101
|
Xiao S, Chu Y, Chen Y, Zhao Q, Liao B, Zhang J, Gao Y, Xu J, Chen S. Genome-wide identification and transcriptional profiling analysis of PIN/PILS auxin transporter gene families in Panax ginseng. CHINESE HERBAL MEDICINES 2021; 14:48-57. [PMID: 36120122 PMCID: PMC9476816 DOI: 10.1016/j.chmed.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanjun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding author.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
102
|
Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in Triticum aestivum L. Int J Mol Sci 2021; 22:ijms22147396. [PMID: 34299014 PMCID: PMC8303626 DOI: 10.3390/ijms22147396] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.
Collapse
|
103
|
Arora D, Damme DV. Motif-based endomembrane trafficking. PLANT PHYSIOLOGY 2021; 186:221-238. [PMID: 33605419 PMCID: PMC8154067 DOI: 10.1093/plphys/kiab077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Endomembrane trafficking, which allows proteins and lipids to flow between the different endomembrane compartments, largely occurs by vesicle-mediated transport. Transmembrane proteins intended for transport are concentrated into a vesicle or carrier by undulation of a donor membrane. This is followed by vesicle scission, uncoating, and finally, fusion at the target membrane. Three major trafficking pathways operate inside eukaryotic cells: anterograde, retrograde, and endocytic. Each pathway involves a unique set of machinery and coat proteins that pack the transmembrane proteins, along with their associated lipids, into specific carriers. Adaptor and coatomer complexes are major facilitators that function in anterograde transport and in endocytosis. These complexes recognize the transmembrane cargoes destined for transport and recruit the coat proteins that help form the carriers. These complexes use either linear motifs or posttranslational modifications to recognize the cargoes, which are then packaged and delivered along the trafficking pathways. In this review, we focus on the different trafficking complexes that share a common evolutionary branch in Arabidopsis (Arabidopsis thaliana), and we discuss up-to-date knowledge about the cargo recognition motifs they use.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
104
|
Gómez-Soto D, Ramos-Sánchez JM, Alique D, Conde D, Triozzi PM, Perales M, Allona I. Overexpression of a SOC1-Related Gene Promotes Bud Break in Ecodormant Poplars. FRONTIERS IN PLANT SCIENCE 2021; 12:670497. [PMID: 34113369 PMCID: PMC8185274 DOI: 10.3389/fpls.2021.670497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 05/04/2023]
Abstract
Perennial species in the boreal and temperate regions are subject to extreme annual variations in light and temperature. They precisely adapt to seasonal changes by synchronizing cycles of growth and dormancy with external cues. Annual dormancy-growth transitions and flowering involve factors that integrate environmental and endogenous signals. MADS-box transcription factors have been extensively described in the regulation of Arabidopsis flowering. However, their participation in annual dormancy-growth transitions in trees is minimal. In this study, we investigate the function of MADS12, a Populus tremula × alba SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1)-related gene. Our gene expression analysis reveals that MADS12 displays lower mRNA levels during the winter than during early spring and mid-spring. Moreover, MADS12 activation depends on the fulfillment of the chilling requirement. Hybrid poplars overexpressing MADS12 show no differences in growth cessation and bud set, while ecodormant plants display an early bud break, indicating that MADS12 overexpression promotes bud growth reactivation. Comparative expression analysis of available bud break-promoting genes reveals that MADS12 overexpression downregulates the GIBBERELLINS 2 OXIDASE 4 (GA2ox4), a gene involved in gibberellin catabolism. Moreover, the mid-winter to mid-spring RNAseq profiling indicates that MADS12 and GA2ox4 show antagonistic expression during bud dormancy release. Our results support MADS12 participation in the reactivation of shoot meristem growth during ecodormancy and link MADS12 activation and GA2ox4 downregulation within the temporal events that lead to poplar bud break.
Collapse
Affiliation(s)
- Daniela Gómez-Soto
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M. Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Alique
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
105
|
Hu L, Wang P, Long X, Wu W, Zhang J, Pan Y, Cheng T, Shi J, Chen J. The PIN gene family in relic plant L. chinense: Genome-wide identification and gene expression profiling in different organizations and abiotic stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:634-646. [PMID: 33774468 DOI: 10.1016/j.plaphy.2021.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The auxin efflux carrier PIN-FORMED (PIN) proteins are required for the polar transport of auxin between cells through their asymmetric distribution on the plasma membrane, thus mediating the differential distribution of auxin in plants, finally, affecting plant growth and developmental processes. In this study, 11 LcPIN genes were identified. The structural characteristics and evolutionary status of LcPIN genes were thoroughly investigated and interpreted combining physicochemical property analysis, evolutionary analysis, gene structure analysis, chromosomal localization, etc. Multi-species protein sequence analysis showed that angiosperm PIN genes have strong purification options and some functional sites were predicted about PIN protein polarity, trafficking and activity in L. chinense. Further qRT-PCR and transcriptome data analysis indicated that the long LcPINs have highly expressed from globular embryo to plantlet, and the LcPIN6a started upregulated in cotyledon embryo. The LcPIN3 and LcPIN6a are both highly expressed during the development of stamens and petals and the expression of LcPIN2 is related to root elongation, suggesting that they may play an important role in these processes. Experiment data indicates that LcPIN5 and LcPIN8 might play a key role in auxin transport in Liriodendron stems and leaves under abiotic stress. Analyzed the response of LcPIN genes to abiotic stress and as a basis for uncovering the biological role of LcPIN genes in development and adaption to adverse environments. This study provides a foundation for further genetic and functional analyses.
Collapse
Affiliation(s)
- Lingfeng Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Pengkai Wang
- College of Horticulture Technology, Suzhou Agricultural Vocational and Technical College, Suzhou, 215000, China
| | - Xiaofei Long
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Pan
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
106
|
Cytokinin-Controlled Gradient Distribution of Auxin in Arabidopsis Root Tip. Int J Mol Sci 2021; 22:ijms22083874. [PMID: 33918090 PMCID: PMC8069370 DOI: 10.3390/ijms22083874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The plant root is a dynamic system, which is able to respond promptly to external environmental stimuli by constantly adjusting its growth and development. A key component regulating this growth and development is the finely tuned cross-talk between the auxin and cytokinin phytohormones. The gradient distribution of auxin is not only important for the growth and development of roots, but also for root growth in various response. Recent studies have shed light on the molecular mechanisms of cytokinin-mediated regulation of local auxin biosynthesis/metabolism and redistribution in establishing active auxin gradients, resulting in cell division and differentiation in primary root tips. In this review, we focus our attention on the molecular mechanisms underlying the cytokinin-controlled auxin gradient in root tips.
Collapse
|
107
|
Jaeger R, Moody LA. A fundamental developmental transition in Physcomitrium patens is regulated by evolutionarily conserved mechanisms. Evol Dev 2021; 23:123-136. [PMID: 33822471 DOI: 10.1111/ede.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/15/2023]
Abstract
One of the most defining moments in history was the colonization of land by plants approximately 470 million years ago. The transition from water to land was accompanied by significant changes in the plant body plan, from those than resembled filamentous representatives of the charophytes, the sister group to land plants, to those that were morphologically complex and capable of colonizing harsher habitats. The moss Physcomitrium patens (also known as Physcomitrella patens) is an extant representative of the bryophytes, the earliest land plant lineage. The protonema of P. patens emerges from spores from a chloronemal initial cell, which can divide to self-renew to produce filaments of chloronemal cells. A chloronemal initial cell can differentiate into a caulonemal initial cell, which can divide and self-renew to produce filaments of caulonemal cells, which branch extensively and give rise to three-dimensional shoots. The process by which a chloronemal initial cell differentiates into a caulonemal initial cell is tightly regulated by auxin-induced remodeling of the actin cytoskeleton. Studies have revealed that the genetic mechanisms underpinning this transition also regulate tip growth and differentiation in diverse plant taxa. This review summarizes the known cellular and molecular mechanisms underpinning the chloronema to caulonema transition in P. patens.
