101
|
Lin X, Chen Y, Lin L, Yin K, Cheng R, Lin X, Wang X, Guo Y, Wu Z, Zhang Y, Li J, Yang C, Song J. mitoSplitter: A mitochondrial variants-based method for efficient demultiplexing of pooled single-cell RNA-seq. Proc Natl Acad Sci U S A 2023; 120:e2307722120. [PMID: 37725654 PMCID: PMC10523499 DOI: 10.1073/pnas.2307722120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/13/2023] [Indexed: 09/21/2023] Open
Abstract
Single-cell RNA-seq (scRNA-seq) analysis of multiple samples separately can be costly and lead to batch effects. Exogenous barcodes or genome-wide RNA mutations can be used to demultiplex pooled scRNA-seq data, but they are experimentally or computationally challenging and limited in scope. Mitochondrial genomes are small but diverse, providing concise genotype information. We developed "mitoSplitter," an algorithm that demultiplexes samples using mitochondrial RNA (mtRNA) variants, and demonstrated that mtRNA variants can be used to demultiplex large-scale scRNA-seq data. Using affordable computational resources, mitoSplitter can accurately analyze 10 samples and 60,000 cells in 6 h. To avoid the batch effects from separated experiments, we applied mitoSplitter to analyze the responses of five non-small cell lung cancer cell lines to BET (Bromodomain and extraterminal) chemical degradation in a multiplexed fashion. We found the synthetic lethality of TOP2A inhibition and BET chemical degradation in BET inhibitor-resistant cells. The result indicates that mitoSplitter can accelerate the application of scRNA-seq assays in biomedical research.
Collapse
Affiliation(s)
- Xinrui Lin
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, People’s Republic of China
| | - Yingwen Chen
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Li Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Kun Yin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Rui Cheng
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, People’s Republic of China
- School of Life Sciences, Shanghai University, Shanghai200444, People’s Republic of China
| | - Xin Lin
- Chemistry and Materials Science College, Shanghai Normal University, Shanghai200234, People’s Republic of China
| | - Xiaoyu Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
- Institute of Artificial Intelligence, Xiamen University, Xiamen361102, People’s Republic of China
| | - Ye Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Zhaorun Wu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
- Institute of Artificial Intelligence, Xiamen University, Xiamen361102, People’s Republic of China
| | - Yingkun Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Jin Li
- Department of Cell and Development biology, State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai200433, People’s Republic of China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, People’s Republic of China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, People’s Republic of China
| |
Collapse
|
102
|
Zhang JY, Whalley JP, Knight JC, Wicker LS, Todd JA, Ferreira RC. SARS-CoV-2 infection induces a long-lived pro-inflammatory transcriptional profile. Genome Med 2023; 15:69. [PMID: 37700317 PMCID: PMC10498514 DOI: 10.1186/s13073-023-01227-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in COVID-19 patients has been extensively investigated. However, much less is known about the long-term effects of infection in patients and how it could affect the immune system and its capacity to respond to future perturbations. METHODS Using a targeted single-cell multiomics approach, we have recently identified a prolonged anti-inflammatory gene expression signature in T and NK cells in type 1 diabetes patients treated with low-dose IL-2. Here, we investigated the dynamics of this signature in three independent cohorts of COVID-19 patients: (i) the Oxford COVID-19 Multi-omics Blood Atlas (COMBAT) dataset, a cross-sectional cohort including 77 COVID-19 patients and ten healthy donors; (ii) the INCOV dataset, consisting of 525 samples taken from 209 COVID-19 patients during and after infection; and (iii) a longitudinal dataset consisting of 269 whole-blood samples taken from 139 COVID-19 patients followed for a period of up to 7 months after the onset of symptoms using a bulk transcriptomic approach. RESULTS We discovered that SARS-CoV-2 infection leads to a prolonged alteration of the gene expression profile of circulating T, B and NK cells and monocytes. Some of the genes affected were the same as those present in the IL-2-induced anti-inflammatory gene expression signature but were regulated in the opposite direction, implying a pro-inflammatory status. The altered transcriptional profile was detected in COVID-19 patients for at least 2 months after the onset of the disease symptoms but was not observed in response to influenza infection or sepsis. Gene network analysis suggested a central role for the transcriptional factor NF-κB in the regulation of the observed transcriptional alterations. CONCLUSIONS SARS-CoV-2 infection causes a prolonged increase in the pro-inflammatory transcriptional status that could predispose post-acute patients to the development of long-term health consequences, including autoimmune disease, reactivation of other viruses and disruption of the host immune system-microbiome ecosystem.
Collapse
Affiliation(s)
- Jia-Yuan Zhang
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Justin P Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ricardo C Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
103
|
Alijotas-Reig J, Anunciación-Llunell A, Morales-Pérez S, Trapé J, Esteve-Valverde E, Miro-Mur F. Thrombosis and Hyperinflammation in COVID-19 Acute Phase Are Related to Anti-Phosphatidylserine and Anti-Phosphatidylinositol Antibody Positivity. Biomedicines 2023; 11:2301. [PMID: 37626797 PMCID: PMC10452204 DOI: 10.3390/biomedicines11082301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Antiphospholipid antibodies (APLA) are strongly associated with thrombosis seen in patients with antiphospholipid syndrome. In COVID-19, thrombosis has been observed as one of the main comorbidities. In patients hospitalised for COVID-19, we want to check whether APLA positivity is associated with COVID-19-related thrombosis, inflammation, severity of disease, or long COVID-19. We enrolled 92 hospitalised patients with COVID-19 between March and April 2020 who were tested for 18 different APLAs (IgG and IgM) with a single line-immunoassay test. A total of 30 healthy blood donors were used to set the cut-off for each APLA positivity. Of the 92 COVID-19 inpatients, 30 (32.61%; 95% CI [23.41-43.29]) tested positive for APLA, of whom 10 (33.3%; 95% CI [17.94-52.86]) had more than one APLA positivity. Anti-phosphatidylserine IgM positivity was described in 5.4% of inpatients (n = 5) and was associated with the occurrence of COVID-19-related thrombosis (p = 0.046). Anti-cardiolipin IgM positivity was the most prevalent among the inpatients (n = 12, 13.0%) and was associated with a recorded thrombosis in their clinical history (p = 0.044); however, its positivity was not associated with the occurrence of thrombosis during their hospitalisation for COVID-19. Anti-phosphatidylinositol IgM positivity, with a prevalence of 5.4% (n = 5), was associated with higher levels of interleukin (IL)-6 (p = 0.007) and ferritin (p = 0.034). Neither of these APLA positivities was a risk factor for COVID-19 severity or a predictive marker for long COVID-19. In conclusion, almost a third of COVID-19 inpatients tested positive for at least one APLA. Anti-phosphatidylserine positivity in IgM class was associated with thrombosis, and anti-phosphatidylinositol positivity in IgM class was associated with inflammation, as noticed by elevated levels of IL-6. Thus, testing for non-criteria APLA to assess the risk of clinical complications in hospitalised COVID-19 patients might be beneficial. However, they were not related to disease severity or long COVID-19.
Collapse
Affiliation(s)
- Jaume Alijotas-Reig
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Catalonia, Spain;
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron (HUVH), 08035 Barcelona, Catalonia, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Catalonia, Spain
| | - Ariadna Anunciación-Llunell
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Catalonia, Spain;
| | - Stephanie Morales-Pérez
- Systemic Autoimmune Disease Unit, Internal Medicine Department, Althaia Healthcare University Network of Manresa, 08243 Manresa, Catalonia, Spain (J.T.)
| | - Jaume Trapé
- Systemic Autoimmune Disease Unit, Internal Medicine Department, Althaia Healthcare University Network of Manresa, 08243 Manresa, Catalonia, Spain (J.T.)
| | - Enrique Esteve-Valverde
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Hospital Universitari Parc Taulí, 08208 Sabadell, Catalonia, Spain
| | - Francesc Miro-Mur
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Catalonia, Spain;
| |
Collapse
|
104
|
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M, Liu G. Applications of multi-omics analysis in human diseases. MedComm (Beijing) 2023; 4:e315. [PMID: 37533767 PMCID: PMC10390758 DOI: 10.1002/mco2.315] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.
Collapse
Affiliation(s)
- Chongyang Chen
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
| | - Jing Wang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Donghui Pan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xinyu Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Yuping Xu
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Junjie Yan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Lizhen Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Min Yang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Gong‐Ping Liu
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
105
|
Lagattuta KA, Nathan A, Rumker L, Birnbaum ME, Raychaudhuri S. The T cell receptor sequence influences the likelihood of T cell memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549939. [PMID: 37502994 PMCID: PMC10370203 DOI: 10.1101/2023.07.20.549939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
T cell differentiation depends on activation through the T cell receptor (TCR), whose amino acid sequence varies cell to cell. Particular TCR amino acid sequences nearly guarantee Mucosal-Associated Invariant T (MAIT) and Natural Killer T (NKT) cell fates. To comprehensively define how TCR amino acids affects all T cell fates, we analyze the paired αβTCR sequence and transcriptome of 819,772 single cells. We find that hydrophobic CDR3 residues promote regulatory T cell transcriptional states in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence features, concentrated in CDR2α, that promotes positive selection in the thymus as well as transition from naïve to memory in the periphery. Even among T cells that recognize the same antigen, these TCR sequence features help to explain which T cells form immunological memory, which is essential for effective pathogen response.
Collapse
Affiliation(s)
- Kaitlyn A. Lagattuta
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael E. Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
106
|
Lin Y, Cao Y, Willie E, Patrick E, Yang JYH. Atlas-scale single-cell multi-sample multi-condition data integration using scMerge2. Nat Commun 2023; 14:4272. [PMID: 37460600 DOI: 10.1038/s41467-023-39923-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
The recent emergence of multi-sample multi-condition single-cell multi-cohort studies allows researchers to investigate different cell states. The effective integration of multiple large-cohort studies promises biological insights into cells under different conditions that individual studies cannot provide. Here, we present scMerge2, a scalable algorithm that allows data integration of atlas-scale multi-sample multi-condition single-cell studies. We have generalized scMerge2 to enable the merging of millions of cells from single-cell studies generated by various single-cell technologies. Using a large COVID-19 data collection with over five million cells from 1000+ individuals, we demonstrate that scMerge2 enables multi-sample multi-condition scRNA-seq data integration from multiple cohorts and reveals signatures derived from cell-type expression that are more accurate in discriminating disease progression. Further, we demonstrate that scMerge2 can remove dataset variability in CyTOF, imaging mass cytometry and CITE-seq experiments, demonstrating its applicability to a broad spectrum of single-cell profiling technologies.
