101
|
Kandhi R, Yeganeh M, Yoshimura A, Menendez A, Ramanathan S, Ilangumaran S. Hepatic stellate cell-intrinsic role of SOCS1 in controlling hepatic fibrogenic response and the pro-inflammatory macrophage compartment during liver fibrosis. Front Immunol 2023; 14:1259246. [PMID: 37860002 PMCID: PMC10582746 DOI: 10.3389/fimmu.2023.1259246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Hepatic stellate cells (HSC) become activated, differentiate to myofibroblasts and produce extracellular fibrillar matrix during liver fibrosis. The hepatic fibrogenic response is orchestrated by reciprocal interactions between HSCs and macrophages and their secreted products. SOCS1 can regulate several cytokines and growth factors implicated in liver fibrosis. Here we investigated the role of SOCS1 in regulating HSC activation. Methods Mice lacking SOCS1 in HSCs (Socs1ΔHSC) were generated by crossing Socs1fl/fl and LratCre mice. Liver fibrosis was induced by carbon tetrachloride and evaluated by Sirius red staining, hydroxyproline content and immunostaining of myofibroblasts. Gene expression of pro-fibrogenic factors, cytokines, growth factors and chemokines were quantified by RT-qPCR. The phenotype and the numbers of intrahepatic leukocyte subsets were studied by flow cytometry. The impact of fibrosis on the development of diethyl nitrosamine-induced hepatocellular carcinoma was evaluated. Results Socs1ΔHSC mice developed more severe liver fibrosis than control Socs1fl/fl mice that was characterized by increased collagen deposition and myofibroblast differentiation. Socs1ΔHSC mice showed a significant increase in the expression of smooth muscle actin, collagens, matrix metalloproteases, cytokines, growth factors and chemokines in the liver following fibrosis induction. The fibrotic livers of Socs1ΔHSC mice displayed heightened inflammatory cell infiltration with increased proportion and numbers of Ly6ChiCCR2+ pro-inflammatory macrophages. This macrophage population contained elevated numbers of CCR2+CX3CR1+ cells, suggesting impaired transition towards restorative macrophages. Fibrosis induction following exposure to diethyl nitrosamine resulted in more numerous and larger liver tumor nodules in Socs1ΔHSC mice than in Socs1fl/fl mice. Discussion Our findings indicate that (i) SOCS1 expression in HSCs is a critical to control liver fibrosis and development of hepatocaellular carcinoma, and (ii) attenuation of HSC activation by SOCS1 regulates pro-inflammatory macrophage recruitment and differentiation during liver fibrosis.
Collapse
Affiliation(s)
- Rajani Kandhi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mehdi Yeganeh
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
102
|
Khajuria DK, Reider I, Kamal F, Norbury CC, Elbarbary RA. Distinct defects in early innate and late adaptive immune responses typify impaired fracture healing in diet-induced obesity. Front Immunol 2023; 14:1250309. [PMID: 37854593 PMCID: PMC10579581 DOI: 10.3389/fimmu.2023.1250309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023] Open
Abstract
Bone fractures, the most common musculoskeletal injuries, heal through three main phases: inflammatory, repair, and remodeling. Around 10% of fracture patients suffer from impaired healing that requires surgical intervention, a huge burden on the healthcare system. The rate of impaired healing increases with metabolic diseases such as obesity-associated hyperglycemia/type 2 diabetes (T2D), an increasing concern given the growing incidence of obesity/T2D. Immune cells play pivotal roles in fracture healing, and obesity/T2D is associated with defective immune-cell functions. However, there is a gap in knowledge regarding the stoichiometry of immune cells that populate the callus and how that population changes during different phases of healing. Here, we used complementary global and single-cell techniques to characterize the repertoire of immune cells in the fracture callus and to identify populations specifically enriched in the fracture callus relative to the unfractured bone or bone marrow. Our analyses identified two clear waves of immune-cell infiltration into the callus: the first wave occurs during the early inflammatory phase of fracture healing, while the second takes place during the late repair/early remodeling phase, which is consistent with previous publications. Comprehensive analysis of each wave revealed that innate immune cells were activated during the early inflammatory phase, but in later phases they returned to homeostatic numbers and activation levels. Of the innate immune cells, distinct subsets of activated dendritic cells were particularly enriched in the inflammatory healing hematoma. In contrast to innate cells, lymphocytes, including B and T cells, were enriched and activated in the callus primarily during the late repair phase. The Diet-Induced Obesity (DIO) mouse, an established model of obesity-associated hyperglycemia and insulin resistance, suffers from multiple healing defects. Our data demonstrate that DIO mice exhibit dysregulated innate immune responses during the inflammatory phase, and defects in all lymphocyte compartments during the late repair phase. Taken together, our data characterize, for the first time, immune populations that are enriched/activated in the callus during two distinct phases of fracture healing and identify defects in the healing-associated immune response in DIO mice, which will facilitate future development of immunomodulatory therapeutics for impaired fracture healing.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Irene Reider
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Fadia Kamal
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Reyad A. Elbarbary
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, United States
| |
Collapse
|
103
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
104
|
Orchanian SB, Lodoen MB. Monocytes as primary defenders against Toxoplasma gondii infection. Trends Parasitol 2023; 39:837-849. [PMID: 37633758 DOI: 10.1016/j.pt.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023]
Abstract
Monocytes are recruited from the bone marrow to sites of infection where they release cytokines and chemokines, function in antimicrobial immunity, and differentiate into macrophages and dendritic cells to control infection. Although many studies have focused on monocyte-derived macrophages and dendritic cells, recent work has examined the unique roles of monocytes during infection to promote immune defense. We focus on the effector functions of monocytes during infection with the parasite Toxoplasma gondii, and discuss the signals that mobilize monocytes to sites of infection, their production of inflammatory cytokines and antimicrobial mediators, their ability to shape the adaptive immune response, and their immunoregulatory functions. Insights from other infections, including Plasmodium and Listeria are also included for comparison and context.
Collapse
Affiliation(s)
- Stephanie B Orchanian
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
105
|
Leyderman M, Wilmore JR, Shope T, Cooney RN, Urao N. Impact of intestinal microenvironments in obesity and bariatric surgery on shaping macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00033. [PMID: 38037591 PMCID: PMC10683977 DOI: 10.1097/in9.0000000000000033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Obesity is associated with alterations in tissue composition, systemic cellular metabolism, and low-grade chronic inflammation. Macrophages are heterogenous innate immune cells ubiquitously localized throughout the body and are key components of tissue homeostasis, inflammation, wound healing, and various disease states. Macrophages are highly plastic and can switch their phenotypic polarization and change function in response to their local environments. Here, we discuss how obesity alters the intestinal microenvironment and potential key factors that can influence intestinal macrophages as well as macrophages in other organs, including adipose tissue and hematopoietic organs. As bariatric surgery can induce metabolic adaptation systemically, we discuss the potential mechanisms through which bariatric surgery reshapes macrophages in obesity.
Collapse
Affiliation(s)
- Michael Leyderman
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Joel R. Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Timothy Shope
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Robert N. Cooney
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
106
|
Shin S, Choi EJ, Moon SW, Lee SB, Chung YJ, Lee SH. Leprosy-specific subsets of macrophages and Schwann cells identified by single-cell RNA-sequencing. Pathol Res Pract 2023; 250:154821. [PMID: 37757621 DOI: 10.1016/j.prp.2023.154821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
In Mycobacterium leprae (M. leprae)-infection, inflammatory cells' subsets and dynamics as well as the interactions with Schwann cells have remained elusive. We investigated individual cells in M. leprae-inoculated nude mice by single-cell RNA-sequencing (scRNA-seq). For macrophages, we dissected two M1-like subsets and five M2-like subsets, where lipid-associated signatures were pervasive in both M1-like and M2-like subsets. There were four macrophage trajectories showing: (i) pro-inflammatory (M1), (ii) lipid metabolism-related (M2), (iii) anti-inflammatory (M2), and (iv) interferon-stimulated gene-related (M2) fates. They displayed early divergence without ever rejoining along the paths, suggesting simultaneous or continuous stimuli for macrophage activation in leprosy. The scRNA-seq predicted Schwann cell-macrophage interactions (Notch1-Jag1, Plxnb1-Sema4d interactions). An immature Schwann cell subset showing Tfap2a expression was identified, indicating Schwann cell dedifferentiation in leprosy tissues. Expressions of Notch1, Jag1, Plxnb1, Sema4d, and Tfap2a were validated in mouse or human leprosy tissues by immunohistochemistry. We identified both pro-inflammatory and inflammation-resolution signatures, where lipid-associated signatures were pervasive to the macrophages, representing leprosy-specific macrophage states for prolonged and repeated episodes of inflammation and resolution. Our study identified refined molecular states and interactions of macrophages and Schwann cells, suggesting novel insights into the pathogenesis of unhealed inflammation with neuropathy and potential therapeutic targets for leprosy.
Collapse
Affiliation(s)
- Sun Shin
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Eun Ji Choi
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Seong Won Moon
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea; Departments of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Seong-Beom Lee
- Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Republic of Korea; Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Yeun-Jun Chung
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Republic of Korea; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea.
