101
|
Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, Pahnke J. Sideritis spp. Extracts Enhance Memory and Learning in Alzheimer's β-Amyloidosis Mouse Models and Aged C57Bl/6 Mice. J Alzheimers Dis 2018; 53:967-80. [PMID: 27258424 PMCID: PMC4981905 DOI: 10.3233/jad-160301] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nowadays, Alzheimer’s disease is the most prevalent epiphenomenon of the aging population. Although soluble amyloid-β (Aβ) species (monomers, oligomers) are recognized triggers of the disease, no therapeutic approach is able to stop it. Herbal medicines are used to treat different diseases in many regions of the world. On the Balkan Peninsula, at the eastern Mediterranean Sea, and adjacent regions, Sideritis species are used as traditional medicine to prevent age-related problems in elderly. To evaluate this traditional knowledge in controlled experiments, we tested extracts of two commonly used Sideritis species, Sideritis euboea and Sideritis scardica, with regard to their effects on cognition in APP-transgenic and aged, non-transgenic C57Bl/6 mice. Additionally, histomorphological and biochemical changes associated with Aβ deposition and treatment were assessed. We found that daily oral treatment with Sideritis spp. extracts highly enhanced cognition in aged, non-transgenic as well as in APP-transgenic mice, an effect that was even more pronounced when extracts of both species were applied in combination. The treatment strongly reduced Aβ42 load in APP-transgenic mice, accompanied by increased phagocytic activity of microglia, and increased expression of the α-secretase ADAM10. Moreover, the treatment was able to fully rescue neuronal loss of APP-transgenic mice to normal levels as seen in non-transgenic controls. Having the traditional knowledge in mind, our results imply that treatment with Sideritis spp. extracts might be a potent, well-tolerated option for treating symptoms of cognitive impairment in elderly and with regard to Alzheimer’s disease by affecting its most prominent hallmarks: Aβ pathology and cognitive decline.
Collapse
Affiliation(s)
| | - Markus Krohn
- University of Oslo (UiO) and Oslo University Hospital (OUS), Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, Oslo, Norway.,University of Rostock, Department of Neurology, Rostock, Germany
| | - Toni Schumacher
- University of Rostock, Department of Neurology, Rostock, Germany
| | - Cathleen Lange
- University of Rostock, Department of Neurology, Rostock, Germany
| | | | | | - Jens Pahnke
- University of Oslo (UiO) and Oslo University Hospital (OUS), Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, Oslo, Norway.,University of Rostock, Department of Neurology, Rostock, Germany.,University of Lübeck, Lübeck (LIED), Lübeck, Germany.,Leibniz Institute for Plant Biochemistry (IPB), Halle, Germany
| |
Collapse
|
102
|
Langford D, Oh Kim B, Zou W, Fan Y, Rahimain P, Liu Y, He JJ. Doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) as an HIV/neuroAIDS model. J Neurovirol 2017; 24:168-179. [PMID: 29143286 DOI: 10.1007/s13365-017-0598-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
HIV-1 Tat is known to be neurotoxic and important for HIV/neuroAIDS pathogenesis. However, the overwhelming majority of the studies involved use of recombinant Tat protein. To understand the contributions of Tat protein to HIV/neuroAIDS and the underlying molecular mechanisms of HIV-1 Tat neurotoxicity in the context of a whole organism and independently of HIV-1 infection, a doxycycline-inducible astrocyte-specific HIV-1 Tat transgenic mouse (iTat) was created. Tat expression in the brains of iTat mice was determined to be in the range of 1-5 ng/ml and led to astrocytosis, loss of neuronal dendrites, and neuroinflammation. iTat mice have allowed us to define the direct effects of Tat on astrocytes and the molecular mechanisms of Tat-induced GFAP expression/astrocytosis, astrocyte-mediated Tat neurotoxicity, Tat-impaired neurogenesis, Tat-induced loss of neuronal integrity, and exosome-associated Tat release and uptake. In this review, we will provide an overview about the creation and characterization of this model and its utilities for our understanding of Tat neurotoxicity and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Byung Oh Kim
- School of Food Science & Biotechnology and College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Wei Zou
- The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yan Fan
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Pejman Rahimain
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Ying Liu
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Johnny J He
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| |
Collapse
|
103
|
Decourt B, Lahiri DK, Sabbagh MN. Targeting Tumor Necrosis Factor Alpha for Alzheimer's Disease. Curr Alzheimer Res 2017; 14:412-425. [PMID: 27697064 DOI: 10.2174/1567205013666160930110551] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/10/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) affects an estimated 44 million individuals worldwide, yet no therapeutic intervention is available to stop the progression of the dementia. Neuropathological hallmarks of AD are extracellular deposits of amyloid beta (Aβ) peptides assembled in plaques, intraneuronal accumulation of hyperphosphorylated tau protein forming tangles, and chronic inflammation. A pivotal molecule in inflammation is the pro-inflammatory cytokine TNF-α. Several lines of evidence using genetic and pharmacological manipulations indicate that TNF-α signaling exacerbates both Aβ and tau pathologies in vivo. Interestingly, preventive and intervention anti-inflammatory strategies demonstrated a reduction in brain pathology and an amelioration of cognitive function in rodent models of AD. Phase I and IIa clinical trials suggest that TNF-α inhibitors might slow down cognitive decline and improve daily activities in AD patients. In the present review, we summarize the evidence pointing towards a beneficial role of anti-TNF-α therapies to prevent or slow the progression of AD. We also present possible physical and pharmacological interventions to modulate TNF-α signaling in AD subjects along with their limitations.
Collapse
Affiliation(s)
- Boris Decourt
- Banner Sun Health Research Institute, 10515 W. Santa Fe Dr., Sun City AZ 85351, United States
| | - Debomoy K Lahiri
- Institute of Psychiatry Research, Department of Psychiatry, School of Medicine, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, 240 West Thomas, Ste 301, Phoenix, AZ 85013, United States
| |
Collapse
|
104
|
Moon M, Huh E, Lee W, Song EJ, Hwang DS, Lee TH, Oh MS. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice. Nutrients 2017; 9:nu9101057. [PMID: 28946610 PMCID: PMC5691674 DOI: 10.3390/nu9101057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa β, tumor necrosis factor-α, and interleukin-1β (IL-1β) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology.
Collapse
Affiliation(s)
- Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Eugene Huh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Herbal Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Wonil Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea.
| | - Deok-Sang Hwang
- Department of Korean Gynecology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Tae Hee Lee
- Department of Formulae Pharmacology, School of Oriental Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
105
|
Thomas MH, Paris C, Magnien M, Colin J, Pelleïeux S, Coste F, Escanyé MC, Pillot T, Olivier JL. Dietary arachidonic acid increases deleterious effects of amyloid-β oligomers on learning abilities and expression of AMPA receptors: putative role of the ACSL4-cPLA 2 balance. ALZHEIMERS RESEARCH & THERAPY 2017; 9:69. [PMID: 28851448 PMCID: PMC5576249 DOI: 10.1186/s13195-017-0295-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/03/2017] [Indexed: 01/14/2023]
Abstract
Background Polyunsaturated fatty acids play a crucial role in neuronal function, and the modification of these compounds in the brain could have an impact on neurodegenerative diseases such as Alzheimer’s disease. Despite the fact that arachidonic acid is the second foremost polyunsaturated fatty acid besides docosahexaenoic acid, its role and the regulation of its transfer and mobilization in the brain are poorly known. Methods Two groups of 39 adult male BALB/c mice were fed with an arachidonic acid-enriched diet or an oleic acid-enriched diet, respectively, for 12 weeks. After 10 weeks on the diet, mice received intracerebroventricular injections of either NaCl solution or amyloid-β peptide (Aβ) oligomers. Y-maze and Morris water maze tests were used to evaluate short- and long-term memory. At 12 weeks on the diet, mice were killed, and blood, liver, and brain samples were collected for lipid and protein analyses. Results We found that the administration of an arachidonic acid-enriched diet for 12 weeks induced short-term memory impairment and increased deleterious effects of Aβ oligomers on learning abilities. These cognitive alterations were associated with modifications of expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, postsynaptic density protein 95, and glial fibrillary acidic protein in mouse cortex or hippocampus by the arachidonic acid-enriched diet and Aβ oligomer administration. This diet also led to an imbalance between the main ω-6 fatty acids and the ω-3 fatty acids in favor of the first one in erythrocytes and the liver as well as in the hippocampal and cortical brain structures. In the cortex, the dietary arachidonic acid also induced an increase of arachidonic acid-containing phospholipid species in phosphatidylserine class, whereas intracerebroventricular injections modified several arachidonic acid- and docosahexaenoic acid-containing species in the four phospholipid classes. Finally, we observed that dietary arachidonic acid decreased the expression of the neuronal form of acyl-coenzyme A synthetase 4 in the hippocampus and increased the cytosolic phospholipase A2 activation level in the cortices of the mice. Conclusions Dietary arachidonic acid could amplify Aβ oligomer neurotoxicity. Its consumption could constitute a risk factor for Alzheimer’s disease in humans and should be taken into account in future preventive strategies. Its deleterious effect on cognitive capacity could be linked to the balance between arachidonic acid-mobilizing enzymes. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0295-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mélanie H Thomas
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Cédric Paris
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Mylène Magnien
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Julie Colin
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Sandra Pelleïeux
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France.,Biochemistry Department, Central Hospital, University Hospitals of Nancy, 24, avenue du Mal de Lattre de Tassigny, CO n°34, F-54018, Nancy, France
| | - Florence Coste
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Marie-Christine Escanyé
- Biochemistry Department, Central Hospital, University Hospitals of Nancy, 24, avenue du Mal de Lattre de Tassigny, CO n°34, F-54018, Nancy, France
| | - Thierry Pillot
- Synaging SAS, 2, rue du Doyen Marcel Roubault, 54518, Vandoeuvre-les-Nancy, France
| | - Jean-Luc Olivier
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France. .,Biochemistry Department, Central Hospital, University Hospitals of Nancy, 24, avenue du Mal de Lattre de Tassigny, CO n°34, F-54018, Nancy, France.