Collapse
Affiliation(s)
- Yingxin Lin
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| | - Yue Cao
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| | - Elijah Willie
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jean Y H Yang
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China.
| |
Collapse
|
107
|
Potts M, Fletcher-Etherington A, Nightingale K, Mescia F, Bergamaschi L, Calero-Nieto FJ, Antrobus R, Williamson J, Parsons H, Huttlin EL, Kingston N, Göttgens B, Bradley JR, Lehner PJ, Matheson NJ, Smith KGC, Wills MR, Lyons PA, Weekes MP. Proteomic analysis of circulating immune cells identifies cellular phenotypes associated with COVID-19 severity. Cell Rep 2023; 42:112613. [PMID: 37302069 PMCID: PMC10243220 DOI: 10.1016/j.celrep.2023.112613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.
Collapse
Affiliation(s)
- Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Federica Mescia
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James Williamson
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Harriet Parsons
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Berthold Göttgens
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 OAW, UK
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mark R Wills
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
108
|
Dib L, Koneva LA, Edsfeldt A, Zurke YX, Sun J, Nitulescu M, Attar M, Lutgens E, Schmidt S, Lindholm MW, Choudhury RP, Cassimjee I, Lee R, Handa A, Goncalves I, Sansom SN, Monaco C. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis increasing the risk of cerebrovascular complications. NATURE CARDIOVASCULAR RESEARCH 2023; 2:656-672. [PMID: 38362263 PMCID: PMC7615632 DOI: 10.1038/s44161-023-00295-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/31/2023] [Indexed: 02/17/2024]
Abstract
The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.
Collapse
Grants
- FS/18/63/34184 British Heart Foundation
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- British Heart Foundation (BHF)
- Fondation Leducq
- European Commission (EC)
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004), Oxford NIHR Biomedical Research Centre.
- Vetenskapsrådet (Swedish Research Council)
- The Swedish Society for Medical Research, Crafoord foundation; The Swedish Society of Medicine, the Swedish Heart and Lung Foundation, Diabetes foundation, SUS foundation, Lund University Diabetes Center, The Knut and Alice Wallenberg foundation, the Medical Faculty at Lund University and Region Skåne.
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004)
- Netcare-Physicians-Partnership trust
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
Collapse
Affiliation(s)
- Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lada A. Koneva
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yasemin-Xiomara Zurke
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN USA
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | | | - Ismail Cassimjee
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Stephen N. Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
109
|
Brown AC, Cohen CJ, Mielczarek O, Migliorini G, Costantino F, Allcock A, Davidson C, Elliott KS, Fang H, Lledó Lara A, Martin AC, Osgood JA, Sanniti A, Scozzafava G, Vecellio M, Zhang P, Black MH, Li S, Truong D, Molineros J, Howe T, Wordsworth BP, Bowness P, Knight JC. Comprehensive epigenomic profiling reveals the extent of disease-specific chromatin states and informs target discovery in ankylosing spondylitis. CELL GENOMICS 2023; 3:100306. [PMID: 37388915 PMCID: PMC10300554 DOI: 10.1016/j.xgen.2023.100306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 07/01/2023]
Abstract
Ankylosing spondylitis (AS) is a common, highly heritable inflammatory arthritis characterized by enthesitis of the spine and sacroiliac joints. Genome-wide association studies (GWASs) have revealed more than 100 genetic associations whose functional effects remain largely unresolved. Here, we present a comprehensive transcriptomic and epigenomic map of disease-relevant blood immune cell subsets from AS patients and healthy controls. We find that, while CD14+ monocytes and CD4+ and CD8+ T cells show disease-specific differences at the RNA level, epigenomic differences are only apparent upon multi-omics integration. The latter reveals enrichment at disease-associated loci in monocytes. We link putative functional SNPs to genes using high-resolution Capture-C at 10 loci, including PTGER4 and ETS1, and show how disease-specific functional genomic data can be integrated with GWASs to enhance therapeutic target discovery. This study combines epigenetic and transcriptional analysis with GWASs to identify disease-relevant cell types and gene regulation of likely pathogenic relevance and prioritize drug targets.
Collapse
Affiliation(s)
- Andrew C. Brown
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Carla J. Cohen
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Olga Mielczarek
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Horizon Discovery (PerkinElmer) Cambridge Research Park, 8100 Beach Dr., Waterbeach, Cambridge CB25 9TL, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Félicie Costantino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- UVSQ, INSERM UMR1173, Infection et Inflammation, Laboratory of Excellence INFLAMEX, Université Paris-Saclay, Paris, France
- Rheumatology Department, AP-HP, Ambroise Paré Hospital, Paris, France
| | - Alice Allcock
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | | | - Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Alicia Lledó Lara
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alice C. Martin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Julie A. Osgood
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Anna Sanniti
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- Centro Ricerche Fondazione Italiana Ricerca sull’Artrite (FIRA), Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mary Helen Black
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Shuwei Li
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Dongnhu Truong
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Julio Molineros
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Trevor Howe
- Data Science, External Innovation, Janssen R&D, London W1G 0BG, UK
| | - B. Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| |
Collapse
|
110
|
Li R, Zou J, Pei D, Pan T, Yang B, Liu X, Chen Y, Zhou F, Zhang L. Deciphering dynamic changes of the aging transcriptome with COVID-19 progression and convalescence in the human blood. Signal Transduct Target Ther 2023; 8:206. [PMID: 37211563 DOI: 10.1038/s41392-023-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023] Open
Affiliation(s)
- Ran Li
- Hematology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Jing Zou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Chen
- Hematology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Hematology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
111
|
Thakur A, Liang L, Banerjee S, Zhang K. Single-Cell Transcriptomics Reveals Evidence of Endothelial Dysfunction in the Brains of COVID-19 Patients with Implications for Glioblastoma Progression. Brain Sci 2023; 13:brainsci13050762. [PMID: 37239234 DOI: 10.3390/brainsci13050762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is implicated in various inflammatory diseases such as ischemic stroke, heart attack, organ failure, and COVID-19. Recent studies have shown that endothelial dysfunction in the brain is attributed to excessive inflammatory responses caused by the SARS-CoV-2 infection, leading to increased permeability of the blood-brain barrier and consequently neurological damage. Here, we aim to examine the single-cell transcriptomic landscape of endothelial dysfunction in COVID-19 and its implications for glioblastoma (GBM) progression. METHODS Single-cell transcriptome data GSE131928 and GSE159812 were obtained from the gene expression omnibus (GEO) to analyze the expression profiles of key players in innate immunity and inflammation between brain endothelial dysfunction caused by COVID-19 and GBM progression. RESULTS Single-cell transcriptomic analysis of the brain of COVID-19 patients revealed that endothelial cells had undergone significant transcriptomic changes, with several genes involved in immune responses and inflammation upregulated. Moreover, transcription factors were observed to modulate this inflammation, including interferon-regulated genes. CONCLUSIONS The results indicate a significant overlap between COVID-19 and GBM in the context of endothelial dysfunction, suggesting that there may be an endothelial dysfunction link connecting severe SARS-CoV-2 infection in the brain to GBM progression.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong 999077, China
| | - Lifan Liang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Sourav Banerjee
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
112
|
|
113
|
Scott NA, Pearmain L, Knight SB, Brand O, Morgan DJ, Jagger C, Harbach S, Khan S, Shuwa HA, Franklin M, Kästele V, Williams T, Prise I, McClure FA, Hackney P, Smith L, Menon M, Konkel JE, Lawless C, Wilson J, Mathioudakis AG, Stanel SC, Ustianowski A, Lindergard G, Brij S, Diar Bakerly N, Dark P, Brightling C, Rivera-Ortega P, Lord GM, Horsley A, Piper Hanley K, Felton T, Simpson A, Grainger JR, Hussell T, Mann ER. Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. Eur Respir J 2023; 61:2202226. [PMID: 36922030 PMCID: PMC10040898 DOI: 10.1183/13993003.02226-2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID). METHODS We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalisation and up to 9 months of convalescence following COVID-19, respiratory syncytial virus or influenza A. Patients with progressive fibrosing interstitial lung disease were included as a positive control for severe, ongoing lung injury. RESULTS Monocyte alterations in acute COVID-19 patients included aberrant expression of leukocyte migration molecules, continuing into convalescence (n=142) and corresponding with specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of C-X-C motif chemokine receptor 6 (CXCR6) (p<0.0001) and adhesion molecule P-selectin glycoprotein ligand 1 (p<0.01), alongside preferential migration of monocytes towards the CXCR6 ligand C-X-C motif chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence. CONCLUSIONS Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.