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea; Departments of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Republic of Korea; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
107
|
da Silva LS, Germano DB, Fonseca FAH, Shio MT, da Silva Nali LH, Tuleta ID, Juliano Y, de Oliveira Izar MC, Ribeiro AP, Kato JT, do Amaral JB, França CN. Persistence of a proinflammatory status after treatment of the acute myocardial infarction. Geriatr Gerontol Int 2023; 23:700-707. [PMID: 37522226 DOI: 10.1111/ggi.14649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
AIM To evaluate the lipid-lowering and antiplatelet combined strategies on the expression of the receptors CCR2, CCR5, and CX3CR1 and the percentage of CCR2, CCR5, and CX3CR1 cells in monocyte subtypes after acute myocardial infarction. METHODS Prospective, randomized, open-label study, with blinded analyses of endpoints (PROBE, ClinicalTrials.gov Identifier: NCT02428374, registration date: April 28, 2015). Participants were treated with rosuvastatin 20 mg or simvastatin 40 mg plus ezetimibe 10 mg, as well as ticagrelor 90 mg or clopidogrel 75 mg. The chemokine receptors CCR2, CCR5, and CX3CR1 were analyzed by real-time polymerase chain reaction as well as the percentages of CCR2, CCR5, and CX3CR1 cells in the monocyte subtypes (classical, intermediate, and non-classical), which were quantified by flow cytometry, at baseline, and after 1 and 6 months of treatment. RESULTS After comparisons between the three visits, regardless of the treatment arm, there was an increase in CCR2 expression after treatment, as well as an increase in intermediate monocytes CCR2+ and a reduction in non-classical monocytes CCR2+ at the end of treatment. There was also a lower expression of CCR5 after treatment and an increase in classical and non-classical monocytes CCR5+. Concerning CX3CR1, there were no differences in the expression after treatment; however, there were reductions in the percentage of intermediate and non-classical monocytes CX3CR1+ at the end of treatment. CONCLUSIONS The results suggest the persistence of the inflammatory phenotype, known as trained immunity, even with the highly-effective lipid-lowering and antiplatelet therapies. Geriatr Gerontol Int 2023; 23: 700-707.
Collapse
Affiliation(s)
| | | | | | - Marina Tiemi Shio
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Ana Paula Ribeiro
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Juliana Tieko Kato
- Medicine Department, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| |
Collapse
|
108
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
109
|
Arumi-Planas M, Rodriguez-Baena FJ, Cabello-Torres F, Gracia F, Lopez-Blau C, Nieto MA, Sanchez-Laorden B. Microenvironmental Snail1-induced immunosuppression promotes melanoma growth. Oncogene 2023; 42:2659-2672. [PMID: 37516803 PMCID: PMC10473961 DOI: 10.1038/s41388-023-02793-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Melanoma is an aggressive form of skin cancer due to its high metastatic abilities and resistance to therapies. Melanoma cells reside in a heterogeneous tumour microenvironment that acts as a crucial regulator of its progression. Snail1 is an epithelial-to-mesenchymal transition transcription factor expressed during development and reactivated in pathological situations including fibrosis and cancer. In this work, we show that Snail1 is activated in the melanoma microenvironment, particularly in fibroblasts. Analysis of mouse models that allow stromal Snail1 depletion and therapeutic Snail1 blockade indicate that targeting Snail1 in the tumour microenvironment decreases melanoma growth and lung metastatic burden, extending mice survival. Transcriptomic analysis of melanoma-associated fibroblasts and analysis of the tumours indicate that stromal Snail1 induces melanoma growth by promoting an immunosuppressive microenvironment and a decrease in anti-tumour immunity. This study unveils a novel role of Snail1 in melanoma biology and supports its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Francisco Gracia
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain
| | | | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | |
Collapse
|
110
|
Lu D, Jiao X, Jiang W, Yang L, Gong Q, Wang X, Wei M, Gong S. Mesenchymal stem cells influence monocyte/macrophage phenotype: Regulatory mode and potential clinical applications. Biomed Pharmacother 2023; 165:115042. [PMID: 37379639 DOI: 10.1016/j.biopha.2023.115042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from a variety of tissues, such as umbilical cord, fat, and bone marrow. Today, MSCs are widely recognized for their prominent anti-inflammatory properties in a variety of acute and chronic inflammatory diseases. In inflammatory diseases, monocytes/macrophages are an important part of the innate immune response in the body, and the alteration of the inflammatory phenotype plays a crucial role in the secretion of pro-inflammatory/anti-inflammatory factors, the repair of injured sites, and the infiltration of inflammatory cells. In this review, starting from the effect of MSCs on the monocyte/macrophage phenotype, we have outlined in detail the process by which MSCs influence the transformation of the monocyte/macrophage inflammatory phenotype, emphasizing the central role of monocytes/macrophages in MSC-mediated anti-inflammatory and damage site repair. MSCs are phagocytosed by monocytes/macrophages in various physiological states, the paracrine effect of MSCs and mitochondrial transfer of MSCs to macrophages to promote the transformation of monocytes/macrophages into anti-inflammatory phenotypes. We also review the clinical applications of the MSCs-monocytes/macrophages system and describe novel pathways between MSCs and tissue repair, the effects of MSCs on the adaptive immune system, and the effects of energy metabolism levels on monocyte/macrophage phenotypic changes.
Collapse
Affiliation(s)
- Dejin Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wenjian Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Li Yang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qian Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
111
|
Miyamoto K, Sujino T, Harada Y, Ashida H, Yoshimatsu Y, Yonemoto Y, Nemoto Y, Tomura M, Melhem H, Niess JH, Suzuki T, Suzuki T, Suzuki S, Koda Y, Okamoto R, Mikami Y, Teratani T, Tanaka KF, Yoshimura A, Sato T, Kanai T. The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis. Cell Rep 2023; 42:113005. [PMID: 37590143 DOI: 10.1016/j.celrep.2023.113005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, 1-10-3, Kaminagazato, Kita-ku, Tokyo 114-0016, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba city, Chiba 260-8673, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Yonemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Otani University, 3-11-1 Nshikiorikita, Tondabayshi, Osaka, 584-8584, Japan
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Clarunis-University Center for Gastrointestinal and Liver Diseases, University Hospital Basel, 4002 Basel, Switzerland
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Toru Suzuki
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shohei Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
112
|
Jackson WD, Giacomassi C, Ward S, Owen A, Luis TC, Spear S, Woollard KJ, Johansson C, Strid J, Botto M. TLR7 activation at epithelial barriers promotes emergency myelopoiesis and lung antiviral immunity. eLife 2023; 12:e85647. [PMID: 37566453 PMCID: PMC10465127 DOI: 10.7554/elife.85647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Monocytes are heterogeneous innate effector leukocytes generated in the bone marrow and released into circulation in a CCR2-dependent manner. During infection or inflammation, myelopoiesis is modulated to rapidly meet the demand for more effector cells. Danger signals from peripheral tissues can influence this process. Herein we demonstrate that repetitive TLR7 stimulation via the epithelial barriers drove a potent emergency bone marrow monocyte response in mice. This process was unique to TLR7 activation and occurred independently of the canonical CCR2 and CX3CR1 axes or prototypical cytokines. The monocytes egressing the bone marrow had an immature Ly6C-high profile and differentiated into vascular Ly6C-low monocytes and tissue macrophages in multiple organs. They displayed a blunted cytokine response to further TLR7 stimulation and reduced lung viral load after RSV and influenza virus infection. These data provide insights into the emergency myelopoiesis likely to occur in response to the encounter of single-stranded RNA viruses at barrier sites.
Collapse
Affiliation(s)
- William D Jackson
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Chiara Giacomassi
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Sophie Ward
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Amber Owen
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Tiago C Luis
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Sarah Spear
- Division of Cancer, Department of Surgery and Cancer, Imperial College LondonLondonUnited Kingdom
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Jessica Strid
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Marina Botto
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
113
|
McDowell SA, Milette S, Doré S, Yu MW, Sorin M, Wilson L, Desharnais L, Cristea A, Varol O, Atallah A, Swaby A, Breton V, Arabzadeh A, Petrecca S, Loucif H, Bhagrath A, De Meo M, Lach KD, Issac MS, Fiset B, Rayes RF, Mandl JN, Fritz JH, Fiset PO, Holt PR, Dannenberg AJ, Spicer JD, Walsh LA, Quail DF. Obesity alters monocyte developmental trajectories to enhance metastasis. J Exp Med 2023; 220:e20220509. [PMID: 37166450 PMCID: PMC10182775 DOI: 10.1084/jem.20220509] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/27/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Obesity is characterized by chronic systemic inflammation and enhances cancer metastasis and mortality. Obesity promotes breast cancer metastasis to lung in a neutrophil-dependent manner; however, the upstream regulatory mechanisms of this process remain unknown. Here, we show that obesity-induced monocytes underlie neutrophil activation and breast cancer lung metastasis. Using mass cytometry, obesity favors the expansion of myeloid lineages while restricting lymphoid cells within the peripheral blood. RNA sequencing and flow cytometry revealed that obesity-associated monocytes resemble professional antigen-presenting cells due to a shift in their development and exhibit enhanced MHCII expression and CXCL2 production. Monocyte induction of the CXCL2-CXCR2 axis underlies neutrophil activation and release of neutrophil extracellular traps to promote metastasis, and enhancement of this signaling axis is observed in lung metastases from obese cancer patients. Our findings provide mechanistic insight into the relationship between obesity and cancer by broadening our understanding of the interactive role that myeloid cells play in this process.
