologic AHR functions. Control of AHR functions is challenged by the fact that AHR is often involved in balancing opposing processes. Two AHR functions are discussed. (i) Microbial defense: intestinal microbiota commensals secrete AHR ligands that are important for maintaining epithelial integrity and generation of anti-inflammatory IL-22 by multiple immune cells. On the other hand, in case of microbial defense, AHR-regulated neutrophils and Th17 cells are involved in generation of bactericidal reactive oxygen species and pro-inflammatory stimuli. However, during the process of infection resolution, 'disease tolerance' is achieved. (ii) Energy, NAD+ and lipid metabolism: In obese individuals AHR is involved in either generation or inhibition of fatty liver and associated hepatitis. Inhibition of hepatitis is mainly achieved by regulating NAD+-controlled SIRT1, 3 and 6 activity. Interestingly, these enzymes are synergistically modulated by CD38, an NAD-consuming NAD-glycohydrolase. It is proposed that inflammatory responses may be beneficially modulated by AHR agonistic and CD38 inhibiting phytochemicals. Caveats in presence of carcinogenicity have to be taken into account. AHR research is an exciting field but therapeutic options remain challenging.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
143
|
Gareb B, Otten AT, Frijlink HW, Dijkstra G, Kosterink JGW. Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics 2020; 12:E539. [PMID: 32545207 PMCID: PMC7356880 DOI: 10.3390/pharmaceutics12060539] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) characterized by intestinal inflammation. Increased intestinal levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) are associated with disease activity and severity. Anti-TNF-α therapy is administered systemically and efficacious in the treatment of IBD. However, systemic exposure is associated with adverse events that may impede therapeutic treatment. Clinical studies show that the efficacy correlates with immunological effects localized in the gastrointestinal tract (GIT) as opposed to systemic effects. These data suggest that site-specific TNF-α inhibition in IBD may be efficacious with fewer expected side effects related to systemic exposure. We therefore reviewed the available literature that investigated the efficacy or feasibility of local TNF-α inhibition in IBD. A literature search was performed on PubMed with given search terms and strategy. Of 8739 hits, 48 citations were included in this review. These studies ranged from animal studies to randomized placebo-controlled clinical trials. In these studies, local anti-TNF-α therapy was achieved with antibodies, antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and genetically modified organisms. This narrative review summarizes and discusses these approaches in view of the clinical relevance of local TNF-α inhibition in IBD.
Collapse
Affiliation(s)
- Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Martini Hospital Groningen, Department of Clinical Pharmacy and Toxicology, Van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Antonius T. Otten
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Jos G. W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
144
|
Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun 2020; 11:2577. [PMID: 32444671 PMCID: PMC7244730 DOI: 10.1038/s41467-020-16431-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome consists of a multi-kingdom microbial community. Whilst the role of bacteria as causal contributors governing host physiological development is well established, the role of fungi remains to be determined. Here, we use germ-free mice colonized with defined species of bacteria, fungi, or both to differentiate the causal role of fungi on microbiome assembly, immune development, susceptibility to colitis, and airway inflammation. Fungal colonization promotes major shifts in bacterial microbiome ecology, and has an independent effect on innate and adaptive immune development in young mice. While exclusive fungal colonization is insufficient to elicit overt dextran sulfate sodium-induced colitis, bacterial and fungal co-colonization increase colonic inflammation. Ovalbumin-induced airway inflammation reveals that bacterial, but not fungal colonization is necessary to decrease airway inflammation, yet fungi selectively promotes macrophage infiltration in the airway. Together, our findings demonstrate a causal role for fungi in microbial ecology and host immune functionality, and therefore prompt the inclusion of fungi in therapeutic approaches aimed at modulating early life microbiomes. The immunomodulatory role of commensal gut fungi and interactions with bacteria remain unclear. Here, using germ-free mice colonized with defined species of bacteria and fungi, the authors find that fungal colonization induces changes in bacterial microbiome ecology while having an independent effect on innate and adaptive immunity in mice.
Collapse
|
145
|
Che Y, Su Z, Xia L. Effects of IL-22 on cardiovascular diseases. Int Immunopharmacol 2020; 81:106277. [PMID: 32062077 DOI: 10.1016/j.intimp.2020.106277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-22 (IL-22), which belongs to the IL-10 family, is an alpha helix cytokine specifically produced by many lymphocytes, such as Th1, Th17, Th22, ILCs, CD4+ and CD8+ T cells. In recent years, more and more studies have demonstrated that IL-22 has an interesting relationship with various cardiovascular diseases, including myocarditis, myocardial infarction, atherosclerosis, and other cardiovascular diseases, and IL-22 signal may play a dual role in cardiovascular diseases. Here, we summarize the recent progress on the source, function, regulation of IL-22 and the effects of IL-22 signal in cardiovascular diseases. The study of IL-22 will suggest more specific strategies to maneuver these functions for the effective treatment of cardiovascular diseases and future clinical treatment.