Collapse
Affiliation(s)
- Nicholas A Scott
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Equal contribution
| | - Laurence Pearmain
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Equal contribution
| | - Sean B Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Oliver Brand
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David J Morgan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Harbach
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Saba Khan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Halima A Shuwa
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Miriam Franklin
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Verena Kästele
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Thomas Williams
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ian Prise
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Flora A McClure
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pamela Hackney
- Research Innovation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Lara Smith
- Research Innovation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Criag Lawless
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Wilson
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
- Department of Microbiology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Alexander G Mathioudakis
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Stefan C Stanel
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Andrew Ustianowski
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
| | - Gabriella Lindergard
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
| | - Seema Brij
- Department of Respiratory Medicine, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nawar Diar Bakerly
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Paul Dark
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Christopher Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, University of Leicester, Leicester, UK
| | - Pilar Rivera-Ortega
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Graham M Lord
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alex Horsley
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Karen Piper Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Joint senior authors
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Joint senior authors
| | - Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Joint senior authors
| |
Collapse
|
114
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
115
|
Vodovotz Y. Towards systems immunology of critical illness at scale: from single cell 'omics to digital twins. Trends Immunol 2023; 44:345-355. [PMID: 36967340 PMCID: PMC10147586 DOI: 10.1016/j.it.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Single-cell 'omics methodology has yielded unprecedented insights based largely on data-centric informatics for reducing, and thus interpreting, massive datasets. In parallel, parsimonious mathematical modeling based on abstractions of pathobiology has also yielded major insights into inflammation and immunity, with these models being extended to describe multi-organ disease pathophysiology as the basis of 'digital twins' and in silico clinical trials. The integration of these distinct methods at scale can drive both basic and translational advances, especially in the context of critical illness, including diseases such as COVID-19. Here, I explore achievements and argue the challenges that are inherent to the integration of data-driven and mechanistic modeling approaches, highlighting the potential of modeling-based strategies for rational immune system reprogramming.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
116
|
Edahiro R, Shirai Y, Takeshima Y, Sakakibara S, Yamaguchi Y, Murakami T, Morita T, Kato Y, Liu YC, Motooka D, Naito Y, Takuwa A, Sugihara F, Tanaka K, Wing JB, Sonehara K, Tomofuji Y, Namkoong H, Tanaka H, Lee H, Fukunaga K, Hirata H, Takeda Y, Okuzaki D, Kumanogoh A, Okada Y. Single-cell analyses and host genetics highlight the role of innate immune cells in COVID-19 severity. Nat Genet 2023; 55:753-767. [PMID: 37095364 PMCID: PMC10181941 DOI: 10.1038/s41588-023-01375-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2023] [Indexed: 04/26/2023]
Abstract
Mechanisms underpinning the dysfunctional immune response in severe acute respiratory syndrome coronavirus 2 infection are elusive. We analyzed single-cell transcriptomes and T and B cell receptors (BCR) of >895,000 peripheral blood mononuclear cells from 73 coronavirus disease 2019 (COVID-19) patients and 75 healthy controls of Japanese ancestry with host genetic data. COVID-19 patients showed a low fraction of nonclassical monocytes (ncMono). We report downregulated cell transitions from classical monocytes to ncMono in COVID-19 with reduced CXCL10 expression in ncMono in severe disease. Cell-cell communication analysis inferred decreased cellular interactions involving ncMono in severe COVID-19. Clonal expansions of BCR were evident in the plasmablasts of patients. Putative disease genes identified by COVID-19 genome-wide association study showed cell type-specific expressions in monocytes and dendritic cells. A COVID-19-associated risk variant at the IFNAR2 locus (rs13050728) had context-specific and monocyte-specific expression quantitative trait loci effects. Our study highlights biological and host genetic involvement of innate immune cells in COVID-19 severity.
Collapse
Affiliation(s)
- Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Yusuke Takeshima
- Laboratory of Experimental Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Teruaki Murakami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yoko Naito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Ayako Takuwa
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kentaro Tanaka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan.
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
117
|
Kwok AJ, Allcock A, Ferreira RC, Cano-Gamez E, Smee M, Burnham KL, Zurke YX, McKechnie S, Mentzer AJ, Monaco C, Udalova IA, Hinds CJ, Todd JA, Davenport EE, Knight JC. Neutrophils and emergency granulopoiesis drive immune suppression and an extreme response endotype during sepsis. Nat Immunol 2023; 24:767-779. [PMID: 37095375 DOI: 10.1038/s41590-023-01490-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Sepsis arises from diverse and incompletely understood dysregulated host response processes following infection that leads to life-threatening organ dysfunction. Here we showed that neutrophils and emergency granulopoiesis drove a maladaptive response during sepsis. We generated a whole-blood single-cell multiomic atlas (272,993 cells, n = 39 individuals) of the sepsis immune response that identified populations of immunosuppressive mature and immature neutrophils. In co-culture, CD66b+ sepsis neutrophils inhibited proliferation and activation of CD4+ T cells. Single-cell multiomic mapping of circulating hematopoietic stem and progenitor cells (HSPCs) (29,366 cells, n = 27) indicated altered granulopoiesis in patients with sepsis. These features were enriched in a patient subset with poor outcome and a specific sepsis response signature that displayed higher frequencies of IL1R2+ immature neutrophils, epigenetic and transcriptomic signatures of emergency granulopoiesis in HSPCs and STAT3-mediated gene regulation across different infectious etiologies and syndromes. Our findings offer potential therapeutic targets and opportunities for stratified medicine in severe infection.
Collapse
Affiliation(s)
- Andrew J Kwok
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alice Allcock
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ricardo C Ferreira
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eddie Cano-Gamez
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Madeleine Smee
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Stuart McKechnie
- John Radcliffe Hospital, Oxford Universities Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- John Radcliffe Hospital, Oxford Universities Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Charles J Hinds
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University, London, UK
| | - John A Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Emma E Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- John Radcliffe Hospital, Oxford Universities Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
118
|
Cao Y, Ghazanfar S, Yang P, Yang J. Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data. Brief Bioinform 2023; 24:7140296. [PMID: 37096588 DOI: 10.1093/bib/bbad159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
The advances of single-cell transcriptomic technologies have led to increasing use of single-cell RNA sequencing (scRNA-seq) data in large-scale patient cohort studies. The resulting high-dimensional data can be summarized and incorporated into patient outcome prediction models in several ways; however, there is a pressing need to understand the impact of analytical decisions on such model quality. In this study, we evaluate the impact of analytical choices on model choices, ensemble learning strategies and integrate approaches on patient outcome prediction using five scRNA-seq COVID-19 datasets. First, we examine the difference in performance between using single-view feature space versus multi-view feature space. Next, we survey multiple learning platforms from classical machine learning to modern deep learning methods. Lastly, we compare different integration approaches when combining datasets is necessary. Through benchmarking such analytical combinations, our study highlights the power of ensemble learning, consistency among different learning methods and robustness to dataset normalization when using multiple datasets as the model input.
Collapse
Affiliation(s)
- Yue Cao
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| | - Shila Ghazanfar
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia
| | - Pengyi Yang
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, NSW 2145, Australia
- Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| | - Jean Yang
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| |
Collapse
|
119
|
Kolossváry M, deFilippi C, McCallum S, Fitch KV, Diggs MR, Fulda ES, Ribaudo HJ, Fichtenbaum CJ, Aberg JA, Malvestutto CD, Currier JS, Casado JL, Gutiérrez F, Sereti I, Douglas PS, Zanni MV, Grinspoon SK. Identification of pre-infection markers and differential plasma protein expression following SARS-CoV-2 infection in people living with HIV. EBioMedicine 2023; 90:104538. [PMID: 36966617 PMCID: PMC10037041 DOI: 10.1016/j.ebiom.2023.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Mechanisms contributing to COVID-19 severity in people with HIV (PWH) are poorly understood. We evaluated temporal changes in plasma proteins following SARS-CoV-2 infection and identified pre-infection proteomic markers associated with future COVID-19. METHODS We leveraged data from the global Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Antiretroviral therapy (ART)-treated PWH with clinical, antibody-confirmed COVID-19 as of September 2021 were matched on geographic region, age, and sample timing to antibody negative controls. For cases and controls, pre COVID-19 pandemic specimens were obtained prior to January 2020 to assess change over time and relationship to COVID-19 severity, using false-discovery adjusted mixed effects modeling. FINDINGS We compared 257 unique plasma proteins in 94 COVID-19 antibody-confirmed clinical cases and 113 matched antibody-negative controls, excluding COVID-19 vaccinated participants (age 50 years, 73% male). 40% of cases were characterized as mild; 60% moderate to severe. Median time from COVID-19 infection to follow-up sampling was 4 months. Temporal patterns of protein changes differed based on COVID-19 disease severity. Among those experiencing moderate to severe disease vs. controls, NOS3 increased whereas ANG, CASP-8, CD5, GZMH, GZMB, ITGB2, and KLRD1 decreased. Higher pre-pandemic levels of granzymes A, B and H (GZMA, GZMB and GZMH) were associated with the future development of moderate-severe COVID-19 and were related to immune function. INTERPRETATION We identified temporal changes in proteins closely linked to inflammatory, immune, and fibrotic pathways which may relate to COVID-19-related morbidity among ART-treated PWH. Further we identified key granzyme proteins associated with future COVID-19 in PWH. FUNDING This study is supported through NIH grants U01HL123336, U01HL123336-06 and 3U01HL12336-06S3, to the clinical coordinating center, and U01HL123339, to the data coordinating center as well as funding from Kowa Pharmaceuticals, Gilead Sciences, and a grant award through ViiV Healthcare. The NIAID supported this study through grants UM1 AI068636, which supports the AIDS Clinical Trials Group (ACTG) Leadership and Operations Center, and UM1 AI106701, which supports the ACTG Laboratory Center. This work was also supported by NIAID through grant K24AI157882 to MZ. The work of IS was supported by the intramural research program of NIAID/NIH.
Collapse
Affiliation(s)
- Márton Kolossváry
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA; Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chris deFilippi
- Inova Heart and Vascular Institute, Falls Church, VA, 22042, USA
| | - Sara McCallum
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kathleen V Fitch
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Marissa R Diggs
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Evelynne S Fulda
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Heather J Ribaudo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carl J Fichtenbaum
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Judith A Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos D Malvestutto
- Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Judith S Currier
- Division of Infectious Diseases, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jose L Casado
- Division of Infectious Diseases, Ramon y Cajal Health Research Institute (IRyCIS), University Hospital Ramon y Cajal, Madrid, Spain
| | - Félix Gutiérrez
- Division of Infectious Diseases, Hospital General Universitario de Elche and University Miguel Hernández, Alicante, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela S Douglas
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Markella V Zanni
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
120
|
Alghanem B, Mansour FA, Shaibah H, Almuhalhil K, Almourfi F, Alamri HS, Alajmi H, Rashid M, Alroqi F, Jalouli M, Harrath AH, Boudjellal M, Barhoumi T. Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential modulators of innate immune responses. Heliyon 2023; 9:e15224. [PMID: 37064481 PMCID: PMC10082967 DOI: 10.1016/j.heliyon.2023.e15224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Treatment of severe cases of coronavirus disease 2019 (COVID-19) is extremely important to minimize death and end-organ damage. Here we performed a proteomic analysis of plasma samples from mild, moderate and severe COVID-19 patients. Analysis revealed differentially expressed proteins and different therapeutic potential targets related to innate immune responses such as fetuin-A, tetranectin (TN) and paraoxonase-1 (PON1). Furthermore, protein changes in plasma showed dysregulation of complement and coagulation cascades in COVID-19 patients compared to healthy controls. In conclusion, our proteomics data suggested fetuin-A and TN as potential targets that might be used for diagnosis as well as signatures for a better understanding of the pathogenesis of COVID-19 disease.
