101
|
Márquez García A, Salazar V, Lima Pérez L. Consequences of zinc deficiency on zinc localization, taurine transport, and zinc transporters in rat retina. Microsc Res Tech 2022; 85:3382-3390. [PMID: 35836361 DOI: 10.1002/jemt.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
The colocalization of taurine and zinc transporters (TAUT, ZnTs) has not been explored in retina. Our objective is to evaluate the effect of the intracellular zinc chelator N,N,N,N-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) on zinc localization and colocalization TAUT and ZnT-1 (of plasma membrane), 3 (vesicular), and 7 (vesicular and golgi apparatus) in layers of retina by immunohistochemistry. To mark zinc, it was used cell-permeable fluorescent Zinquin ethyl ester. Specific first and secondary antibodies, conjugated with rhodamine or fluorescein-isothiocyanate were used to mark TAUT and ZnTs. The fluorescence results were reported as integrated optical density (IOD). Zinc was detected in all layers of the retina. The treatment with TPEN produced changes in the distribution of zinc in layers of retina less in the outer nuclear layer compared with the control. TAUT was detected in all layers of retina and TPEN chelator produced decrease of IOD in all layers of retina except in the photoreceptor compared with the control. ZnT 1, 3, and 7 were distributed in all retina layers, with more intensity in ganglion cell layer (GCL) and in the layers where there is synaptic connection. For all transporters, the treatment with TPEN produced significant decrease of IOD in layers of retina least in the inner nuclear layer for ZnT1, in the photoreceptor for ZnT3 and in the GCL and outer plexiform layer for ZnT7. The distribution of zinc, TAUT, and ZnTs in the layers of retina is indicative of the interaction of taurine and zinc for the function of the retina and normal operation of said layers. HIGHLIGHTS: Taurine and zinc are two molecules highly concentrated in the retina and with relevant functions in this structure. Maintaining zinc homeostasis in this tissue is necessary for the normal function of the taurine system in the retina. The study of the taurine transporter and the different zinc transporters in the retina (responsible for maintaining adequate levels of taurine and zinc) is relevant and novel, since it is indicative of the interactions between both molecules in this structure.
Collapse
Affiliation(s)
- Asarí Márquez García
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela.,Universidad de Granada-Junta de Andalucía de Genómica e investigación Oncológica, Granada, Spain
| | - Víctor Salazar
- Servicio de Microscopía de Luz, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| | - Lucimey Lima Pérez
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| |
Collapse
|
102
|
Olea-Flores M, Kan J, Carlson A, Syed SA, McCann C, Mondal V, Szady C, Ricker HM, McQueen A, Navea JG, Caromile LA, Padilla-Benavides T. ZIP11 Regulates Nuclear Zinc Homeostasis in HeLa Cells and Is Required for Proliferation and Establishment of the Carcinogenic Phenotype. Front Cell Dev Biol 2022; 10:895433. [PMID: 35898402 PMCID: PMC9309433 DOI: 10.3389/fcell.2022.895433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc (Zn) is an essential trace element that plays a key role in several biological processes, including transcription, signaling, and catalysis. A subcellular network of transporters ensures adequate distribution of Zn to facilitate homeostasis. Among these are a family of importers, the Zrt/Irt-like proteins (ZIP), which consists of 14 members (ZIP1-ZIP14) that mobilize Zn from the extracellular domain and organelles into the cytosol. Expression of these transporters varies among tissues and during developmental stages, and their distribution at various cellular locations is essential for defining the net cellular Zn transport. Normally, the ion is bound to proteins or sequestered in organelles and vesicles. However, though research has focused on Zn internalization in mammalian cells, little is known about Zn mobilization within organelles, including within the nuclei under both normal and pathological conditions. Analyses from stomach and colon tissues isolated from mouse suggested that ZIP11 is the only ZIP transporter localized to the nucleus of mammalian cells, yet no clear cellular role has been attributed to this protein. We hypothesized that ZIP11 is essential to maintaining nuclear Zn homeostasis in mammalian cells. To test this, we utilized HeLa cells, as research in humans correlated elevated expression of ZIP11 with poor prognosis in cervical cancer patients. We stably knocked down ZIP11 in HeLa cancer cells and investigated the effect of Zn dysregulation in vitro. Our data show that ZIP11 knockdown (KD) reduced HeLa cells proliferation due to nuclear accumulation of Zn. RNA-seq analyses revealed that genes related to angiogenesis, apoptosis, mRNA metabolism, and signaling pathways are dysregulated. Although the KD cells undergoing nuclear Zn stress can activate the homeostasis response by MTF1 and MT1, the RNA-seq analyses showed that only ZIP14 (an importer expressed on the plasma membrane and endocytic vesicles) is mildly induced, which may explain the sensitivity to elevated levels of extracellular Zn. Consequently, ZIP11 KD HeLa cells have impaired migration, invasive properties and decreased mitochondrial potential. Furthermore, KD of ZIP11 delayed cell cycle progression and rendered an enhanced senescent state in HeLa cells, pointing to a novel mechanism whereby maintenance of nuclear Zn homeostasis is essential for cancer progression.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Julia Kan
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Sabriya A. Syed
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Cat McCann
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Varsha Mondal
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Cecily Szady
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Heather M. Ricker
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Amy McQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Juan G. Navea
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Leslie A. Caromile
- Department of Cell Biology, Center for Vascular Biology, UCONN Health-Center, Farmington, CT, United States
| | - Teresita Padilla-Benavides
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
- *Correspondence: Teresita Padilla-Benavides,
| |
Collapse
|
103
|
Jørgensen LH, Sørensen MD, Lauridsen MM, Rasmussen LM, Alfiler RM, Iversen VN, Schaffalitzky de Muckadell OB. Albumin-corrected Zn and available free Zn-binding capacity as indicators of Zn status - potential for clinical implementation. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:261-266. [PMID: 35758940 DOI: 10.1080/00365513.2022.2064764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have established and describe two measurement procedures to diagnose possible zinc (Zn) deficiency; albumin-corrected Zn concentration and available free Zn-binding capacity. Reference intervals for both biomarkers were established in healthy adults from the Danish population. The clinical usefulness of the measurement procedures was investigated in patients with cirrhosis and in patients given parenteral nutrition due to short bowel syndrome. The results of both methods indicate that there is a risk of overdiagnosing Zn deficiency based on low plasma Zn concentrations. Needless Zn supplementation may thus be avoided by using the albumin-corrected Zn concentration or available free Zn-binding capacity.
Collapse
Affiliation(s)
- Louise H Jørgensen
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.,Institue of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mia D Sørensen
- Institue of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology S, Odense University Hospital, Odense, Denmark
| | - Mette M Lauridsen
- Department of Gastroenterology, Hospital South West Jutland, Esbjerg, Denmark
| | - L M Rasmussen
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.,Institue of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rose M Alfiler
- Department of Medical Gastroenterology S, Odense University Hospital, Odense, Denmark
| | - Vilde N Iversen
- Department of Medical Gastroenterology S, Odense University Hospital, Odense, Denmark
| | - Ove B Schaffalitzky de Muckadell
- Institue of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology S, Odense University Hospital, Odense, Denmark
| |
Collapse
|
104
|
Gupta J, Irfan M, Ramgir N, Muthe KP, Debnath AK, Ansari S, Gandhi J, Ranjith-Kumar CT, Surjit M. Antiviral Activity of Zinc Oxide Nanoparticles and Tetrapods Against the Hepatitis E and Hepatitis C Viruses. Front Microbiol 2022; 13:881595. [PMID: 35814711 PMCID: PMC9260229 DOI: 10.3389/fmicb.2022.881595] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis. The disease takes a severe form in pregnant women, leading to around 30% mortality. Zinc is an essential micronutrient that plays a crucial role in multiple cellular processes. Our earlier findings demonstrated the antiviral activity of zinc salts against HEV infection. Zinc oxide (ZnO) and its nanostructures have attracted marked interest due to their unique characteristics. Here we synthesized ZnO nanoparticles [ZnO(NP)] and tetrapod-shaped ZnO nanoparticles [ZnO(TP)] and evaluated their antiviral activity. Both ZnO(NP) and ZnO(TP) displayed potent antiviral activity against hepatitis E and hepatitis C viruses, with the latter being more effective. Measurement of cell viability and intracellular reactive oxygen species levels revealed that both ZnO(NP) and ZnO(TP) are noncytotoxic to the cells even at significantly higher doses, compared to a conventional zinc salt (ZnSO4). Our study paves the way for evaluation of the potential therapeutic benefit of ZnO(TP) against HEV and HCV.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Minnah Irfan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Niranjan Ramgir
- Technical Physics Division, Bhabha Atomic Research Center, Mumbai, India
| | - K. P. Muthe
- Technical Physics Division, Bhabha Atomic Research Center, Mumbai, India
| | - A. K. Debnath
- Technical Physics Division, Bhabha Atomic Research Center, Mumbai, India
| | - Shabnam Ansari
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Jaya Gandhi
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Milan Surjit
| |
Collapse
|
105
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
106
|
Begum MR, Ehsan M, Ehsan N. Impact of Environmental Pollution on Female Reproduction. FERTILITY & REPRODUCTION 2022. [DOI: 10.1142/s266131822230001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increased pollution in the world atmosphere is a global concern. Water, air, and soil are polluted by various sources, such as farm fertilizer, sewage industrial waste products, fumes, and plastics, which in turn impact human health. Plastics and other mixtures of waste affect live in the water. Moreover, the ecosystem is disrupted by the use of heavy metal-containing chemicals in agriculture, and those are eventually consumed by humans. The consequences are a significant negative impact on health including reproductive health, which impairs fertility in the human population. Reproductive functions are severely affected by different chemicals which may interfere with hormonal functions. Greater consequences are faced by the women as the number of germ cells present in the ovary is fixed during fetal life, and which are nonrenewable. From the production of ovum to fertilization, to implantation, and finally continuation of pregnancy, all are affected by the heavy metals and endocrine disruptors. Lifestyle modifications such as consumption of organic foods, plastic product avoidance, separation of residential areas from industrial/agricultural areas, proper waste disposal, and so on, may help to improve the situation.