Collapse
Affiliation(s)
- Richard Jaeger
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Laura A Moody
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
108
|
Gho YS, Song MY, Bae DY, Choi H, Jung KH. Rice PIN Auxin Efflux Carriers Modulate the Nitrogen Response in a Changing Nitrogen Growth Environment. Int J Mol Sci 2021; 22:3243. [PMID: 33806722 PMCID: PMC8005180 DOI: 10.3390/ijms22063243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/03/2022] Open
Abstract
Auxins play an essential role in regulating plant growth and adaptation to abiotic stresses, such as nutrient stress. Our current understanding of auxins is based almost entirely on the results of research on the eudicot Arabidopsis thaliana, however, the role of the rice PIN-FORMED (PIN) auxin efflux carriers in the regulation of the ammonium-dependent response remains elusive. Here, we analyzed the expression patterns in various organs/tissues and the ammonium-dependent response of rice PIN-family genes (OsPIN genes) via qRT-PCR, and attempted to elucidate the relationship between nitrogen (N) utilization and auxin transporters. To investigate auxin distribution under ammonium-dependent response after N deficiency in rice roots, we used DR5::VENUS reporter lines that retained a highly active synthetic auxin response. Subsequently, we confirmed that ammonium supplementation reduced the DR5::VENUS signal compared with that observed in the N-deficient condition. These results are consistent with the decreased expression patterns of almost all OsPIN genes in the presence of the ammonium-dependent response to N deficiency. Furthermore, the ospin1b mutant showed an insensitive phenotype in the ammonium-dependent response to N deficiency and disturbances in the regulation of several N-assimilation genes. These molecular and physiological findings suggest that auxin is involved in the ammonium assimilation process of rice, which is a model crop plant.
Collapse
Affiliation(s)
| | | | | | | | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (Y.-S.G.); (M.-Y.S.); (D.-Y.B.); (H.C.)
| |
Collapse
|
109
|
Wang Z, Yu A, Li F, Xu W, Han B, Cheng X, Liu A. Bulked segregant analysis reveals candidate genes responsible for dwarf formation in woody oilseed crop castor bean. Sci Rep 2021; 11:6277. [PMID: 33737619 PMCID: PMC7973431 DOI: 10.1038/s41598-021-85644-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
Plant dwarfism is a desirable agronomic trait in non-timber trees, but little is known about the physiological and molecular mechanism underlying dwarfism in woody plants. Castor bean (Ricinus communis) is a typical woody oilseed crop. We performed cytological observations within xylem, phloem and cambia tissues, revealing that divergent cell growth in all tissues might play a role in the dwarf phenotype in cultivated castor bean. Based on bulked segregant analyses for a F2 population generated from the crossing of a tall and a dwarf accession, we identified two QTLs associated with plant height, covering 325 candidate genes. One of these, Rc5NG4-1 encoding a putative IAA transport protein localized in the tonoplast was functionally characterized. A non-synonymous SNP (altering the amino acid sequence from Y to C at position 218) differentiated the tall and dwarf plants and we confirmed, through heterologous yeast transformation, that the IAA uptake capacities of Rc5NG4-1Y and Rc5NG4-1C were significantly different. This study provides insights into the physiological and molecular mechanisms of dwarfing in woody non-timber economically important plants, with potential to aid in the genetic breeding of castor bean and other related crops.
Collapse
Affiliation(s)
- Zaiqing Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Anmin Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fei Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Han
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomao Cheng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
110
|
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039867. [PMID: 33431579 PMCID: PMC7919392 DOI: 10.1101/cshperspect.a039867] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.
Collapse
Affiliation(s)
| | | | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
111
|
Sun H, Xu H, Li B, Shang Y, Wei M, Zhang S, Zhao C, Qin R, Cui F, Wu Y. The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:281-293. [PMID: 33540331 DOI: 10.1016/j.plaphy.2021.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones that regulate many important agronomic traits. Studies on the functional mechanisms of BR-related genes in crop plants are necessary for the application of BRs in agriculture. In this study, ZmD11, an ortholog of rice DWARF11 (D11), and 42 other BR biosynthesis-related genes were identified in maize (Zea mays). Complementary experiments confirmed that ZmD11 completely rescued the abnormal panicle architecture and plant height of the rice cpb1 mutant. A phylogenetic analysis indicated that ZmD11-like proteins were found in other monocots and dicots, but not in lower plants and that alternative splicing variants of these homologues mainly exist in Triticeae crops. A subcellular localization analysis showed that ZmD11 localized to the endoplasmic reticulum. The ZmD11 gene was predominantly expressed in young ears and seeds from 10 to 16 days after pollination, especially in the scutellar aleurone layer and pericarp. Furthermore, the constitutive expression of the ZmD11 gene significantly increased seed length, seed area, seed weight and both seed starch and protein contents in rice and maize. Our results suggest that ZmD11 is a key gene in the regulation of seed size and quality and that it has a potential application value in the molecular breeding of crops.
Collapse
Affiliation(s)
- Han Sun
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Huiyuan Xu
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Bei Li
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Yangyang Shang
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Meixiang Wei
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Shanghui Zhang
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Chunhua Zhao
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Ran Qin
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Fa Cui
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China.
| | - Yongzhen Wu
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China.
| |
Collapse
|
112
|
Comparative transcriptome analysis of Rheum australe, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. Sci Rep 2021; 11:3702. [PMID: 33580100 PMCID: PMC7881009 DOI: 10.1038/s41598-020-79020-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Rheum australe is an endangered medicinal herb of high altitude alpine region of Himalayas and is known to possess anti-cancerous properties. Unlike many herbs of the region, R. australe has broad leaves. The species thrives well under the environmental extremes in its niche habitat, therefore an understanding of transcriptome of R. australe to environmental cues was of significance. Since, temperature is one of the major environmental variables in the niche of R. australe, transcriptome was studied in the species growing in natural habitat and those grown in growth chambers maintained at 4 °C and 25 °C to understand genes associated with different temperatures. A total of 39,136 primarily assembled transcripts were obtained from 10,17,74,336 clean read, and 21,303 unigenes could match to public databases. An analysis of transcriptome by fragments per kilobase of transcript per million, followed by validation through qRT-PCR showed 22.4% up- and 22.5% down-regulated common differentially expressed genes in the species growing under natural habitat and at 4 °C as compared to those at 25 °C. These genes largely belonged to signaling pathway, transporters, secondary metabolites, phytohormones, and those associated with cellular protection, suggesting their importance in imparting adaptive advantage to R. australe in its niche.