Collapse
Affiliation(s)
- Bandar Alghanem
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Khawlah Almuhalhil
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Feras Almourfi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hassan S Alamri
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hala Alajmi
- Saudi Biobank, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Mamoon Rashid
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Sciences, Riyadh, 11451, Saudi Arabia
| | - Mohammad Boudjellal
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
121
|
Du L, Liang Y, Wang X, Huang L, Pan X, Chen J, Chen D. Cellular and Molecular Atlas of Peripheral Blood Mononuclear Cells from a Pregnant Woman After Recovery from COVID-19. MATERNAL-FETAL MEDICINE 2023; 5:88-96. [PMID: 40406392 PMCID: PMC12094376 DOI: 10.1097/fm9.0000000000000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 05/26/2025] Open
Abstract
Objective This study aimed to investigate the immune response of a pregnant woman who recovered from the coronavirus disease 2019 (COVID_RS) by using single-cell transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) and to analyze the properties of different immune cell subsets. Methods PBMCs were collected from the COVID_RS patient at 28 weeks of gestation, before a cesarean section. The PBMCs were then analyzed using single-cell RNA sequencing. The transcriptional profiles of myeloid, T, and natural killer (NK) cell subsets were systematically analyzed and compared with those of healthy pregnant controls from a published single-cell RNA sequencing data set. Results We identified major cell types such as T cells, B cells, NK cells, and myeloid cells in the PBMCs of our COVID_RS patient. The increase of myeloid and B cells and decrease of T cells and NK cells in the PBMCs in this patient were quite distinct compared with that in the control subjects. After reclustering and Augur analysis, we found that CD16 monocytes and mucosal-associated invariant T (MAIT) cells were mostly affected within different myeloid, T, and NK cell subtypes in our COVID_RS patient. The proportion of CD16 monocytes in the total myeloid population was increased, and the frequency of MAIT cells in the total T and NK cells was significantly decreased in the COVID-RS patient. We also observed significant enrichment of gene sets related to antigen processing and presentation, T-cell activation, T-cell differentiation, and tumor necrosis factor superfamily cytokine production in CD16 monocytes, and enrichment of gene sets related to antigen processing and presentation, response to type II interferon, and response to virus in MAIT cells. Conclusion Our study provides a single-cell resolution atlas of the immune gene expression patterns in PBMCs from a COVID_RS patient. Our findings suggest that CD16-positive monocytes and MAIT cells likely play crucial roles in the maternal immune response against severe acute respiratory syndrome coronavirus 2 infection. These results contribute to a better understanding of the maternal immune response to severe acute respiratory syndrome coronavirus 2 infection and may have implications for the development of effective treatments and preventive strategies for the coronavirus disease 2019 in pregnant women.
Collapse
Affiliation(s)
- Lili Du
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaoyi Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xingfei Pan
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
122
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
123
|
Lücke J, Nawrocki M, Schnell J, Meins N, Heinrich F, Zhang T, Bertram F, Sabihi M, Böttcher M, Blankenburg T, Pfaff M, Notz S, Kempski J, Reeh M, Wolter S, Mann O, Izbicki JR, Lütgehetmann M, Duprée A, Giannou AD, Ondruschka B, Huber S. TNFα aggravates detrimental effects of SARS-CoV-2 infection in the liver. Front Immunol 2023; 14:1151937. [PMID: 37063909 PMCID: PMC10102423 DOI: 10.3389/fimmu.2023.1151937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus does not only lead to pulmonary infection but can also infect other organs such as the gut, the kidney, or the liver. Recent studies confirmed that severe cases of COVID-19 are often associated with liver damage and liver failure, as well as the systemic upregulation of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα). However, the impact these immune mediators in the liver have on patient survival during SARS-CoV-2 infection is currently unknown. Here, by performing a post-mortem analysis of 45 patients that died from a SARS-CoV-2 infection, we find that an increased expression of TNFA in the liver is associated with elevated mortality. Using publicly available single-cell sequencing datasets, we determined that Kupffer cells and monocytes are the main sources of this TNFα production. Further analysis revealed that TNFα signaling led to the upregulation of pro-inflammatory genes that are associated with an unfavorable outcome. Moreover, high levels of TNFA in the liver were associated with lower levels of interferon alpha and interferon beta. Thus, TNFα signaling in the infected SARS-CoV-2 liver correlates with reduced interferon levels and overall survival time.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Samuel Huber, ; Jöran Lücke,
| | - Mikolaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josa Schnell
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicholas Meins
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Heinrich
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Bertram
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Böttcher
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tom Blankenburg
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie Pfaff
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Notz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Duprée
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Samuel Huber, ; Jöran Lücke,
| |
Collapse
|
124
|
Viode A, van Zalm P, Smolen KK, Fatou B, Stevenson D, Jha M, Levy O, Steen J, Steen H, On behalf of the IMPACC Network. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. SCIENCE ADVANCES 2023; 9:eadf9717. [PMID: 36989362 PMCID: PMC10058233 DOI: 10.1126/sciadv.adf9717] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/27/2023] [Indexed: 05/30/2023]
Abstract
We introduce a cost-effective, robust high-throughput-compatible plasma depletion method enabling in-depth profiling of plasma that detects >1300 proteins per run with a throughput of 60 samples per day. The method has been fully validated by processing >3000 samples with no apparent batch effect at a cost for the depletion step of ~$2.5 per sample.
Collapse
Affiliation(s)
- Arthur Viode
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick van Zalm
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kinga K. Smolen
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Stevenson
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Meenakshi Jha
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Judith Steen
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - On behalf of the IMPACC Network
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
125
|
Dhawan M, Rabaan AA, Alwarthan S, Alhajri M, Halwani MA, Alshengeti A, Najim MA, Alwashmi ASS, Alshehri AA, Alshamrani SA, AlShehail BM, Garout M, Al-Abdulhadi S, Al-Ahmed SH, Thakur N, Verma G. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines (Basel) 2023; 11:vaccines11030699. [PMID: 36992283 DOI: 10.3390/vaccines11030699] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Al-Madinah 41411, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
126
|
Kattner S, Müller J, Glanz K, Manoochehri M, Sylvester C, Vainshtein Y, Berger MM, Brenner T, Sohn K. Identification of two early blood biomarkers ACHE and CLEC12A for improved risk stratification of critically ill COVID-19 patients. Sci Rep 2023; 13:4388. [PMID: 36928077 PMCID: PMC10019437 DOI: 10.1038/s41598-023-30158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
In order to identify biomarkers for earlier prediction of COVID-19 outcome, we collected blood samples from patients with fatal outcomes (non-survivors) and with positive clinical outcomes (survivors) at ICU admission and after seven days. COVID-19 survivors and non-survivors showed significantly different transcript levels for 93 genes in whole blood already at ICU admission as revealed by RNA-Seq. These differences became even more pronounced at day 7, resulting in 290 differentially expressed genes. Many identified genes play a role in the differentiation of hematopoietic cells. For validation, we designed an RT-qPCR assay for C-type lectin domain family 12 member A (CLEC12A) and acetylcholinesterase (ACHE), two transcripts that showed highest potential to discriminate between survivors and non-survivors at both time points. Using our combined RT-qPCR assay we examined 33 samples to accurately predict patient survival with an AUROC curve of 0.931 (95% CI = 0.814-1.000) already at ICU admission. CLEC12A and ACHE showed improved prediction of patient outcomes compared to standard clinical biomarkers including CRP and PCT in combination (AUROC = 0.403, 95% CI = 0.108-0.697) or SOFA score (AUROC = 0.701 95% CI = 0.451-0.951) at day 0. Therefore, analyzing CLEC12A and ACHE gene expression from blood may provide a promising approach for early risk stratification of severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Simone Kattner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Müller
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karolina Glanz
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Mehdi Manoochehri
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Caroline Sylvester
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Yevhen Vainshtein
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Kai Sohn
- Innovation Field In-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
| |
Collapse
|
127
|
Grabherr S, Waltenspühl A, Büchler L, Lütge M, Cheng HW, Caviezel-Firner S, Ludewig B, Krebs P, Pikor NB. An Innate Checkpoint Determines Immune Dysregulation and Immunopathology during Pulmonary Murine Coronavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:774-785. [PMID: 36715496 PMCID: PMC9986052 DOI: 10.4049/jimmunol.2200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1β and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alexandra Waltenspühl
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lorina Büchler
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sonja Caviezel-Firner
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Natalia B. Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
128
|
Pan T, Cao G, Tang E, Zhao Y, Penaloza-MacMaster P, Fang Y, Huang J. A single-cell atlas reveals shared and distinct immune responses and metabolic profiles in SARS-CoV-2 and HIV-1 infections. Front Genet 2023; 14:1105673. [PMID: 36992700 PMCID: PMC10040851 DOI: 10.3389/fgene.2023.1105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: Within the inflammatory immune response to viral infection, the distribution and cell type-specific profiles of immune cell populations and the immune-mediated viral clearance pathways vary according to the specific virus. Uncovering the immunological similarities and differences between viral infections is critical to understanding disease progression and developing effective vaccines and therapies. Insight into COVID-19 disease progression has been bolstered by the integration of single-cell (sc)RNA-seq data from COVID-19 patients with data from related viruses to compare immune responses. Expanding this concept, we propose that a high-resolution, systematic comparison between immune cells from SARS-CoV-2 infection and an inflammatory infectious disease with a different pathophysiology will provide a more comprehensive picture of the viral clearance pathways that underscore immunological and clinical differences between infections. Methods: Using a novel consensus single-cell annotation method, we integrate previously published scRNA-seq data from 111,566 single PBMCs from 7 COVID-19, 10 HIV-1+, and 3 healthy patients into a unified cellular atlas. We compare in detail the phenotypic features and regulatory pathways in the major immune cell clusters. Results: While immune cells in both COVID-19 and HIV-1+ cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activity, and downregulated mitophagy. Discussion: Our results indicate that differential IFN-I signaling regulates the distinct immune responses in the two diseases, revealing insight into fundamental disease biology and potential therapeutic candidates.