Collapse
Affiliation(s)
| | - Mariya Ehsan
- Infertility Care and Research Center (ICRC), Dhaka, Bangladesh
| | - Nazia Ehsan
- Infertility Care and Research Center (ICRC), Dhaka, Bangladesh
| |
Collapse
|
107
|
Michielsen CMS, van Aalen EA, Merkx M. Ratiometric Bioluminescent Zinc Sensor Proteins to Quantify Serum and Intracellular Free Zn 2. ACS Chem Biol 2022; 17:1567-1576. [PMID: 35611686 PMCID: PMC9207811 DOI: 10.1021/acschembio.2c00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Fluorescent Zn2+ sensors play a pivotal role in zinc
biology, but their application in complex media such as blood serum
or plate reader-based cellular assays is hampered by autofluorescence
and light scattering. Bioluminescent sensor proteins provide an attractive
alternative to fluorescent sensors for these applications, but the
only bioluminescent sensor protein developed so far, BLZinCh, has
a limited sensor response and a suboptimal Zn2+ affinity.
In this work, we expanded the toolbox of bioluminescent Zn2+ sensors by developing two new sensor families that show a large
change in the emission ratio and cover a range of physiologically
relevant Zn2+ affinities. The LuZi platform relies on competitive
complementation of split NanoLuc luciferase and displays a robust,
2-fold change in red-to-blue emission, allowing quantification of
free Zn2+ between 2 pM and 1 nM. The second platform was
developed by replacing the long flexible GGS linker in the original
BLZinCh sensor by rigid polyproline linkers, yielding a series of
BLZinCh-Pro sensors with a 3–4-fold improved ratiometric response
and physiologically relevant Zn2+ affinities between 0.5
and 1 nM. Both the LuZi and BLZinCh-Pro sensors allowed the direct
determination of low nM concentrations of free Zn2+ in
serum, providing an attractive alternative to more laborious and/or
indirect approaches to measure serum zinc levels. Furthermore, the
genetic encoding of the BLZinCh-Pro sensors allowed their use as intracellular
sensors, where the sensor occupancy of 40–50% makes them ideally
suited to monitor both increases and decreases in intracellular free
Zn2+ concentration in simple, plate reader-based measurements,
without the need for fluorescence microscopy.
Collapse
|
108
|
LeMoire A, Abdelmagid S, Ma DWL, El-Sohemy A, Mutch DM. Δ5 and Δ6 desaturase indices are not associated with zinc intake as determined by dietary assessment or modified by a zinc-FADS1 rs174547 SNP interaction in young Canadian adults. Prostaglandins Leukot Essent Fatty Acids 2022; 180:102439. [PMID: 35500529 DOI: 10.1016/j.plefa.2022.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Zinc is an essential trace mineral that serves as a cofactor for the delta-5 and delta-6 desaturases (D5D, D6D) that are critical for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. While plasma zinc levels are generally reported to be associated with D5D and D6D indices in humans, it remains unclear if dietary zinc intake can be similarly associated with desaturase indices. Therefore, the present investigation examined if zinc intake determined by food frequency questionnaire (FFQ) is associated with desaturase indices in young Canadian adults. Additionally, we explored whether desaturase indices were modified by an interaction between dietary zinc intake and a common variant in the FADS1 gene. METHODS Dietary zinc intake (FFQ), plasma fatty acids (gas chromatography) and the FADS1 rs174547 polymorphism were analyzed in young men and women (n = 803) from the cross-sectional Toronto Nutrigenomics and Health Study. Product-to-precursor fatty acid ratios were used to determine desaturase enzyme indices (D5D = 20:4n-6/20:3n-6; D6D = 18:3n-6/18:2n-6). Individuals were grouped according to dietary zinc intake, as well as by their rs174547 genotype (TT vs. TC+CC). Data were analyzed by 1-way and 2-way ANCOVA. RESULTS Plasma fatty acids and D5D/D6D indices did not differ between individuals grouped according to dietary zinc intake. Further, the recently proposed biomarker of zinc intake, 20:3n-6/18:2n-6, was not associated with dietary zinc intake. Although the FADS1 rs174547 SNP was significantly associated with D5D and D6D indices in both men and women (p < 0.0001), we did not find evidence of a dietary zinc intake - FADS1 SNP interaction on D5D or D6D indices. CONCLUSION Dietary zinc intake, as determined using FFQs, does not predict differences in desaturase indices, irrespective of FADS1 genotype.
Collapse
Affiliation(s)
- Ashley LeMoire
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Salma Abdelmagid
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario M5S3E2, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
109
|
Kärberg K, Forbes A, Lember M. Raised dietary Zn:Cu ratio increases the risk of atherosclerosis in type 2 diabetes. Clin Nutr ESPEN 2022; 50:218-224. [DOI: 10.1016/j.clnesp.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
|
110
|
Cunha TA, Vermeulen-Serpa KM, Grilo EC, Leite-Lais L, Brandão-Neto J, Vale SHL. Association between zinc and body composition: An integrative review. J Trace Elem Med Biol 2022; 71:126940. [PMID: 35121408 DOI: 10.1016/j.jtemb.2022.126940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Zinc deficiency is related to lean body mass reduction, fat deposition, and obesity. Zinc acts in catalytic, structural, and regulatory functions, being an essential micronutrient to humans. It is crucial for maintaining lean body mass, synthesizing nucleic acids and proteins, and forming new tissues. Pre-existing zinc deficiency may contribute to obesity due to its relationship with fat deposition associated with short stature. This integrative review aims to analyze the association between zinc and body composition, hitherto very poorly established in previous studies. MATERIAL AND METHODS The electronic databases utilized in this review were PubMed and Web of Science. We identified titles and abstracts from 1178 articles relating to zinc and body composition that were published in the last ten years. After duplicates were removed, the reference lists of relevant reviews were checked, and 47 articles were obtained by manual search. MAIN FINDINGS AND CONCLUSIONS The articles were transversal or longitudinal studies, clinical trials, randomized controlled trials, reviews, systematic reviews, and meta-analysis. Although there was heterogeneity among the methodologies, the existence of an association between zinc and body composition was predominant among the studies. All articles concluded that zinc had positive effects on proteogenesis. Moreover, zinc metabolism is dysregulated in obese individuals, whose mechanisms remain controversial.
Collapse
Affiliation(s)
- Thais A Cunha
- Health Sciences Postgraduate Program, Federal University of Rio Grande do Norte, Natal/RN, Brazil.
| | - Karina M Vermeulen-Serpa
- Health Sciences Postgraduate Program, Federal University of Rio Grande do Norte, Natal/RN, Brazil.
| | - Evellyn C Grilo
- Health Sciences Postgraduate Program, Federal University of Rio Grande do Norte, Natal/RN, Brazil.
| | - Lúcia Leite-Lais
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal/RN, Brazil.
| | - José Brandão-Neto
- Health Sciences Postgraduate Program, Federal University of Rio Grande do Norte, Natal/RN, Brazil; Department of Internal Medicine, Federal University of Rio Grande do Norte, Natal/RN, Brazil.
| | - Sancha H L Vale
- Health Sciences Postgraduate Program, Federal University of Rio Grande do Norte, Natal/RN, Brazil; Department of Nutrition, Federal University of Rio Grande do Norte, Natal/RN, Brazil; Nutrition Postgraduate Program, Federal University of Rio Grande do Norte, Natal/RN, Brazil.
| |
Collapse
|
111
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
112
|
Pan K, Zhang W, Shi H, Dai M, Yang Z, Chen M, Wei W, Zheng Y, Liu X, Li X. Facile fabrication of biodegradable endothelium-mimicking coatings on bioabsorbable zinc-alloy stents by one-step electrophoretic deposition. J Mater Chem B 2022; 10:3083-3096. [PMID: 35343560 DOI: 10.1039/d2tb00119e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The zinc-alloy stent is one of the best potential candidates for bioabsorbable metal stents because of its appropriate corrosion rate aligned to the duration of the healing process of the surrounding vessel tissues. However, excessive release of zinc ions, causing cytotoxicity of endothelial cells, and insufficient surface bio-functions of Zn-alloy stents lead to considerable challenge in their application. Herein, one-step electrophoretic deposition was employed to apply a hybrid coating of polycarbonate, tannic acid, and copper ions with tailored functions on Zn-alloy stents to enhance their corrosion resistance and provide an endothelium-mimicking surface. Specifically, the synthesized amino-functionalized aliphatic polycarbonates endowed the hybrid coating with specific surface-erosion properties, resulting in superior corrosion resistance and long-term stability in degradation tests both in vitro and in vivo. The immobilized copper ions enabled the catalytic generation of nitric oxide and promoted the adhesion and proliferation of endothelial cells on zinc alloy. The added tannic acid firmly chelated the copper ions and formed durable phenolic-copper-amine crosslinked networks by electrostatic interaction, resulting in long-term stability of the hybrid coating during the 21 day dynamic immersion test. Tannic acid exerted a synergistic antibacterial effect with copper ions as well as a reduction in the inflammatory response to the zinc substrate. In addition, the hybrid coating improved the in vitro hemocompatibility of zinc alloys. By adjusting the amount of chelated copper in the coating system, the biological function of the corresponding coatings can be controlled, providing a facile surface treatment strategy to promote the progress of zinc-alloy stents in clinical applications.