| |
Collapse
|
106
|
Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Fernandes HS, Teixeira AA, Guasselli MOR, Agani CAJO, Souza NC, Grings M, Leipnitz G, Gomes HM, de Bittencourt Pasquali MA, Dunkley PR, Dickson PW, Moreira JCF, Gelain DP. Anti-RAGE antibody selectively blocks acute systemic inflammatory responses to LPS in serum, liver, CSF and striatum. Brain Behav Immun 2017; 62:124-136. [PMID: 28088642 DOI: 10.1016/j.bbi.2017.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra). Intraperitoneal injection of RAGE antibody (50μg/kg) was followed after 1h by a single LPS (5mg/kg) intraperitoneal injection. Twenty-four hours later, tissues were isolated for analysis. RAGE antibody reduced LPS-induced inflammatory effects in both serum and liver; the levels of proinflammatory cytokines (TNF-α, IL-1β) were decreased and the phosphorylation/activation of RAGE downstream targets (ERK1/2, IκB and p65) in liver were significantly attenuated. RAGE antibody prevented LPS-induced effects on TNF-α and IL-1β in CSF. In striatum, RAGE antibody inhibited increases in IL-1β, Iba-1, GFAP, phospho-ERK1/2 and phospho-tau (ser202), as well as the decrease in synaptophysin levels. These effects were caused by systemic RAGE inhibition, as RAGE antibody did not cross the blood-brain barrier. RAGE antibody also prevented striatal lipoperoxidation and activation of mitochondrial complex II. In conclusion, blockade of RAGE is able to inhibit inflammatory responses induced by LPS in serum, liver, CSF and brain.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Calixto Bortolin
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Schaan Fernandes
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexsander Alves Teixeira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Otavio Rodrigues Guasselli
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Crepin Aziz Jose O Agani
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Cabral Souza
- Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Mautone Gomes
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Peter R Dunkley
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Australia
| | - Phillip W Dickson
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Australia
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
107
|
López-López A, Gelpi E, Lopategui DM, Vidal-Taboada JM. Association of the CX3CR1-V249I Variant with Neurofibrillary Pathology Progression in Late-Onset Alzheimer's Disease. Mol Neurobiol 2017; 55:2340-2349. [PMID: 28343297 DOI: 10.1007/s12035-017-0489-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/14/2017] [Indexed: 01/22/2023]
Abstract
Neuroinflammation and microglial dysfunction have a prominent role in the pathogenesis of late-onset Alzheimer's disease (LOAD). CX3CR1 is a microglia-specific gene involved in microglia-neuron crosstalk and neuroinflammation. Numerous evidence show the involvement of CX3CR1 in AD. The aim of this study was to investigate if some functional genetic variants of this gene could influence on LOAD's outcome, in a neuropathologically confirmed Spanish cohort. We designed an open, pragmatic, case-control retrospective study including a total of 475 subjects (205 pathologically confirmed AD cases and 270 controls). We analyzed the association of the two CX3CR1 functional variants (V249I, rs3732379; and T280M, rs3732378) with neurofibrillary pathology progression rate according to Braak's staging system, age at onset (AAO), survival time, and risk of suffering LOAD. We found that individuals heterozygous for CX3CR1-V249I presented a lower neurofibrillary pathology stage at death (OR = 0.42, 95%CI [0.23, 0.74], p = 0.003, adj-p = 0.013) than the other genotypes. Eighty percent of the subjects homozygous for 249I had higher neurofibrillary pathology progression (Braak's stage VI). Moreover, homozygosis for 280M and 249I could be associated with a higher AAO in the subgroups of AD with Lewy bodies and without Lewy bodies. These CX3CR1 genetic variants could represent new modifying factors of pathology progression and age at onset in LOAD. These results provide further evidence of the involvement of CX3CR1 pathway and microglia/macrophages in the pathogenesis of LOAD.
Collapse
Affiliation(s)
- Alan López-López
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, Faculty of Medicine-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Diana Maria Lopategui
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, Faculty of Medicine-IDIBAPS, University of Barcelona, Barcelona, Spain.,Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, USA
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, Faculty of Medicine-IDIBAPS, University of Barcelona, Barcelona, Spain. .,Institut de Neurociencies, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
108
|
Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 2017; 7:e1024. [PMID: 28170004 PMCID: PMC5438023 DOI: 10.1038/tp.2016.278] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
Abstract
An interaction between external stressors and intrinsic vulnerability is one of the longest standing pathoaetiological explanations for schizophrenia. However, novel lines of evidence from genetics, preclinical studies, epidemiology and imaging have shed new light on the mechanisms that may underlie this, implicating microglia as a key potential mediator. Microglia are the primary immune cells of the central nervous system. They have a central role in the inflammatory response, and are also involved in synaptic pruning and neuronal remodeling. In addition to immune and traumatic stimuli, microglial activation occurs in response to psychosocial stress. Activation of microglia perinatally may make them vulnerable to subsequent overactivation by stressors experienced in later life. Recent advances in genetics have shown that variations in the complement system are associated with schizophrenia, and this system has been shown to regulate microglial synaptic pruning. This suggests a mechanism via which genetic and environmental influences may act synergistically and lead to pathological microglial activation. Microglial overactivation may lead to excessive synaptic pruning and loss of cortical gray matter. Microglial mediated damage to stress-sensitive regions such as the prefrontal cortex and hippocampus may lead directly to cognitive and negative symptoms, and account for a number of the structural brain changes associated with the disorder. Loss of cortical control may also lead to disinhibition of subcortical dopamine-thereby leading to positive psychotic symptoms. We review the preclinical and in vivo evidence for this model and consider the implications this has for treatment, and future directions.
Collapse
Affiliation(s)
- O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,PET Imaging Group, MRC Clinical Sciences Centre, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - R McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
109
|
Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Mol Neurobiol 2016; 54:7096-7115. [DOI: 10.1007/s12035-016-0193-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
110
|
Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272:38-49. [PMID: 27382003 PMCID: PMC5201203 DOI: 10.1016/j.jneumeth.2016.06.018] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - Yi-En Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanuma K Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
111
|
Inácio RF, Zanon RG, Castro MVD, Souza HMD, Bajgelman MC, Verinaud L, Oliveira ALRD. Astroglioma conditioned medium increases synaptic elimination and correlates with major histocompatibility complex of class I (MHC I) upregulation in PC12Cells. Neurosci Lett 2016; 634:160-167. [PMID: 27751786 DOI: 10.1016/j.neulet.2016.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022]
Abstract
Astrocytes are multifunctional glial cells that actively participate in synaptic plasticity in health and disease. Little is known about molecular interactions between neurons and glial cells that result in synaptic stability or elimination. In this sense, the main histocompatibility complex of class I (MHC I) has been shown to play a role in the synaptic plasticity process during development and after lesion of the CNS. MHC I levels in neurons appear to be influenced by astrocyte secreted molecules, which may generate endoplasmic reticulum stress. In vitro studies are of relevance since cell contact can be avoided by the use of astrocyte conditioned medium, allowing investigation of soluble factors isolated from cell direct interaction. Thus, we investigated synaptic preservation by synaptophysin and MHC I immunolabeling in PC12 neuron-like cells exposed to NG97 astroglioma conditioned medium (CM). For that, PC12 cells were cultured and differentiated into neuron-like profile with nerve growth factor. MHC I was induced with interferon beta treatment (IFN), and the effects were compared to PC12 exposure to NG97 CM. Overall, the results show that NG97 CM increases, more than IFN alone, the expression of MHC I, negatively influencing synaptic stability. This indicates that glial soluble factors influence synapse elimination, compatible to in vivo synaptic stripping process, in a cell contact independent fashion. In turn, our results indicate that deleterious effects of astroglioma are not only restricted to rapid growth ratio of the tumor, but also correlated with secretion of stress-related molecules that directly affect neuronal networks.