Collapse
Affiliation(s)
- Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Yu Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | | | - Yun Fang
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
129
|
Wu D, Guo M, Robinson CV. Connecting single-nucleotide polymorphisms, glycosylation status, and interactions of plasma serine protease inhibitors. Chem 2023; 9:665-681. [PMID: 38455847 PMCID: PMC10914678 DOI: 10.1016/j.chempr.2022.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Understanding the combined impacts of genetic variances and post-translational modifications requires new approaches. Here, we delineate proteoforms of plasma serine protease inhibitors and relate specific proteoforms to their interactions in complexes through the use of native mass spectrometry (MS). First, we dissect the proteoform repertoire of an acute-phase plasma protein, serine protease inhibitor A1 (SERPINA1), resolving four SERPINA1 variants (M1V, M1A, M2, and M3) with common single-nucleotide polymorphisms (SNPs). Investigating the glycosylation status of these variants and their ability to form complexes with a serine protease, elastase, we find that fucosylation stabilizes the interaction of the SERPINA1 M1V variant through its core fucosylation on Asn271. In contrast, antennary fucosylation on Asn271 destabilizes SERPINA1-elastase interactions. We unveil the same opposing effects of core and antennary fucosylation on SERPINA3 interactions with chymotrypsin. Together, our native MS results highlight the modulating effects of fucosylation with different linkages on glycoprotein interactions.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Manman Guo
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
130
|
Martínez-Diz S, Marín-Benesiu F, López-Torres G, Santiago O, Díaz-Cuéllar JF, Martín-Esteban S, Cortés-Valverde AI, Arenas-Rodríguez V, Cuenca-López S, Porras-Quesada P, Ruiz-Ruiz C, Abadía-Molina AC, Entrala-Bernal C, Martínez-González LJ, Álvarez-Cubero MJ. Relevance of TMPRSS2, CD163/CD206, and CD33 in clinical severity stratification of COVID-19. Front Immunol 2023; 13:1094644. [PMID: 36969980 PMCID: PMC10031647 DOI: 10.3389/fimmu.2022.1094644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 03/10/2023] Open
Abstract
BackgroundApproximately 13.8% and 6.1% of coronavirus disease 2019 (COVID-19) patients require hospitalization and sometimes intensive care unit (ICU) admission, respectively. There is no biomarker to predict which of these patients will develop an aggressive stage that we could improve their quality of life and healthcare management. Our main goal is to include new markers for the classification of COVID-19 patients.MethodsTwo tubes of peripheral blood were collected from a total of 66 (n = 34 mild and n = 32 severe) samples (mean age 52 years). Cytometry analysis was performed using a 15-parameter panel included in the Maxpar® Human Monocyte/Macrophage Phenotyping Panel Kit. Cytometry by time-of-flight mass spectrometry (CyTOF) panel was performed in combination with genetic analysis using TaqMan® probes for ACE2 (rs2285666), MX1 (rs469390), and TMPRSS2 (rs2070788) variants. GemStone™ and OMIQ software were used for cytometry analysis.ResultsThe frequency of CD163+/CD206- population of transitional monocytes (T-Mo) was decreased in the mild group compared to that of the severe one, while T-Mo CD163-/CD206- were increased in the mild group compared to that of the severe one. In addition, we also found differences in CD11b expression in CD14dim monocytes in the severe group, with decreased levels in the female group (p = 0.0412). When comparing mild and severe disease, we also found that CD45- [p = 0.014; odds ratio (OR) = 0.286, 95% CI 0.104–0.787] and CD14dim/CD33+ (p = 0.014; OR = 0.286, 95% CI 0.104–0.787) monocytes were the best options as biomarkers to discriminate between these patient groups. CD33 was also indicated as a good biomarker for patient stratification by the analysis of GemStone™ software. Among genetic markers, we found that G carriers of TMPRSS2 (rs2070788) have an increased risk (p = 0.02; OR = 3.37, 95% CI 1.18–9.60) of severe COVID-19 compared to those with A/A genotype. This strength is further increased when combined with CD45-, T-Mo CD163+/CD206-, and C14dim/CD33+.ConclusionsHere, we report the interesting role of TMPRSS2, CD45-, CD163/CD206, and CD33 in COVID-19 aggressiveness. This strength is reinforced for aggressiveness biomarkers when TMPRSS2 and CD45-, TMPRSS2 and CD163/CD206, and TMPRSS2 and CD14dim/CD33+ are combined.
Collapse
Affiliation(s)
- Silvia Martínez-Diz
- Preventive Medicine and Public Health Service, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Fernando Marín-Benesiu
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Olivia Santiago
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
| | | | | | | | | | | | | | - Carmen Ruiz-Ruiz
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Immunology Unit, Institute of Regenerative Biomedicine (IBIMER), Center for Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Ana C. Abadía-Molina
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Immunology Unit, Institute of Regenerative Biomedicine (IBIMER), Center for Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Carmen Entrala-Bernal
- LORGEN G.P., PT, Ciencias de la Salud - Business Innovation Centre (BIC), Granada, Spain
| | - Luis J. Martínez-González
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
- *Correspondence: Luis J. Martínez-González,
| | - Maria Jesus Álvarez-Cubero
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute (ibs. GRANADA), University of Granada, Granada, Spain
| |
Collapse
|
131
|
Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol 2023; 24:604-611. [PMID: 36879067 PMCID: PMC10063443 DOI: 10.1038/s41590-023-01445-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.
Collapse
|
132
|
Parallel Dysregulated Immune Response in Severe Forms of COVID-19 and Bacterial Sepsis via Single-Cell Transcriptome Sequencing. Biomedicines 2023; 11:biomedicines11030778. [PMID: 36979757 PMCID: PMC10045101 DOI: 10.3390/biomedicines11030778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Critically ill COVID-19 patients start developing single respiratory organ failure that often evolves into multiorgan failure. Understanding the immune mechanisms in severe forms of an infectious disease (either critical COVID-19 or bacterial septic shock) would help to achieve a better understanding of the patient’s clinical trajectories and the success of potential therapies. We hypothesized that a dysregulated immune response manifested by the abnormal activation of innate and adaptive immunity might be present depending on the severity of the clinical presentation in both COVID-19 and bacterial sepsis. We found that critically ill COVID-19 patients demonstrated a different clinical endotype that resulted in an inflammatory dysregulation in mild forms of the disease. Mild cases (COVID-19 and bacterial non severe sepsis) showed significant differences in the expression levels of CD8 naïve T cells, CD4 naïve T cells, and CD4 memory T cells. On the other hand, in the severe forms of infection (critical COVID-19 and bacterial septic shock), patients shared immune patterns with upregulated single-cell transcriptome sequencing at the following levels: B cells, monocyte classical, CD4 and CD8 naïve T cells, and natural killers. In conclusion, we identified significant gene expression differences according to the etiology of the infection (COVID-19 or bacterial sepsis) in the mild forms; however, in the severe forms (critical COVID-19 and bacterial septic shock), patients tended to share some of the same immune profiles related to adaptive and innate immune response. Severe forms of the infections were similar independent of the etiology. Our findings might promote the implementation of co-adjuvant therapies and interventions to avoid the development of severe forms of disease that are associated with high mortality rates worldwide.
Collapse
|
133
|
Chan KR, Koh CWT, Ng DHL, Qin S, Ooi JSG, Ong EZ, Zhang SLX, Sam H, Kalimuddin S, Low JGH, Ooi EE. Early peripheral blood MCEMP1 and HLA-DRA expression predicts COVID-19 prognosis. EBioMedicine 2023; 89:104472. [PMID: 36801619 PMCID: PMC9934388 DOI: 10.1016/j.ebiom.2023.104472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.
Collapse
Affiliation(s)
- Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
| | - Clara W T Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dorothy H L Ng
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shijie Qin
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Justin S G Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eugenia Z Ong
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Summer L X Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Huizhen Sam
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jenny G H Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Eng Eong Ooi
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
134
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
135
|
Sahin AT, Yurtseven A, Dadmand S, Ozcan G, Akarlar BA, Kucuk NEO, Senturk A, Ergonul O, Can F, Tuncbag N, Ozlu N. Plasma proteomics identify potential severity biomarkers from COVID-19 associated network. Proteomics Clin Appl 2023; 17:e2200070. [PMID: 36217943 PMCID: PMC9874836 DOI: 10.1002/prca.202200070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Coronavirus disease 2019 (COVID-19) continues to threaten public health globally. Severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection-dependent alterations in the host cell signaling network may unveil potential target proteins and pathways for therapeutic strategies. In this study, we aim to define early severity biomarkers and monitor altered pathways in the course of SARS-CoV-2 infection. EXPERIMENTAL DESIGN We systematically analyzed plasma proteomes of COVID-19 patients from Turkey by using mass spectrometry. Different severity grades (moderate, severe, and critical) and periods of disease (early, inflammatory, and recovery) are monitored. Significant alterations in protein expressions are used to reconstruct the COVID-19 associated network that was further extended to connect viral and host proteins. RESULTS Across all COVID-19 patients, 111 differentially expressed proteins were found, of which 28 proteins were unique to our study mainly enriching in immunoglobulin production. By monitoring different severity grades and periods of disease, CLEC3B, MST1, and ITIH2 were identified as potential early predictors of COVID-19 severity. Most importantly, we extended the COVID-19 associated network with viral proteins and showed the connectedness of viral proteins with human proteins. The most connected viral protein ORF8, which has a role in immune evasion, targets many host proteins tightly connected to the deregulated human plasma proteins. CONCLUSIONS AND CLINICAL RELEVANCE Plasma proteomes from critical patients are intrinsically clustered in a distinct group than severe and moderate patients. Importantly, we did not recover any grouping based on the infection period, suggesting their distinct proteome even in the recovery phase. The new potential early severity markers can be further studied for their value in the clinics to monitor COVID-19 prognosis. Beyond the list of plasma proteins, our disease-associated network unravels altered pathways, and the possible therapeutic targets in SARS-CoV-2 infection by connecting human and viral proteins. Follow-up studies on the disease associated network that we propose here will be useful to determine molecular details of viral perturbation and to address how the infection affects human physiology.