Collapse
|
113
|
Comprehensive Analysis and Expression Profiling of PIN, AUX/LAX, and ABCB Auxin Transporter Gene Families in Solanum tuberosum under Phytohormone Stimuli and Abiotic Stresses. BIOLOGY 2021; 10:biology10020127. [PMID: 33562678 PMCID: PMC7915614 DOI: 10.3390/biology10020127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In this study, we provide comprehensive information on auxin transporter gene families in potato, including basic parameters, chromosomal distribution, phylogeny, co-expression network analysis, gene structure, tissue-specific expression patterns, subcellular localization, transcription analysis under exogenous hormone stimuli and abiotic stresses, and cis-regulatory element prediction. The responsiveness of auxin transporter family genes to auxin and polar auxin transport inhibitors implied their possible roles in auxin homoeostasis and redistribution. Additionally, the differential expression levels of auxin transporter family genes in response to abscisic acid and abiotic stresses suggested their specific adaptive mechanisms on tolerance to various environmental stimuli. Promoter cis-regulatory element description analyses indicated that a number of cis-regulatory elements within the promoters of auxin transporter genes in potato were targeted by relevant transcription factors to respond to diverse stresses. We are confident that our results provide a foundation for a better understanding of auxin transporters in potato, as we have demonstrated the biological significance of this family of genes in hormone signaling and adaption to environmental stresses. Abstract Auxin is the only plant hormone that exhibits transport polarity mediated by three families: auxin resistant (AUX) 1/like AUX1 (LAX) influx carriers, pin-formed (PIN) efflux carriers, and ATP-binding cassette B (ABCB) influx/efflux carriers. Extensive studies about the biological functions of auxin transporter genes have been reported in model plants. Information regarding these genes in potato remains scarce. Here, we conducted a comprehensive analysis of auxin transporter gene families in potato to examine genomic distributions, phylogeny, co-expression analysis, gene structure and subcellular localization, and expression profiling using bioinformatics tools and qRT-PCR analysis. From these analyses, 5 StLAXs, 10 StPINs, and 22 StABCBs were identified in the potato genome and distributed in 10 of 18 gene modules correlating to the development of various tissues. Transient expression experiments indicated that three representative auxin transporters showed plasma membrane localizations. The responsiveness to auxin and auxin transport inhibitors implied their possible roles in mediating intercellular auxin homoeostasis and redistribution. The differential expression under abscisic acid and abiotic stresses indicated their specific adaptive mechanisms regulating tolerance to environmental stimuli. A large number of auxin-responsive and stress-related cis-elements within their promoters could account for their responsiveness to diverse stresses. Our study aimed to understand the biological significance of potato auxin transporters in hormone signaling and tolerance to environmental stresses.
Collapse
|
114
|
Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A. Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. FRONTIERS IN PLANT SCIENCE 2021; 12:659155. [PMID: 33981325 PMCID: PMC8107238 DOI: 10.3389/fpls.2021.659155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 05/17/2023]
Abstract
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica L. García-Gómez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Adriana Garay-Arroyo,
| |
Collapse
|
115
|
Bannoud F, Bellini C. Adventitious Rooting in Populus Species: Update and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:668837. [PMID: 34093625 PMCID: PMC8174304 DOI: 10.3389/fpls.2021.668837] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 05/11/2023]
Abstract
Populus spp. are among the most economically important species worldwide. These trees are used not only for wood and fiber production, but also in the rehabilitation of degraded lands. Since they are clonally propagated, the ability of stem cuttings to form adventitious roots is a critical point for plant establishment and survival in the field, and consequently for the forest industry. Adventitious rooting in different Populus clones has been an agronomic trait targeted in breeding programs for many years, and many factors have been identified that affect this quantitative trait. A huge variation in the rooting capacity has been observed among the species in the Populus genus, and the responses to some of the factors affecting this trait have been shown to be genotype-dependent. This review analyses similarities and differences between results obtained from studies examining the role of internal and external factors affecting rooting of Populus species cuttings. Since rooting is the most important requirement for stand establishment in clonally propagated species, understanding the physiological and genetic mechanisms that promote this trait is essential for successful commercial deployment.
Collapse
Affiliation(s)
- Florencia Bannoud
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- *Correspondence: Florencia Bannoud,
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Catherine Bellini,
| |
Collapse
|
116
|
Geisler MM. A Retro-Perspective on Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:756968. [PMID: 34675956 PMCID: PMC8524130 DOI: 10.3389/fpls.2021.756968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
|
117
|
Li Q, Xu J, Zheng Y, Zhang Y, Cai Y. Transcriptomic and Metabolomic Analyses Reveals That Exogenous Methyl Jasmonate Regulates Galanthamine Biosynthesis in Lycoris longituba Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:713795. [PMID: 34659286 PMCID: PMC8514708 DOI: 10.3389/fpls.2021.713795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 05/20/2023]
Abstract
The Amaryllidaceae alkaloid galanthamine (Gal) in Lycoris longituba is a secondary metabolite that has been used to treat Alzheimer's disease. Plant secondary metabolism is affected by methyl jasmonate (MeJA) exposure, although the regulatory mechanisms of MeJA on L. longituba seedlings remains largely unknown. In the present study, 75, 150, and 300 μM MeJA were used as treatments on L. longituba seedlings for 7, 14, 21, and 28 days, while 0 μM MeJA was used as the control (MJ-0). The effect of exogenous MeJA on Gal synthesis in L. longituba was then investigated using transcriptomic sequencing and metabolite profiling via GC-MS and LC-MS analysis. Galanthamine (Gal), lycorine (Lyc), and lycoramine (Lycm) abundances were 2. 71-, 2. 01-, and 2.85-fold higher in 75 μM MeJA (MJ-75) treatment plants compared to MJ-0 treatment plants after 7 days of cultivation. Transcriptomic analysis further showed that MJ-75 treatment significantly induced the expression of norbelladine synthase (NBS) and norbelladine 4'-O-methyltransferase (OMT), which are involved in the Gal biosynthesis pathway. In addition, increased expression was observed in MJ-75 treatment plants for genes in the JA synthesis and JA signaling pathways including those of allene oxide cyclase (AOC), 12-oxo-phytodienoic acid reductase (OPR), jasmonic acid amino acid synthase (JAR), and transcription factor MYC. The L. longituba tyrosine decarboxylase (LlTYDC) enzyme was identified and proposed to be involved in the Gal biosynthetic pathway. Metabolomics results demonstrated that the accumulation of Amaryllidaceae alkaloids, and especially alkaloids in the Gal biosynthesis pathway, could be induced by MJ-75 treatment. Interestingly, metabolites in the JA synthesis pathway were also affected by MeJA treatment. Overall, this multi-omics study suggests that both the JA synthesis/JA signaling and Gal biosynthesis pathways were affected by exogenous MeJA treatment. This comprehensive study of gene expression and metabolite contents can help us better understand the molecular mechanisms underlying MeJA-mediated Gal biosynthesis in L. longituba.
Collapse
Affiliation(s)
- Qingzhu Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai, China
| | - Junxu Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-sen, Nanjing, China
| | - Yongchun Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yongchun Zhang,
| | - Youming Cai
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Youming Cai,
| |
Collapse
|
118
|
Hou M, Luo F, Wu D, Zhang X, Lou M, Shen D, Yan M, Mao C, Fan X, Xu G, Zhang Y. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. THE NEW PHYTOLOGIST 2021; 229:935-949. [PMID: 32865276 DOI: 10.1111/nph.16901] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 05/25/2023]
Abstract
The degree of rice tillering is an important agronomic trait that can be markedly affected by nitrogen supply. However, less is known about how nitrogen-regulated rice tillering is related to polar auxin transport. Compared with nitrate, ammonium induced tiller development and was paralleled with increased 3 H-indole-acetic acid (IAA) transport and greater auxin into the junctions. OsPIN9, an auxin efflux carrier, was selected as the candidate gene involved in ammonium-regulated tillering based on GeneChip data. Compared with wild-type plants, ospin9 mutants had fewer tillers, and OsPIN9 overexpression increased the tiller number. Additionally, OsPIN9 was mainly expressed in vascular tissue of the junction and tiller buds, and encoded a membrane-localised protein. Heterologous expression in Xenopus oocytes and yeast demonstrated that OsPIN9 is a functional auxin efflux transporter. More importantly, its RNA and protein levels were induced by ammonium but not by nitrate, and tiller numbers in mutants did not respond to nitrogen forms. Further advantages, including increased tiller number and grain yield, were observed in overexpression lines grown in the paddy field at a low-nitrogen rate compared with at a high-nitrogen rate. Our data revealed that ammonium supply and an auxin efflux transporter co-ordinately control tiller bud elongation in rice.