Collapse
Affiliation(s)
- Yang Che
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
146
|
Abdo AIK, Tye GJ. Interleukin 23 and autoimmune diseases: current and possible future therapies. Inflamm Res 2020; 69:463-480. [PMID: 32215665 DOI: 10.1007/s00011-020-01339-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE IL-23 is a central proinflammatory cytokine with a wide range of influence over immune response. It is implicated in several autoimmune diseases due to the infinite inflammatory loops it can create through the positive feedbacks of both IL-17 and IL-22 arms. This made IL-23 a key target of autoimmune disorders therapy, which indeed was proven to inhibit inflammation and ameliorate diseases. Current autoimmune treatments targeting IL-23 are either by preventing IL-23 ligation to its receptor (IL-23R) via antibodies or inhibiting IL-23 signaling by signaling downstream mediators' inhibitors, with each approach having its own pros and cons. METHODS Literature review was done to further understand the biology of IL-23 and current therapies. RESULTS In this review, we discuss the biological features of IL-23 and its role in the pathogenesis of autoimmune diseases including psoriasis, rheumatoid arthritis and inflammatory bowel diseases. Advantages, limitations and side effects of each concept will be reviewed, suggesting several advanced IL-23-based bio-techniques to generate new and possible future therapies to overcome current treatments problems.
Collapse
Affiliation(s)
- Ahmad Ismail Khaled Abdo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
147
|
Bock KW. Modulation of aryl hydrocarbon receptor (AHR) and the NAD +-consuming enzyme CD38: Searches of therapeutic options for nonalcoholic fatty liver disease (NAFLD). Biochem Pharmacol 2020; 175:113905. [PMID: 32169417 DOI: 10.1016/j.bcp.2020.113905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 11/17/2022]
Abstract
The aryl hydrocarbon receptor (AHR) has been characterized as multifunctional, ligand-activated transcription factor. Recently, evidence has been obtained that AHR is involved in NAD+ and energy homeostasis in cooperation with NAD+-consuming enzymes including CD38, TiPARP and sirtuins. AHR and CD38 may adversely or beneficially modulate nonalcoholic fatty liver disease (NAFLD) which is associated with obesity, a worldwide major health problem. Although nutritional status and lifestyle are the major factors involved in the prevalence of obesity and NAFLD, modulation of AHR and CD38 has been demonstrated to provide therapeutic options. For example, inhibition of hepatic CD38 and activation of AHR, e.g., by dietary flavonoids may beneficially affect NAFLD. In addition, NAFLD-associated decrease of NAD+ may be restored by administration of the NAD+ precursor nicotinamide riboside.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
148
|
Matsuno Y, Hirano A, Torisu T, Okamoto Y, Fuyuno Y, Fujioka S, Umeno J, Moriyama T, Nagai S, Hori Y, Fujiwara M, Kitazono T, Esaki M. Short-term and long-term outcomes of indigo naturalis treatment for inflammatory bowel disease. J Gastroenterol Hepatol 2020; 35:412-417. [PMID: 31389626 DOI: 10.1111/jgh.14823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Indigo naturalis (IN) is a traditional Chinese herbal medicine reported to be effective in inducing remission in ulcerative colitis (UC). We conducted a retrospective observational study to investigate the efficacy and safety of IN for induction and maintenance therapy in patients with inflammatory bowel disease. METHODS Data were collected from the electric medical records of patients with inflammatory bowel disease who had started IN treatment between March 2015 and April 2017 at Kyushu University Hospital. Clinical response and remission rates were assessed based on the clinical activity index determined by Rachmilewitz index or Crohn's disease (CD) activity index. Cumulative IN continuation rates were estimated using the Kaplan-Meier method. Overall adverse events (AEs) during follow-up were also analyzed. RESULTS Seventeen UC patients and eight CD patients were enrolled. Clinical response and remission rates at week 8 were 94.1% and 88.2% in UC patients and 37.5% and 25.0% in CD patients, respectively. Clinical remission rates, as assessed through non-responders imputation analyses at weeks 52 and 104, were 76.4% and 70.4% in UC patients and 25.0% and 25.0% in CD patients, respectively. Ten patients (40%) experienced AEs during follow-up. Three patients (12%) experienced severe AEs, including acute colitis requiring hospitalization in two patients and acute colitis with intussusception requiring surgery in one patient. CONCLUSIONS Indigo naturalis showed favorable therapeutic efficacy in UC, whereas its therapeutic efficacy in CD appeared to be modest. The risk of severe AEs should be recognized for IN treatment.