Collapse
Affiliation(s)
- Rodrigo Fabrizzio Inácio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Renata Gacielle Zanon
- Department of Human Anatomy, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mateus Vidigal de Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Henrique Marques de Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcio Chaim Bajgelman
- Brazilian National Laboratory for Biosciences, Research Center in Energy and Materials, Campinas, São Paulo, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
112
|
Rahimian P, He JJ. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression. J Neuroinflammation 2016; 13:247. [PMID: 27634380 PMCID: PMC5025601 DOI: 10.1186/s12974-016-0716-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Synaptodendritic damage is a pathological hallmark of HIV-associated neurocognitive disorders, and HIV-1 Tat protein is known to cause such injury in the central nervous system. In this study, we aimed to determine the molecular mechanisms of Tat-induced neurite shortening, specifically the roles of miR-132, an important regulator of neurite morphogenesis in this process. METHODS The relationship between Tat expression and miR-132 expression was first determined using reverse transcription quantitative PCR (qRT-PCR) in Tat-transfected astrocytes and neurons, astrocytes from Tat-transgenic mice, and HIV-infected astrocytes. qRT-PCR and Western blotting were performed to determine Tat effects on expression of miR-132 target genes methyl CpG-binding protein 2, Rho GTPase activator p250GAP, and brain-derived neurotrophic factor. Exosomes were isolated from Tat-expressing astrocytes, and exosomal microRNA (miRNA) uptake into neurons was studied using miRNA labeling and flow cytometry. The lactate dehydrogenase release was used to determine the cytotoxicity, while immunostaining was used to determine neurite lengths and synapse formation. Tat basic domain deletion mutant and miR-132 mimic and inhibitor were used to determine the specificity of the relationship between Tat and miR-132 and its effects on astrocytes and neurons and the underlying mechanisms of Tat-induced miR-132 expression. RESULTS Tat significantly induced miR-132 expression, ensuing down-regulation of miR-132 target genes in astrocytes and neurons. miR-132 induction was associated with phosphorylation of cAMP response element-binding protein and required the basic domain of Tat. miRNA-132 induction had no effects on astrocyte activation or survival but was involved in the direct neurotoxicity of Tat. miR-132 was present in astrocyte-derived exosomes and was taken up by neurons, causing neurite shortening. CONCLUSIONS Tat-induced miR-132 expression contributes to both direct and astrocyte-mediated Tat neurotoxicity and supports the important roles of miR-132 in controlling neurite outgrowth.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| | - Johnny J. He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| |
Collapse
|
113
|
Yang Y, Wang L, Wu Y, Su D, Wang N, Wang J, Shi C, Lv L, Zhang S. Tanshinol suppresses inflammatory factors in a rat model of vascular dementia and protects LPS-treated neurons via the MST1-FOXO3 signaling pathway. Brain Res 2016; 1646:304-314. [DOI: 10.1016/j.brainres.2016.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 01/07/2023]
|
114
|
Dong Z, Hu Z, Zhu H, Li N, Zhao H, Mi W, Jiang W, Hu X, Ye L. Tris-(2,3-dibromopropyl) isocyanurate induces depression-like behaviors and neurotoxicity by oxidative damage and cell apoptosis in vitro and in vivo. J Toxicol Sci 2016; 40:701-9. [PMID: 26558450 DOI: 10.2131/jts.40.701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tris-(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), an emerging brominated flame retardant, possesses the characteristics of candidate persistent organic pollutants and has displayed toxicity to fish and rodents. TDBP-TAZTO can pass through the blood-brain barrier and accumulate in the brain. TDBP-TAZTO might also induce neuronal cell toxicity. However, the neurotoxicity and mechanisms of TDBP-TAZTO have not yet been studied. We hypothesize that TDBP-TAZTO could induce neurotoxicity in mouse hippocampal neurons and SH-SY5Y cells. The mice were exposed to TDBP-TAZTO of 5 and 50 mg/kg by gavage, daily for 30 days. TDBP-TAZTO resulted in depression-like behaviors, which may be related with TDBP-TAZTO-induced upregulation of oxidative stress markers and overexpression of pro-apoptotic proteins in hippocampus. Furthermore, TDBP-TAZTO treatment for 48 hr (12.5, 25 and 50 µM) damaged SH-SY5Y cells, and led to cell apoptosis and oxidative stress in concentration-dependent manner. Our findings suggested that cell apoptosis and oxidative stress are important mechanisms in neurotoxicity induced by TDBP-TAZTO.
Collapse
Affiliation(s)
- Zhaoju Dong
- School of Public Health and Management, Binzhou Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci 2016; 158:121-9. [DOI: 10.1016/j.lfs.2016.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
|
116
|
Baroncelli L, Molinaro A, Cacciante F, Alessandrì MG, Napoli D, Putignano E, Tola J, Leuzzi V, Cioni G, Pizzorusso T. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging. Hum Mol Genet 2016; 25:4186-4200. [DOI: 10.1093/hmg/ddw252] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/11/2023] Open
|
117
|
Giovanoli S, Weber-Stadlbauer U, Schedlowski M, Meyer U, Engler H. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav Immun 2016; 55:25-38. [PMID: 26408796 DOI: 10.1016/j.bbi.2015.09.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022] Open
Abstract
Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorder in later life, including schizophrenia, bipolar disorder, and autism. These brain disorders are also characterized by pre- and postsynaptic deficits. Using a well-established mouse model of maternal exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)], we examined whether prenatal immune activation might cause synaptic deficits in the hippocampal formation of pubescent and adult offspring. Based on the widely appreciated role of microglia in synaptic pruning, we further explored possible associations between synaptic deficits and microglia anomalies in offspring of poly(I:C)-exposed and control mothers. We found that prenatal immune activation induced an adult onset of presynaptic hippocampal deficits (as evaluated by synaptophysin and bassoon density). The early-life insult further caused postsynaptic hippocampal deficits in pubescence (as evaluated by PSD95 and SynGAP density), some of which persisted into adulthood. In contrast, prenatal immune activation did not change microglia (or astrocyte) density, nor did it alter their activation phenotypes. The prenatal manipulation did also not cause signs of persistent systemic inflammation. Despite the absence of overt glial anomalies or systemic inflammation, adult offspring exposed to prenatal immune activation displayed increased hippocampal IL-1β levels. Taken together, our findings demonstrate that age-dependent synaptic deficits and abnormal pro-inflammatory cytokine expression can occur during postnatal brain maturation in the absence of microglial anomalies or systemic inflammation.
Collapse
Affiliation(s)
- Sandra Giovanoli
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Ulrike Weber-Stadlbauer
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Urs Meyer
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
118
|
How can we address the controversies surrounding the use of NSAIDS in neurodegeneration? Future Med Chem 2016; 8:1153-5. [PMID: 27357618 DOI: 10.4155/fmc-2016-0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
119
|
CX3CL1/CX3CR1 in Alzheimer's Disease: A Target for Neuroprotection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8090918. [PMID: 27429982 PMCID: PMC4939332 DOI: 10.1155/2016/8090918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022]
Abstract
CX3C chemokine ligand 1 (CX3CL1) is an intriguing chemokine belonging to the CX3C family. CX3CL1 is secreted by neurons and plays an important role in modulating glial activation in the central nervous system after binding to its sole receptor CX3CR1 which mainly is expressed on microglia. Emerging data highlights the beneficial potential of CX3CL1-CX3CR1 in the pathogenesis of Alzheimer's disease (AD), a common progressive neurodegenerative disease, and in the progression of which neuroinflammation plays a vital role. Even so, the importance of CX3CL1/CX3CR1 in AD is still controversial and needs further clarification. In this review, we make an attempt to present a concise map of CX3CL1-CX3CR1 associated with AD to find biomarkers for early diagnosis or therapeutic interventions.