Collapse
Affiliation(s)
- Kai Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Wei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Hui Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Miao Dai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Yang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu Province, Wuxi 214023, China
| | - Maohua Chen
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu Province, Wuxi 214023, China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex Systems and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
113
|
Ye C, Lian G, Wang T, Chen A, Chen W, Gong J, Luo L, Wang H, Xie L. The zinc transporter ZIP12 regulates monocrotaline-induced proliferation and migration of pulmonary arterial smooth muscle cells via the AKT/ERK signaling pathways. BMC Pulm Med 2022; 22:111. [PMID: 35346134 PMCID: PMC8962172 DOI: 10.1186/s12890-022-01905-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 01/05/2024] Open
Abstract
Background The zinc transporter ZIP12 is a membrane-spanning protein that transports zinc ions into the cytoplasm from the extracellular space. Recent studies demonstrated that upregulation of ZIP12 is involved in elevation of cytosolic free zinc and excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) induced by hypoxia. However, the expression of ZIP12 and its role in pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) in rats have not been evaluated previously. The aim of this study was to investigate the effect of ZIP12 on the proliferation and migration of PASMCs and its underlying mechanisms in MCT-induced PAH. Methods A PAH rat model was generated by intraperitoneal injection of 20 mg/kg MCT twice at one-week intervals. PASMCs were isolated from the pulmonary arteries of rats with MCT-induced PAH or control rats. The expression of ZIP12 and related molecules was detected in the lung tissues and cells. A ZIP12 knockdown lentivirus and an overexpressing lentivirus were constructed and transfected into PASMCs derived from PAH and control rats, respectively. EdU assays, wound healing assays and Western blotting were carried out to explore the function of ZIP12 in PASMCs. Results Increased ZIP12 expression was observed in PASMCs derived from MCT-induced PAH rats. The proliferation and migration of PASMCs from PAH rats were significantly increased compared with those from control rats. These results were corroborated by Western blot analysis of PCNA and cyclin D1. All these effects were significantly reversed by silencing ZIP12. Comparatively, ZIP12 overexpression resulted in the opposite effects as shown in PASMCs from control rats. Furthermore, selective inhibition of AKT phosphorylation by LY294002 abolished the effect of ZIP12 overexpression on enhancing cell proliferation and migration and partially suppressed the increase in ERK1/2 phosphorylation induced by ZIP12 overexpression. However, inhibition of ERK activity by U0126 resulted in partial reversal of this effect and did not influence an increase in AKT phosphorylation induced by ZIP12 overexpression. Conclusions ZIP12 is involved in MCT-induced pulmonary vascular remodeling and enhances the proliferation and migration of PASMCs. The mechanism of these effects was partially mediated by enhancing the AKT/ERK signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01905-3.
Collapse
Affiliation(s)
- Chaoyi Ye
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Tingjun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Ai Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China. .,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China. .,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
114
|
The Effects of Vitamins and Micronutrients on Helicobacter pylori Pathogenicity, Survival, and Eradication: A Crosstalk between Micronutrients and Immune System. J Immunol Res 2022; 2022:4713684. [PMID: 35340586 PMCID: PMC8942682 DOI: 10.1155/2022/4713684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori as a class I carcinogen is correlated with a variety of severe gastroduodenal diseases; therefore, H. pylori eradication has become a priority to prevent gastric carcinogenesis. However, due to the emergence and spread of multidrug and single drug resistance mechanisms in H. pylori, as well as serious side effects of currently used antibiotic interventions, achieving successful H. pylori eradication has become exceedingly difficult. Recent studies expressed the intention of seeking novel strategies to improve H. pylori management and reduce the risk of H. pylori-associated intestinal and extragastrointestinal disorders. For which, vitamin supplementation has been demonstrated in many studies to have a tight interaction with H. pylori infection, either directly through the regulation of the host inflammatory pathways or indirectly by promoting the host immune response. On the other hand, H. pylori infection is reported to result in micronutrient malabsorption or deficiency. Furthermore, serum levels of particular micronutrients, especially vitamin D, are inversely correlated to the risk of H. pylori infection and eradication failure. Accordingly, vitamin supplementation might increase the efficiency of H. pylori eradication and reduce the risk of drug-related adverse effects. Therefore, this review aims at highlighting the regulatory role of micronutrients in H. pylori-induced host immune response and their potential capacity, as intrinsic antioxidants, for reducing oxidative stress and inflammation. We also discuss the uncovered mechanisms underlying the molecular and serological interactions between micronutrients and H. pylori infection to present a perspective for innovative in vitro investigations, as well as novel clinical implications.
Collapse
|
115
|
Burkhead JL, Collins JF. Nutrition Information Brief-Copper. Adv Nutr 2022; 13:681-683. [PMID: 34940824 PMCID: PMC8970836 DOI: 10.1093/advances/nmab157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jason L Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
116
|
|
117
|
Dehghani SM, Amirhakimi A, Baligh P, Javaherizadeh H. Evaluation of micronutrients among pediatric liver cirrhosis in Shiraz, Iran. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cirrhosis is the final result of most types of liver disease. Zinc, magnesium, and vitamin D have a significantly vital role in the immunologic and physiologic mechanisms in the body. The current study aimed to measure magnesium, zinc, and vitamin D level among children with liver cirrhosis.
Results
One hundred cases were included in the current study. Vitamin D deficiency was found in 53% of the cases. Zinc deficiency was present in 23% of the cases. The magnesium level was more than the normal level among 99% of the cases. There is a significant inverse correlation between zinc level and PELD score (Pearson correlation = − 0.314, P = 0.007).
Conclusion
Zinc deficiency and vitamin D deficiency were seen in children with liver cirrhosis. Serum magnesium level in children with liver cirrhosis was higher than standard. A significant correlation was seen between zinc level and PELD score.
Collapse
|
118
|
Han X, Liu F, Zhang Q, Mao B, Tang X, Huang J, Guo R, Zhao J, Zhang H, Cui S, Chen W. Effects of Zn-Enriched Bifidobacterium longum on the Growth and Reproduction of Rats. Nutrients 2022; 14:nu14040783. [PMID: 35215433 PMCID: PMC8878668 DOI: 10.3390/nu14040783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
Zn is an essential trace element required for maintaining normal growth and development. Zn deficiency can cause growth retardation and reproductive system dysplasia, while Zn supplementation for treating Zn deficiency requires the use of high-quality Zn preparations. In this study, Bifidobacterium longum CCFM1195 was screened for its high Zn enrichment capacity, and the effects of different Zn supplementation regimens and doses on the growth and development of rats after Zn supplementation were investigated by supplementing Zn-deficient rat pups with different doses of various Zn supplements (ZnO, CCFM1195 + ZnO, and Zn-enriched CCFM1195). It was shown that the bioavailability of Zn was positively correlated with indicators of recovery after Zn supplementation, with Zn-enriched CCFM1195 having the best effect, followed by CCFM1195 + ZnO, while ZnO had the worst effect. Significant differences were also observed between the gut microbiota of control, model, and Zn-supplemented rats. Overall, administration of Zn-enriched CCFM1195 was more effective than the other approaches in restoring physical indicators of Zn deficiency after Zn supplementation, and this advantage was more significant at low-dose Zn supplementation.
Collapse
Affiliation(s)
- Xinran Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Huang
- Suzhou Setech Biotechnology Co., Ltd., Suzhou 215000, China; (J.H.); (R.G.)
| | - Renmei Guo
- Suzhou Setech Biotechnology Co., Ltd., Suzhou 215000, China; (J.H.); (R.G.)