Collapse
Affiliation(s)
- Sheri A.C. McDowell
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Simon Milette
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Samuel Doré
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Miranda W. Yu
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Mark Sorin
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Liam Wilson
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Alyssa Cristea
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Ozgun Varol
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Aline Atallah
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Anikka Swaby
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Valérie Breton
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
| | | | - Sarah Petrecca
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Hamza Loucif
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Aanya Bhagrath
- Department of Physiology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Meghan De Meo
- Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Katherine D. Lach
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Marianne S.M. Issac
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
| | - Roni F. Rayes
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Pierre O. Fiset
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Peter R. Holt
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New Nork, NY, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Jonathan D. Spicer
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Logan A. Walsh
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Daniela F. Quail
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| |
Collapse
|
114
|
Ma Q, Su D, Huo J, Yin G, Dong D, Duan K, Cheng H, Xu H, Ma J, Liu D, Mou B, Peng J, Cheng L. Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice. Neurosci Bull 2023; 39:1229-1245. [PMID: 36637789 PMCID: PMC10387012 DOI: 10.1007/s12264-022-01017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 01/14/2023] Open
Abstract
Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aβ-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aβ pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.
Collapse
Affiliation(s)
- Quan Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongmei Su
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Huo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangjuan Yin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Dong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaifang Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huiling Xu
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao Ma
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Mou
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiyun Peng
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Longzhen Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
115
|
Brandi J, Wiethe C, Riehn M, Jacobs T. OMIP-93: A 41-color high parameter panel to characterize various co-inhibitory molecules and their ligands in the lymphoid and myeloid compartment in mice. Cytometry A 2023; 103:624-630. [PMID: 37219006 DOI: 10.1002/cyto.a.24740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
This 41-color panel has been designed to characterize both the lymphoid and the myeloid compartments in mice. The number of immune cells isolated from organs is often low, whilst an increasing number of factors need to be analyzed to gain a deeper understanding of the complexity of an immune response. With a focus on T cells, their activation and differentiation status, as well as their expression of several co-inhibitory and effector molecules, this panel also allows the analysis of ligands to these co-inhibitory molecules on antigen-presenting cells. This panel enables deep phenotypic characterization of CD4+ and CD8+ T cells, regulatory T cells, γδ T cells, NK T cells, B cells, NK cells, monocytes, macrophages, dendritic cells, and neutrophils. Whilst previous panels have focused on these topics individually, this is the first panel to enable simultaneous analysis of these compartments, thus enabling a comprehensive analysis with a limited number of immune cells/sample size. This panel is designed to analyze and compare the immune response in different mouse models of infectious diseases, but can also be extended to other disease models, for example tumors or autoimmune diseases. Here, we apply this panel to C57BL/6 mice infected with Plasmodium berghei ANKA, a mouse model of cerebral malaria.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Wiethe
- Marketing and Scientific Application, BioLegend Inc, San Diego, California, USA
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
116
|
Ozaki Y, Kashiwagi M, Imanishi T, Katayama Y, Taruya A, Nishiguchi T, Shiono Y, Kuroi A, Yamano T, Tanimoto T, Kitabata H, Tanaka A. Prognostic value of Toll-like receptor 4 on human monocyte subsets combined with computed tomography-adapted Leaman score assessing coronary artery disease. Coron Artery Dis 2023; 34:356-363. [PMID: 37222220 PMCID: PMC10309091 DOI: 10.1097/mca.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Upregulation of Toll-like receptor 4 (TLR-4) is associated with coronary plaque vulnerability assessed by coronary computed tomography angiography (CCTA). Computed tomography-adapted Leaman score (CT-LeSc) is an independent long-term predictor of cardiac events. The relationship between the TLR-4 expression of CD14 ++ CD16 + monocytes and future cardiac events is unknown. We investigated this relationship using CT-LeSc in patients with coronary artery disease (CAD). METHODS We analyzed 61 patients with CAD who underwent CCTA. Three monocyte subsets (CD14 ++ CD16 - , CD14 ++ CD16 + , and CD14 + CD16 + ) and the expression of TLR-4 were measured by flow cytometry. We divided the patients into two groups according to the best cutoff value of the TLR-4 expression on CD14 + CD16 + which could predict future cardiac events. RESULTS CT-LeSc was significantly greater in the high TLR-4 group than the low TLR-4 group [9.61 (6.70-13.67) vs. 6.34 (4.27-9.09), P < 0.01]. The expression of TLR-4 on CD14 ++ CD16 + monocytes was significantly correlated with CT-LeSc ( R2 = 0.13, P < 0.01). The expression of TLR-4 on CD14 ++ CD16 + monocytes was significantly higher in patients who had future cardiac events than in those who did not [6.8 (4.5-9.1) % vs. 4.2 (2.4-7.6) %, P = 0.04]. High TLR-4 expression on CD14 ++ CD16 + monocytes was an independent predictor for future cardiac events ( P = 0.01). CONCLUSION An increase in the TLR-4 expression on CD14 ++ CD16 + monocytes is related to the development of future cardiac events.
Collapse
Affiliation(s)
- Yuichi Ozaki
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Manabu Kashiwagi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Toshio Imanishi
- Department of Cardiovascular Medicine, Hidaka General Hospital, Gobo
| | - Yosuke Katayama
- Department of Cardiovascular Medicine, Shingu Municipal Medical Center, Shingu, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Tsuyoshi Nishiguchi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Akio Kuroi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Takashi Yamano
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Takashi Tanimoto
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Hironori Kitabata
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| |
Collapse
|
117
|
Zibelman M, MacFarlane AW, Costello K, McGowan T, O'Neill J, Kokate R, Borghaei H, Denlinger CS, Dotan E, Geynisman DM, Jain A, Martin L, Obeid E, Devarajan K, Ruth K, Alpaugh RK, Dulaimi EAS, Cukierman E, Einarson M, Campbell KS, Plimack ER. A phase 1 study of nivolumab in combination with interferon-gamma for patients with advanced solid tumors. Nat Commun 2023; 14:4513. [PMID: 37500647 PMCID: PMC10374608 DOI: 10.1038/s41467-023-40028-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
This phase I, dose-escalation trial evaluates the safety of combining interferon-gamma (IFN-γ) and nivolumab in patients with metastatic solid tumors. Twenty-six patients are treated in four cohorts assessing increasing doses of IFN-γ with nivolumab to evaluate the primary endpoint of safety and determine the recommended phase two dose (RP2D). Most common adverse events are low grade and associated with IFN-γ. Three dose limiting toxicities are reported at the highest dose cohorts. We report only one patient with any immune related adverse event (irAE). No irAEs ≥ grade 3 are observed and no patients require corticosteroids. The maximum tolerated dose of IFN-γ is 75 mcg/m2, however based on a composite of safety, clinical, and correlative factors the RP2D is 50 mcg/m2. Exploratory analyses of efficacy in the phase I cohorts demonstrate one patient with a complete response, and five have achieved stable disease. Pre-planned correlative assessments of circulating immune cells demonstrate intermediate monocytes with increased PD-L1 expression correlating with IFN-γ dose and treatment duration. Interestingly, post-hoc analysis shows that IFN-γ induction increases circulating chemokines and is associated with an observed paucity of irAEs, warranting further evaluation. ClinicalTrials.gov Trial Registration: NCT02614456.