Collapse
|
120
|
林 芳, 侯 德, 唐 秋. [Research progress of depression and the application of esketamine]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:567-569. [PMID: 28446416 PMCID: PMC6744095 DOI: 10.3969/j.issn.1673-4254.2017.04.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 06/07/2023]
Abstract
The pathogenesis and etiology of still remain unknown. Current evidence suggests that the occurrence of depression may be related to a reduced secretion of neurotransmitters, neuronal apoptosis, inflammation, intestinal flora and other factors. Although the commonly used antidepressants such as SSRIs, SNRIs, NaSSA, and SARIs produce some therapeutic effects, they fail to relieve the full spectrum of the symptoms of depression. In recent years, esketamine was found to produce a potent and a long-lasting antidepressant effect by acting on the NMDA receptors. Herein the authors review the progress in the study of the pathogenesis and drug therapies of depression, the efficacy of esketamine treatment and the underlying mechanism, and the prospect of esketamine treatment. Currently the mechanism of the antidepressant effect of esketamine remains indeterminate and its clinical application is limited, but its effect in rapidly alleviating the symptoms of depression suggests its bright prospect for clinical applications.
Collapse
Affiliation(s)
- 芳波 林
- 中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - 德仁 侯
- 中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - 秋萍 唐
- 中南大学湘雅三医院临床心理科,湖南 长沙 410013Department of Clinical Psychology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
121
|
Dong W, Wang R, Ma LN, Xu BL, Zhang JS, Zhao ZW, Wang YL, Zhang X. Influence of age-related learning and memory capacity of mice: different effects of a high and low caloric diet. Aging Clin Exp Res 2016; 28:303-11. [PMID: 26138818 DOI: 10.1007/s40520-015-0398-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent studies indicate that consumption of the different calorie diet may be an important way to accelerate or slow the neurodegenerative disorder related to age. Long-term consumption of a high-calorie diet affects the brain and increase the risk of neurodegenerative disorders. And consumption of a low-calorie diet (caloric restriction, CR) could delay aging, and protect the central nervous system from neurodegenerative disorders. The underlying mechanisms have not yet been clearly defined. METHOD Thirty 6-week-old C57/BL6 mice were randomly assigned to a NC group (fed standard diet, n = 10), a CR group (fed a low-calorie diet, n = 10) or a HC group (fed a high-calorie diet, n = 10) for 10 months. Body weight was measured monthly. Learning and memory capacity were determined by Morris water maze. Pathological changes of the hippocampus cells were detected with HE and Nissl staining. The expression of GFAP was determined by immunofluorescence and western blot. The expression of mTOR, S6K and LC3B in the hippocampus was determined by immunofluorescence. RESULTS After feeding for 10 months, compared with mice in the NC group, mean body weight was significantly higher in the HC group and significantly lower in the CR group. The result of Morris water maze showed that compared with mice in the NC group, the learning and memory capacity was significantly increased in the CR group, and significantly decreased in the HC group. HE and Nissl staining of the hippocampus showed cells damaged obviously in the HC group. In the hippocampus, the expression of GFAP, mTOR and S6K was increased in the HC group, and decreased in the CR group. The expression of LC3B was decreased in the HC group, and increased in the CR group. CONCLUSIONS Long-term consumption of a high-calorie diet could inhibit autophagy function, and facilitate neuronal loss in the hippocampus, which in turn aggravate age-related cognition impairment. And consumption of a low-calorie diet (caloric restriction, CR) could enhance the degree of autophagy, protect neurons effectively against aging and damage, and keep learning and memory capacity better.
Collapse
Affiliation(s)
- Wen Dong
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Rong Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Li-Na Ma
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Bao-Lei Xu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, #2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jing-Shuang Zhang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Zhi-Wei Zhao
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yu-Lan Wang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xu Zhang
- Central Laboratory, Xuan Wu Hospital, Capital Medical University, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| |
Collapse
|
122
|
Zuza AL, Barros HLS, de Mattos Silva Oliveira TF, Chávez-Pavoni JH, Zanon RG. Astrocyte response to St. Louis encephalitis virus. Virus Res 2016; 217:92-100. [PMID: 26975980 DOI: 10.1016/j.virusres.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/25/2022]
Abstract
St. Louis encephalitis virus (SLEV), a flavivirus transmitted to humans by Culex mosquitoes, causes clinical symptoms ranging from acute febrile disorder to encephalitis. To reach the central nervous system (CNS) from circulating blood, the pathogen must cross the blood-brain barrier formed by endothelial cells and astrocytes. Because astrocytes play an essential role in CNS homeostasis, in this study these cells were infected with SLEV and investigated for astrogliosis, major histocompatibility complex (MHC)-I-dependent immune response, and apoptosis by caspase-3 activation. Cultures of Vero cells were used as a positive control for the viral infection. Cytopathic effects were observed in both types of cell cultures, and the cytotoxicity levels of the two were compared. Astrocytes infected with a dilution of 1E-01 (7.7E+08 PFU/mL) had a reduced mortality rate of more than 50% compared to the Vero cells. In addition, the astrocytes responded to the flavivirus infection with increased MHC-I expression and astrogliosis, characterized by intense glial fibrillary acidic protein expression and an increase in the number and length of cytoplasmic processes. When the astrocytes were exposed to higher viral concentrations, a proportional increase in caspase-3 expression was observed, as well as nuclear membrane destruction. SLEV immunostaining revealed a perinuclear location of the virus during the replication process. Together, these results suggest that mechanisms other than SLEV infection in astrocytes must be associated with the development of the neuroinvasive form of the disease.
Collapse
Affiliation(s)
- Adriano Lara Zuza
- Institute of Bioscience, Federal University of Uberlandia, Para 1720, Uberlandia, Minas Gerais CEP 38400-902, Brazil
| | - Heber Leão Silva Barros
- Institute of Bioscience, Federal University of Uberlandia, Para 1720, Uberlandia, Minas Gerais CEP 38400-902, Brazil
| | | | | | - Renata Graciele Zanon
- Institute of Bioscience, Federal University of Uberlandia, Para 1720, Uberlandia, Minas Gerais CEP 38400-902, Brazil.
| |
Collapse
|
123
|
Nikodemova M, Small AL, Kimyon RS, Watters JJ. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol Genomics 2016; 48:336-44. [PMID: 26884461 DOI: 10.1152/physiolgenomics.00129.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/10/2016] [Indexed: 01/17/2023] Open
Abstract
Whereas age increases microglial inflammatory activities and impairs their ability to effectively regulate their immune response, it is unclear at what age these exaggerated responses begin. We tested the hypotheses that augmented microglial responses to inflammatory challenge are present as early as middle age and that repeated stimulation of primed microglia in vivo would reveal microglial senescence. Microglial gene expression was investigated in a mouse model of repeated systemic inflammation induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). Following LPS, microglia from middle-aged mice (9-10 mo) displayed larger increases in Tnfα, Il-6, and Il-1β gene expression compared with young adults (2 mo). Similar results were observed in the spleens of middle-aged mice, indicating that exaggeration of both central and peripheral immune responses are already evident at early middle age. Interestingly, despite greater proinflammatory responses to the first LPS challenge in the aged mice, there were no age-dependent differences in either microglia or spleen following a subsequent LPS dose, suggesting that animals at this age retain the ability to effectively control their immune response following repeated challenge. The exacerbated microglial immune response to systemic inflammation at early middle age suggests that the CNS may be vulnerable to age-dependent alterations earlier than previously appreciated.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alissa L Small
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rebecca S Kimyon
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
124
|
Yu H, Liao Y, Li T, Cui Y, Wang G, Zhao F, Jin Y. Alterations of Synaptic Proteins in the Hippocampus of Mouse Offspring Induced by Developmental Lead Exposure. Mol Neurobiol 2015; 53:6786-6798. [DOI: 10.1007/s12035-015-9597-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
|
125
|
Ma L, Li Y, Wang R. Drebrin and cognitive impairment. Clin Chim Acta 2015; 451:121-4. [DOI: 10.1016/j.cca.2015.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
126
|
Ye L, Hu Z, Wang H, Zhu H, Dong Z, Jiang W, Zhao H, Li N, Mi W, Wang W, Hu X. Tris-(2,3-Dibromopropyl) Isocyanurate, a New Emerging Pollutant, Impairs Cognition and Provokes Depression-Like Behaviors in Adult Rats. PLoS One 2015; 10:e0140281. [PMID: 26458255 PMCID: PMC4601767 DOI: 10.1371/journal.pone.0140281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023] Open
Abstract
Tris-(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), an emerging brominated flame retardant, possesses the characteristics of candidate persistent organic pollutants and has displayed toxicity to fish and rodents. TDBP-TAZTO can pass through the blood brain barrier and accumulate in brain. However, the neurotoxicity of TDBP-TAZTO has not yet studied in rodents. We hypothesize that TDBP-TAZTO could induce the neurotoxicity in rat hippocampal neurons. The male adult rats were exposed to TDBP-TAZTO of 5 and 50 mg/kg by gavage, daily for 6 months. TDBP-TAZTO resulted in cognitive impairment and depression-like behaviors, which may be related with TDBP-TAZTO-induced hypothalamic-pituitary-adrenal axis hyperactivation, upregulation of inflammatory and oxidative stress markers, overexpression of pro-apoptotic proteins, downexpression of neurogenesis-related proteins in hippocampus, and hippocampal neurons damage in DG, CA1 and CA3 areas. Our findings suggested that TDBP-TAZTO induces significant hippocampal neurotoxicity, which provokes cognitive impairment and depression-like behaviors in adult rats. Therefore, this research will contribute to evaluate the neurotoxic effects of TDBP-TAZTO in human.