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (F.L.); (Q.Z.); (B.M.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
119
|
Yerba Mate as a Source of Elements and Bioactive Compounds with Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11020371. [PMID: 35204253 PMCID: PMC8868397 DOI: 10.3390/antiox11020371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Ilex paraguariensis (yerba mate) is a plant species of the holly genus Ilex native to South America from the family Aquifoliaceae and is used for the production of yerba mate infusion. The leaves of the plant are steeped in hot water to make a beverage known as mate. The present study aimed to quantify and compare the content of selected elements in dried leaves and stems of I. paraguariensis (originating from Paraguay, Argentina, and Brazil) available in the market in Poland and determine the amount of these elements and bioactive compounds that pass into the infusion prepared from them. The contents of the following antioxidant compounds were assessed: neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, 4-feruloylquinic acid, isochlorogenic acid, rutoside, astragalin, caffeine, and indole derivatives. All the tested samples showed the presence of elements such as magnesium, zinc, copper, iron, and manganese. The highest antioxidant activity was determined for infusion prepared from yerba mate samples from Brazil. Drinking approximately 1 L of the infusion a day will partially cover the daily requirement of these elements and bioactive compounds. The highest content of organic compounds with antioxidant properties (phenolic compounds and caffeine) was found in yerba mate infusions from Brazil.
Collapse
|
120
|
Kido T, Suka M, Yanagisawa H. Effectiveness of interleukin-4 administration or zinc supplementation in improving zinc deficiency-associated thymic atrophy and fatty degeneration and in normalizing T cell maturation process. Immunology 2022; 165:445-459. [PMID: 35138640 DOI: 10.1111/imm.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022] Open
Abstract
Nutritional zinc deficiency induces thymic atrophy, but the underlying mechanisms remain unknown. In this study, we investigated the mechanism of thymic atrophy and fatty degeneration associated with zinc deficiency, and its effect on T cell maturation. Building on previous research demonstrating the beneficial effect of IL-4 administration or zinc supplementation on the spleen in zinc deficiency rats, we further examined whether these supplements also improve thymic atrophy. Five-week-old male Sprague-Dawley rats were fed a standard diet, zinc-deficient diet (n = 16 each) with either saline or IL-4, or a zinc-deficient diet for 6 weeks followed by a standard diet for 4 weeks. Relative thymus weights, serum thymulin concentrations, and the number of cytokeratin-8-positive cells, AIRE-positive cells, IL-7-positive cells, CD8+ T cells, CD4+ T cells, pre T cells, and CD25+ CD44+ (DN3) cells in the thymus of zinc deficiency rats significantly decreased compared with those in all other groups. Conversely, PPAR-γ-positive cells, oil red O-positive areas, pro T cells, CD25- CD44+ cells, TUNEL positive cells, Viobility 405/452 Fixable Dye-positive cells, CD68-, CD163- or CD169- macrophages, and IL-1β concentrations were significantly increased in the thymus of zinc deficiency rats as compared to those in the other groups. After IL-4 administration or zinc supplementation for zinc deficiency, all the measurement indices were recovered to levels in standard rats. It was demonstrated that zinc deficiency caused thymic atrophy, accompanied by fatty degeneration in the cortical regions and affected T cell maturation. IL-4 administration or zinc supplementation for zinc deficiency ameliorated thymic fatty degeneration.
Collapse
Affiliation(s)
- Takamasa Kido
- Department of Public Health and Environmental Medicine, Faculty of Medicine, The Jikei University School of Medicine
| | - Machi Suka
- Department of Public Health and Environmental Medicine, Faculty of Medicine, The Jikei University School of Medicine
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, Faculty of Medicine, The Jikei University School of Medicine
| |
Collapse
|
121
|
Amer SA, Rizk AE. Production and evaluation of novel functional extruded corn snacks fortified with ginger, bay leaves and turmeric powder. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00083-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Extruded corn snacks are accepted by all human ages especially children, but they have low functional value. Therefore, corn extruded snacks contain rich nutraceuticals dried herbs including Laurus nobilis (T1), Curcuma longa (T2), Zingiber officinale Roscoe (T3), and the mixture of these herbs (T4) were manufactured and analyzed. The results declared that all the herbal extruded corn snacks had significantly higher ash, fibers, minerals, and vitamins A and B6. For minerals, the highest percent of increase compared to control was achieved by Fe, K, Ca, Zn content in order, being the highest in T4. The contents of Vitamin A and B6 were ranged from 283 to 445 IU/100 g and from 0.01 to 0.08 mg/100 g for the herbal extrudates, respectively. The increased percent in herbal corn snacks relative to control ranged from 743 to 452%, 188 to 17.6%, and from 313 to 99% for total phenolics, flavonoids, and antioxidant activity. Besides, the highest number of phenolic compounds was recorded in T4. Despite the fact that approximately all herbal extruded products had good texture and color characteristics, the best formulation was T2 and T4 corn snacks. Furthermore, the extruded products were microbiologically safe for up to 9 months. The formulation of herbal-corn snacks could fulfill consumers’ requirement for ready-to-eat-healthy foods with acceptable sensory attributes and also economically suitable for the food industry.
Graphical abstract
Collapse
|
122
|
Zyambo K, Hodges P, Chandwe K, Mweetwa M, Westcott J, Krebs NF, Amadi B, Kelly P. Reduced Fractional Absorption of Zinc in Children With Environmental Enteropathy in Zambia. J Pediatr Gastroenterol Nutr 2022; 74:277-283. [PMID: 34469927 DOI: 10.1097/mpg.0000000000003292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES We measured fractional absorption of zinc (FAZ) in children with environmental enteropathy (EE) and carried out transcriptomic analysis of biopsies from these children in order to compare FAZ to histology of intestinal biopsies, expression of zinc transporter genes, and biomarkers of enteropathy. METHODS Fractional absorption of a standardized aqueous dose of zinc was measured by a dual isotope ratio technique in a cohort of children ages between 9 and 24 months in Lusaka, Zambia, who all had non-responsive stunting. Gene expression analysis was carried out on biopsies through RNA sequencing using an Illumina HiSeq2000 platform. RESULTS All 33 children had histological features of environmental enteropathy and plasma zinc concentrations below the lower limit of normal. Measured FAZ ranged from 0.18 to 0.93; all values >0.55 were observed in girls. FAZ was negatively correlated with faecal myeloperoxidase (MPO) (ρ = -0.51, n = 17; P = 0.04) and faecal calprotectin (ρ = -0.50, n = 16; P = 0.05), but not blood biomarkers. Of 41 genes with known roles in zinc metabolism, only three metallothionein genes were significantly correlated with FAZ. CONCLUSIONS Zinc homeostasis is impaired in children with environmental enteropathy, and was inversely correlated with mucosal inflammation. Reduced FAZ without specific changes in expression of most zinc transporter genes could be explained by reduced absorptive surface area due to villus/microvillus atrophy.
Collapse
Affiliation(s)
- Kanekwa Zyambo
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Phoebe Hodges
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, UK
| | - Kanta Chandwe
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Monica Mweetwa
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Jamie Westcott
- Section of Pediatric Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Nancy F Krebs
- Section of Pediatric Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Beatrice Amadi
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Paul Kelly
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
123
|
Sobczyk MK, Gaunt TR. The Effect of Circulating Zinc, Selenium, Copper and Vitamin K 1 on COVID-19 Outcomes: A Mendelian Randomization Study. Nutrients 2022; 14:233. [PMID: 35057415 PMCID: PMC8780111 DOI: 10.3390/nu14020233] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background & Aims: Previous results from observational, interventional studies and in vitro experiments suggest that certain micronutrients possess anti-viral and immunomodulatory activities. In particular, it has been hypothesized that zinc, selenium, copper and vitamin K1 have strong potential for prophylaxis and treatment of COVID-19. We aimed to test whether genetically predicted Zn, Se, Cu or vitamin K1 levels have a causal effect on COVID-19 related outcomes, including risk of infection, hospitalization and critical illness. Methods: We employed a two-sample Mendelian Randomization (MR) analysis. Our genetic variants derived from European-ancestry GWAS reflected circulating levels of Zn, Cu, Se in red blood cells as well as Se and vitamin K1 in serum/plasma. For the COVID-19 outcome GWAS, we used infection, hospitalization or critical illness. Our inverse-variance weighted (IVW) MR analysis was complemented by sensitivity analyses including a more liberal selection of variants at a genome-wide sub-significant threshold, MR-Egger and weighted median/mode tests. Results: Circulating micronutrient levels show limited evidence of association with COVID-19 infection, with the odds ratio [OR] ranging from 0.97 (95% CI: 0.87-1.08, p-value = 0.55) for zinc to 1.07 (95% CI: 1.00-1.14, p-value = 0.06)-i.e., no beneficial effect for copper was observed per 1 SD increase in exposure. Similarly minimal evidence was obtained for the hospitalization and critical illness outcomes with OR from 0.98 (95% CI: 0.87-1.09, p-value = 0.66) for vitamin K1 to 1.07 (95% CI: 0.88-1.29, p-value = 0.49) for copper, and from 0.93 (95% CI: 0.72-1.19, p-value = 0.55) for vitamin K1 to 1.21 (95% CI: 0.79-1.86, p-value = 0.39) for zinc, respectively. Conclusions: This study does not provide evidence that supplementation with zinc, selenium, copper or vitamin K1 can prevent SARS-CoV-2 infection, critical illness or hospitalization for COVID-19.