Collapse
Affiliation(s)
- Ayse Tugce Sahin
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Graduate School of Science and Engineering, Koc University, Istanbul, Turkey
| | - Ali Yurtseven
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Graduate School of Science and Engineering, Koc University, Istanbul, Turkey
| | - Sina Dadmand
- Graduate School of Science and Engineering, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Gulin Ozcan
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Busra A Akarlar
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Nazli Ezgi Ozkan Kucuk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Aydanur Senturk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Onder Ergonul
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Koc University Is Bank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Fusun Can
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Department of Infectious Diseases, School of Medicine, Koc University, Istanbul, Turkey
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.,Department of Medical Microbiology, School of Medicine, Koc University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
136
|
Hédou J, Marić I, Bellan G, Einhaus J, Gaudillière DK, Ladant FX, Verdonk F, Stelzer IA, Feyaerts D, Tsai AS, Ganio EA, Sabayev M, Gillard J, Bonham TA, Sato M, Diop M, Angst MS, Stevenson D, Aghaeepour N, Montanari A, Gaudillière B. Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data. RESEARCH SQUARE 2023:rs.3.rs-2609859. [PMID: 36909508 PMCID: PMC10002850 DOI: 10.21203/rs.3.rs-2609859/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl.
Collapse
Affiliation(s)
- Julien Hédou
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Ivana Marić
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Jakob Einhaus
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Dyani K. Gaudillière
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA
| | | | - Franck Verdonk
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Amy S. Tsai
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Edward A. Ganio
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Maximilian Sabayev
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Joshua Gillard
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Thomas A. Bonham
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Masaki Sato
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Maïgane Diop
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | | | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | - Andrea Montanari
- Department of Statistics, Stanford University, Stanford, CA
- Department of Electrical Engineering, Stanford University, Stanford, CA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
137
|
Khadzhieva MB, Gracheva AS, Belopolskaya OB, Chursinova YV, Redkin IV, Pisarev MV, Kuzovlev AN. Serial Changes in Blood-Cell-Count-Derived and CRP-Derived Inflammatory Indices of COVID-19 Patients. Diagnostics (Basel) 2023; 13:diagnostics13040746. [PMID: 36832234 PMCID: PMC9955197 DOI: 10.3390/diagnostics13040746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The aim of the study was to investigate the serial changes in inflammatory indices derived from blood cell counts and C-reactive protein (CRP) levels in COVID-19 patients with good and poor outcomes. We retrospectively analyzed the serial changes in the inflammatory indices in 169 COVID-19 patients. Comparative analyses were performed on the first and last days of a hospital stay or death and serially from day 1 to day 30 from the symptom onset. On admission, non-survivors had higher CRP to lymphocytes ratio (CLR) and multi-inflammatory index (MII) values than survivors, while at the time of discharge/death, the largest differences were found for the neutrophil to lymphocyte ratio (NLR), systemic inflammation response index (SIRI), and MII. A significant decrease in NLR, CLR, and MII by the time of discharge was documented in the survivors, and a significant increase in NLR was documented in the non-survivors. The NLR was the only one that remained significant from days 7-30 of disease in intergroup comparisons. The correlation between the indices and the outcome was observed starting from days 13-15. The changes in the index values over time proved to be more helpful in predicting COVID-19 outcomes than those measured on admission. The values of the inflammatory indices could reliably predict the outcome no earlier than days 13-15 of the disease.
Collapse
Affiliation(s)
- Maryam B. Khadzhieva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-963-674-20-99
| | - Alesya S. Gracheva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olesya B. Belopolskaya
- Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Yulia V. Chursinova
- Federal Scientific and Clinical Center of Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency of Russia, 127410 Moscow, Russia
| | - Ivan V. Redkin
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Mikhail V. Pisarev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| |
Collapse
|
138
|
Tang L, Zhang S, Zhang M, Wang PJ, Liang GY, Gao XL. Integrated Proteomics and Metabolomics Analysis to Explore the Amelioration Mechanisms of Rosa roxburghii Tratt Fruit Polyphenols on Lipopolysaccharide-Induced Acute Lung Injury Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3079-3092. [PMID: 36745194 DOI: 10.1021/acs.jafc.2c04344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acute lung injury (ALI) is the main cause of death for the elderly and children due to its high morbidity and mortality rates. Plant-derived functional foods are becoming increasingly important to the healthcare and food industries for adjunctive and alternative treatments of ALI. Polyphenols have been regarded to be beneficial to the prevention and amelioration of ALI. Rosa roxburghii Tratt fruit polyphenols (RRTP) has potential to prevent ALI, but mechanism remains unclear. This study was set up to systematically analyze the RRTP extract active ingredients, comprehensively evaluate its protective effects via lung histopathological examination, protein concentration, and cytokines production in ALI mice induced by lipopolysaccharide (LPS), and finally revealed alleviation mechanisms of the regulatory effects of RRTP by proteomics and metabolomics approach. The results demonstrated RRTP could synergistically exert significant preventive effects against ALI by notably ameliorating lung histopathological damage and pulmonary capillary permeability in ALI mice, inhibiting lung tissue inflammatory response and acute phase proteins and S-100 calcium binding proteins, suppressing excessive activation of complement and coagulation cascades, and regulating disordered lipids metabolism and amino acid metabolism. This study illustrated that RRTP has obvious advantages in ALI adjunctive therapy and revealed the complicated amelioration mechanisms, which provides a breakthrough for the development and demonstration of RRTP as a nutritional compound additive for complementary therapy of ALI.
Collapse
Affiliation(s)
- Li Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuo Zhang
- School of Basic Medical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng-Jiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Gui-You Liang
- Translational Medicine Research Center & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| | - Xiu-Li Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
139
|
Melhorn J, Alamoudi A, Mentzer AJ, Fraser E, Fries A, Cassar MP, Kwok A, Knight JC, Raman B, Talbot NP, Petousi N. Persistence of inflammatory and vascular mediators 5 months after hospitalization with COVID-19 infection. Front Med (Lausanne) 2023; 10:1056506. [PMID: 36844209 PMCID: PMC9950100 DOI: 10.3389/fmed.2023.1056506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023] Open
Abstract
Background and aim In acute severe COVID-19, patients present with lung inflammation and vascular injury, accompanied by an exaggerated cytokine response. In this study, our aim was to describe the inflammatory and vascular mediator profiles in patients who were previously hospitalized with COVID-19 pneumonitis, months after their recovery, and compare them with those in patients recovering from severe sepsis and in healthy controls. Methods A total of 27 different cytokine, chemokine, vascular endothelial injury and angiogenic mediators were measured in the plasma of forty-nine patients 5.0 ± 1.9 (mean ± SD) months after they were hospitalized with COVID-19 pneumonia, eleven patients 5.4 ± 2.9 months after hospitalization with acute severe sepsis, and 18 healthy controls. Results Compared with healthy controls, IL-6, TNFα, SAA, CRP, Tie-2, Flt1, and PIGF were significantly increased in the post-COVID group, and IL-7 and bFGF were significantly reduced. While IL-6, PIGF, and CRP were also significantly elevated in post-Sepsis patients compared to controls, the observed differences in TNFα, Tie-2, Flt-1, IL-7 and bFGF were unique to the post-COVID group. TNFα levels significantly correlated with the severity of acute COVID-19 illness (spearman's r = 0.30, p < 0.05). Furthermore, in post-COVID patients, IL-6 and CRP were each strongly negatively correlated with gas transfer factor %predicted (spearman's r = -0.51 and r = -0.57, respectively, p < 0.002) and positively correlated with computed tomography (CT) abnormality scores at recovery (r = 0.28 and r = 0.46, p < 0.05, respectively). Conclusion A unique inflammatory and vascular endothelial damage mediator signature is found in plasma months following acute COVID-19 infection. Further research is required to determine its pathophysiological and clinical significance.
Collapse
Affiliation(s)
- James Melhorn
- Nuffield Department of Clinical Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Asma Alamoudi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Mentzer
- Nuffield Department of Clinical Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, NDM, University of Oxford, Oxford, United Kingdom
| | - Emily Fraser
- Oxford University Hospitals (OUH) NHS Foundation Trust, Oxford, United Kingdom
| | - Anastasia Fries
- Nuffield Department of Clinical Medicine (NDM), University of Oxford, Oxford, United Kingdom
| | - Mark Philip Cassar
- Oxford University Hospitals (OUH) NHS Foundation Trust, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew Kwok
- Nuffield Department of Clinical Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, NDM, University of Oxford, Oxford, United Kingdom
| | - Julian Charles Knight
- Nuffield Department of Clinical Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, NDM, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Betty Raman
- Oxford University Hospitals (OUH) NHS Foundation Trust, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nick P Talbot
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals (OUH) NHS Foundation Trust, Oxford, United Kingdom
| | - Nayia Petousi
- Nuffield Department of Clinical Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals (OUH) NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
140
|
Host Response of Syrian Hamster to SARS-CoV-2 Infection including Differences with Humans and between Sexes. Viruses 2023; 15:v15020428. [PMID: 36851642 PMCID: PMC9960357 DOI: 10.3390/v15020428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotypes, and evaluate the effects of viral evolution. This study provided a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection using different approaches (description of clinical signs, viral load, receptor profiling, and host immune response) and targeting four different organs (lungs, intestine, brain, and PBMCs). Our data showed that both male and female hamsters were susceptible to the infection and developed a disease similar to the one observed in patients with COVID-19 that included moderate to severe pulmonary lesions, inflammation, and recruitment of the immune system in the lungs and at the systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with the absence of lesions and a minimal host response in intestines and brains, which highlighted another crucial difference with the multiorgan impairment of severe COVID-19. When comparing male and female hamsters, we observed that males sustained higher viral RNA shedding and replication in the lungs, suffered from more severe symptoms and histopathological lesions, and triggered higher pulmonary inflammation. Overall, these data confirmed the Syrian hamster as a suitable model for mild to moderate COVID-19 and reflected sex-related differences in the response against the virus observed in humans.