Collapse
Affiliation(s)
- Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
- Institute of Toxicology, Binzhou Medical University, Yantai, Shandong, PR China
| | - Zhengping Hu
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, PR China
| | - Hui Wang
- School of Pharmacy, Yantai University, Yantai, Shandong, PR China
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
- Institute of Toxicology, Binzhou Medical University, Yantai, Shandong, PR China
| | - Zhaoju Dong
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, PR China
| | - Huijuan Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Ning Li
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Wei Mi
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| | - Wenyan Wang
- School of Pharmacy, Yantai University, Yantai, Shandong, PR China
| | - Xihou Hu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, PR China
| |
Collapse
|
127
|
Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 2015; 9:322. [PMID: 26347610 PMCID: PMC4538301 DOI: 10.3389/fncel.2015.00322] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jose Enrique Yuste
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Ernesto Tarragon
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain ; Département des Sciences Biomédicales et Précliniques/Biochimie et Physiologie du Système Nerveux, Centre de Recherche du Cyclotron, Université de Liège Liège, Belgium
| | - Carmen María Campuzano
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Francisco Ros-Bernal
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
128
|
Ansari MA. Temporal profile of M1 and M2 responses in the hippocampus following early 24h of neurotrauma. J Neurol Sci 2015; 357:41-9. [PMID: 26148932 DOI: 10.1016/j.jns.2015.06.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/10/2015] [Accepted: 06/26/2015] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) elicits complex inflammatory assets (M1 and M2 responses) in the brain that include the expression of various cytokines/chemokines and the recruitment of blood cells, contributing secondary injury cascades (SIC), and also recovery processes. The modulation of such inflammatory assets might be a therapeutic option following TBI. The present study assesses a temporal profile of various molecular markers of M1 and M2 response in the hippocampus after TBI. Following a unilateral controlled cortical impact (CCI) on young rats, hippocampal tissues of each brain were harvested at 2, 4, 6, 10, and 24h post trauma. Including shams (craniotomy only), half of the rats were assessed for gene expression and half for the protein of various markers for M1 [interferon-gamma (IFNγ), tumor necrosis factor-α (TNFα), interleukin (IL)-1-β (IL-1β), and IL-6] and M2 [IL-4, IL-10, IL-13, arginase 1 (Arg1), YM1, FIZZ1, and mannose receptor C-1 (MRC1)] responses. Analysis revealed that molecular markers of M1 and M2 responses have heterogeneous injury effects in the hippocampus and that "time-post-injury" is an important factor in determining inflammation status. With the heterogeneous gene expression of pro-inflammatory cytokines, M1 response was significantly elevated at 2h and declined at 24h after TBI, however, their levels remained higher than the sham rats. Except IFNγ, proteins of M1 cytokines were significantly elevated in the first 24h, and peaked between 2-6h [TNFα (2h), IL-1β (6h), and IL-6 (4-6h)]. With the heterogeneous relative gene expression of Arg1, YM1, FIZZ1, and MRC1, levels of M2 cytokines were peaked at 24h post TBI. IL-10 and IL-13 expression appeared biphasic in the first 24h. Protein values of IL-4 and IL-13 peaked at 24h and IL-10 at 6h post injury. Results suggest that the M1 response rises rapidly after injury and overpowers the initial, comparatively smaller, or transient M2 response. A treatment that can modulate inflammation, reduce SIC, and improve recovery should be initiated early (within 10h) after TBI.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
129
|
Lee W, Moon M, Kim HG, Lee TH, Oh MS. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J Neuroinflammation 2015; 12:102. [PMID: 26001832 PMCID: PMC4465309 DOI: 10.1186/s12974-015-0324-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat stress induces many pathophysiological responses and has a profound impact on brain structure. It has been demonstrated that exposure to high temperature induces cognitive impairment in experimental animals and humans. Although the effects of heat stress have long been studied, the mechanisms by which heat stress affects brain structure and cognition not well understood. METHODS In our longitudinal study of mice exposed to heat over 7, 14, or 42 days, we found that heat stress time dependently impaired cognitive function as determined by Y-maze, passive avoidance, and novel object recognition tests. To elucidate the histological mechanism by which thermal stress inhibited cognitive abilities, we examined heat stress-induced inflammation in the hippocampus. RESULTS In mice subjected to heat exposure, we found: 1) an increased number of glial fibrillary acid protein (GFAP)- and macrophage-1 antigen (Mac-1)-positive cells, 2) up-regulated nuclear factor (NF)-κB, a master regulator of inflammation, and 3) marked increases in cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokine interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the mouse hippocampus. We also observed that neuronal and synaptic densities were degenerated significantly in hippocampal regions after heat exposure, as determined by histological analysis of neuronal nuclei (NeuN), postsynaptic density protein 95 (PSD-95), and synaptophysin expression. Moreover, in heat-exposed mice, we found that the number of cells positive for doublecortin (DCX), a marker of neurogenesis, was significantly decreased compared with control mice. Finally, anti-inflammatory agent minocycline inhibited the heat stress-induced cognitive deficits and astogliosis in mice. CONCLUSIONS Together, these findings suggest that heat stress can lead to activation of glial cells and induction of inflammatory molecules in the hippocampus, which may act as causative factors for memory loss, neuronal death, and impaired adult neurogenesis.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Life and Nanopharmaceutical Science, Graduate School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Minho Moon
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA. .,Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 302-718, Republic of Korea.
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Tae Hee Lee
- Department of Formulae Pharmacology, School of Oriental Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, 461-701, Republic of Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Graduate School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea. .,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
130
|
The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer's disease, mild cognitive impairment or Parkinson's disease. J Neuroimmunol 2015; 283:50-7. [PMID: 26004156 DOI: 10.1016/j.jneuroim.2015.04.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/24/2015] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (EOAD, LOAD), mild cognitive impairment (MCI), Parkinson's disease (PD) and healthy controls were included to determine the serum interleukin-1s (IL-1α, IL-1β), IL-6 and alpha-2-macroglobulin (α2M) levels using ELISA. IL-6 might be a significant contributor to the inflammatory response in LOAD. The MCI data indicate that IL-1s, α2M and BDNF are somehow related, and this relationship might allow MCI patients to be more similar to the healthy controls. A correlation analysis of multiple biomarkers in different neurodegenerative disorders might be more useful than determining the levels of a single cytokine in a single disorder.
Collapse
|
131
|
Fan XW, Chen F, Chen Y, Chen GH, Liu HH, Guan SK, Deng Y, Liu Y, Zhang SJ, Peng WJ, Jiang GL, Wu KL. Electroacupuncture prevents cognitive impairments by regulating the early changes after brain irradiation in rats. PLoS One 2015; 10:e0122087. [PMID: 25830357 PMCID: PMC4382177 DOI: 10.1371/journal.pone.0122087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/17/2015] [Indexed: 12/24/2022] Open
Abstract
Cognitive impairments severely affect the quality of life of patients who undergo brain irradiation, and there are no effective preventive strategies. In this study, we examined the therapeutic potential of electroacupuncture (EA) administered immediately after brain irradiation in rats. We detected changes in cognitive function, neurogenesis, and synaptic density at different time points after irradiation, but found that EA could protect the blood-brain barrier (BBB), inhibit neuroinflammatory cytokine expression, upregulate angiogenic cytokine expression, and modulate the levels of neurotransmitter receptors and neuropeptides in the early phase. Moreover, EA protected spatial memory and recognition in the delayed phase. At the cellular/molecular level, the preventative effect of EA on cognitive dysfunction was not dependent on hippocampal neurogenesis; rather, it was related to synaptophysin expression. Our results suggest that EA applied immediately after brain irradiation can prevent cognitive impairments by protecting against the early changes induced by irradiation and may be a novel approach for preventing or ameliorating cognitive impairments in patients with brain tumors who require radiotherapy.