Collapse
Affiliation(s)
- Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feifei Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuhong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manman Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Defeng Shen
- Molecular Biology Group, Wageningen University Research, Wageningen, 6708 PB, the Netherlands
| | - Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
119
|
Lv S, Wang L, Zhang X, Li X, Fan L, Xu Y, Zhao Y, Xie H, Sawchuk MG, Scarpella E, Qiu QS. Arabidopsis NHX5 and NHX6 regulate PIN6-mediated auxin homeostasis and growth. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153305. [PMID: 33129075 DOI: 10.1016/j.jplph.2020.153305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
NHX5 and NHX6, endosomal Na+,K+/H+ antiporters in Arabidopsis thaliana, play a vital role in growth and development. Our previous study has shown that NHX5 and NHX6 function as H+ leak to regulate auxin-mediated growth in Arabidopsis. In this report, we investigated the function of NHX5 and NHX6 in controlling PIN6-mediated auxin homeostasis and growth in Arabidopsis. Phenotypic analyses found that NHX5 and NHX6 were critical for the function of PIN6, an auxin transporter. We further showed that PIN6 depended on NHX5 and NHX6 in regulating auxin homeostasis. NHX5 and NHX6 were colocalized with PIN6, but they did not interact physically. The conserved acidic residues that are vital for the activity of NHX5 and NHX6 were critical for PIN6 function. Together, NHX5 and NHX6 may regulate PIN6 function by their transport activity.
Collapse
Affiliation(s)
- Shasha Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yanli Xu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yingjia Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| |
Collapse
|
120
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
121
|
Zhang Y, Rodriguez L, Li L, Zhang X, Friml J. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. SCIENCE ADVANCES 2020; 6:6/50/eabc8895. [PMID: 33310852 PMCID: PMC7732203 DOI: 10.1126/sciadv.abc8895] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 05/31/2023]
Abstract
Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Xixi Zhang
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
122
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
123
|
Abstract
Auxin is an endogenous small molecule with an incredibly large impact on growth and development in plants. Movement of auxin between cells, due to its negative charge at most physiological pHs, strongly relies on families of active transporters. These proteins import auxin from the extracellular space or export it into the same. Mutations in these components have profound impacts on biological processes. Another transport route available to auxin, once the substance is inside the cell, are plasmodesmata connections. These small channels connect the cytoplasms of neighbouring plant cells and enable flow between them. Interestingly, the biological significance of this latter mode of transport is only recently starting to emerge with examples from roots, hypocotyls and leaves. The existence of two transport systems provides opportunities for reciprocal cross-regulation. Indeed, auxin levels influence proteins controlling plasmodesmata permeability, while cell-cell communication affects auxin biosynthesis and transport. In an evolutionary context, transporter driven cell-cell auxin movement and plasmodesmata seem to have evolved around the same time in the green lineage. This highlights a co-existence from early on and a likely functional specificity of the systems. Exploring more situations where auxin movement via plasmodesmata has relevance for plant growth and development, and clarifying the regulation of such transport, will be key aspects in coming years.This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Andrea Paterlini
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1 LR, UK
| |
Collapse
|
124
|
Abdollahi Sisi N, Růžička K. ER-Localized PIN Carriers: Regulators of Intracellular Auxin Homeostasis. PLANTS 2020; 9:plants9111527. [PMID: 33182545 PMCID: PMC7697564 DOI: 10.3390/plants9111527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
The proper distribution of the hormone auxin is essential for plant development. It is channeled by auxin efflux carriers of the PIN family, typically asymmetrically located on the plasma membrane (PM). Several studies demonstrated that some PIN transporters are also located at the endoplasmic reticulum (ER). From the PM-PINs, they differ in a shorter internal hydrophilic loop, which carries the most important structural features required for their subcellular localization, but their biological role is otherwise relatively poorly known. We discuss how ER-PINs take part in maintaining intracellular auxin homeostasis, possibly by modulating the internal levels of IAA; it seems that the exact identity of the metabolites downstream of ER-PINs is not entirely clear as well. We further review the current knowledge about their predicted structure, evolution and localization. Finally, we also summarize their role in plant development.
Collapse
Affiliation(s)
- Nayyer Abdollahi Sisi
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-225-106-429
| |
Collapse
|
125
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
126
|
Tarelkina TV, Novitskaya LL, Galibina NA, Moshchenskaya YL, Nikerova KM, Nikolaeva NN, Sofronova IN, Ivanova DS, Semenova LI. Expression Analysis of Key Auxin Biosynthesis, Transport, and Metabolism Genes of Betula pendula with Special Emphasis on Figured Wood Formation in Karelian Birch. PLANTS 2020; 9:plants9111406. [PMID: 33105649 PMCID: PMC7690449 DOI: 10.3390/plants9111406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Auxin status in woody plants is believed to be a critical factor for the quantity and quality of the wood formed. It has been previously demonstrated that figured wood formation in Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hämet-Ahti) is associated with a reduced auxin level and elevated sugar content in the differentiating xylem, but the molecular mechanisms of the abnormal xylogenesis remained largely unclear. We have identified genes involved in auxin biosynthesis (Yucca), polar auxin transport (PIN) and the conjugation of auxin with amino acids (GH3) and UDP-glucose (UGT84B1) in the B. pendula genome, and analysed their expression in trunk tissues of trees differing in wood structure. Almost all the investigated genes were overexpressed in Karelian birch trunks. Although Yucca genes were overexpressed, trunk tissues in areas developing figured grain had traits of an auxin-deficient phenotype. Overexpression of GH3s and UGT84B1 appears to have a greater effect on figured wood formation. Analysis of promoters of the differentially expressed genes revealed a large number of binding sites with various transcription factors associated with auxin and sugar signalling. These data agree with the hypothesis that anomalous figured wood formation in Karelian birch may be associated with the sugar induction of auxin conjugation.
Collapse
|
127
|
Florkiewicz AB, Kućko A, Kapusta M, Burchardt S, Przywieczerski T, Czeszewska-Rosiak G, Wilmowicz E. Drought Disrupts Auxin Localization in Abscission Zone and Modifies Cell Wall Structure Leading to Flower Separation in Yellow Lupine. Int J Mol Sci 2020; 21:E6848. [PMID: 32961941 PMCID: PMC7555076 DOI: 10.3390/ijms21186848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
Drought causes the excessive abscission of flowers in yellow lupine, leading to yield loss and serious economic consequences in agriculture. The structure that determines the time of flower shedding is the abscission zone (AZ). Its functioning depends on the undisturbed auxin movement from the flower to the stem. However, little is known about the mechanism guiding cell-cell adhesion directly in an AZ under water deficit. Therefore, here, we seek a fuller understanding of drought-dependent reactions and check the hypothesis that water limitation in soil disturbs the natural auxin balance within the AZ and, in this way, modifies the cell wall structure, leading to flower separation. Our strategy combined microscopic, biochemical, and chromatography approaches. We show that drought affects indole-3-acetic acid (IAA) distribution and evokes cellular changes, indicating AZ activation and flower abortion. Drought action was manifested by the accumulation of proline in the AZ. Moreover, cell wall-related modifications in response to drought are associated with reorganization of methylated homogalacturonans (HG) in the AZ, and upregulation of pectin methylesterase (PME) and polygalacturonase (PG)-enzymes responsible for pectin remodeling. Another symptom of stress action is the accumulation of hemicelluloses. Our data provide new insights into cell wall remodeling events during drought-induced flower abscission, which is relevant to control plant production.
Collapse
Affiliation(s)
- Aleksandra Bogumiła Florkiewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (S.B.); (T.P.); (G.C.-R.)