Collapse
Affiliation(s)
- Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Okamoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Fujioka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuntaro Nagai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshifumi Hori
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minako Fujiwara
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Esaki
- Department of Endoscopic Diagnostics and Therapeutics, Saga University Hospital, Saga, Japan
| |
Collapse
|
149
|
Sandborn WJ, Ferrante M, Bhandari BR, Berliba E, Feagan BG, Hibi T, Tuttle JL, Klekotka P, Friedrich S, Durante M, Morgan-Cox M, Laskowski J, Schmitz J, D'Haens GR. Efficacy and Safety of Mirikizumab in a Randomized Phase 2 Study of Patients With Ulcerative Colitis. Gastroenterology 2020; 158:537-549.e10. [PMID: 31493397 DOI: 10.1053/j.gastro.2019.08.043] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/02/2019] [Accepted: 08/25/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Interleukin 23 contributes to the pathogenesis of ulcerative colitis (UC). We investigated the effects of mirikizumab, a monoclonal antibody against the p19 subunit of interleukin 23, in a phase 2 study of patients with UC. METHODS We performed a trial of the efficacy and safety of mirikizumab in patients with moderate to severely active UC, enrolling patients from 14 countries from January 2016 through September 2017. Patients were randomly assigned to groups given intravenous placebo (N = 63), mirikizumab 50 mg (N = 63) or 200 mg (N = 62) with exposure-based dosing, or mirikizumab 600 mg with fixed dosing (N = 61) at weeks 0, 4, and 8. Of assigned patients, 63% had prior exposure to a biologic agent. Clinical responders (decrease in 9-point Mayo score, including ≥2 points and ≥35% from baseline with either a decrease of rectal bleeding subscore of ≥1 or a rectal bleeding subscore of 0 or 1) at week 12 who had received mirikizumab were randomly assigned to groups that received maintenance treatment with mirikizumab 200 mg subcutaneously every 4 weeks (N = 47) or every 12 weeks (N = 46). The primary endpoint was clinical remission (Mayo subscores of 0 for rectal bleeding, with 1-point decrease from baseline for stool frequency, and 0 or 1 for endoscopy) at week 12. A multiple testing procedure was used that began with the 600-mg dose group, and any nonsignificant comparison result ended the formal statistical testing procedure. RESULTS At week 12, 15.9% (P = .066), 22.6% (P = .004), and 11.5% (P = .142) of patients in the 50-mg, 200-mg, and 600-mg groups achieved clinical remission, respectively, compared with 4.8% of patients given placebo. The primary endpoint was not significant (comparison to 600 mg, P > .05). Clinical responses occurred in 41.3% (P = .014), 59.7% (P < .001), and 49.2% (P = .001) of patients in the 50-mg, 200-mg, and 600-mg groups, respectively, compared with 20.6% of patients given placebo. At week 52, 46.8% of patients given subcutaneous mirikizumab 200 mg every 4 weeks and 37.0% given subcutaneous mirikizumab 200 mg every 12 weeks were in clinical remission. CONCLUSIONS In a randomized trial of patients with UC, mirikizumab was effective in inducing a clinical response after 12 weeks. Additional studies are required to determine the optimal dose for induction of remission. Mirikizumab showed durable efficacy throughout the maintenance period. Clinicaltrials.gov, Number NCT02589665.
Collapse
Affiliation(s)
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, Universitaire Ziekenhuizen Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Elina Berliba
- Nicolae Testemitanu State University of Medicine, Arsenia Exploratory Medicine, Chisinau, Moldova
| | - Brian G Feagan
- Western University, Robarts Clinical Trials Inc, London, Ontario, Canada
| | - Toshifumi Hibi
- Kitasato Institute Hospital Center for Advanced Inflammatory Bowel Disease Research and Treatment, Minato-ku, Tokyo, Japan
| | - Jay L Tuttle
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, California
| | - Paul Klekotka
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, California
| | | | | | | | - Janelle Laskowski
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, California
| | | | - Geert R D'Haens
- Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
150
|
Bridgewood C, Sharif K, Sherlock J, Watad A, McGonagle D. Interleukin-23 pathway at the enthesis: The emerging story of enthesitis in spondyloarthropathy. Immunol Rev 2020; 294:27-47. [PMID: 31957051 DOI: 10.1111/imr.12840] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The inflammatory disorders collectively termed the seronegative spondyloarthropathies (SpA) include ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, the arthritis associated with inflammatory bowel disease including Crohn's disease and ulcerative colitis, the arthritis related to anterior uveitis, and finally, somewhat controversially Behcet's disease. All of these diseases are associated with SNPs in the IL-23R or the interleukin-23 (IL-23) cytokine itself and related downstream signaling JAK pathway genes and the interleukin-17 (IL-17) pathway. In rheumatoid arthritis, the target of the immune response is the synovium but the SpA disorders target the tendon, ligament, and joint capsule skeletal anchorage points that are termed entheses. The discovery that IL-23R-expressing cells were ensconced in healthy murine enthesis, and other extraskeletal anchorage points including the aortic root and the ciliary body of the eye and that systemic overexpression of IL-23 resulted in a severe experimental SpA, confirmed a fundamentally different immunobiology to rheumatoid arthritis. Recently, IL-23R-expressing myeloid cells and various innate and adaptive T cells that produce IL-17 family cytokines have also been described in the human enthesis. Blockade of IL-23 pathway with either anti-p40 or anti-p19 subunits has resulted in some spectacular therapeutic successes in psoriasis and PsA including improvement in enthesitis in the peripheral skeleton but has failed to demonstrate efficacy in AS that is largely a spinal polyenthesitis. Herein, we discuss the known biology of IL-23 at the human enthesis and highlight the remarkable emerging story of this unique skeletal tissue.
Collapse
Affiliation(s)
- Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Medicine "B", Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jonathan Sherlock
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Medicine "B", Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, UK
| |
Collapse
|