Collapse
Affiliation(s)
- Xing-Wen Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Fu Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Yan Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Guan-Hao Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Huan-Huan Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China, 200032
| | - Shi-Kuo Guan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Yong Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Sheng-Jian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Wei-Jun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
| | - Guo-Liang Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Kai-Liang Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
- * E-mail:
| |
Collapse
|
132
|
Sigma-2 receptor binding is decreased in female, but not male, APP/PS1 mice. Biochem Biophys Res Commun 2015; 460:439-45. [PMID: 25796326 DOI: 10.1016/j.bbrc.2015.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
Abstract
The sigma-2 receptor is a steroid-binding membrane-associated receptor which has been implicated in cell survival. Sigma-2 has recently been shown to bind amyloid-β (Aβ) oligomers in Alzheimer's disease (AD) brain. Furthermore, blocking this interaction was shown to prevent or reverse the effects of Aβ to cause cognitive impairment in mouse models and synaptic loss in neuronal cultures. In the present work, the density of sigma-2 receptors was measured in a double transgenic mouse model of amyloid-β deposition (APP/PS1). Comparisons were made between males and females and between transgenic and wt animals. Sigma-2 receptor density was assessed by quantitative autoradiography performed on coronal brain slices using [(3)H]N-[4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl]-2-methoxy-5-methyl-benzamide ([(3)H]RHM-1), which has a 300-fold selectivity for the sigma-2 receptor over the sigma-1 receptor. The translocator protein of 18 kDa (TSPO) is expressed on activated microglia and is a marker for neuroinflammation. TSPO has been found to be upregulated in neurodegenerative disorders, including AD. Therefore, in parallel with the sigma-2 autoradiography experiments, we measured TSPO expression using the selective radioligand, [(3)H]PBR28. We also quantified Aβ plaque burden in the same animals using a monoclonal antibody raised against aggregated Aβ. Sigma-2 receptor density was significantly decreased in piriform and motor cortices as well as striata of 16-month old female, but not male, APP/PS1 mice as compared to their wt counterparts. [(3)H]PBR28 binding and immunostaining for Aβ plaques were significantly increased in piriform and motor cortices of both male and female transgenic mice. In striatum however, significant increases were observed only in females.
Collapse
|
133
|
Ano Y, Kutsukake T, Hoshi A, Yoshida A, Nakayama H. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum. PLoS One 2015; 10:e0116598. [PMID: 25760331 PMCID: PMC4356582 DOI: 10.1371/journal.pone.0116598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/12/2014] [Indexed: 01/16/2023] Open
Abstract
Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of dairy products. We believe the uptake of DHE might help to prevent the onset of dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Central Laboratories for Key Technologies, Kirin Company Ltd, 1–13–5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236–0004, Japan
- * E-mail:
| | - Toshiko Kutsukake
- Central Laboratories for Key Technologies, Kirin Company Ltd, 1–13–5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236–0004, Japan
| | - Ayaka Hoshi
- Central Laboratories for Key Technologies, Kirin Company Ltd, 1–13–5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236–0004, Japan
| | - Aruto Yoshida
- Central Laboratories for Key Technologies, Kirin Company Ltd, 1–13–5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236–0004, Japan
| | - Hiroyuki Nakayama
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| |
Collapse
|
134
|
Montesinos J, Pascual M, Pla A, Maldonado C, Rodríguez-Arias M, Miñarro J, Guerri C. TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment. Brain Behav Immun 2015; 45:233-44. [PMID: 25486089 DOI: 10.1016/j.bbi.2014.11.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/26/2014] [Indexed: 12/30/2022] Open
Abstract
The adolescent brain undergoes important dynamic and plastic cell changes, including overproduction of axons and synapses, followed by rapid pruning along with ongoing axon myelination. These developmental changes make the adolescent brain particularly vulnerable to neurotoxic and behavioral effects of alcohol. Although the mechanisms of these effects are largely unknown, we demonstrated that ethanol by activating innate immune receptors toll-like receptor 4 (TLR4), induces neuroinflammation and brain damage in adult mice. The present study aims to evaluate whether intermittent ethanol treatment in adolescence promotes TLR4-dependent pro-inflammatory processes, leading to myelin and synaptic dysfunctions, and long-term cognitive impairments. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3.0g/kg) for 2weeks, we show that binge-like ethanol treatment activates TLR4 signaling pathways (MAPK, NFκB) leading to the up-regulation of cytokines and pro-inflammatory mediators (COX-2, iNOS, HMGB1), impairing synaptic and myelin protein levels and causing ultrastructural alterations. These changes were associated with long-lasting cognitive dysfunctions in young adult mice, as demonstrated with the object recognition, passive avoidance and olfactory behavior tests. Notably, elimination of TLR4 receptors prevented neuroinflammation along with synaptic and myelin derangements, as well as long-term cognitive alterations. These results support the role of the neuroimmune response and TLR4 signaling in the neurotoxic and behavioral effects of ethanol in adolescence.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Antoni Pla
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Concepción Maldonado
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain.
| |
Collapse
|
135
|
Modi HR, Basselin M, Rapoport SI. Valnoctamide, a non-teratogenic amide derivative of valproic acid, inhibits arachidonic acid activation in vitro by recombinant acyl-CoA synthetase-4. Bipolar Disord 2014; 16:875-80. [PMID: 25041123 PMCID: PMC4554599 DOI: 10.1111/bdi.12220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Valproic acid (VPA), a mood stabilizer used for treating bipolar disorder (BD), uncompetitively inhibits acylation of arachidonic acid (AA) by recombinant AA-selective acyl-CoA synthetase 4 (Acsl4) at an enzyme inhibition constant (Ki ) of 25 mM. Inhibition may account for VPA's ability to reduce AA turnover in brain phospholipids of unanesthetized rats and to be therapeutic in BD. However, VPA is teratogenic. We tested whether valnoctamide (VCD), a non-teratogenic amide derivative of a VPA chiral isomer, which had antimanic potency in a phase III BD trial, also inhibits recombinant Acsl4. METHODS Rat Acsl4-flag protein was expressed in Escherichia coli. We used Michaelis-Menten kinetics to characterize and quantify the ability of VCD to inhibit conversion of AA to AA-CoA by recombinant Acsl4 in vitro. RESULTS Acsl4-mediated activation of AA to AA-CoA by Acsl4 was inhibited uncompetitively by VCD, with a Ki of 6.38 mM. CONCLUSIONS VCD's ability to uncompetitively inhibit AA activation to AA-CoA by Acsl4, at a lower Ki than VPA, suggests that, like VPA, VCD may reduce AA turnover in rat brain phospholipids. If so, VCD and other non-teratogenic Acsl4 inhibitors might be considered further for treating BD.
Collapse
Affiliation(s)
- Hiren R Modi
- Brain Physiology and Metabolism Section; Laboratory of Neurosciences; National Institute on Aging; National Institutes of Health; Bethesda MD USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section; Laboratory of Neurosciences; National Institute on Aging; National Institutes of Health; Bethesda MD USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section; Laboratory of Neurosciences; National Institute on Aging; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
136
|
|
137
|
Cherry JD, Olschowka JA, O'Banion MK. Are "resting" microglia more "m2"? Front Immunol 2014; 5:594. [PMID: 25477883 PMCID: PMC4235363 DOI: 10.3389/fimmu.2014.00594] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - John A Olschowka
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - M Kerry O'Banion
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| |
Collapse
|
138
|
Skalska J, Frontczak-Baniewicz M, Strużyńska L. Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology 2014; 46:145-54. [PMID: 25447321 DOI: 10.1016/j.neuro.2014.11.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/11/2014] [Accepted: 11/07/2014] [Indexed: 01/28/2023]
Abstract
Neurotoxicity of silver nanoparticles has been confirmed in both in vitro and in vivo studies. However, the mechanisms of the toxic action have not been fully clarified. Since nanoparticles are likely to have the ability to enter the brain and significantly accumulate in this organ, it is important to investigate their neurotoxic mechanisms. Here we examine the effect of prolonged exposure of rats to small (10nm) citrate-stabilized silver nanoparticles (as opposed to the ionic silver) on synapse ultrastructure and specific proteins. Administration of both nanosilver and ionic silver over a two-week period resulted in ultrastructural changes including blurred synapse structure and strongly enhanced density of synaptic vesicles clustering in the center of the presynaptic part. Disturbed synaptic membrane leading to liberation of synaptic vesicles into neuropil, which testifies for strong synaptic degeneration, was characteristic feature observed under AgNPs exposure. Also a noteworthy finding was the presence of myelin-like structures derived from fragmented membranes and organelles which are associated with neurodegenerative processes. Additionally, we observed significantly decreased levels of the presynaptic proteins synapsin I and synaptophysin, as well as PSD-95 protein which is an indicator of postsynaptic densities. The present study demonstrates that exposure of adult rats to both forms of silver leads to ultrastructural changes in synapses. However, it seems that small AgNPs lead to more severe synaptic degeneration, mainly in the hippocampal region of brain. The observations may indicate impairment of nerve function and, in the case of hippocampus, may predict impairment of cognitive processes.