Collapse
|
141
|
Abstract
Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 and is associated with pronounced hematopathologic findings. Peripheral blood features are heterogeneous and very often include neutrophilia, lymphopenia, myeloid left shift, abnormally segmented neutrophils, atypical lymphocytes/plasmacytoid lymphocytes, and atypical monocytes. Bone marrow biopsies and aspirates are often notable for histiocytosis and hemophagocytosis, whereas secondary lymphoid organs may exhibit lymphocyte depletion, pronounced plasmacytoid infiltrates, and hemophagocytosis. These changes are reflective of profound innate and adaptive immune dysregulation, and ongoing research efforts continue to identify clinically applicable biomarkers of disease severity and outcome.
Collapse
Affiliation(s)
- Fabienne Lucas
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
142
|
Wu Z, Yang C, Shen Y, Zhang Q, Tang X, Wang D, Xu Y, Cao G, Song X, Ma Y, Fan H, Lu H, Li Y, Li X, Shen Y, Zhang C, Zhu M, Teng X, Du Y, Guan M. Time series analysis revealed prognostic value of continuous nasopharyngeal SARS-CoV-2 nucleic acid quantification for COVID-19: A retrospective study of >3000 COVID-19 patients from 2 centers. Clin Chim Acta 2023; 540:117227. [PMID: 36640930 PMCID: PMC9832689 DOI: 10.1016/j.cca.2023.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Early stratification of disease progression remains one of the major challenges towards the post-coronavirus disease 2019 (COVID-19) era. The clinical relevance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid load is debated due to the heterogeneity in patients' underlying health conditions. We determined the prognostic value of nasopharyngeal viral load dynamic conversion for COVID-19. METHODS The cycling threshold (Ct) values of 28,937 nasopharyngeal SARS-CoV-2 RT-PCRs were retrospectively collected from 3,364 COVID-19 patients during hospitalization and coordinated to the onset of disease progression. The ROC curve was utilized to determine the predictive performance of the rate of Ct value alteration between two consecutive RT-PCR runs within 48 h (ΔCt%) for disease transformation across patients with different COVID-19 severity and immune backgrounds, and further validated with 1,860 SARS-CoV-2 RT-PCR results from an independent validation cohort of 262 patients. For the 67 patients with severe COVID-19, Kaplan-Meier analysis was performed to evaluate the difference in survival between patients stratified by the magnitude of Ct value alteration between the late and early stages of hospitalization. RESULTS The kinetics of viral nucleic acid conversion diversified across COVID-19 patients with different clinical characteristics and disease severities. The ΔCt% is a clinical characteristic- and host immune status-independent indicator for COVID-19 progression prediction (AUC = 0.79, 95 % CI = 0.76 to 0.81), which outperformed the canonical blood test markers, including c-reactive protein (AUC = 0.57, 95 % CI = 0.53 to 0.61), serum amyloid A (AUC = 0.61, 95 % CI = 0.54 to 0.68), lactate dehydrogenase (AUC = 0.61, 95 % CI = 0.56 to 0.67), d-dimer (AUC = 0.56, 95 % CI = 0.46 to 0.66), and lymphocyte count (AUC = 0.62, 95 % CI = 0.58 to 0.66). Patients with persistent high SARS-CoV-2 viral load (an increase of mean Ct value < 50 %) during the first 3 days of hospitalization demonstrated a significantly unfavorable survival (HR = 0.16, 95 % CI = 0.04 to 0.65, P = 2.41 × 10-3). CONCLUSIONS Viral nucleic acid dynamics of SARS-CoV-2 eliminates the inter-patient variance of basic health conditions and therefore, can serve as a prognostic marker for COVID-19.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Can Yang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yutao Shen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qingyun Zhang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xuemei Tang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Di Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Xu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guojun Cao
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaodong Song
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanchun Ma
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huajie Fan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hailong Lu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yaju Li
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiangyu Li
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiqin Shen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chen Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Min Zhu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoyan Teng
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuzhen Du
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Central Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China; Shanghai Huashen Institute of Microbes and Infections, Shanghai 200052, China.
| |
Collapse
|
143
|
Boswell MT, Maimela T, Hameiri-Bowen D, Riley G, Malan A, Steyn N, Nolutshungu N, de Villiers TR, de Beer Z, Mathabathe J, Tshabalala K, Abdullah F, Ramlall R, Heystek M, Basu D, Rheeder P, Ueckermann V, van Hougenhouck-Tulleken W. COVID-19 severity and in-hospital mortality in an area with high HIV prevalence. South Afr J HIV Med 2023; 24:1412. [PMID: 36751479 PMCID: PMC9900246 DOI: 10.4102/sajhivmed.v24i1.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background HIV infection causes immune dysregulation affecting T-cell and monocyte function, which may alter coronavirus disease 2019 (COVID-19) pathophysiology. Objectives We investigated the associations among clinical phenotypes, laboratory biomarkers, and hospitalisation outcomes in a cohort of people hospitalised with COVID-19 in a high HIV prevalence area. Method We conducted a prospective observational cohort study in Tshwane, South Africa. Respiratory disease severity was quantified using the respiratory oxygenation score. Analysed biomarkers included inflammatory and coagulation biomarkers, CD4 T-cell counts, and HIV-1 viral loads (HIVVL). Results The analysis included 558 patients, of whom 21.7% died during admission. The mean age was 54 years. A total of 82 participants were HIV-positive. People living with HIV (PLWH) were younger (mean age 46 years) than HIV-negative people; most were on antiretroviral treatment with a suppressed HIVVL (72%) and the median CD4 count was 159 (interquartile range: 66-397) cells/µL. After adjusting for age, HIV was not associated with increased risk of mortality during hospitalisation (age-adjusted hazard ratio = 1.1, 95% confidence interval: 0.6-2.0). Inflammatory biomarker levels were similar in PLWH and HIV-negative patients. Detectable HIVVL was associated with less severe respiratory disease. In PLWH, mortality was associated with higher levels of inflammatory biomarkers. Opportunistic infections, and other risk factors for severe COVID-19, were common in PLWH who died. Conclusion PLWH were not at increased risk of mortality and those with detectable HIVVL had less severe respiratory disease than those with suppressed HIVVL. What this study adds This study advances our understanding of severe COVID-19 in PLWH.
Collapse
Affiliation(s)
- Michael T. Boswell
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Tshegofatso Maimela
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Dan Hameiri-Bowen
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - George Riley
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | | | - Nickietta Steyn
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Nomonde Nolutshungu
- Department of Medical Immunology, University of Pretoria, Pretoria, South Africa
| | | | | | - John Mathabathe
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Khanyisile Tshabalala
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Fareed Abdullah
- South African Medical Research Council, Pretoria, South Africa
| | | | | | - Debashis Basu
- Clinical Public Health Unit, Department of Public Health Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Paul Rheeder
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
144
|
Zhang B, Upadhyay R, Hao Y, Samanovic MI, Herati RS, Blair J, Axelrad J, Mulligan MJ, Littman DR, Satija R. Multimodal characterization of antigen-specific CD8 + T cells across SARS-CoV-2 vaccination and infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525203. [PMID: 36747786 PMCID: PMC9900816 DOI: 10.1101/2023.01.24.525203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we utilize multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after BNT162b2 immunization. Our data reveal distinct subpopulations of CD8 + T cells which reliably appear 28 days after prime vaccination (7 days post boost). Using a suite of cross-modality integration tools, we define their transcriptome, accessible chromatin landscape, and immunophenotype, and identify unique biomarkers within each modality. By leveraging DNA-oligo-tagged peptide-MHC multimers and T cell receptor sequencing, we demonstrate that this vaccine-induced population is SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we also identify these CD8 + populations in scRNA-seq datasets from COVID-19 patients and find that their relative frequency and differentiation outcomes are predictive of subsequent clinical outcomes. Our work contributes to our understanding of T cell immunity, and highlights the potential for integrative and multimodal analysis to characterize rare cell populations.