Collapse
Affiliation(s)
- Maria K. Sobczyk
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK;
| | | |
Collapse
|
124
|
Mohapatra L, Behera B, Sahu B, Patnaik M. A case of acrodermatitis enteropathica mimicking mutilating palmoplantar keratoderma. Indian J Dermatol 2022; 67:314. [DOI: 10.4103/ijd.ijd_112_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
125
|
Case DR, Brennessel WW, Zubieta J, Doyle RP. Synthesis, characterization and crystal structure of a glycylglycinate chelate of zinc(II). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
126
|
Yuan W, Xia D, Wu S, Zheng Y, Guan Z, Rau JV. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 2022; 7:192-216. [PMID: 34466727 PMCID: PMC8379348 DOI: 10.1016/j.bioactmat.2021.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
Collapse
Affiliation(s)
- Wei Yuan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, China
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| |
Collapse
|
127
|
Uresti-Porras JG, Cabrera-De-La Fuente M, Benavides-Mendoza A, Olivares-Sáenz E, Cabrera RI, Juárez-Maldonado A. Effect of Graft and Nano ZnO on Nutraceutical and Mineral Content in Bell Pepper. PLANTS (BASEL, SWITZERLAND) 2021; 10:2793. [PMID: 34961264 PMCID: PMC8706215 DOI: 10.3390/plants10122793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/17/2023]
Abstract
The objective of this experiment was to evaluate the effects of grafting, zinc oxide nanoparticles (ZnO NPs), and their interaction on the nutritional composition of bell pepper plants. The treatments evaluated included grafted and non-grafted pepper plants with four concentrations of ZnO NPs (0, 10, 20, 30 mg L-1) applied to the foliage. The following parameters were evaluated: content of N, P, K+, Ca2+, Mg2+, Mn2+, Zn2+, Fe2+, Cu2+, total antioxidants, ascorbic acid, total phenols, glutathione, total proteins, fruit firmness, and total soluble solids. Grafting increased the content of N 12.2%, P 15.9%, K+ 26.7%, Mg2+ 20.3%, Mn2+ 34.7%, Zn2+ 19.5%, Fe2+ 18.2%, Cu2+ 11.5%, antioxidant capacity 2.44%, ascorbic acid 4.63%, total phenols 1.33%, glutathione 7.18%, total proteins 1.08%, fruit firmness 8.8%. The application of 30 mg L-1 ZnO NPs increased the content of N 12.3%, P 25.9%, Mg2+ 36.8%, Mn2+ 42.2%, Zn2+ 27%, Fe2+ 45%, antioxidant activity 13.95%, ascorbic acid 26.77%, total phenols 10.93%, glutathione 11.46%, total proteins 11.01%, and fruit firmness 17.7% compared to the control. The results obtained demonstrate the influence of the use of grafts and ZnO NPs as tools that could improve the quality and nutrient content in fruits of bell pepper crops.
Collapse
Affiliation(s)
- José-Gerardo Uresti-Porras
- Doctorado en Ciencias en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Marcelino Cabrera-De-La Fuente
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico; (M.C.-D.-L.F.); (A.B.-M.)
| | - Adalberto Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico; (M.C.-D.-L.F.); (A.B.-M.)
| | - Emilio Olivares-Sáenz
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, Ex Hacienda el Canada, General Escobedo 66050, Mexico;
| | - Raul I. Cabrera
- Rutgers Agricultural Research and Extension Center (RAREC), Department of Plant Biology, Rutgers University, Bridgeton, NJ 08302, USA;
| | | |
Collapse
|
128
|
Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021; 13:nu13124456. [PMID: 34960004 PMCID: PMC8707169 DOI: 10.3390/nu13124456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Yunqi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China;
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
129
|
Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial. Nutrients 2021; 13:nu13124409. [PMID: 34959963 PMCID: PMC8708314 DOI: 10.3390/nu13124409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the third leading cause of blindness worldwide. Macular pigment optical density (MPOD), a biomarker for AMD, is a non-invasive measure to assess risk. The macula xanthophyll pigments lutein (L) and zeaxanthin (Z) protect against blue light and provide oxidant defense, which can be indexed by MPOD. This study examined the effects of Z-rich goji berry intake on MPOD and skin carotenoids in healthy individuals. A randomized, unmasked, parallel-arm study was conducted with 27 participants, aged 45–65, who consumed either 28 g of goji berries or a supplement containing 6 mg L and 4 mg Z (LZ), five times weekly for 90 days. After 90 days, MPOD was significantly increased in the goji berry group at 0.25 and 1.75 retinal eccentricities (p = 0.029 and p = 0.044, respectively), while no changes were noted in the LZ group. Skin carotenoids were significantly increased in the goji berry group at day 45 (p = 0.025) and day 90 (p = 0.006), but not in the LZ group. Regular intake of goji berries in a healthy middle-aged population increases MPOD may help prevent or delay the development of AMD.
Collapse
|
130
|
Zinc ionophores: chemistry and biological applications. J Inorg Biochem 2021; 228:111691. [PMID: 34929542 DOI: 10.1016/j.jinorgbio.2021.111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Zinc can play a pathophysiological role in several diseases and can interfere in key processes of microbial growth. This evidence justifies the efforts in applying Zinc ionophores to restore Zinc homeostasis and treat bacterial/viral infections such as coronavirus diseases. Zinc ionophores increase the intracellular concentration of Zinc ions causing significant biological effects. This review provides, for the first time, an overview of the applications of the main Zinc ionophores in Zinc deficiency, infectious diseases, and in cancer, discussing the pharmacological and coordination properties of the Zinc ionophores.
Collapse
|
131
|
Rodríguez-Tomàs E, Baiges-Gaya G, Castañé H, Arenas M, Camps J, Joven J. Trace elements under the spotlight: A powerful nutritional tool in cancer. J Trace Elem Med Biol 2021; 68:126858. [PMID: 34537473 DOI: 10.1016/j.jtemb.2021.126858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023]
Abstract
Cancer is the second leading cause of death worldwide. Research on the relationships between trace elements (TE) and the development of cancer or its prevention is a field that is gaining increasing relevance. This review provides an evaluation of the effects of TE (As, Al, B, Cd, Cr, Cu, F, I, Pb, Li, Mn, Hg, Mo, Ni, Se, Si, Sn, V and Zn) intake and supplementation in cancer risk and prevention, as well as their interactions with oncology treatments. Advancements in the knowledge of TE, their dietary interactions and their main food sources can provide patients with choices that will help them to improve their quality of life and therapy outcomes. This approach could open new opportunities for treatments based on the integration of conventional therapies (chemotherapy, radiotherapy, and immunotherapy) and dietary interventions that provide advanced personalized treatments.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain; Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Meritxell Arenas
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain; Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201, Reus, Spain
| |
Collapse
|
132
|
Gomes MJC, Martino HSD, Tako E. Zinc-biofortified staple food crops to improve zinc status in humans: a systematic review. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34847784 DOI: 10.1080/10408398.2021.2010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biofortified foods are a new approach to increase minerals in the diet, and evidence suggests that zinc (Zn) biofortification can improve Zn physiological status in humans. This systematic review aimed to answer the question: "What are the effects of the consumption of Zn biofortified foods on Zn status in humans?". This review was conducted according to PRISMA guidelines and registered in PROSPERO (CRD42021250566). PubMed, Cochrane, Scopus and Science Direct databases were searched for studies that evaluated the effects of Zn biofortified foods on Zn absorption. Of 4282 articles identified, nine remained after inclusion/exclusion criteria were applied. Limitations in study quality, external and internal validity (bias/confounding), and study power were evaluated. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. Of the nine articles included, five observed an increase in total Zn absorption, and one showed that Zn participated in the conversion of linoleic acid to dihomo-γ-linolenic acid. By increasing the amount of Zn in the food, Zn biofortification can reduce the phytate:Zn molar ratio and improve Zn absorption in humans. More studies are needed to clarify what portion of Zn biofortified foods/day is needed to achieve a significant effect on Zn status.
Collapse
Affiliation(s)
- Mariana Juste Contin Gomes
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.,Department of Food Science, Cornell University, Ithaca, NY, USA
| | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
133
|
Shkembi B, Huppertz T. Influence of Dairy Products on Bioavailability of Zinc from Other Food Products: A Review of Complementarity at a Meal Level. Nutrients 2021; 13:4253. [PMID: 34959808 PMCID: PMC8705257 DOI: 10.3390/nu13124253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we reviewed the role of dairy products in dietary zinc absorption. Dairy products can have a reasonable contribution for dietary zinc intake in Western diets, where dairy consumption is high. However, the co-ingestion of dairy products can also improve zinc absorption from other food products. Such improvements have been observed when dairy products (e.g., milk or yoghurt) were ingested together with food such as rice, tortillas or bread products, all of which are considered to be high-phytate foods with low inherent zinc absorption. For foods low in phytate, the co-ingestion of dairy products did not improve zinc absorption. Improved zinc absorption of zinc from high-phytate foods following co-ingestion with dairy products may be related to the beneficial effects of the citrate and phosphopeptides present in dairy products. Considering that the main dietary zinc sources in areas in the world where zinc deficiency is most prevalent are typically high in phytate, the inclusion of dairy products in meals may be a viable dietary strategy to improve zinc absorption.