Collapse
Affiliation(s)
- Joanna Skalska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| |
Collapse
|
139
|
Jebelli J, Hooper C, Pocock JM. Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration. Neurosci Lett 2014; 583:92-7. [DOI: 10.1016/j.neulet.2014.08.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/20/2022]
|
140
|
Primiani CT, Ryan VH, Rao JS, Cam MC, Ahn K, Modi HR, Rapoport SI. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging. PLoS One 2014; 9:e110972. [PMID: 25329999 PMCID: PMC4203852 DOI: 10.1371/journal.pone.0110972] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. HYPOTHESIS Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. METHODS We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. RESULTS Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. CONCLUSIONS Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks that operate throughout the lifespan underlie different phenotypic processes during Aging compared to Development.
Collapse
Affiliation(s)
- Christopher T. Primiani
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Veronica H. Ryan
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jagadeesh S. Rao
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Margaret C. Cam
- Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kwangmi Ahn
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hiren R. Modi
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
141
|
Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun 2014; 2:135. [PMID: 25231068 PMCID: PMC4207354 DOI: 10.1186/s40478-014-0135-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/16/2022] Open
Abstract
The amyloid hypothesis has driven drug development strategies for Alzheimer's disease for over 20 years. We review why accumulation of amyloid-beta (Aβ) oligomers is generally considered causal for synaptic loss and neurodegeneration in AD. We elaborate on and update arguments for and against the amyloid hypothesis with new data and interpretations, and consider why the amyloid hypothesis may be failing therapeutically. We note several unresolved issues in the field including the presence of Aβ deposition in cognitively normal individuals, the weak correlation between plaque load and cognition, questions regarding the biochemical nature, presence and role of Aβ oligomeric assemblies in vivo, the bias of pre-clinical AD models toward the amyloid hypothesis and the poorly explained pathological heterogeneity and comorbidities associated with AD. We also illustrate how extensive data cited in support of the amyloid hypothesis, including genetic links to disease, can be interpreted independently of a role for Aβ in AD. We conclude it is essential to expand our view of pathogenesis beyond Aβ and tau pathology and suggest several future directions for AD research, which we argue will be critical to understanding AD pathogenesis.
Collapse
Affiliation(s)
- Gary P Morris
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ian A Clark
- />Research School of Biology, Australian National University, Canberra, Australia
| | - Bryce Vissel
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
142
|
Non-hypotensive dose of telmisartan and nimodipine produced synergistic neuroprotective effect in cerebral ischemic model by attenuating brain cytokine levels. Pharmacol Biochem Behav 2014; 122:61-73. [DOI: 10.1016/j.pbb.2014.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 02/04/2023]
|
143
|
Rapoport SI. Lithium and the other mood stabilizers effective in bipolar disorder target the rat brain arachidonic acid cascade. ACS Chem Neurosci 2014; 5:459-67. [PMID: 24786695 DOI: 10.1021/cn500058v] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This Review evaluates the arachidonic acid (AA, 20:4n-6) cascade hypothesis for the actions of lithium and other FDA-approved mood stabilizers in bipolar disorder (BD). The hypothesis is based on evidence in unanesthetized rats that chronically administered lithium, carbamazepine, valproate, or lamotrigine each downregulated brain AA metabolism, and it is consistent with reported upregulated AA cascade markers in post-mortem BD brain. In the rats, each mood stabilizer reduced AA turnover in brain phospholipids, cyclooxygenase-2 expression, and prostaglandin E2 concentration. Lithium and carbamazepine also reduced expression of cytosolic phospholipase A2 (cPLA2) IVA, which releases AA from membrane phospholipids, whereas valproate uncompetitively inhibited in vitro acyl-CoA synthetase-4, which recycles AA into phospholipid. Topiramate and gabapentin, proven ineffective in BD, changed rat brain AA metabolism minimally. On the other hand, the atypical antipsychotics olanzapine and clozapine, which show efficacy in BD, decreased rat brain AA metabolism by reducing plasma AA availability. Each of the four approved mood stabilizers also dampened brain AA signaling during glutamatergic NMDA and dopaminergic D2 receptor activation, while lithium enhanced the signal during cholinergic muscarinic receptor activation. In BD patients, such signaling effects might normalize the neurotransmission imbalance proposed to cause disease symptoms. Additionally, the antidepressants fluoxetine and imipramine, which tend to switch BD depression to mania, each increased AA turnover and cPLA2 IVA expression in rat brain, suggesting that brain AA metabolism is higher in BD mania than depression. The AA hypothesis for mood stabilizer action is consistent with reports that low-dose aspirin reduced morbidity in patients taking lithium, and that high n-3 and/or low n-6 polyunsaturated fatty acid diets, which in rats reduce brain AA metabolism, were effective in BD and migraine patients.
Collapse
Affiliation(s)
- Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
144
|
Filiou MD, Arefin AS, Moscato P, Graeber MB. 'Neuroinflammation' differs categorically from inflammation: transcriptomes of Alzheimer's disease, Parkinson's disease, schizophrenia and inflammatory diseases compared. Neurogenetics 2014; 15:201-12. [PMID: 24928144 DOI: 10.1007/s10048-014-0409-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/30/2022]
Abstract
'Neuroinflammation' has become a widely applied term in the basic and clinical neurosciences but there is no generally accepted neuropathological tissue correlate. Inflammation, which is characterized by the presence of perivascular infiltrates of cells of the adaptive immune system, is indeed seen in the central nervous system (CNS) under certain conditions. Authors who refer to microglial activation as neuroinflammation confuse this issue because autoimmune neuroinflammation serves as a synonym for multiple sclerosis, the prototypical inflammatory disease of the CNS. We have asked the question whether a data-driven, unbiased in silico approach may help to clarify the nomenclatorial confusion. Specifically, we have examined whether unsupervised analysis of microarray data obtained from human cerebral cortex of Alzheimer's, Parkinson's and schizophrenia patients would reveal a degree of relatedness between these diseases and recognized inflammatory conditions including multiple sclerosis. Our results using two different data analysis methods provide strong evidence against this hypothesis demonstrating that very different sets of genes are involved. Consequently, the designations inflammation and neuroinflammation are not interchangeable. They represent different categories not only at the histophenotypic but also at the transcriptomic level. Therefore, non-autoimmune neuroinflammation remains a term in need of definition.
Collapse
Affiliation(s)
- Michaela D Filiou
- Max Planck Institute of Psychiatry, Kraepelinstraße 2, 80804, Munich, Germany
| | | | | | | |
Collapse
|
145
|
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014; 11:98. [PMID: 24889886 PMCID: PMC4060849 DOI: 10.1186/1742-2094-11-98] [Citation(s) in RCA: 1213] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
The concept of multiple macrophage activation states is not new. However, extending this idea to resident tissue macrophages, like microglia, has gained increased interest in recent years. Unfortunately, the research on peripheral macrophage polarization does not necessarily translate accurately to their central nervous system (CNS) counterparts. Even though pro- and anti-inflammatory cytokines can polarize microglia to distinct activation states, the specific functions of these states is still an area of intense debate. This review examines the multiple possible activation states microglia can be polarized to. This is followed by a detailed description of microglial polarization and the functional relevance of this process in both acute and chronic CNS disease models described in the literature. Particular attention is given to utilizing M2 microglial polarization as a potential therapeutic option in treating diseases.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - John A Olschowka
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - M Kerry O’Banion
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
146
|
Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li Z, Yan X. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. ADVANCES IN ALZHEIMER'S DISEASE 2014; 3:78-93. [PMID: 25360394 PMCID: PMC4211261 DOI: 10.4236/aad.2014.32009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic neuroinflammation is thought to play an etiological role in Alzheimer's disease (AD), which is characterized pathologically by amyloid and tau formation, as well as neuritic dystrophy and synaptic degeneration. The causal relationship between these pathological events is a topic of ongoing research and discussion. Recent data from transgenic AD models point to a tight spatiotemporal link between neuritic and amyloid pathology, with the obligatory enzyme for β-amyloid (Aβ) production, namely β-secretase-1 (BACE1), is overexpressed in axon terminals undergoing dystrophic change. However, the axonal pathology inherent with BACE1 elevation seen in transgenic AD mice may be secondary to increased soluble Aβ in these genetically modified animals. Here we explored the occurrence of the AD-like axonal and dendritic pathology in adult rat brain affected by LPS-induced chronic neuroinflammation. Unilateral intracerebral LPS injection induced prominent inflammatory response in glial cells in the ipsilateral cortex and hippocampal formation. BACE1 protein levels were elevated the ipsilateral hippocampal lysates in the LPS treated animals relative to controls. BACE1 immunoreactive dystrophic axons appeared in the LPS-treated ipsilateral cortex and hippocampal formation, colocalizing with increased β-amyloid precursor protein and Aβ antibody (4G8) immunolabeling. Quantitative Golgi studies revealed reduction of dendritic branching points and spine density on cortical layer III and hippocampal CA3 pyramidal neurons in the LPS-treated ipsilateral cerebrum. These findings suggest that Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration occur in wildtype mammalian brain in partnership with neuroinflammation following LPS injection.