Collapse
Affiliation(s)
- Matthew Zibelman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Alexander W MacFarlane
- Immune Monitoring/Cell Sorting Facility, Institute for Cancer Research, Philadelphia, PA, USA
| | - Kimberly Costello
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Thomas McGowan
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John O'Neill
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Rutika Kokate
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hossein Borghaei
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Crystal S Denlinger
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Efrat Dotan
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel M Geynisman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Angela Jain
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lainie Martin
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elias Obeid
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Karen Ruth
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margret Einarson
- High Throughput Screening Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kerry S Campbell
- Immune Monitoring/Cell Sorting Facility, Institute for Cancer Research, Philadelphia, PA, USA
| | - Elizabeth R Plimack
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
118
|
Jung JY, Ahn MH, Kim JW, Suh CH, Han JH, Kim HA. Association between CCR2 and CCL2 expression and NET stimulation in adult-onset Still's disease. Sci Rep 2023; 13:12218. [PMID: 37500699 PMCID: PMC10374521 DOI: 10.1038/s41598-023-39517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by the activation of monocyte-derived cells and the release of neutrophil extracellular traps (NET). C-C motif ligand (CCL) 2 is a chemoattractant that interacts with the C-C motif chemokine receptor (CCR) 2, resulting in monocyte recruitment and activation. CCL2 and CCR2 were measured with enzyme-linked immunosorbent assay (ELISA) at the serum level, and using immunohistochemical staining at the skin and lymph node tissues levels. THP-1 cell lysates were analyzed using western blot and ELISA after NET stimulation in patients with AOSD. Serum CCL2 level was higher in patients with AOSD than in patients with rheumatoid arthritis and healthy controls (HCs). In patients with AOSD, the percentage of CCL2-positive inflammatory cells in the skin tissues and CCR2-positive inflammatory cells in the lymph nodes increased, compared to that in HCs and in patients with reactive lymphadenopathy, respectively. NET induced in patients with AOSD enhanced the secretion of CCR2, higher CCR2 expression in monocytes, and the levels of interleukin (IL)-1β, IL-6, and IL-18 from THP-1 cells. Our findings suggest that upregulation of the CCL2-CCR2 axis may contribute to the clinical and inflammatory characteristics of AOSD.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Mi-Hyun Ahn
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
119
|
Calafatti M, Cocozza G, Limatola C, Garofalo S. Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Front Immunol 2023; 14:1223096. [PMID: 37564648 PMCID: PMC10410456 DOI: 10.3389/fimmu.2023.1223096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
In recent years, biomedical research efforts aimed to unravel the mechanisms involved in motor neuron death that occurs in amyotrophic lateral sclerosis (ALS). While the main causes of disease progression were first sought in the motor neurons, more recent studies highlight the gliocentric theory demonstrating the pivotal role of microglia and astrocyte, but also of infiltrating immune cells, in the pathological processes that take place in the central nervous system microenvironment. From this point of view, microglia-astrocytes-lymphocytes crosstalk is fundamental to shape the microenvironment toward a pro-inflammatory one, enhancing neuronal damage. In this review, we dissect the current state-of-the-art knowledge of the microglial dialogue with other cell populations as one of the principal hallmarks of ALS progression. Particularly, we deeply investigate the microglia crosstalk with astrocytes and immune cells reporting in vitro and in vivo studies related to ALS mouse models and human patients. At last, we highlight the current experimental therapeutic approaches that aim to modulate microglial phenotype to revert the microenvironment, thus counteracting ALS progression.
Collapse
Affiliation(s)
- Matteo Calafatti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
120
|
Clain JA, Rabezanahary H, Racine G, Boutrais S, Soundaramourty C, Joly Beauparlant C, Jenabian MA, Droit A, Ancuta P, Zghidi-Abouzid O, Estaquier J. Early ART reduces viral seeding and innate immunity in liver and lungs of SIV-infected macaques. JCI Insight 2023; 8:e167856. [PMID: 37485876 PMCID: PMC10443800 DOI: 10.1172/jci.insight.167856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Identifying immune cells and anatomical tissues that contribute to the establishment of viral reservoirs is of central importance in HIV-1 cure research. Herein, we used rhesus macaques (RMs) infected with SIVmac251 to analyze viral seeding in the liver and lungs of either untreated or early antiretroviral therapy-treated (ART-treated) RMs. Consistent with viral replication and sensing, transcriptomic analyses showed higher levels of inflammation, pyroptosis, and chemokine genes as well as of interferon-stimulating gene (ISG) transcripts, in the absence of ART. Our results highlighted the infiltration of monocyte-derived macrophages (HLA-DR+CD11b+CD14+CD16+) in inflamed liver and lung tissues associated with the expression of CD183 and CX3CR1 but also with markers of tissue-resident macrophages (CD206+ and LYVE+). Sorting of myeloid cell subsets demonstrated that CD14+CD206-, CD14+CD206+, and CD14-CD206+ cell populations were infected, in the liver and lungs, in SIVmac251-infected RMs. Of importance, early ART drastically reduced viral seeding consistent with the absence of ISG detection but also of genes related to inflammation and tissue damage. Viral DNA was only detected in CD206+HLA-DR+CD11b+ cells in ART-treated RMs. The observation of pulmonary and hepatic viral rebound after ART interruption reinforces the importance of early ART implementation to limit viral seeding and inflammatory reactions.
Collapse
Affiliation(s)
- Julien A. Clain
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | - Gina Racine
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Steven Boutrais
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | | | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Arnaud Droit
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Petronela Ancuta
- Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
- INSERM U1124, University of Paris, Paris, France
| |
Collapse
|
121
|
Teh YC, Chooi MY, Chong SZ. Behind the monocyte's mystique: uncovering their developmental trajectories and fates. DISCOVERY IMMUNOLOGY 2023; 2:kyad008. [PMID: 38567063 PMCID: PMC10917229 DOI: 10.1093/discim/kyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024]
Abstract
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
122
|
Kim D, An L, Moon J, Maymi VI, McGurk AI, Rudd BD, Fowell DJ, White AC. Ccr2+ Monocyte-Derived Macrophages Influence Trajectories of Acquired Therapy Resistance in Braf-Mutant Melanoma. Cancer Res 2023; 83:2328-2344. [PMID: 37195124 PMCID: PMC10478295 DOI: 10.1158/0008-5472.can-22-2841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Therapies targeting oncogene addiction have had a tremendous impact on tumor growth and patient outcome, but drug resistance continues to be problematic. One approach to deal with the challenge of resistance entails extending anticancer treatments beyond targeting cancer cells by additionally altering the tumor microenvironment. Understanding how the tumor microenvironment contributes to the evolution of diverse resistance pathways could aid in the design of sequential treatments that can elicit and take advantage of a predictable resistance trajectory. Tumor-associated macrophages often support neoplastic growth and are frequently the most abundant immune cell found in tumors. Here, we used clinically relevant in vivo Braf-mutant melanoma models with fluorescent markers to track the stage-specific changes in macrophages under targeted therapy with Braf/Mek inhibitors and assessed the dynamic evolution of the macrophage population generated by therapy pressure-induced stress. During the onset of a drug-tolerant persister state, Ccr2+ monocyte-derived macrophage infiltration rose, suggesting that macrophage influx at this point could facilitate the onset of stable drug resistance that melanoma cells show after several weeks of treatment. Comparison of melanomas that develop in a Ccr2-proficient or -deficient microenvironment demonstrated that lack of melanoma infiltrating Ccr2+ macrophages delayed onset of resistance and shifted melanoma cell evolution towards unstable resistance. Unstable resistance was characterized by sensitivity to targeted therapy when factors from the microenvironment were lost. Importantly, this phenotype was reversed by coculturing melanoma cells with Ccr2+ macrophages. Overall, this study demonstrates that the development of resistance may be directed by altering the tumor microenvironment to improve treatment timing and the probability of relapse. SIGNIFICANCE Ccr2+ melanoma macrophages that are active in tumors during the drug-tolerant persister state following targeted therapy-induced regression are key contributors directing melanoma cell reprogramming toward specific therapeutic resistance trajectories.
Collapse
Affiliation(s)
- Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Jiwon Moon
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Viviana I Maymi
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Alexander I McGurk
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Deborah J Fowell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| |
Collapse
|
123
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
124
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
125
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
126
|
van Olst L, Kamermans A, van der Pol SMA, Rodríguez E, Hulshof LA, van Dijk RE, Vonk DN, Schouten M, Witte ME, de Vries HE, Middeldorp J. Age-associated systemic factors change central and peripheral immunity in adult male mice. Brain Behav Immun 2023; 111:395-411. [PMID: 37169133 DOI: 10.1016/j.bbi.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Aging coincides with major changes in brain immunity that aid in a decline in neuronal function. Here, we postulate that systemic, pro-aging factors contribute to immunological changes that occur within the brain during aging. To investigate this hypothesis, we comprehensively characterized the central and peripheral immune landscape of 20-month-old male mice using cytometry by time-of-flight (CyTOF) and investigated the role of age-associated circulating factors. We found that CD8+ T cells expressing programmed cell death protein 1 (PD1) and tissue-resident memory CD8+ T cells accumulated in the aged brain while levels of memory T cells rose in the periphery. Injections of plasma derived from 20-month-old mice into 5-month-old receiving mice decreased the frequency of splenic and circulating naïve T cells, increased memory CD8+ T cells, and non-classical, patrolling monocytes in the spleen, and elevated levels of regulatory T cells and non-classical monocytes in the blood. Notably, CD8+ T cells accumulated within white matter areas of plasma-treated mice, which coincided with the expression of vascular cell adhesion molecule 1 (VCAM-1), a mediator of immune cell trafficking, on the brain vasculature. Taken together, we here describe age-related immune cell changes in the mouse brain and circulation and show that age-associated systemic factors induce the expansion of CD8+ T cells in the aged brain.