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland;
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | - Sebastian Burchardt
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (S.B.); (T.P.); (G.C.-R.)
| | - Tomasz Przywieczerski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (S.B.); (T.P.); (G.C.-R.)
| | - Grażyna Czeszewska-Rosiak
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (S.B.); (T.P.); (G.C.-R.)
| | - Emilia Wilmowicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (S.B.); (T.P.); (G.C.-R.)
| |
Collapse
|
128
|
Song S, Yan R, Wang C, Wang J, Sun H. Improvement of a Genetic Transformation System and Preliminary Study on the Function of LpABCB21 and LpPILS7 Based on Somatic Embryogenesis in Lilium pumilum DC. Fisch. Int J Mol Sci 2020; 21:E6784. [PMID: 32947885 PMCID: PMC7554901 DOI: 10.3390/ijms21186784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
Auxin transport mediates the asymmetric distribution of auxin that determines the fate of cell development. Agrobacterium-mediated genetic transformation is an important technical means to study gene function. Our previous study showed that the expression levels of LpABCB21 and LpPILS7 are significantly up-regulated in the somatic embryogenesis (SE) of Lilium pumilum DC. Fisch. (L. pumilum), but the functions of both genes remain unclear. Here, the genetic transformation technology previously developed by our team based on the L. pumilum system was improved, and the genetic transformation efficiency increased by 5.7-13.0%. Use of overexpression and CRISPR/Cas9 technology produced three overexpression and seven mutant lines of LpABCB21, and seven overexpression and six mutant lines of LpPILS7. Analysis of the differences in somatic embryo induction of transgenic lines confirmed that LpABCB21 regulates the early formation of the somatic embryo; however, excessive expression level of LpABCB21 inhibits somatic embryo induction efficiency. LpPILS7 mainly regulates somatic embryo induction efficiency. This study provides a more efficient method of genetic transformation of L. pumilum. LpABCB21 and LpPILS7 are confirmed to have important regulatory roles in L. pumilum SE thus laying the foundation for subsequent studies of the molecular mechanism of Lilium SE.
Collapse
Affiliation(s)
- Shengli Song
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Rui Yan
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Chunxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Jinxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (S.S.); (R.Y.); (C.W.); (J.W.)
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| |
Collapse
|
129
|
Guan L, Li Y, Huang K, Cheng ZM(M. Auxin regulation and MdPIN expression during adventitious root initiation in apple cuttings. HORTICULTURE RESEARCH 2020; 7:143. [PMID: 32922815 PMCID: PMC7459121 DOI: 10.1038/s41438-020-00364-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 05/23/2023]
Abstract
Adventitious root (AR) formation is critical for the efficient propagation of elite horticultural and forestry crops. Despite decades of research, the cellular processes and molecular mechanisms underlying AR induction in woody plants remain obscure. We examined the details of AR formation in apple (Malus domestica) M.9 rootstock, the most widely used dwarf rootstock for intensive production, and investigated the role of polar auxin transport in postembryonic organogenesis. AR formation begins with a series of founder cell divisions and elongation of the interfascicular cambium adjacent to vascular tissues. This process is associated with a relatively high indole acetic acid (IAA) content and hydrolysis of starch grains. Exogenous auxin treatment promoted this cell division, as well as the proliferation and reorganization of the endoplasmic reticulum and Golgi membrane. In contrast, treatment with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) inhibited cell division in the basal region of the cuttings and resulted in abnormal cell divisions during the early stage of AR formation. In addition, PIN-FORMED (PIN) transcripts were differentially expressed throughout the whole AR development process. We also detected upregulation of MdPIN8 and MdPIN10 during induction; upregulation of MdPIN4, MdPIN5, and MdPIN8 during extension; and upregulation of all MdPINs during AR initiation. This research provides an improved understanding of the cellular and molecular underpinnings of the AR process in woody plants.
Collapse
Affiliation(s)
- Ling Guan
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014 Nanjing, China
| | - Yingjun Li
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kaihui Huang
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zong-Ming (Max) Cheng
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37831 USA
| |
Collapse
|
130
|
Zhang Y, Hartinger C, Wang X, Friml J. Directional auxin fluxes in plants by intramolecular domain-domain coevolution of PIN auxin transporters. THE NEW PHYTOLOGIST 2020; 227:1406-1416. [PMID: 32350870 PMCID: PMC7496279 DOI: 10.1111/nph.16629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/12/2020] [Indexed: 05/16/2023]
Abstract
Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane-based PIN-FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown. In this study, we systematically swapped the domains between ER- and PM-localized PIN proteins, as well as between apical and basal PM-localized PINs from Arabidopsis thaliana, to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells. Our results show that not only do the N- and C-terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise-matched N- and C-terminal TMDs resulting from intramolecular domain-domain coevolution are also crucial for their divergent patterns of localization. These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) AustriaKlosterneuburg3400Austria
| | - Corinna Hartinger
- Institute of Science and Technology (IST) AustriaKlosterneuburg3400Austria
| | - Xiaojuan Wang
- College of Life SciencesNorthwest UniversityXi’an710069China
| | - Jiří Friml
- Institute of Science and Technology (IST) AustriaKlosterneuburg3400Austria
| |
Collapse
|
131
|
Johnston CR, Malladi A, Vencill WK, Grey TL, Culpepper AS, Henry G, Czarnota MA, Randell TM. Investigation of physiological and molecular mechanisms conferring diurnal variation in auxinic herbicide efficacy. PLoS One 2020; 15:e0238144. [PMID: 32857790 PMCID: PMC7454982 DOI: 10.1371/journal.pone.0238144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
The efficacy of auxinic herbicides, a valuable weed control tool for growers worldwide, has been shown to vary with the time of day in which applications are made. However, little is known about the mechanisms causing this phenomenon. Investigating the differential in planta behavior of these herbicides across different times of application may grant an ability to advise which properties of auxinic herbicides are desirable when applications must be made around the clock. Radiolabeled herbicide experiments demonstrated a likely increase in ATP-binding cassette subfamily B (ABCB)-mediated 2,4-D and dicamba transport in Palmer amaranth (Amaranthus palmeri S. Watson) at simulated dawn compared to mid-day, as dose response models indicated that many orders of magnitude higher concentrations of N-1-naphthylphthalamic acid (NPA) and verapamil, respectively, are required to inhibit translocation by 50% at simulated sunrise compared to mid-day. Gas chromatographic analysis displayed that ethylene evolution in A. palmeri was higher when dicamba was applied during mid-day compared to sunrise. Furthermore, it was found that inhibition of translocation via 2,3,5-triiodobenzoic acid (TIBA) resulted in an increased amount of 2,4-D-induced ethylene evolution at sunrise, and the inhibition of dicamba translocation via NPA reversed the difference in ethylene evolution across time of application. Dawn applications of these herbicides were associated with increased expression of a putative 9-cis-epoxycarotenoid dioxygenase biosynthesis gene NCED1, while there was a notable lack of trends observed across times of day and across herbicides with ACS1, encoding 1-aminocyclopropane-1-carboxylic acid synthase. Overall, this research indicates that translocation is differentially regulated via specific protein-level mechanisms across times of application, and that ethylene release, a chief phytotoxic process involved in the response to auxinic herbicides, is related to translocation. Furthermore, transcriptional regulation of abscisic acid involvement in phytotoxicity and/or translocation are suggested.
Collapse
Affiliation(s)
- Christopher R. Johnston
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - William K. Vencill
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Timothy L. Grey
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - A. Stanley Culpepper
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - Gerald Henry
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Mark A. Czarnota
- Department of Horticulture, University of Georgia, Griffin, GA, United States of America
| | - Taylor M. Randell
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| |
Collapse
|
132
|
Huang X, Bai X, Guo T, Xie Z, Laimer M, Du D, Gbokie T, Zhang Z, He C, Lu Y, Wu W, Yi K. Genome-Wide Analysis of the PIN Auxin Efflux Carrier Gene Family in Coffee. PLANTS 2020; 9:plants9091061. [PMID: 32825074 PMCID: PMC7570243 DOI: 10.3390/plants9091061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022]
Abstract
Coffee is one of the most popular beverages around the world, which is mainly produced from the allopolyploid Coffea arabica. The genomes of C. arabica and its two ancestors C. canephora and C. eugenioides have been released due to the development of next generation sequencing. However, few studies on C. arabica are related to the PIN-FORMED (PIN) auxin efflux transporter despite its importance in auxin-mediated plant growth and development. In the present study, we conducted a genome-wide analysis of the PIN gene family in the three coffee species. Totals of 17, 9 and 10 of the PIN members were characterized in C. Arabica, C. canephora and C. eugenioides, respectively. Phylogenetic analysis revealed gene loss of PIN1 and PIN2 homologs in C. arabica, as well as gene duplication of PIN5 homologs during the fractionation process after tetraploidy. Furthermore, we conducted expression analysis of PIN genes in C. arabica by in silico and qRT-PCR. The results revealed the existence of gene expression dominance in allopolyploid coffee and illustrated several PIN candidates in regulating auxin transport and homeostasis under leaf rust fungus inoculation and the tissue-specific expression pattern of C. arabica. Together, this study provides the basis and guideline for future functional characterization of the PIN gene family.