Collapse
Affiliation(s)
- Blerina Shkembi
- Food Quality & Design Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
134
|
Wahab A, Mushtaq K, Khan A, Khakwani MSK, Masood A, Henderson J, Malik F. Zinc-induced hypocupremia and pancytopenia, from zinc supplementation to its toxicity, a case report. J Community Hosp Intern Med Perspect 2021; 11:843-846. [PMID: 34804403 PMCID: PMC8604455 DOI: 10.1080/20009666.2021.1983319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
According to one estimate, zinc supplementation is widely used in the USA by almost 37% of the elderly population above age 71. Zinc has perceived benefits of immune system enhancement without realizing the harmful effects when used in excess. One of its under-recognized side effects is hypocupremia or copper deficiency due to excessive gastrointestinal losses as excessive zinc in the gut competes with copper for absorption. If severe, hypocupremia can cause hematologic changes (anemia, leukopenia/neutropenia, thrombocytopenia, and pancytopenia) with and without neurological deficits. Since zinc-induced hypocupremia is an overlooked entity, there is a lag of 12 months between the onset of symptoms and diagnosis. Most patients usually undergo a series of costly and sometimes invasive tests such as bone marrow biopsies during this lag time. Once diagnosed, the treatment is as simple as discontinuation of zinc and oral copper supplements. Here, we present a case report of zinc-induced hypocupremia and pancytopenia in an 81-year-old lady who was taking zinc supplements for macular degeneration. The patient presented with leukopenia with neutropenia, thrombocytopenia, and moderate anemia. This case report aims to educate clinicians since this is an easily missed entity and likely more prevalent than known due to widely used zinc supplementation.
Collapse
Affiliation(s)
- Ahsan Wahab
- Hospital Medicine/Internal Medicine, Baptist Medical Center South, Montgomery, AL, USA
| | - Kamran Mushtaq
- Hospital Medicine/Internal Medicine, Northeast Internal Medicine Associates, LaGrange, IN, USA
| | - Aqsa Khan
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | | | - Adeel Masood
- Hospital Medicine, TidalHealth Peninsula Regional, Salisbury, MD, USA
| | | | - Faizan Malik
- Hematology Oncology Department, Northshore Oncology Associates, New Orleans, LA, USA
| |
Collapse
|
135
|
Abstract
Healthy hair results from a combination of good generalized health and mindful health care practices. Many nutritional deficiencies lead to poor hair health and include changes to hair structure, texture, and viability. Although the mechanisms by which individual nutrients contribute to hair growth and maintenance have yet to be fully resolved, there are a variety of risk factors that predispose an individual to a nutritional deficiency; age, malnutrition, malabsorption, and medication use are among the most common. A thorough history should be taken in a patient with a hair disturbance to identify risk factors for a nutritional deficiency, which will then guide directed laboratory testing and treatment.
Collapse
Affiliation(s)
- Kelly O'Connor
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts, USA. kelly.o'
| | - Lynne J Goldberg
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
136
|
The Role of Iron and Zinc in the Treatment of ADHD among Children and Adolescents: A Systematic Review of Randomized Clinical Trials. Nutrients 2021; 13:nu13114059. [PMID: 34836314 PMCID: PMC8618748 DOI: 10.3390/nu13114059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder common from childhood to adulthood, affecting 5% to 12% among the general population in developed countries. Potential etiological factors have been identified, including genetic causes, environmental elements and epigenetic components. Nutrition is currently considered an influencing factor, and several studies have explored the contribution of restriction and dietary supplements in ADHD treatments. Iron is an essential cofactor required for a number of functions, such as transport of oxygen, immune function, cellular respiration, neurotransmitter metabolism (dopamine production), and DNA synthesis. Zinc is also an essential trace element, required for cellular functions related to the metabolism of neurotransmitters, melatonin, and prostaglandins. Epidemiological studies have found that iron and zinc deficiencies are common nutritional deficits worldwide, with important roles on neurologic functions (poor memory, inattentiveness, and impulsiveness), finicky appetite, and mood changes (sadness and irritability). Altered levels of iron and zinc have been related with the aggravation and progression of ADHD. Objective: This is a systematic review focused on the contribution of iron and zinc in the progression of ADHD among children and adolescents, and how therapies including these elements are tolerated along with its effectiveness (according to PRISMA guidelines). Method: The scientific literature was screened for randomized controlled trials published between January 2000 to July 2021. The databases consulted were Medline, PsycINFO, Web of Science, and Google Scholar. Two independent reviewers screened studies, extracted data, and assessed quality and risk of bias (CONSORT, NICE, and Cochrane checklists used). Conclusion: Nine studies met the eligibility criteria and were selected. Evidence was obtained regarding the contribution of iron-zinc supplementation in the treatment of ADHD among young individuals. The discussion was focused on how the deficits of these elements contribute to affectation on multiple ADHD correlates, and potential mechanisms explaining the mediational pathways. Evidence also suggested that treating ADHD with diet interventions might be particularly useful for specific subgroups of children and adolescents, but further investigations of the effects of these diet interventions are needed.
Collapse
|
137
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
138
|
Interaction between ZnO Nanoparticles and Albumin and Its Effect on Cytotoxicity, Cellular Uptake, Intestinal Transport, Toxicokinetics, and Acute Oral Toxicity. NANOMATERIALS 2021; 11:nano11112922. [PMID: 34835685 PMCID: PMC8625151 DOI: 10.3390/nano11112922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are used as zinc supplements due to the nutritional value of Zn. The toxicity of ZnO NPs in the food industry is required to be elucidated because they have large surface area and high reactivity compared with bulk-sized materials and have potentials to interact with food matrices, which may lead to different biological responses. In this study, interactions between ZnO NPs and food proteins (albumin, casein, and zein) were evaluated by measuring changes in physicochemical property, fluorescence quenching ratios, and structural protein stability compared with ZnO interaction with glucose, the most interacted saccharide in our previous report. The interaction effects on cytotoxicity, cellular uptake, intestinal transport, toxicokinetics, and acute oral toxicity were also investigated. The results demonstrate that interaction between ZnO and albumin reduced hydrodynamic diameters, but increased cytotoxicity, cellular uptake, and intestinal transport in a similar manner to ZnO interaction with glucose, without affecting primary structural protein stability and toxicokinetic behaviors. Hematological, serum biochemical, and histopathological analysis reveal no toxicological findings after orally administered ZnO NPs interacted with albumin or glucose in rats for 14 consecutive days, suggesting their low oral toxicity. In conclusion, the interactions between ZnO NPs and food proteins modulate in vitro biological responses, but do not affect in vivo acute oral toxicity. Further study is required to ascertain the interaction effects on chronic oral toxicity.
Collapse
|
139
|
Cereda G, Ciappolino V, Boscutti A, Cantù F, Enrico P, Oldani L, Delvecchio G, Brambilla P. Zinc as a Neuroprotective Nutrient for COVID-19-Related Neuropsychiatric Manifestations: A Literature Review. Adv Nutr 2021; 13:66-79. [PMID: 34634109 PMCID: PMC8524565 DOI: 10.1093/advances/nmab110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The outbreak of the pandemic associated with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) led researchers to find new potential treatments, including nonpharmacological molecules such as zinc (Zn2+). Specifically, the use of Zn2+ as a therapy for SARS-CoV-2 infection is based on several findings: 1) the possible role of the anti-inflammatory activity of Zn2+ on the aberrant inflammatory response triggered by COronaVIrus Disease 19 (COVID-19), 2) properties of Zn2+ in modulating the competitive balance between the host and the invading pathogens, and 3) the antiviral activity of Zn2+ on a number of pathogens, including coronaviruses. Furthermore, Zn2+ has been found to play a central role in regulating brain functioning and many disorders have been associated with Zn2+ deficiency, including neurodegenerative diseases, psychiatric disorders, and brain injuries. Within this context, we carried out a narrative review to provide an overview of the evidence relating to the effects of Zn2+ on the immune and nervous systems, and the therapeutic use of such micronutrients in both neurological and infective disorders, with the final goal of elucidating the possible use of Zn2+ as a preventive or therapeutic intervention in COVID-19. Overall, the results from the available evidence showed that, owing to its neuroprotective properties, Zn2+ supplementation could be effective not only on COVID-19-related symptoms but also on virus replication, as well as on COVID-19-related inflammation and neurological damage. However, further clinical trials evaluating the efficacy of Zn2+ as a nonpharmacological treatment of COVID-19 are required to achieve an overall improvement in outcome and prognosis.