Collapse
Affiliation(s)
- L van Olst
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - A Kamermans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - S M A van der Pol
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - E Rodríguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - L A Hulshof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - D N Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - M Schouten
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M E Witte
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| |
Collapse
|
127
|
Molinaro C, Scalise M, Leo I, Salerno L, Sabatino J, Salerno N, De Rosa S, Torella D, Cianflone E, Marino F. Polarizing Macrophage Functional Phenotype to Foster Cardiac Regeneration. Int J Mol Sci 2023; 24:10747. [PMID: 37445929 DOI: 10.3390/ijms241310747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is an increasing interest in understanding the connection between the immune and cardiovascular systems, which are highly integrated and communicate through finely regulated cross-talking mechanisms. Recent evidence has demonstrated that the immune system does indeed have a key role in the response to cardiac injury and in cardiac regeneration. Among the immune cells, macrophages appear to have a prominent role in this context, with different subtypes described so far that each have a specific influence on cardiac remodeling and repair. Similarly, there are significant differences in how the innate and adaptive immune systems affect the response to cardiac damage. Understanding all these mechanisms may have relevant clinical implications. Several studies have already demonstrated that stem cell-based therapies support myocardial repair. However, the exact role that cardiac macrophages and their modulation may have in this setting is still unclear. The current need to decipher the dual role of immunity in boosting both heart injury and repair is due, at least for a significant part, to unresolved questions related to the complexity of cardiac macrophage phenotypes. The aim of this review is to provide an overview on the role of the immune system, and of macrophages in particular, in the response to cardiac injury and to outline, through the modulation of the immune response, potential novel therapeutic strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
128
|
Gao H, Di J, Clausen BH, Wang N, Zhu X, Zhao T, Chang Y, Pang M, Yang Y, He R, Wang Y, Zhang L, Liu B, Qiu W, Lambertsen KL, Brambilla R, Rong L. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders. Cell Rep 2023; 42:112629. [PMID: 37289590 DOI: 10.1016/j.celrep.2023.112629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2) signaling often drives opposing effects in traumatic versus demyelinating CNS disorders. Here, we identify two distinct phenotypes of microglia and infiltrating myeloid populations dependent on TREM2 expression levels at the acute stage and elucidate how they mediate the opposing effects of TREM2 in spinal cord injury (SCI) versus multiple sclerosis animal models (experimental autoimmune encephalomyelitis [EAE]). High TREM2 levels sustain phagocytic microglia and infiltrating macrophages after SCI. In contrast, moderate TREM2 levels sustain immunomodulatory microglia and infiltrating monocytes in EAE. TREM2-ablated microglia (purine-sensing phenotype in SCI and reduced immunomodulatory phenotype in EAE) drive transient protection at the acute stage of both disorders, whereas reduced phagocytic macrophages and lysosome-activated monocytes lead to contrasting neuroprotective and demyelinating effects in SCI versus EAE, respectively. Our study provides comprehensive insights into the complex roles of TREM2 in myeloid populations across diverse CNS disorders, which has crucial implications in devising TREM2-targeting therapeutics.
Collapse
Affiliation(s)
- Han Gao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China.
| | - Jiawei Di
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Nanxiang Wang
- Department of Orthopaedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xizhong Zhu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Tianlun Zhao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33161, USA.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China.
| |
Collapse
|
129
|
Chen KJ, Zhang J, LaSala D, Basso J, Chun D, Zhou Y, McDonald PP, Perkins WR, Cipolla DC. Brensocatib, an oral, reversible inhibitor of dipeptidyl peptidase 1, mitigates interferon-α-accelerated lupus nephritis in mice. Front Immunol 2023; 14:1185727. [PMID: 37441081 PMCID: PMC10333524 DOI: 10.3389/fimmu.2023.1185727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils have been implicated in initiating and perpetuating systemic lupus erythematosus and the resultant kidney damage in lupus nephritis (LN) patients, in part through an excessive release of neutrophil serine proteases (NSPs). NSP zymogens are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation and released by mature neutrophils in response to inflammatory stimuli. Thus, a potential strategy to attenuate disease progression in LN would be to inhibit DPP1. We tested whether brensocatib, a highly selective and reversible DPP1 inhibitor, could mitigate LN progression in an interferon-alpha (IFNα)-accelerated NZB/W F1 mouse model. To confirm brensocatib's pharmacodynamic effect on NSPs in this mouse strain, repeated dose studies were conducted for 7 and 14 days in naïve NZB/W F1 mice via oral gavage twice a day. Brensocatib at 2 and 20 mg/kg/day achieved a significant reduction in bone marrow NSP activities after 7 days of daily administration. To initiate LN disease progression, the mice were injected with an IFNα-expressing adenovirus. After 2 weeks, three brensocatib doses (or vehicle) were administered for 6 more weeks. Throughout the 8-week study, brensocatib treatment (20 mg/kg/day) significantly reduced the occurrence of severe proteinuria compared to the vehicle control. Brensocatib treatment also entailed a significant reduction in the urine albumin-to-creatinine ratio, indicating decreased kidney damage, as well as a significant reduction in blood urea nitrogen level, suggesting improved renal function. Based on kidney histopathology analysis, brensocatib treatment significantly lowered both the renal tubular protein score and the nephropathy score compared to the vehicle group. A trend towards reduced glomerulonephritis score with brensocatib treatment was also observed. Lastly, brensocatib significantly reduced LN mouse kidney infiltration by various inflammatory cells. In conclusion, these results suggest that brensocatib alters disease progression in LN mice and warrant further evaluation of DPP1 inhibition in LN.
Collapse
|
130
|
Akasaka H, Lee W, Ko SY, Lengyel E, Naora H. Normal saline remodels the omentum and stimulates its receptivity for transcoelomic metastasis. JCI Insight 2023; 8:e167336. [PMID: 37345662 PMCID: PMC10371238 DOI: 10.1172/jci.insight.167336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
The omentum contains immune cell structures called milky spots that are niches for transcoelomic metastasis. It is difficult to remove the omentum completely, and there are no effective strategies to minimize the risk of colonization of preserved omental tissues by cancer cells that circulate in the peritoneal fluid. Normal saline is commonly administered into the peritoneal cavity for diagnostic and intraoperative lavage. Here we show that normal saline, when administered into the peritoneal cavity of mice, is prominently absorbed by the omentum, exfoliates its mesothelium, and induces expression of CX3CL1, the ligand for CX3CR1, within and surrounding the omental vasculature. Studies using CX3CR1-competent and CX3CR1-deficient mice showed that the predominant response in the omentum following saline administration is an accumulation of CX3CR1+ monocytes/macrophages that expand milky spots and promote neoangiogenesis within these niches. Moreover, saline administration promoted the implantation of cancer cells of ovarian and colorectal origin onto the omentum. By contrast, these deleterious effects were not observed following i.p. administration of lactated Ringer's solution. Our findings suggest that normal saline stimulates the receptivity of the omentum for cancer cells and that the risk of colonization can be minimized by using a biocompatible crystalloid for lavage procedures.
Collapse
Affiliation(s)
- Hironari Akasaka
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - WonJae Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Song Yi Ko
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois, USA
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
131
|
Padgett LE, Marcovecchio PM, Olingy CE, Araujo DJ, Steel K, Dinh HQ, Alimadadi A, Zhu YP, Meyer MA, Kiosses WB, Thomas GD, Hedrick CC. Nonclassical monocytes potentiate anti-tumoral CD8 + T cell responses in the lungs. Front Immunol 2023; 14:1101497. [PMID: 37426658 PMCID: PMC10325638 DOI: 10.3389/fimmu.2023.1101497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/15/2023] [Indexed: 07/11/2023] Open
Abstract
CD8+ T cells drive anti-cancer immunity in response to antigen-presenting cells such as dendritic cells and subpopulations of monocytes and macrophages. While CD14+ classical monocytes modulate CD8+ T cell responses, the contributions of CD16+ nonclassical monocytes to this process remain unclear. Herein we explored the role of nonclassical monocytes in CD8+ T cell activation by utilizing E2-deficient (E2-/-) mice that lack nonclassical monocytes. During early metastatic seeding, modeled by B16F10-OVA cancer cells injected into E2-/- mice, we noted lower CD8+ effector memory and effector T cell frequencies within the lungs as well as in lung-draining mediastinal lymph nodes in the E2-/- mice. Analysis of the myeloid compartment revealed that these changes were associated with depletion of MHC-IIloLy6Clo nonclassical monocytes within these tissues, with little change in other monocyte or macrophage populations. Additionally, nonclassical monocytes preferentially trafficked to primary tumor sites in the lungs, rather than to the lung-draining lymph nodes, and did not cross-present antigen to CD8+ T cells. Examination of the lung microenvironment in E2-/- mice revealed reduced CCL21 expression in endothelial cells, which is chemokine involved in T cell trafficking. Our results highlight the previously unappreciated importance of nonclassical monocytes in shaping the tumor microenvironment via CCL21 production and CD8+ T cell recruitment.