Collapse
Affiliation(s)
- Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (C.H.); (Y.L.); (K.Y.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, China; (X.B.); (T.G.)
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, China; (X.B.); (T.G.)
| | - Zhouli Xie
- School of Life Sciences, Peking University, Beijing 100871, China;
| | - Margit Laimer
- Plant Biotechnology Unit, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Vienna 1190, Austria
- Correspondence: (M.L.); (W.W.)
| | - Dengxiang Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Thomas Gbokie
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhirun Zhang
- Coffee Engineering Research Center of China, Mangshi 678400, China;
| | - Chunping He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (C.H.); (Y.L.); (K.Y.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
| | - Ying Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (C.H.); (Y.L.); (K.Y.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (C.H.); (Y.L.); (K.Y.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
- Correspondence: (M.L.); (W.W.)
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (C.H.); (Y.L.); (K.Y.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
| |
Collapse
|
133
|
Pérez-Alonso MM, Guerrero-Galán C, Scholz SS, Kiba T, Sakakibara H, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. Harnessing symbiotic plant-fungus interactions to unleash hidden forces from extreme plant ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3865-3877. [PMID: 31976537 PMCID: PMC7316966 DOI: 10.1093/jxb/eraa040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Guerrero-Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Sandra S Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
134
|
Vosolsobě S, Skokan R, Petrášek J. The evolutionary origins of auxin transport: what we know and what we need to know. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3287-3295. [PMID: 32246155 DOI: 10.1093/jxb/eraa169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/02/2020] [Indexed: 05/24/2023]
Abstract
Auxin, represented by indole-3-acetic acid (IAA), has for a long time been studied mainly with respect to the development of land plants, and recent evidence confirms that canonical nuclear auxin signaling is a land plant apomorphy. Increasing sequential and physiological data show that the presence of auxin transport machinery pre-dates the emergence of canonical signaling. In this review, we summarize the present state of knowledge regarding the origins of auxin transport in the green lineage (Viridiplantae), integrating both data from wet lab experiments and sequence evidence on the presence of PIN-FORMED (PIN), PIN-LIKES (PILS), and AUXIN RESISTANT 1/LIKE-AUX1 (AUX1/LAX) homologs. We discuss a high divergence of auxin carrier homologs among algal lineages and emphasize the urgent need for the establishment of good molecular biology models from within the streptophyte green algae. We further postulate and discuss two hypotheses for the ancestral role of auxin in the green lineage. First, auxin was present as a by-product of cell metabolism and the evolution of its transport was stimulated by the need for IAA sequestration and cell detoxification. Second, auxin was primarily a signaling compound, possibly of bacterial origin, and its activity in the pre-plant green algae was a consequence of long-term co-existence with bacteria in shared ecological consortia.
Collapse
Affiliation(s)
- Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| | - Roman Skokan
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| |
Collapse
|
135
|
Sun L, Feraru E, Feraru MI, Waidmann S, Wang W, Passaia G, Wang ZY, Wabnik K, Kleine-Vehn J. PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Curr Biol 2020; 30:1579-1588.e6. [PMID: 32169207 PMCID: PMC7198975 DOI: 10.1016/j.cub.2020.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 11/15/2022]
Abstract
Auxin and brassinosteroids (BR) are crucial growth regulators and display overlapping functions during plant development. Here, we reveal an alternative phytohormone crosstalk mechanism, revealing that BR signaling controls PIN-LIKES (PILS)-dependent nuclear abundance of auxin. We performed a forward genetic screen for imperial pils (imp) mutants that enhance the overexpression phenotypes of PILS5 putative intracellular auxin transport facilitator. Here, we report that the imp1 mutant is defective in the BR-receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1). Our set of data reveals that BR signaling transcriptionally and post-translationally represses the accumulation of PILS proteins at the endoplasmic reticulum, thereby increasing nuclear abundance and signaling of auxin. We demonstrate that this alternative phytohormonal crosstalk mechanism integrates BR signaling into auxin-dependent organ growth rates and likely has widespread importance for plant development.
Collapse
Affiliation(s)
- Lin Sun
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Mugurel I Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Wenfei Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Gisele Passaia
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria.
| |
Collapse
|
136
|
Abstract
Throughout plant development, the phytohormones auxin and brassinosteroid regulate growth via their combinatorial input. A new study reveals a major impact of brassinosteroid signaling on intracellular auxin distribution and thereby nuclear auxin signaling, adding another layer of complexity to auxin-brassinosteroid crosstalk.
Collapse
Affiliation(s)
- Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
137
|
Hao Z, Liu S, Hu L, Shi J, Chen J. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. HORTICULTURE RESEARCH 2020; 7:70. [PMID: 32377360 PMCID: PMC7193617 DOI: 10.1038/s41438-020-0287-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 03/08/2020] [Indexed: 05/03/2023]
Abstract
Liriodendron tulipifera, also known as tuliptree, is a popular ornamental horticultural plant with extraordinary tulip-shaped flowers characterized by an orange band near their base. The mechanisms underlying petal band-specific pigmentation during L. tulipifera flower development are unclear. Here, we combined nontargeted and targeted metabolomics and transcriptomics to identify a pathway cascade leading to carotenoid biosynthesis that is specifically activated in the petal band. The comparative analysis of carotenoid metabolites between L. tulipifera and Liriodendron hybrids indicates that γ-carotene, a rare carotene in plants, is the most likely orange pigment responsible for the coloration of the petal band. Phenotypic and transcriptomic analyses of developing petals reveal that the band area is first predefined by the loss of green color. Later, the band is maintained by locally activating and repressing carotenoid and chlorophyll biosynthesis genes, respectively. Two rate-limiting genes of carotene biosynthesis, carotenoid isomerase (CRTISO) and epsilon lycopene cyclase (ε-LCY), encode the core enzymes responsible for petal band-specific orange pigmentation in L. tulipifera. In particular, a putative additional ε-LCY copy specific to L. tulipifera may contribute to the distinct petal coloration pattern, compared with L. chinense. Taken together, our work provides a first glimpse of the metabolome and transcriptome dynamics in tuliptree flower coloration and provides a valuable resource for flower breeding or metabolic engineering as well as for understanding flower evolution in an early woody angiosperm.
Collapse
Affiliation(s)
- Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Siqin Liu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Lingfeng Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu China
| |
Collapse
|
138
|
Zhang ML, Huang PP, Ji Y, Wang S, Wang SS, Li Z, Guo Y, Ding Z, Wu WH, Wang Y. KUP9 maintains root meristem activity by regulating K + and auxin homeostasis in response to low K. EMBO Rep 2020; 21:e50164. [PMID: 32250038 DOI: 10.15252/embr.202050164] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Potassium (K) is essential for plant growth and development. Here, we show that the KUP/HAK/KT K+ transporter KUP9 controls primary root growth in Arabidopsis thaliana. Under low-K+ conditions, kup9 mutants displayed a short-root phenotype that resulted from reduced numbers of root cells. KUP9 was highly expressed in roots and specifically expressed in quiescent center (QC) cells in root tips. The QC acts to maintain root meristem activity, and low-K+ conditions induced QC cell division in kup9 mutants, resulting in impaired root meristem activity. The short-root phenotype and enhanced QC cell division in kup9 mutants could be rescued by exogenous auxin treatment or by specifically increasing auxin levels in QC cells, suggesting that KUP9 affects auxin homeostasis in QC cells. Further studies showed that KUP9 mainly localized to the endoplasmic reticulum (ER), where it mediated K+ and auxin efflux from the ER lumen to the cytoplasm in QC cells under low-K+ conditions. These results demonstrate that KUP9 maintains Arabidopsis root meristem activity and root growth by regulating K+ and auxin homeostasis in response to low-K+ stress.