Collapse
Affiliation(s)
- Guido Cereda
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Filippo Cantù
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
140
|
Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
141
|
Tsang BL, Holsted E, McDonald CM, Brown KH, Black R, Mbuya MNN, Grant F, Rowe LA, Manger MS. Effects of Foods Fortified with Zinc, Alone or Cofortified with Multiple Micronutrients, on Health and Functional Outcomes: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12:1821-1837. [PMID: 34167148 PMCID: PMC8483949 DOI: 10.1093/advances/nmab065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022] Open
Abstract
Seventeen per cent of the world's population is estimated to be at risk of inadequate zinc intake, which could in part be addressed by zinc fortification of widely consumed foods. We conducted a review of efficacy and effectiveness studies to ascertain the effect of zinc fortification [postharvest fortification of an industrially produced food or beverage; alone or with multiple micronutrients (MMN)] on a range of health outcomes. Previous reviews have required that the effect of zinc be isolated; because zinc is always cofortified with MMN in existing fortification programs, we did not impose this condition. Outcomes assessed were zinc-related biomarkers (plasma or serum, hair or urine zinc concentrations, comet assay, plasma fatty acid concentrations, and the proportion of and total zinc absorbed in the intestine from the diet), child anthropometry, morbidity, mortality, cognition, plasma or serum iron and copper concentrations, and for observational studies, a change in consumption of the food vehicle. Fifty-nine studies were included in the review; 54 in meta-analyses, totaling 73 comparisons. Zinc fortification with and without MMN increased plasma zinc concentrations (efficacy, n = 27: 4.68 μg/dL; 95% CI: 2.62-6.75; effectiveness, n = 13: 6.28 μg/dL; 95% CI: 5.03-7.77 μg/dL) and reduced the prevalence of zinc deficiency (efficacy, n = 11: OR: 0.76, 95% CI: 0.60-0.96; effectiveness, n = 10: OR: 0.45, 95% CI: 0.31-0.64). There were statistically significant increases in child weight (efficacy, n = 11: 0.43 kg, 95% CI: 0.11-0.75 kg), improvements in short-term auditory memory (efficacy, n = 3: 0.32 point, 95% CI: 0.13-0.50 point), and decreased incidence of diarrhea (efficacy, n = 3: RR: 0.79, 95% CI: 0.68-0.92) and fever (efficacy, n = 2: RR: 0.85, 95% CI: 0.74-0.97). However, these effects cannot be solely attributed to zinc. Our review found that zinc fortification with or without MMN reduced the prevalence of zinc deficiency and may provide health and functional benefits, including a reduced incidence of diarrhea.
Collapse
Affiliation(s)
- Becky L Tsang
- IZiNCG Fortification Task Force
- Food Fortification Initiative, Atlanta, GA, USA
| | - Erin Holsted
- IZiNCG Fortification Task Force
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Christine M McDonald
- IZiNCG Fortification Task Force
- International Zinc Nutrition Consultative Group, Oakland, CA, USA
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kenneth H Brown
- IZiNCG Fortification Task Force
- Department of Nutrition and Institute for Global Nutrition, University of California, Davis, CA, USA
| | - Robert Black
- IZiNCG Fortification Task Force
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mduduzi N N Mbuya
- IZiNCG Fortification Task Force
- Global Alliance for Improved Nutrition, Washington, DC, USA
| | - Frederick Grant
- IZiNCG Fortification Task Force
- Helen Keller International, Phnom Penh, Cambodia
| | - Laura A Rowe
- IZiNCG Fortification Task Force
- Food Fortification Initiative, Atlanta, GA, USA
| | - Mari S Manger
- IZiNCG Fortification Task Force
- International Zinc Nutrition Consultative Group, Oakland, CA, USA
| |
Collapse
|
142
|
Cheng J, Bar H, Tako E. Zinc Status Index (ZSI) for Quantification of Zinc Physiological Status. Nutrients 2021; 13:nu13103399. [PMID: 34684398 PMCID: PMC8541600 DOI: 10.3390/nu13103399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc (Zn) deficiency is estimated to affect over one billion (17%) of the world’s population. Zn plays a key role in various cellular processes such as differentiation, apoptosis, and proliferation, and is used for vital biochemical and structural processes in the body. Widely used biomarkers of Zn status include plasma, whole blood, and urine Zn, which decrease in severe Zn deficiency; however, accurate assessment of Zn status, especially in mild to moderate deficiency, is difficult, as studies with these biomarkers are often contradictory and inconsistent. Thus, sensitive and specific biological markers of Zn physiological status are still needed. In this communication, we provide the Zn status index (ZSI) concept, which consists of a three-pillar formula: (1) the LA:DGLA ratio, (2) mRNA gene expression of Zn-related proteins, and (3) gut microbiome profiling to provide a clear assessment of Zn physiological status and degree of Zn deficiency with respect to assessing dietary Zn manipulation. Analysis of five selected studies found that with lower dietary Zn intake, erythrocyte LA:DGLA ratio increased, mRNA gene expression of Zn-related proteins in duodenal and liver tissues was altered, and gut microbiota populations differed, where the ZSI, a statistical model trained on data from these studies, was built to give an accurate estimation of Zn physiological status. However, the ZSI needs to be tested and refined further to determine its full potential.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
| | - Haim Bar
- Department of Statistics, University of Connecticut, Philip E. Austin Building, Storrs, CT 06269, USA;
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
143
|
Zamir A, Ben-Zeev T, Hoffman JR. Manipulation of Dietary Intake on Changes in Circulating Testosterone Concentrations. Nutrients 2021; 13:3375. [PMID: 34684376 PMCID: PMC8538516 DOI: 10.3390/nu13103375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022] Open
Abstract
Elevations in the circulating concentration of androgens are thought to have a positive effect on the anabolic processes leading to improved athletic performance. Anabolic-androgenic steroids have often been used by competitive athletes to augment this effect. Although there has been concerted effort on examining how manipulating training variables (e.g., intensity and volume of training) can influence the androgen response to exercise, there has been much less effort directed at understanding how changes in both macronutrient and micronutrient intake can impact the androgen response. Thus, the focus of this review is to examine the effect that manipulating energy and nutrient intake has on circulating concentrations of testosterone and what the potential mechanism is governing these changes.
Collapse
Affiliation(s)
| | | | - Jay R. Hoffman
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700 Ariel, Israel; (A.Z.); (T.B.-Z.)
| |
Collapse
|
144
|
Zhang Z, Yu J, Xie J, Liu D, Fan Y, Ma H, Wang C, Hong Z. Improvement roles of zinc supplementation in low dose lead induced testicular damage and glycolytic inhibition in mice. Toxicology 2021; 462:152933. [PMID: 34508822 DOI: 10.1016/j.tox.2021.152933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Lead (Pb) is a toxic metal that affects the male reproductive system. This study aimed to investigate the effects of zinc (Zn) intake between recommended dietary allowances (RDAs) and tolerable upper intake levels (ULs) in preventing male testis damage induced by low-dose Pb. Forty-five mice were randomly divided into control, Pb, and Pb + Zn groups. They were given distilled water ad libitum with 0, 200 mg/L Pb2+, or 15 mg/L Zn2+ mixed with 200 mg/L Pb2+ for 90 consecutive days. The Zn levels in the blood and testis of the Pb group were significantly lower than those of the control group. The Pb levels in the blood and testis of the Pb + Zn group were significantly lower than those of the Pb group. Additionally, a significant decrease in sperm density and viability, with a significant increase in sperm abnormality rate and DNA fragmentation index, was observed in the Pb group. Zn supplementation significantly improved the above sperm parameters. Moreover, Zn supplementation decreased low-dose Pb-induced lipid peroxidation and increased glutathione, total superoxide dismutase (SOD), and copper/Zn-SOD levels. Furthermore, Zn treatment improved glycolysis products and lactate transporters in Pb-treated mouse testes. Our findings suggest that Zn intake between RDAs and UL can act as a therapeutic agent in protecting against the reproductive impairments associated with Pb exposure.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jun Yu
- Department of Preventive Medicine, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jie Xie
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Duanya Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yongsheng Fan
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Haitao Ma
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China.
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
145
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev Neurosci 2021; 31:233-243. [PMID: 31747384 DOI: 10.1515/revneuro-2019-0052] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022]
Abstract
The disruption of homeostasis of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Wilson's, Creutzfeldt-Jakob, Parkinson's, and Alzheimer's diseases (AD), and traumatic brain injury (TBI). The last two pathological conditions of the brain are the most common; moreover, it is possible that TBI is a risk factor for the development of AD. Disruptions of Zn2+ and Cu2+ homeostasis play an important role in the mechanisms of pathogenesis of both TBI and AD. This review attempts to summarize and systematize the currently available research data on this issue. The neurocytotoxicity of Cu2+ and Zn2+, the synergism of the toxic effect of calcium and Zn2+ ions on the mitochondria of neurons, and the interaction of Zn2+ and Cu2+ with β-amyloid (Abeta) and tau protein are considered.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
146
|
Pal A, Squitti R, Picozza M, Pawar A, Rongioletti M, Dutta AK, Sahoo S, Goswami K, Sharma P, Prasad R. Zinc and COVID-19: Basis of Current Clinical Trials. Biol Trace Elem Res 2021; 199:2882-2892. [PMID: 33094446 PMCID: PMC7580816 DOI: 10.1007/s12011-020-02437-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Coronavirus disease-2019 (COVID-19) pandemic continues to threaten patients, societies, and economic and healthcare systems around the world. Like many other diseases, the host immune system determines the progress of COVID-19 and fatality. Modulation of inflammatory response and cytokine production using immunonutrition is a novel concept that has been applied to other diseases as well. Zinc, one of the anti-inflammatory and antioxidant micronutrient found in food with well-established role in immunity, is currently being used in some clinical trials against COVID-19. This review integrates the contemporary studies of role of zinc in antiviral immunity along with discussing its potential role against COVID-19, and ongoing COVID-19 clinical trials using zinc.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal, 741245, India.