Collapse
Affiliation(s)
- Xiaohua Deng
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Meili Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Weiming Ai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
- Department of Nursing in Internal Medicine, School of Nursing, Xiangtan Vocational and Technical College, Xiangtan, China
| | - Lixin He
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
- Department of Anatomy and Physiology, School of Nursing, Xiangtan Vocational and technical College, Xiangtan, China
| | - Dahua Lu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Peter R. Patrylo
- Departments of Physiology, Anatomy and Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, Carbondale, USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, USA
| | - Xuegang Luo
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| |
Collapse
|
147
|
Kou Z, VandeVord PJ. Traumatic white matter injury and glial activation: from basic science to clinics. Glia 2014; 62:1831-55. [PMID: 24807544 DOI: 10.1002/glia.22690] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 12/15/2022]
Abstract
An improved understanding and characterization of glial activation and its relationship with white matter injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination after brain trauma. Traumatic brain injury (TBI) is a significant public healthcare burden and a leading cause of death and disability in the United States. Particularly, traumatic white matter (WM) injury or traumatic axonal injury has been reported as being associated with patients' poor outcomes. However, there is very limited data reporting the importance of glial activation after TBI and its interaction with WM injury. This article presents a systematic review of traumatic WM injury and the associated glial activation, from basic science to clinical diagnosis and prognosis, from advanced neuroimaging perspective. It concludes that there is a disconnection between WM injury research and the essential role of glia which serve to restore a healthy environment for axonal regeneration following WM injury. Particularly, there is a significant lack of non-invasive means to characterize the complex pathophysiology of WM injury and glial activation in both animal models and in humans. An improved understanding and characterization of the relationship between glia and WM injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination.
Collapse
Affiliation(s)
- Zhifeng Kou
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan; Department of Radiology, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
148
|
Harper DG, Jensen JE, Ravichandran C, Sivrioglu Y, Silveri M, Iosifescu DV, Renshaw PF, Forester BP. Tissue-specific differences in brain phosphodiesters in late-life major depression. Am J Geriatr Psychiatry 2014; 22:499-509. [PMID: 23567437 PMCID: PMC3749264 DOI: 10.1016/j.jagp.2012.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 07/17/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Late-life depression has been hypothesized to have a neurodegenerative component that leads to impaired executive function and increases in subcortical white matter hyperintensities. Phosphorus magnetic resonance spectroscopy (MRS) can quantify several important phosphorus metabolites in the brain, particularly the anabolic precursors and catabolic metabolites of the constituents of cell membranes, which could be altered by neurodegenerative activity. METHODS Ten patients with late-life major depression who were medication free at time of study and 11 aged normal comparison subjects were studied using (31)P MRS three-dimensional chemical shift imaging at 4 Tesla. Phosphatidylcholine and phosphatidylethanolamine comprise 90% of cell membranes in brain but cannot be quantified precisely with (31)P MRS. We measured phosphocholine and phosphoethanolamine, which are anabolic precursors, as well as glycerophosphocholine and glycerophosphoethanolamine, which are catabolic metabolites of phosphatidylcholine and phosphatidylethanolamine. RESULTS In accordance with our hypotheses, glycerophosphoethanolamine was elevated in white matter of depressed subjects, suggesting enhanced breakdown of cell membranes in these subjects. Glycerophosphocholine did not show any significant difference between comparison and depressed subjects but both showed an enhancement in white matter compared with gray matter. Contrary to our hypotheses, neither phosphocholine nor phosphoethanolamine showed evidence for reduction in late-life depression. CONCLUSION These findings support the hypothesis that neurodegenerative processes occur in white matter in patients with late-life depression more than in the normal elderly population.
Collapse
Affiliation(s)
- David G Harper
- Geriatric Psychiatry Program, McLean Hospital, Belmont, MA; Department of Psychiatry, Harvard Medical School, Boston, MA.
| | - J Eric Jensen
- Neuroimaging Center, McLean Hospital, Belmont, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Caitlin Ravichandran
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Yusuf Sivrioglu
- Department of Psychiatry, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Marisa Silveri
- Neuroimaging Center, McLean Hospital, Belmont, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Dan V Iosifescu
- Department of Psychiatry, Harvard Medical School, Boston, MA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | | | - Brent P Forester
- Geriatric Psychiatry Program, McLean Hospital, Belmont, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
149
|
Yamada J, Jinno S. Age-related differences in oligodendrogenesis across the dorsal-ventral axis of the mouse hippocampus. Hippocampus 2014; 24:1017-29. [PMID: 24753086 DOI: 10.1002/hipo.22287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 11/07/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) continue to divide and generate new oligodendrocytes (OLs) in the healthy adult brain. Although recent studies have indicated that adult oligodendrogenesis may be vital for the maintenance of normal brain function, the significance of adult oligodendrogenesis in brain aging remains unclear. In this study, we report a stereological estimation of age-related oligodendrogenesis changes in the mouse hippocampus: the dorsal subdivision is related to learning and memory, while the ventral subdivision is involved in emotional behaviors. To identify OPCs and OLs, we used a set of molecular markers, OL lineage transcription factor (Olig2) and platelet-derived growth factor receptor-alpha (PDGFαR). Intracellular dye injection shows that PDGFαR+/Olig2+ cells and PDGFαR-/Olig2+ cells can be defined as OPCs and OLs, respectively. In the dorsal Ammon's horn, the numbers of OPCs decreased with age, while those of OLs remained unchanged during aging. In the ventral Ammon's horn, the numbers of OPCs and OLs generally decreased with age. Bromodeoxyuridine (BrdU) fate-tracing analysis revealed that the numbers of BrdU+ mitotic OPCs in the Ammon's horn remained unchanged during aging in both the dorsal and ventral subdivisions. Unexpectedly, the numbers of BrdU+ newly generated OLs increased with age in the dorsal Ammon's horn, but remained unchanged in the ventral Ammon's horn. Together, the numbers of OLs in the dorsal Ammon's horn may be maintained during aging by increased survival of adult born OLs, while the numbers of OLs in the ventral Ammon's horn may be reduced with age due to the lack of such compensatory mechanisms. These observations provide new insight into the involvement of adult oligodendrogenesis in age-related changes in the structure and function of the hippocampus.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
150
|
Pimplikar SW. Neuroinflammation in Alzheimer's disease: from pathogenesis to a therapeutic target. J Clin Immunol 2014; 34 Suppl 1:S64-9. [PMID: 24711006 DOI: 10.1007/s10875-014-0032-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The top-down, reductionist approach of the past three decades has resulted in remarkable progress in identifying genes and proteins involved in Alzheimer's disease (AD), including β-amyloid (Aβ) peptides and tau protein. Recently, a number of genes of the innate immune pathway have been identified as AD risk factors and several microglial proteins have been shown to be chronically activated in AD brains. Together, these observations suggest a crucial role for neuroinflammation in AD pathogenesis and emerging evidence suggests that neuroinflammation is both a cause and a consequence of AD. Epidemiological studies show that long-term users of anti-inflammatory drugs are protected from AD but anti-inflammatory treatment in mild AD patients has not been successful. These observations suggest that anti-inflammatory treatment is likely to be successful if initiated prior to the onset of neurological symptoms. Finally, after the remarkable success of the reductionist approach, a complimentary bottom-up systems approach is necessary to gain a better understanding of the highly complex, multifactorial nature of AD pathogenesis.
Collapse
Affiliation(s)
- Sanjay W Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA,
| |
Collapse
|