Collapse
Affiliation(s)
- Mei-Ling Zhang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pan-Pan Huang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shao-Shuai Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
139
|
Kim S, Nie H, Jun B, Kim J, Lee J, Kim S, Kim E, Kim S. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes Genomics 2020; 42:581-596. [PMID: 32240514 DOI: 10.1007/s13258-020-00927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sweet potato is easily propagated by cuttings. But the molecular biological mechanism of adventitious root formation are not yet clear. OBJECTIVE To understand the molecular mechanisms of adventitious root formation from stem cuttings in sweet potato. METHODS RNA-seq analysis was performed using un-rooted stem (0 day) and rooted stem (3 days). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, comparison with Arabidopsis transcription factors (TFs) of DEGs were conducted to investigate the characteristics of genes and TFs involved in root formation. In addition, qRT-PCR analysis using roots at 0, 3, 6, 9, and 12 days after planting was performed to confirm RNA-seq reliability and related genes expression. RESULTS 42,459 representative transcripts and 2092 DEGs were obtained through the RNA-seq analysis. The DEGs indicated the GO terms related to the single-organism metabolic process and cell periphery, and involved in the biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis in KEGG pathways. The comparison with Arabidopsis thaliana TF database showed that 3 TFs (WRKY, NAC, bHLH) involved in root formation of sweet potato. qRT-PCR analysis, which was conducted to confirm the reliability of RNA-seq analysis, indicated that some metabolisms including oxidative stress and wounding, transport, hormone may be involved in adventitious root formation. CONCLUSIONS The detected genes related to secondary metabolism, some hormone (auxin, gibberellin), transports, etc. and 3 TFs (WRKY, NAC, bHLH) may have functions in adventitious roots formation. This results provide valuable resources for future research on the adventitious root formation of sweet potato.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Hualin Nie
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Byungki Jun
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.,NH Seed Research Development Center, Nonghyup Agribusiness Group Incorporation, Anseong, 17558, Korea
| | - Jiseong Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Jeongeun Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 38430, Korea
| | - Sunhyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.
| |
Collapse
|
140
|
Characterization of the Auxin Efflux Transporter PIN Proteins in Pear. PLANTS 2020; 9:plants9030349. [PMID: 32164258 PMCID: PMC7154836 DOI: 10.3390/plants9030349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
PIN-FORMED (PIN) encodes a key auxin polar transport family that plays a crucial role in the outward transport of auxin and several growth and development processes, including dwarfing trees. We identified a dwarfing pear rootstock 'OHF51' (Pyrus communis), which limits the growth vigor of the 'Xueqing' (Pyrus bretschneideri × Pyrus pyrifolia) scion, and isolated 14 putative PbPINs from the pear Pyrus bretschneideri. The phylogenic relationships, structure, promoter regions, and expression patterns were analyzed. PbPINs were classified into two main groups based on the protein domain structure and categorized into three major groups using the neighbor-joining algorithm. Promoter analysis demonstrated that PbPINs might be closely related to plant growth and development. Through quantitative real-time PCR (qRT-PCR) analysis, we found that the expression patterns of 14 PbPINs varied upon exposure to different organs in dwarfing and vigorous stocks, 'OHF51' and 'QN101' (Pyrus betulifolia), indicating that they might play varying roles in different tissues and participated in the regulation of growth vigor. These results provide fundamental insights into the characteristics and evolution of the PINs family, as well as the possible relationship between dwarfing ability and auxin polar transport.
Collapse
|
141
|
Wolf S. Deviating from the Beaten Track: New Twists in Brassinosteroid Receptor Function. Int J Mol Sci 2020; 21:ijms21051561. [PMID: 32106564 PMCID: PMC7084826 DOI: 10.3390/ijms21051561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
A key feature of plants is their plastic development tailored to the environmental conditions. To integrate environmental signals with genetic growth regulatory programs, plants rely on a number of hormonal pathways, which are intimately connected at multiple levels. Brassinosteroids (BRs), a class of plant sterol hormones, are perceived by cell surface receptors and trigger responses instrumental in tailoring developmental programs to environmental cues. Arguably, BR signalling is one of the best-characterized plant signalling pathways, and the molecular composition of the core signal transduction cascade seems clear. However, BR research continues to reveal new twists to re-shape our view on this key signalling circuit. Here, exciting novel findings pointing to the plasma membrane as a key site for BR signalling modulation and integration with other pathways are reviewed and new inputs into the BR signalling pathway and emerging “non-canonical” functions of the BR receptor complex are highlighted. Together, this new evidence underscores the complexity of plant signalling integration and serves as a reminder that highly-interconnected signalling pathways frequently comprise non-linear aspects which are difficult to convey in classical conceptual models.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
142
|
The WUSCHELa ( PtoWUSa) is Involved in Developmental Plasticity of Adventitious Root in Poplar. Genes (Basel) 2020; 11:genes11020176. [PMID: 32041377 PMCID: PMC7073988 DOI: 10.3390/genes11020176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors play critical roles in cell fate determination during plant development. As the founding member of the WOX family, WUSCHEL (WUS) is characterized for its role in maintaining stem cell in meristem. In this study, we investigated the function of Populus tomentosa WUSCHELa (PtoWUSa) in adventitious roots (ARs) in poplar. Expression profile analysis showed that PtoWUSa was not only expressed in shoot apical meristem and stem, but also expressed in ARs. Ectopic expression of PtoWUSa in Arabidopsis resulted in shortened primary root, as well as agravitropism and multiple branches. Overexpression of PtoWUSa in poplar increased the number of ARs but decreased their length. Moreover, the AR tip and lateral root tip became larger and swollen. In addition, the expression of auxin transporter genes PIN-FORMED were downregulated in ARs of transgenic plant. Taken together, these results suggest that PtoWUSa could be involved in AR development in poplar through regulating the polar auxin transport in ARs.
Collapse
|
143
|
Velada I, Cardoso H, Porfirio S, Peixe A. Expression Profile of PIN-Formed Auxin Efflux Carrier Genes during IBA-Induced In Vitro Adventitious Rooting in Olea europaea L. PLANTS 2020; 9:plants9020185. [PMID: 32028698 PMCID: PMC7076448 DOI: 10.3390/plants9020185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/24/2022]
Abstract
Exogenous auxins supplementation plays a central role in the formation of adventitious roots (AR) for several plant species. However, the molecular mechanisms underlying the process of adventitious rooting are still not completely understood and many plants with economic value, including several olive cultivars, exhibit a recalcitrant behavior towards cutting propagation, which limits its availability in plant nurseries. PIN-formed proteins are auxin efflux transporters that have been widely characterized in several plant species due to their involvement in many developmental processes including root formation. The present study profiled the expression of the OePIN1a-c, OePIN2b, OePIN3a-c, OePIN5a-c, OePIN6, and OePIN8 gene members during indole-3-butyric acid (IBA)-induced in vitro adventitious rooting using the olive cultivar ‘Galega vulgar’. Gene expression analysis by quantitative real time PCR (RT-qPCR) showed drastic downregulation of most transcripts, just a few hours after explant inoculation, in both nontreated and IBA-treated microcuttings, albeit gene downregulation was less pronounced in IBA-treated stems. In contrast, OePIN2b showed a distinct expression pattern being upregulated in both conditions, and OePIN5b was highly upregulated in IBA-induced stems. All transcripts, except OePIN8, showed different expression profiles between nontreated and IBA-treated explants throughout the rooting experiment. Additionally, high levels of reactive oxygen species (ROS) were observed soon after explant preparation, decreasing a few hours after inoculation. Altogether, the results suggest that wounding-related ROS production, associated with explant preparation for rooting, may have an impact on auxin transport and distribution via changes in OePIN gene expression. Moreover, the application of exogenous auxin may modulate auxin homeostasis through regulation of those genes, leading to auxin redistribution throughout the stem-base tissue, which may ultimately play an important role in AR formation.