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar, Punjab, India
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Atanu Kumar Dutta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal, 741245, India
| | - Sibasish Sahoo
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal, 741245, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal, 741245, India
| | - Praveen Sharma
- Department of Biochemistry, AIIMS, Jodhpur, Rajasthan, India
| | - Rajendra Prasad
- Department of Biochemistry, MM Institute of Medical Sciences and Research, Mullana, Ambala 133207, Haryana, India
| |
Collapse
|
147
|
Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.). PLoS One 2021; 16:e0254647. [PMID: 34255800 PMCID: PMC8277021 DOI: 10.1371/journal.pone.0254647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Malnutrition a health disorders arising due to over or low use of minerals, vitamins and nutritional substances required for proper functioning of body tissues and organs. Zinc (Zn) is the most important mineral required for the normal metabolism of plants and humans. Zinc-deficiency is one of the major cause of malnutrition globally. Maize is highly susceptible to Zn-deficiency and inflicts Zn-deficiency to humans and other animals being nourished on it. This study evaluated the effect of zinc-lysine chelate alone (0.1, 0.5, 1.0 and 1.5%) as seed priming and in combination with Zn-solubilizing bacteria (PMEL-1, PMEL-48, PMEL-57and PMEL-71)) on grain biofortification of autumn maize. The Zn accumulation in different parts (roots, stem, leaves, grains and cob pith) was quantified. Results indicated that Zn contents were 18.5% higher in the seeds primed with 1.5% solution of Zn-lysine chelate and inoculation of ZSB strains compared to control treatments. Seed priming with 1.5% Zn-lysine chelate in combination with ZSB inoculation significantly improved cob diameter and cob length by 16.75% and 42% during 2016 and by 11.36% and 34.35% during 2017. The increase in 100 grains weight over control was 18.4% and 15.27% for 2016 and 2017, respectively. The Zn contents were increased by 15.3%, 15.6%, 49.1%, and 33.0% in grain, cob-pith, stemand roots, respectively compared from control. Thus, the combined application of 1.5% Zn-lysine chelates along with ZSB inoculation could be used for combating malnutrition.
Collapse
|
148
|
Kiyohara ACP, Torres DJ, Hagiwara A, Pak J, Rueli RHLH, Shuttleworth CWR, Bellinger FP. Selenoprotein P Regulates Synaptic Zinc and Reduces Tau Phosphorylation. Front Nutr 2021; 8:683154. [PMID: 34277682 PMCID: PMC8280497 DOI: 10.3389/fnut.2021.683154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Selenoprotein P (SELENOP1) is a selenium-rich antioxidant protein involved in extracellular transport of selenium (Se). SELENOP1 also has metal binding properties. The trace element Zinc (Zn2+) is a neuromodulator that can be released from synaptic terminals in the brain, primarily from a subset of glutamatergic terminals. Both Zn2+ and Se are necessary for normal brain function. Although these ions can bind together with high affinity, the biological significance of an interaction of SELENOP1 with Zn2+ has not been investigated. We examined changes in brain Zn2+ in SELENOP1 knockout (KO) animals. Timm-Danscher and N-(6-methoxy-8-quinolyl)-p-toluenesulphonamide (TSQ) staining revealed increased levels of intracellular Zn2+ in the SELENOP1-/- hippocampus compared to wildtype (WT) mice. Mass spectrometry analysis of frozen whole brain samples demonstrated that total Zn2+ was not increased in the SELENOP1-/- mice, suggesting only local changes in Zn2+ distribution. Unexpectedly, live Zn2+ imaging of hippocampal slices with a selective extracellular fluorescent Zn2+ indicator (FluoZin-3) showed that SELENOP1-/- mice have impaired Zn2+ release in response to KCl-induced neuron depolarization. The zinc/metal storage protein metallothionein 3 (MT-3) was increased in SELENOP1-/- hippocampus relative to wildtype, possibly in response to an elevated Zn2+ content. We found that depriving cultured cells of selenium resulted in increased intracellular Zn2+, as did inhibition of selenoprotein GPX4 but not GPX1, suggesting the increased Zn2+ in SELENOP1-/- mice is due to a downregulation of antioxidant selenoproteins and subsequent release of Zn2+ from intracellular stores. Surprisingly, we found increased tau phosphorylation in the hippocampus of SELENOP1-/- mice, possibly resulting from intracellular zinc changes. Our findings reveal important roles for SELENOP1 in the maintenance of synaptic Zn2+ physiology and preventing tau hyperphosphorylation.
Collapse
Affiliation(s)
- Arlene C. P. Kiyohara
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Daniel J. Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Ayaka Hagiwara
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Jenna Pak
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Rachel H. L. H. Rueli
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | - Frederick P. Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
149
|
Gholizadeh M, Saeedy SAG, Roodi PB, Saedisomeolia A. The association between zinc and endothelial adhesion molecules ICAMs and VCAM-1 and nuclear receptors PPAR-ɑ and PPAR-γ: A systematic review on cell culture, animal and human studies. Microvasc Res 2021; 138:104217. [PMID: 34197877 DOI: 10.1016/j.mvr.2021.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cardiovascular health is strongly influenced by diet. The levels of inflammatory factors like ICAM-1 and VCAM-1 are high in patients with atherosclerosis or predisposing factor for heart disease. Antioxidant and anti-inflammatory functions are attributed to zinc. We systematically reviewed cell culture, human or animal studies for determining the relationship between zinc status and ICAMs or VCAM-1 levels. METHODS PubMed, Google Scholar, Scopus, and Cochrane databases from database inception till 30th August 2020 were systematically searched to obtain any possible article for inclusion. RESULTS After screening and removing unrelated or duplicate articles by the title and abstract by two independent reviewers, 15 articles were included. Results indicating an inverse relationship between zinc status with ICAM-1 or VCAM-1 levels and the development of endothelial inflammation, plaque formation, or atherosclerosis. A direct relationship between zinc status and PPAR-α or γ levels was also observed. Zinc oxide (ZnO), zinc nanoparticles, or ions can cause endothelial activation and increased levels of ICAM-1 and VCAM-1. CONCLUSION Normal function of the endothelium is linked with zinc level. Zinc deficiency causes atherosclerosis, most probably via increased production of ICAM-1 and VCAM-1; and decreased expression of PPAR-ɑ and PPAR-γ receptors. Contrarily, endothelial activation and increased ICAM-1 and VCAM-1 levels can be caused by ZnO, zinc nanoparticles, or zinc ions.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Poorya Basafay Roodi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
150
|
Rékási M, Ragályi P, Füzy A, Uzinger N, Dobosy P, Záray G, Szűcs-Vásárhelyi N, Makó A, Takács T. Effect of the Boron Concentration in Irrigation Water on the Elemental Composition of Edible Parts of Tomato, Green Bean, Potato, and Cabbage Grown on Soils With Different Textures. FRONTIERS IN PLANT SCIENCE 2021; 12:658892. [PMID: 34194449 PMCID: PMC8236942 DOI: 10.3389/fpls.2021.658892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The most important environmental source of boron (B) contamination is irrigation water. The data on the effect of B on the elemental composition in the edible parts of vegetables are scarce. A greenhouse pot experiment investigated the effect of irrigation water containing 0.1 and 0.5 mg/L B on the biomass, elemental (e.g., B, Mg, K, Fe, Cu, and Zn) composition, and photosynthetic parameters of tomato (Solanum lycopersicum), green bean (Phaseolus vulgaris), potato (Solanum tuberosum), and cabbage (Brassica oleracea) plants grown on 10 kg of sand, silty sand, or silty soil. The biomass of the edible part was unaffected by B treatment. The soil type determined the effect of B irrigation on the elemental composition of vegetables. The B content increased by 19% in tomatoes grown on silty soil. The 0.1 mg/L B treatment facilitated tomato fruit ripening on all soils, and the 0.5 mg/L B treatment doubled its chlorophyll content index (CCI) on silty soil. The 0.5 mg/L B treatment negatively affected the nutritional value of green beans on all soils, decreasing the Fe and K contents by an average of 83 and 34%, respectively. The elemental composition of potato was unaffected by the treatments, but the CCI of potato leaves increased in the 0.5 mg/L B treatment by 26%. The B content was increased by 39% in cabbages grown on light-textured soils. In conclusion, B concentration of up to 0.5 mg/L in irrigation water had no significant beneficial or adverse effect on the investigated vegetables, but 0.1 mg/L B treatment could shorten tomato fruit maturation time on B-poor soils. The B levels in vegetables remained suitable for human consumption.
Collapse
Affiliation(s)
- Márk Rékási
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Péter Ragályi
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Anna Füzy
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Nikolett Uzinger
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Gyula Záray
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | | | - András Makó
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Tünde Takács
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|