Collapse
Affiliation(s)
- Lindsey E. Padgett
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Paola M. Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Claire E. Olingy
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Daniel J. Araujo
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Kathleen Steel
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Huy Q. Dinh
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ahmad Alimadadi
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Yanfang Peipei Zhu
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Melissa A. Meyer
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - William B. Kiosses
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Graham D. Thomas
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Catherine C. Hedrick
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
132
|
Pierozan P, Källsten L, Theodoropoulou E, Almamoun R, Karlsson O. Persistent immunosuppressive effects of dibutyl phthalate exposure in adult male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162741. [PMID: 36914131 DOI: 10.1016/j.scitotenv.2023.162741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 05/13/2023]
Abstract
Increased exposure to manmade chemicals may be linked to an increase in immune-related diseases in humans and immune system dysfunction in wildlife. Phthalates are a group of endocrine-disrupting chemicals (EDCs) suspected to influence the immune system. The aim of this study was to characterize the persistent effects on leukocytes in the blood and spleen, as well as plasma cytokine and growth factor levels, one week after the end of five weeks of oral treatment with dibutyl phthalate (DBP; 10 or 100 mg/kg/d) in adult male mice. Flow cytometry analysis of the blood revealed that DBP exposure decreased the total leukocyte count, classical monocyte and T helper (Th) populations, whereas it increased the non-classical monocyte population compared to the vehicle control (corn oil). Immunofluorescence analysis of the spleen showed increased CD11b+Ly6G+ (marker of polymorphonuclear myeloid-derived suppressor cells; PMN-MDSCs), and CD43+staining (marker of non-classical monocytes), whereas CD3+ (marker of total T cells) and CD4+ (marker of Th cells) staining decreased. To investigate the mechanisms of action, levels of plasma cytokines and chemokines were measured using multiplexed immunoassays and other key factors were analyzed using western blotting. The observed increase in M-CSF levels and the activation of STAT3 may promote PMN-MDSC expansion and activity. Increased ARG1, NOX2 (gp91phox), and protein nitrotyrosine levels, as well as GCN2 and phosphor-eIRFα, suggest that oxidative stress and lymphocyte arrest drive the lymphocyte suppression caused by PMN-MDSCs. The plasma levels of IL-21 (promotes the differentiation of Th cells) and MCP-1 (regulates migration and infiltration of monocytes/macrophages) also decreased. These findings show that adult DBP exposure can cause persistent immunosuppressive effects, which may increase susceptibility to infections, cancers, and immune diseases, and decrease vaccine efficacy.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Liselott Källsten
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Radwa Almamoun
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
133
|
Gąssowska-Dobrowolska M, Chlubek M, Kolasa A, Tomasiak P, Korbecki J, Skowrońska K, Tarnowski M, Masztalewicz M, Baranowska-Bosiacka I. Microglia and Astroglia-The Potential Role in Neuroinflammation Induced by Pre- and Neonatal Exposure to Lead (Pb). Int J Mol Sci 2023; 24:9903. [PMID: 37373050 DOI: 10.3390/ijms24129903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation is one of the postulated mechanisms for Pb neurotoxicity. However, the exact molecular mechanisms responsible for its pro-inflammatory effect are not fully elucidated. In this study, we examined the role of glial cells in neuroinflammation induced by Pb exposure. We investigated how microglia, a type of glial cell, responded to the changes caused by perinatal exposure to Pb by measuring the expression of Iba1 at the mRNA and protein levels. To assess the state of microglia, we analyzed the mRNA levels of specific markers associated with the cytotoxic M1 phenotype (Il1b, Il6, and Tnfa) and the cytoprotective M2 phenotype (Arg1, Chi3l1, Mrc1, Fcgr1a, Sphk1, and Tgfb1). Additionally, we measured the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). To assess the reactivity and functionality status of astrocytes, we analyzed the GFAP (mRNA expression and protein concentration) as well as glutamine synthase (GS) protein level and activity. Using an electron microscope, we assessed ultrastructural abnormalities in the examined brain structures (forebrain cortex, cerebellum, and hippocampus). In addition, we measured the mRNA levels of Cxcl1 and Cxcl2, and their receptor, Cxcr2. Our data showed that perinatal exposure to Pb at low doses affected both microglia and astrocyte cells' status (their mobilization, activation, function, and changes in gene expression profile) in a brain-structure-specific manner. The results suggest that both microglia and astrocytes represent a potential target for Pb neurotoxicity, thus being key mediators of neuroinflammation and further neuropathology evoked by Pb poisoning during perinatal brain development.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Tomasiak
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Katarzyna Skowrońska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
134
|
Moon HG, Kim SJ, Kim KH, Kim YM, Rehman J, Lee H, Wu YC, Lee SSY, Christman JW, Ackerman SJ, Kim M, You S, Park GY. CX 3CR 1+ Macrophage Facilitates the Resolution of Allergic Lung Inflammation via Interacting CCL26. Am J Respir Crit Care Med 2023; 207:1451-1463. [PMID: 36790376 PMCID: PMC10263139 DOI: 10.1164/rccm.202209-1670oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 02/16/2023] Open
Abstract
Rationale: The resolution of inflammation is an active process coordinated by mediators and immune cells to restore tissue homeostasis. However, the mechanisms for resolving eosinophilic allergic lung inflammation triggered by inhaled allergens have not been fully elucidated. Objectives: Our objectives were to investigate the cellular mechanism of tissue-resident macrophages involved in the resolution process of eosinophilic lung inflammation. Methods: For the study, we used the institutional review board-approved protocol for human subsegmental bronchoprovocation with allergen, mouse models for allergic lung inflammation, and novel transgenic mice, including a conditional CCL26 knockout. The samples were analyzed using mass cytometry, single-cell RNA sequencing, and biophysical and immunological analyses. Measurements and Main Results: We compared alveolar macrophage (AM) subsets in the BAL before and after allergen provocation. In response to provocation with inhaled allergens, the subsets of AMs are dynamically changed in humans and mice. In the steady state, the AM subset expressing CX3CR1 is a relatively small fraction in bronchoalveolar space and lung tissue but drastically increases after allergen challenges. This subset presents unique patterns of gene expression compared with classical AMs, expressing high C1q family genes. CX3CR1+ macrophages are activated by airway epithelial cell-derived CCL26 via a receptor-ligand interaction. The binding of CCL26 to the CX3CR1+ receptor induces CX3CR1+ macrophages to secrete C1q, subsequently facilitating the clearance of eosinophils. Furthermore, the depletion of CX3CR1 macrophages or CCL26 in airway epithelial cells delays the resolution of allergic lung inflammation displaying prolonged tissue eosinophilia. Conclusions: These findings indicate that the CCL26-CX3CR1 pathway is pivotal in resolving eosinophilic allergic lung inflammation.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Seung-jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | - Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
| | | | | | - Hyun Lee
- Department of Medicinal Chemistry & Pharmacognosy, Center for Biomolecular Sciences
| | | | | | - John W. Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Center, The Ohio State University, Columbus, Ohio
| | - Steven J. Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Minhyung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Sungyoung You
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
135
|
Tamene W, Marconi VC, Abebe M, Wassie L, Belay Y, Kebede A, Sack U, Howe R. Differential expression of chemokine receptors on monocytes in TB and HIV S. Heliyon 2023; 9:e17202. [PMID: 37484366 PMCID: PMC10361379 DOI: 10.1016/j.heliyon.2023.e17202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
In the present study, we defined multiple chemokine receptors expressed by classical, intermediate and non-classical monocyte subsets in TB, HIV and TB/HIV co-infection and associate it with the perturbation of monocyte subsets due to the diseases. Peripheral blood mononuclear cells from TB+ (n = 34), HIV+ (n = 35), TB + HIV+ (n = 12), as well as TB-HIV- healthy controls (n = 39), were tested for monocyte phenotyping by flow cytometry. Frequencies of intermediate and non-classical monocytes were significantly higher in TB and/or HIV disease relative to healthy controls. CCR2 and CX3CR1 were significantly higher on monocytes in TB disease, whereas CCR4 and CCR5 were present at higher levels in HIV disease. TB/HIV co-infected patients exhibited CCR2, CCR5 and CX3CR1 levels intermediate to TB and HIV subjects, while CCR4 was at a higher level than HIV. Despite the increase in the expression of chemokine receptors due to disease conditions, chemokine receptors maintained their original expression pattern on monocyte subsets. Our data provided new insight into the disease-specific but not monocyte subsets-specific modulation of chemokine receptors in TB and HIV.
Collapse
Affiliation(s)
- Wegene Tamene
- TB and HIV Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Vincent C. Marconi
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Meseret Abebe
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Liya Wassie
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Yohannes Belay
- TB and HIV Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amha Kebede
- TB and HIV Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ulrich Sack
- Institute of Immunology, Leipzig University, Leipzig, Saxony, Germany
| | - Rawleigh Howe
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
136
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
137
|
Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, Medbury H. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int J Mol Sci 2023; 24:ijms24108757. [PMID: 37240103 DOI: 10.3390/ijms24108757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The three subsets of human monocytes, classical, intermediate, and nonclassical, show phenotypic heterogeneity, particularly in their expression of CD14 and CD16. This has enabled researchers to delve into the functions of each subset in the steady state as well as in disease. Studies have revealed that monocyte heterogeneity is multi-dimensional. In addition, that their phenotype and function differ between subsets is well established. However, it is becoming evident that heterogeneity also exists within each subset, between health and disease (current or past) states, and even between individuals. This realisation casts long shadows, impacting how we identify and classify the subsets, the functions we assign to them, and how they are examined for alterations in disease. Perhaps the most fascinating is evidence that, even in relative health, interindividual differences in monocyte subsets exist. It is proposed that the individual's microenvironment could cause long-lasting or irreversible changes to monocyte precursors that echo to monocytes and through to their derived macrophages. Here, we will discuss the types of heterogeneity recognised in monocytes, the implications of these for monocyte research, and most importantly, the relevance of this heterogeneity for health and disease.