Collapse
Affiliation(s)
- Bingjie Zhang
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Cell Biology and Regenerative Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Rabi Upadhyay
- Department of Cell Biology and Regenerative Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuhan Hao
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- New York University Langone Vaccine Center, New York, NY, USA
| | - Ramin S. Herati
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- New York University Langone Vaccine Center, New York, NY, USA
| | - John Blair
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Jordan Axelrad
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- New York University Langone Vaccine Center, New York, NY, USA
| | - Dan R. Littman
- Department of Cell Biology and Regenerative Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
145
|
Cross AR, de Andrea CE, Villalba-Esparza M, Landecho MF, Cerundolo L, Weeratunga P, Etherington RE, Denney L, Ogg G, Ho LP, Roberts IS, Hester J, Klenerman P, Melero I, Sansom SN, Issa F. Spatial transcriptomic characterization of COVID-19 pneumonitis identifies immune circuits related to tissue injury. JCI Insight 2023; 8:e157837. [PMID: 36472908 PMCID: PMC9977306 DOI: 10.1172/jci.insight.157837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Severe lung damage resulting from COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways, and genes present across the spectrum of histopathological damage in COVID-19-affected lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within well-preserved lung samples from 3 patients. Despite substantial interpatient heterogeneity, we discovered evidence for a common immune-cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines, including CXCL9, CXCL10, and CXCL11, which are known to promote the recruitment of CXCR3+ immune cells. The TNF superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were consistently upregulated in the areas with severe tissue damage. We used published spatial and single-cell SARS-CoV-2 data sets to validate our findings in the lung tissue from additional cohorts of patients with COVID-19. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Amy R. Cross
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Manuel F. Landecho
- Department of Internal Medicine, and
- Department of Immunology and Immunotherapy, Clínica de la Universidad de Navarra, Pamplona, Spain
| | - Lucia Cerundolo
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Praveen Weeratunga
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel E. Etherington
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura Denney
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ling-Pei Ho
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ian S.D. Roberts
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ignacio Melero
- Department of Immunology and Immunotherapy, Clínica de la Universidad de Navarra, Pamplona, Spain
- CIBERONC, Madrid, Spain
- Center for Applied Medical Research, Pamplona, Spain
| | - Stephen N. Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
146
|
Wang Y, Schughart K, Pelaia TM, Chew T, Kim K, Karvunidis T, Knippenberg B, Teoh S, Phu AL, Short KR, Iredell J, Thevarajan I, Audsley J, Macdonald S, Burcham J, McLean A, PREDICT-19 consortium BallestreroAlbertoCrippsAllanCoxAmandaPhuAmy LDe MariaAndreaMcLeanAnthonyKulasingheAruthaMaraisBenTangBenjaminFengCarlChaussabelDamienRinchaiDarawanBedognettiDavideZoppoliGabrieleGunawanGunawanThevarajanIraniAudsleyJenniferEdenJohn-SebastianIredellJonathanKimKaranShortKirsty RenfreeSchughartKlausChakrabortyMandiraKralovcovaMarcelaNalosMarekRadicMarkoMatejovicMartinShojaeiMaryamCarneyMeaganBedognettiMichelePruchaMiroslavToufiqMohammedDeshpandeNandanTeluguakulaNarasarajuWestNicholasCremonesiPaoloBrittonPhilipBrancoRicardo GarciaThiebautRodolpheBilyyRostyslavTeohSallyMacDonaldStephenSorrellTaniaKarvunidisThomasPelaiaTiana MariaKwanTimChewTracyPhanTri GiangHerwantoVelmaKuanWin SenWangYaZerbibYoann, Tang B, Shojaei M. Blood transcriptome responses in patients correlate with severity of COVID-19 disease. Front Immunol 2023; 13:1043219. [PMID: 36741372 PMCID: PMC9896980 DOI: 10.3389/fimmu.2022.1043219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals display a wide spectrum of disease severity, as defined by the World Health Organization (WHO). One of the main factors underlying this heterogeneity is the host immune response, with severe COVID-19 often associated with a hyperinflammatory state. Aim Our current study aimed to pinpoint the specific genes and pathways underlying differences in the disease spectrum and outcomes observed, through in-depth analyses of whole blood transcriptomics in a large cohort of COVID-19 participants. Results All WHO severity levels were well represented and mild and severe disease displaying distinct gene expression profiles. WHO severity levels 1-4 were grouped as mild disease, and signatures from these participants were different from those with WHO severity levels 6-9 classified as severe disease. Severity level 5 (moderate cases) presented a unique transitional gene signature between severity levels 2-4 (mild/moderate) and 6-9 (severe) and hence might represent the turning point for better or worse disease outcome. Gene expression changes are very distinct when comparing mild/moderate or severe cases to healthy controls. In particular, we demonstrated the hallmark down-regulation of adaptive immune response pathways and activation of neutrophil pathways in severe compared to mild/moderate cases, as well as activation of blood coagulation pathways. Conclusions Our data revealed discrete gene signatures associated with mild, moderate, and severe COVID-19 identifying valuable candidates for future biomarker discovery.
Collapse
Affiliation(s)
- Ya Wang
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, NSW, Australia,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, Australia,*Correspondence: Ya Wang,
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States,Institute of Molecular Virology, University of Münster, Münster, Germany
| | - Tiana Maria Pelaia
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Karan Kim
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Thomas Karvunidis
- Medical ICU, 1 Department of Internal Medicine, Charles University and Teaching Hospital, Pilsen, Czechia
| | - Ben Knippenberg
- Department of Microbiology. St George Hospital, Kogarah, NSW, Australia
| | - Sally Teoh
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, NSW, Australia
| | - Amy L. Phu
- Research and Education Network, Western Sydney Local Health District, Westmead Hospital, NSW, Westmead, Australia,Faculty of Medicine and Health, Sydney Medical School Westmead, Westmead Hospital, University of Sydney, NSW, Westmead, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia,Westmead Hospital, Western Sydney Local Health District, Westmead, NSW, Australia,Sydney Institute for Infectious Disease, The University of Sydney, Sydney, NSW, Australia
| | - Irani Thevarajan
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia,Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer Audsley
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia,Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Royal Perth Hospital, Perth, WA, Australia,Medical School, University of Western Australia, Perth, WA, Australia,Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| | - Jonathon Burcham
- Centre for Clinical Research in Emergency Medicine, Royal Perth Bentley Group, Perth, WA, Australia
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, Australia
| | | | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, NSW, Australia,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Penrith, NSW, Australia,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, University of Sydney, Penrith, NSW, Australia
| |
Collapse
|
147
|
Genome-wide characterization of alternative splicing in blood cells of COVID-19 and respiratory infections of relevance. Virol Sin 2023; 38:309-312. [PMID: 36690184 PMCID: PMC9854207 DOI: 10.1016/j.virs.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
|
148
|
Towards precision medicine: Omics approach for COVID-19. BIOSAFETY AND HEALTH 2023; 5:78-88. [PMID: 36687209 PMCID: PMC9846903 DOI: 10.1016/j.bsheal.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic had a devastating impact on human society. Beginning with genome surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of omics technologies brought a clearer understanding of the complex SARS-CoV-2 and COVID-19. Here, we reviewed how omics, including genomics, proteomics, single-cell multi-omics, and clinical phenomics, play roles in answering biological and clinical questions about COVID-19. Large-scale sequencing and advanced analysis methods facilitate COVID-19 discovery from virus evolution and severity risk prediction to potential treatment identification. Omics would indicate precise and globalized prevention and medicine for the COVID-19 pandemic under the utilization of big data capability and phenotypes refinement. Furthermore, decoding the evolution rule of SARS-CoV-2 by deep learning models is promising to forecast new variants and achieve more precise data to predict future pandemics and prevent them on time.
Collapse
|
149
|
Lei H. A two-gene marker for the two-tiered innate immune response in COVID-19 patients. PLoS One 2023; 18:e0280392. [PMID: 36649304 PMCID: PMC9844909 DOI: 10.1371/journal.pone.0280392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
For coronavirus disease 2019 (COVID-19), a pandemic disease characterized by strong immune dysregulation in severe patients, convenient and efficient monitoring of the host immune response is critical. Human hosts respond to viral and bacterial infections in different ways, the former is characterized by the activation of interferon stimulated genes (ISGs) such as IFI27, while the latter is characterized by the activation of anti-bacterial associated genes (ABGs) such as S100A12. This two-tiered innate immune response has not been examined in COVID-19. In this study, the activation patterns of this two-tiered innate immune response represented by IFI27 and S100A12 were explored based on 1421 samples from 17 transcriptome datasets derived from the blood of COVID-19 patients and relevant controls. It was found that IFI27 activation occurred in most of the symptomatic patients and displayed no correlation with disease severity, while S100A12 activation was more restricted to patients under severe and critical conditions with a stepwise activation pattern. In addition, most of the S100A12 activation was accompanied by IFI27 activation. Furthermore, the activation of IFI27 was most pronounced within the first week of symptom onset, but generally waned after 2-3 weeks. On the other hand, the activation of S100A12 displayed no apparent correlation with disease duration and could last for several months in certain patients. These features of the two-tiered innate immune response can further our understanding on the disease mechanism of COVID-19 and may have implications to the clinical triage. Development of a convenient two-gene protocol for the routine serial monitoring of this two-tiered immune response will be a valuable addition to the existing laboratory tests.
Collapse
Affiliation(s)
- Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
150
|
Acharjee A, Ray A, Salkar A, Bihani S, Tuckley C, Shastri J, Agrawal S, Duttagupta S, Srivastava S. Humoral Immune Response Profile of COVID-19 Reveals Severity and Variant-Specific Epitopes: Lessons from SARS-CoV-2 Peptide Microarray. Viruses 2023; 15:248. [PMID: 36680289 PMCID: PMC9866125 DOI: 10.3390/v15010248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
The amaranthine scale of the COVID-19 pandemic and unpredictable disease severity is of grave concern. Serological diagnostic aids are an excellent choice for clinicians for rapid and easy prognosis of the disease. To this end, we studied the humoral immune response to SARS-CoV-2 infection to map immunogenic regions in the SARS-CoV-2 proteome at amino acid resolution using a high-density SARS-CoV-2 proteome peptide microarray. The microarray has 4932 overlapping peptides printed in duplicates spanning the entire SARS-CoV-2 proteome. We found 204 and 676 immunogenic peptides against IgA and IgG, corresponding to 137 and 412 IgA and IgG epitopes, respectively. Of these, 6 and 307 epitopes could discriminate between disease severity. The emergence of variants has added to the complexity of the disease. Using the mutation panel available, we could detect 5 and 10 immunogenic peptides against IgA and IgG with mutations belonging to SAR-CoV-2 variants. The study revealed severity-based epitopes that could be presented as potential prognostic serological markers. Further, the mutant epitope immunogenicity could indicate the putative use of these markers for diagnosing variants responsible for the infection.
Collapse
Affiliation(s)
- Arup Acharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arka Ray
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Akanksha Salkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surbhi Bihani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Sachee Agrawal
- Kasturba Hospital for Infectious Diseases, Mumbai 400011, India
| | - Siddhartha Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|