Collapse
Affiliation(s)
- Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Corinne Mack
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rana Baraz
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rekha Marimuthu
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sravanthi Naralashetty
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Stephen Li
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Chemical Pathology, NSW Health Pathology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
- . Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Western Sydney University, Blacktown, NSW 2148, Australia
| | - Heather Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
138
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
139
|
Lin M, Wang B, Wei B, Li C, Tu L, Zhu X, Wu Z, Huang G, Lu X, Xiong G, Lu S, Yang X, Li P, Liu X, Li W, Lu Y, Zhou H. Characteristics, prognostic determinants of monocytes, macrophages and T cells in acute coronary syndrome: protocol for a multicenter, prospective cohort study. BMC Cardiovasc Disord 2023; 23:220. [PMID: 37118659 PMCID: PMC10148483 DOI: 10.1186/s12872-023-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Acute coronary syndrome(ACS) is the leading cause of mortality and disability worldwide. Immune response has been confirmed to play a vital role in the occurrence and development of ACS. The objective of this prospective, multicenter, observational study is to define immune response and their relationship to the occurrence and progressive of ACS. METHODS This is a multicenter, prospective, observational longitudinal cohort study. The primary outcome is the incidence of major adverse cardiovascular events (MACE) including in-stent restenosis, severe ventricular arrhythmia, heart failure, recurrent angina pectoris, and sudden cardiac death, and stroke one year later after ACS. Demographic characteristics, clinical data, treatments, and outcomes are collected by local investigators. Furthermore, freshly processed samples will be stained and assessed by flow cytometry. The expression of S100A4, CD47, SIRPα and Tim-3 on monocytes, macrophages and T cells in ACS patients were collected. FOLLOW-UP during hospitalization, 3, 6 and 12 months after discharge. DISCUSSION It is expected that this study will reveal the possible targets to improve the prognosis or prevent from occurrence of MACE in ACS patients. Since it's a multicenter study, the enrollment rate of participants will be accelerated and it can ensure that the collected data are more symbolic and improve the richness and credibility of the test basis. ETHICS AND DISSEMINATION This study has been registered in Chinese Clinical Trial Registry Center. Ethical approval was obtained from the Affiliated Hospital of Guizhou Medical University. The dissemination will occur through the publication of articles in international peer-reviewed journals. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR2200066382.
Collapse
Affiliation(s)
- Muzhi Lin
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Bing Wang
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Wei
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Chao Li
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lin Tu
- Internal Medicine-Cardiovascular Department, The First People's Hospital of Guiyang, Guiyang, 550000, Guizhou, China
| | - Xiaohan Zhu
- Department of Cardiology, The Second People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Zheyi Wu
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guangwei Huang
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiyang Lu
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guobao Xiong
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Shanglin Lu
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Xinglin Yang
- Department of Clinical Laboratory, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
| | - Peng Li
- Science and Education Division, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
| | - Xingde Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wei Li
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yuming Lu
- Internal Medicine-Cardiovascular Department, The First People's Hospital of Guiyang, Guiyang, 550000, Guizhou, China.
| | - Haiyan Zhou
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
140
|
Ng LG, Liu Z, Kwok I, Ginhoux F. Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP-Derived Monocytes and Neutrophils. Annu Rev Immunol 2023; 41:375-404. [PMID: 37126421 DOI: 10.1146/annurev-immunol-081022-113627] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.
Collapse
Affiliation(s)
- Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| |
Collapse
|
141
|
Watanabe A, Koike H, Kumagami N, Shimba S, Manabe I, Oishi Y. Arntl deficiency in myeloid cells reduces neutrophil recruitment and delays skeletal muscle repair. Sci Rep 2023; 13:6747. [PMID: 37185573 PMCID: PMC10130093 DOI: 10.1038/s41598-023-33830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
After a muscle injury, a process comprising inflammation, repair, and regeneration must occur in a time-sensitive manner for skeletal muscle to be adequately repaired and regenerated. This complex process is assumed to be controlled by various myeloid cell types, including monocytes and macrophages, though the mechanism is not fully understood. Aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) is a transcription factor that controls the circadian rhythm and has been implicated in regulating myeloid cell functions. In the present study, we generated myeloid cell-specific Arntl conditional knockout (cKO) mice to assess the role of Arntl expressed in myeloid cell populations during the repair process after muscle injury. Myeloid cell-specific Arntl deletion impaired muscle regeneration after cardiotoxin injection. Flow cytometric analyses revealed that, in cKO mice, the numbers of infiltrating neutrophils and Ly6Chi monocytes within the injured site were reduced on days 1 and 2, respectively, after muscle injury. Moreover, neutrophil migration and the numbers of circulating monocytes were significantly reduced in cKO mice, which suggests these effects may account, at least in part, for the impaired regeneration. These findings suggest that Arntl, expressed in the myeloid lineage regulates neutrophil and monocyte recruitment and is therefore required for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Aiko Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Naoki Kumagami
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
142
|
Sawaki D, Zhang Y, Mohamadi A, Pini M, Mezdari Z, Lipskaia L, Naushad S, Lamendour L, Altintas DM, Breau M, Liang H, Halfaoui M, Delmont T, Surenaud M, Rousseau D, Yoshimitsu T, Louache F, Adnot S, Henegar C, Gual P, Czibik G, Derumeaux G. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight 2023; 8:145811. [PMID: 37092554 DOI: 10.1172/jci.insight.145811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2023] [Indexed: 04/25/2023] Open
Abstract
Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.
Collapse
Affiliation(s)
- Daigo Sawaki
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Yanyan Zhang
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Amel Mohamadi
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Maria Pini
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Zaineb Mezdari
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | - Suzain Naushad
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | | | - Marielle Breau
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Hao Liang
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | - Thaïs Delmont
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Mathieu Surenaud
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP Vaccine Research Institute, Créteil, France
| | | | - Takehiko Yoshimitsu
- Laboratory of Synthetic Organic and Medicinal Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Fawzia Louache
- Université Paris-Saclay, Inserm UMR-S-MD1197, Hôpital Paul Brousse, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Serge Adnot
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP, Department of Physiology, Henri Mondor Hospital, FHU SENEC, Créteil, France
| | | | - Philippe Gual
- Université Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Gabor Czibik
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Geneviève Derumeaux
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP, Department of Physiology, Henri Mondor Hospital, FHU SENEC, Créteil, France
| |
Collapse
|
143
|
Trinh T, Adams WA, Calescibetta A, Tu N, Dalton R, So T, Wei M, Ward G, Kostenko E, Christiansen S, Cen L, McLemore A, Reed K, Whitting J, Gilvary D, Blanco NL, Segura CM, Nguyen J, Kandell W, Chen X, Cheng P, Wright GM, Cress WD, Liu J, Wright KL, Wei S, Eksioglu EA. CX3CR1 deficiency-induced TIL tumor restriction as a novel addition for CAR-T design in solid malignancies. iScience 2023; 26:106443. [PMID: 37070068 PMCID: PMC10105289 DOI: 10.1016/j.isci.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.
Collapse
Affiliation(s)
- ThuLe Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Max Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Grace Ward
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Bioinformatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amy McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kayla Reed
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Junmin Whitting
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neale Lopez Blanco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wendy Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriela M. Wright
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W. Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinghong Liu
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
144
|
Chao CJ, Zhang E, Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv Drug Deliv Rev 2023; 197:114840. [PMID: 37088403 DOI: 10.1016/j.addr.2023.114840] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Cells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery. Despite exciting advances, clinical translation of cell-based drug carriers demands a thorough understanding of the pressing challenges and potential strategies to overcome them. Here, we summarize recent advances and new concepts in cell-based drug carriers and their clinical translation. We also discuss key considerations and emerging strategies to engineering the next-generation cell-based delivery technologies for more precise, targeted drug delivery.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612.
| |
Collapse
|
145
|
Zhang F, Xu Z, Jolly KJ. Myeloid cell-mediated drug delivery: from nanomedicine to cell therapy. Adv Drug Deliv Rev 2023; 197:114827. [PMID: 37068659 DOI: 10.1016/j.addr.2023.114827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In the presence of tissue inflammation, injury, or cancer, myeloid cells are recruited to disease regions through a multi-step process involving myelopoiesis, chemotaxis, cell migration, and diapedesis. As an emerging drug delivery approach, cell-mediated drug delivery takes advantage of the cell recruitment process to enhance the active transport of therapeutic cargo to disease regions. In the past few decades, a variety of nano-engineering methods have emerged to enhance interactions of nanoparticles with cells of interest, which can be adapted for cell-mediated drug delivery. Moreover, the drug delivery field can benefit from the recent clinical success of cell-based therapies, which created cell-engineering methods to engineer circulating leukocytes as 'living drug delivery vehicles' to target diseased tissues. In this review, we first provide an overview of myeloid cell recruitment and discuss how various factors within this process may affect cell-mediated delivery. In the second part of this review article, we summarize the status quo of nano-engineering and cell-engineering approaches and discuss how these engineering approaches can be adapted for cell-mediated delivery. Finally, we discuss future directions of this field, pointing out key challenges in the clinical translation of cell-mediated drug delivery.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, USA; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Zijing Xu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
146
|
Chambers C, Cermakova K, Chan YS, Kurtz K, Wohlan K, Lewis AH, Wang C, Pham A, Dejmek M, Sala M, Loeza Cabrera M, Aguilar R, Nencka R, Lacorazza HD, Rau RE, Hodges HC. SWI/SNF Blockade Disrupts PU.1-Directed Enhancer Programs in Normal Hematopoietic Cells and Acute Myeloid Leukemia. Cancer Res 2023; 83:983-996. [PMID: 36662812 PMCID: PMC10071820 DOI: 10.1158/0008-5472.can-22-2129] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
In acute myeloid leukemia (AML), SWI/SNF chromatin remodeling complexes sustain leukemic identity by driving high levels of MYC. Previous studies have implicated the hematopoietic transcription factor PU.1 (SPI1) as an important target of SWI/SNF inhibition, but PU.1 is widely regarded to have pioneer-like activity. As a result, many questions have remained regarding the interplay between PU.1 and SWI/SNF in AML as well as normal hematopoiesis. Here we found that PU.1 binds to most of its targets in a SWI/SNF-independent manner and recruits SWI/SNF to promote accessibility for other AML core regulatory factors, including RUNX1, LMO2, and MEIS1. SWI/SNF inhibition in AML cells reduced DNA accessibility and binding of these factors at PU.1 sites and redistributed PU.1 to promoters. Analysis of nontumor hematopoietic cells revealed that similar effects also impair PU.1-dependent B-cell and monocyte populations. Nevertheless, SWI/SNF inhibition induced profound therapeutic response in an immunocompetent AML mouse model as well as in primary human AML samples. In vivo, SWI/SNF inhibition promoted leukemic differentiation and reduced the leukemic stem cell burden in bone marrow but also induced leukopenia. These results reveal a variable therapeutic window for SWI/SNF blockade in AML and highlight important off-tumor effects of such therapies in immunocompetent settings. SIGNIFICANCE Disruption of PU.1-directed enhancer programs upon SWI/SNF inhibition causes differentiation of AML cells and induces leukopenia of PU.1-dependent B cells and monocytes, revealing the on- and off-tumor effects of SWI/SNF blockade.
Collapse
Affiliation(s)
- Courtney Chambers
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Katerina Cermakova
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yuen San Chan
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kristen Kurtz
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
| | - Andrew Henry Lewis
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Christiana Wang
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Anh Pham
- Department of Bioengineering, Rice University, Houston, Texas
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mario Loeza Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Rogelio Aguilar
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| | - H. Courtney Hodges
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
147
|
Sangani RG, Deepak V, Anwar J, Patel Z, Ghio AJ. Cigarette Smoking, and Blood Monocyte Count Correlate with Chronic Lung Injuries and Mortality. Int J Chron Obstruct Pulmon Dis 2023; 18:431-446. [PMID: 37034898 PMCID: PMC10076620 DOI: 10.2147/copd.s397667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
Background Cigarette smoking (CS)-related monocytosis contributes to the development of chronic lung injuries via complex mechanisms. We aim to determine correlations between measures of CS and monocytes, their capacities to predict chronic lung diseases, and their associations with mortality. Methods A single-center retrospective study of patients undergoing surgical resection for suspected lung nodules/masses was performed. CS was quantified as cigarettes smoked per day (CPD), duration of smoking, composite pack years (CPY), current smoking status, and smoking cessation years. A multivariate logistic regression analysis was performed. Results Of 382 eligible patients, 88% were ever smokers. In this group, 45% were current smokers with mean CPD of 27.2±40.0. CPY and duration of smoking showed positive linear correlations with percentage monocyte count. Physiologically, CPY was associated with progressive obstruction, hyperinflation, and reduced diffusion capacity (DLCO). Across the quartiles of smoking, there was an accumulation of radiologic and histologic abnormalities. Anthracosis and emphysema were associated with CPD, while lung cancer, respiratory bronchiolitis (RB), emphysema, and honeycombing were statistically related to duration of smoking. Analysis using consecutive CPY showed associations with lung cancer (≥10 and <30), fibrosis (≥20 and <40), RB (≥50), anthracosis and emphysema (≥10 and onwards). Percentage monocytes correlated with organizing pneumonia (OP), fibrosis, and emphysema. The greater CPY increased mortality across the groups. Significant predictors of mortality included percentage monocyte, anemia, GERD, and reduced DLCO. Conclusion Indices of CS and greater monocyte numbers were associated with endpoints of chronic lung disease suggesting a participation in pathogenesis. Application of these easily available metrics may support a chronology of CS-induced chronic lung injuries. While a relative lesser amount of smoking can be associated with lung cancer and fibrosis, greater CPY increases the risk for emphysema. Monocytosis predicted lung fibrosis and mortality. Duration of smoking may serve as a better marker of monocytosis and associated chronic lung diseases.
Collapse
Affiliation(s)
- Rahul G Sangani
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
- Correspondence: Rahul G Sangani, Section of Pulmonary, Critical Care, and Sleep Medicine, West Virginia University School of Medicine, 1 Medical Center Dr, PO BOX 9166, Morgantown, WV, 26506, USA, Tel +1 304 293-4661 option #2, Fax +1 304-293-3724, Email
| | - Vishal Deepak
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Javeria Anwar
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Zalak Patel
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
148
|
Wu XH, He YY, Chen ZR, He ZY, Yan Y, He Y, Wang GM, Dong Y, Yang Y, Sun YM, Ren YH, Zhao QY, Yang XD, Wang LY, Fu CJ, He M, Zhang SJ, Fu JF, Liu H, Jing ZC. Single-cell analysis of peripheral blood from high-altitude pulmonary hypertension patients identifies a distinct monocyte phenotype. Nat Commun 2023; 14:1820. [PMID: 37002243 PMCID: PMC10066231 DOI: 10.1038/s41467-023-37527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Immune and inflammatory responses have an important function in the pathophysiology of pulmonary hypertension (PH). However, little is known about the immune landscape in peripheral circulation in patients with high-altitude pulmonary hypertension (HAPH). We apply single-cell transcriptomics to characterize the monocytes that are significantly enriched in the peripheral blood mononuclear cells (PBMC) of HAPH patients. We discover an increase in C1 (non-classical) and C2 (intermediate) monocytes in PBMCs and a decrease in hypoxia-inducible transcription factor-1α (HIF-1α) in all monocyte subsets associated with HAPH. In addition, we demonstrate that similar immune adaptations may exist in HAPH and PH. Overall, we characterize an immune cell atlas of the peripheral blood in HAPH patients. Our data provide evidence that specific monocyte subsets and HIF-1α downregulation might be implicated in the pathogenesis of HAPH.
Collapse
Affiliation(s)
- Xin-Hua Wu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Henan, China
| | - Zhang-Rong Chen
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Ze-Yuan He
- Department of Cardiology, Yulong People's Hospital, Yunnan, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangzhige He
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guang-Ming Wang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yu Dong
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Ying Yang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yi-Min Sun
- CapitalBio Technology Corporation, Beijing, China
| | | | - Qiu-Yan Zhao
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Xiao-Dan Yang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Li-Ying Wang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Cai-Jun Fu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Miao He
- Institute of Pharmacy, Dali University, Yunnan, China
| | - Si-Jin Zhang
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Fen Fu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Hong Liu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
149
|
Wang K, Sun X, Sun Y, Jiao B, Yao J, Hu Y, Deng Q, Dong J, Wang W, Wang Y, Li C. Transcriptional regulation of macrophages in heart failure. Front Cardiovasc Med 2023; 10:1148041. [PMID: 37063966 PMCID: PMC10097991 DOI: 10.3389/fcvm.2023.1148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Adverse cardiac remodeling after acute myocardial infarction is the most important pathological mechanism of heart failure and remains a major problem in clinical practice. Cardiac macrophages, derived from tissue resident macrophages and circulating monocyte, undergo significant phenotypic and functional changes following cardiac injury and play crucial roles in inflammatory response and tissue repair response. Currently, numerous studies indicate that epigenetic regulatory factors and transcription factors can regulate the transcription of inflammatory and reparative genes and timely conversion of inflammatory macrophages into reparative macrophages and then alleviate cardiac remodeling. Accordingly, targeting transcriptional regulation of macrophages may be a promising option for heart failure treatment. In this review, we not only summarize the origin and function of cardiac macrophages, but more importantly, describe the transcriptional regulation of macrophages in heart failure, aiming to provide a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- Keyan Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Jiao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| |
Collapse
|
150
|
Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol 2023; 14:1129186. [PMID: 37063278 PMCID: PMC10090555 DOI: 10.3389/fphar.2023.1129186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with increasing prevalence worldwide. It is a leading cause of disability and suicide, severely affecting physical and mental health. However, the study of depression remains at an exploratory stage in terms of diagnostics and treatment due to the complexity of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs capable of binding to the 3’untranslated region of mRNAs. Because of their ability to repress translation process of genes and are found at high levels in brain tissues, investigation of their role in depression has gradually increased recently. This article summarizes recent research progress on the relationship between microRNAs and depression. The microRNAs play a regulatory role in the pathophysiology of depression, involving dysregulation of monoamines, abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA axis, and dysregulation of inflammatory responses. These microRNAs might provide new clue for the diagnosis and treatment of MDD, and the development of antidepressant drugs.
Collapse
Affiliation(s)
- Ruidong Ding
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dingyuan Su
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Wang
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Jia-Yi Wang
- San-Quan College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|