Collapse
Affiliation(s)
- Isabel Velada
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Correspondence: (I.V.); (A.P.)
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Sara Porfirio
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Augusto Peixe
- MED—Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Correspondence: (I.V.); (A.P.)
| |
Collapse
|
144
|
Zhao Y, Song X, Zhou H, Wei K, Jiang C, Wang J, Cao Y, Tang F, Zhao S, Lu MZ. KNAT2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar. THE NEW PHYTOLOGIST 2020; 225:1531-1544. [PMID: 31257603 DOI: 10.1111/nph.16036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/22/2019] [Indexed: 05/21/2023]
Abstract
Wood formation is the terminal differentiation of xylem mother cells derived from cambial initials, and negative regulators play important roles in xylem differentiation. The molecular mechanism of the negative regulator of xylem differentiation PagKNAT2/6b was investigated. PagKNAT2/6b is an ortholog of Arabidopsis KNAT2 and KNAT6 that is highly expressed in phloem and xylem. Compared to nontransgenic control plants, transgenic poplar plants overexpressing PagKNAT2/6b present with altered vascular patterns, characterized by decreased secondary xylem with thin cell walls containing less cellulose, xylose and lignin. RNA sequencing analyses revealed that differentially expressed genes are enriched in xylem differentiation and secondary wall synthesis functions. Expression of NAM/ATAF/CUC (NAC) domain genes including PagSND1-A1, PagSND1-A2, PagSND1-B2 and PagVND6-C1 is downregulated by PagKNAT2/6b, while PagXND1a is directly upregulated. Accordingly, the dominant repression form of PagKNAT2/6b leads to increased xylem width per stem diameter through downregulation of PagXND1a. PagKNAT2/6b can inhibit cell differentiation and secondary wall deposition during wood formation in poplar by modulating the expression of NAC domain transcription factors. Direct activation of PagXND1a by PagKNAT2/6b is a key node in the negative regulatory network of xylem differentiation by KNOXs.
Collapse
Affiliation(s)
- Yanqiu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, 210037, China
| | - Houjun Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Kaili Wei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cheng Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Jinnan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, 210037, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, 210037, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, 210037, China
- Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| |
Collapse
|
145
|
Lee H, Ganguly A, Lee RD, Park M, Cho HT. Intracellularly Localized PIN-FORMED8 Promotes Lateral Root Emergence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1808. [PMID: 32082353 PMCID: PMC7005106 DOI: 10.3389/fpls.2019.01808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/24/2019] [Indexed: 05/28/2023]
Abstract
PIN-FORMED (PIN) auxin efflux carriers with a long central hydrophilic loop (long PINs) have been implicated in organogenesis. However, the role of short hydrophilic loop PINs (short PINs) in organogenesis is largely unknown. In this study, we investigated the role of a short PIN, PIN8, in lateral root (LR) development in Arabidopsis thaliana. The loss-of-function mutation in PIN8 significantly decreased LR density, mostly by affecting the emergence stage. PIN8 showed a sporadic expression pattern along the root vascular cells in the phloem, where the PIN8 protein predominantly localized to intracellular compartments. During LR primordium development, PIN8 was expressed at the late stage. Plasma membrane (PM)-localized long PINs suppressed LR formation when expressed in the PIN8 domain. Conversely, an auxin influx carrier, AUX1, restored the wild-type (WT) LR density when expressed in the PIN8 domain of the pin8 mutant root. Moreover, LR emergence was considerably inhibited when AXR2-1, the dominant negative form of Aux/IAA7, compromised auxin signaling in the PIN8 domain. Consistent with these observations, the expression of many genes implicated in late LR development was suppressed in the pin8 mutant compared with the WT. Our results suggest that the intracellularly localized PIN8 affects LR development most likely by modulating intracellular auxin translocation. Thus, the function of PIN8 is distinctive from that of PM-localized long PINs, where they generate local auxin gradients for organogenesis by conducting cell-to-cell auxin reflux.
Collapse
|
146
|
Zhang N, Zhao B, Fan Z, Yang D, Guo X, Wu Q, Yu B, Zhou S, Wang H. Systematic identification of genes associated with plant growth-defense tradeoffs under JA signaling in Arabidopsis. PLANTA 2020; 251:43. [PMID: 31907627 DOI: 10.1007/s00425-019-03335-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/21/2019] [Indexed: 05/27/2023]
Abstract
Co-expression and regulatory networks yield important insights into the growth-defense tradeoffs mechanism under jasmonic acid (JA) signals in Arabidopsis. Elevated defense is commonly associated with growth inhibition. However, a comprehensive atlas of the genes associated with the plant growth-defense tradeoffs under JA signaling is lacking. To gain an insight into the dynamic architecture of growth-defense tradeoffs, a coexpression network analysis was employed on publicly available high-resolution transcriptomes of Arabidopsis treated with coronatine (COR), a mimic of jasmonoyl-l-isoleucine. The genes involved in JA-mediated growth-defense tradeoffs were systematically revealed. Promoter enrichment analysis revealed the core regulatory module in which the genes underwent rapid activation, sustained upregulation after COR treatment, and mediated the growth-defense tradeoffs. Several transcription factors (TFs), including RAP2.6L, MYB44, WRKY40, and WRKY18, were identified as instantly activated components associated with pathogen and insect resistance. JA might rapidly activate RAV1 and KAN1 to repress brassinosteroid (BR) response genes, upregulate KAN1, the C2H2 TF families ZF2, ZF3, ZAT6, and STZ/ZAT10 to repress the biosynthesis, transport, and signaling of auxin to arrest growth. Independent datasets and preserved analyses validated the reproducibility of the results. Our study provided a comprehensive snapshot of genes that respond to JA signals and provided valuable resources for functional studies on the genetic modification of breeding population that exhibit robust growth and defense simultaneously.
Collapse
Affiliation(s)
- Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China.
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Xiaofeng Guo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Haiying Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94 Weijin Road, Tianjin, 300071, People's Republic of China
| |
Collapse
|
147
|
da Costa CT, Offringa R, Fett-Neto AG. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110294. [PMID: 31779904 DOI: 10.1016/j.plantsci.2019.110294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 05/05/2023]
Abstract
Adventitious roots (ARs) form from above-ground organs, and auxins are major regulators of AR development. TIR1/AFB F-box proteins act as well-established auxin receptors. Auxin transport involves the PINFORMED (PIN) auxin efflux carriers and AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX1) influx carriers. To further elucidate the basis of AR development, we investigated the participation of these proteins and phosphorylation of PINs during adventitious rooting in hypocotyls of pre-etiolated flooded Arabidopsis thaliana seedlings. Mutant and GUS localization studies indicated that AFB2 is important in AR development. AUX1 loss-of-function reduced AR numbers, which could not be reversed by exogenous auxin. Single mutations in LAX1, LAX2 and LAX3 had no negative impact on AR development and the first and last mutations even promoted it. Double and triple mutants of AUX1, LAX1, LAX2 and LAX3 significantly reduced rooting, which was reversed by exogenous auxin. AUX1 was essential in AR establishment, with LAX3 apparently acting in conjunction. Proper phosphorylation of PINs by PID, WAG1 and WAG2 and auxin transport direction were equally essential for AR establishment. PIN1, AUX1 and AFB2 (overexpression) and LAX1, LAX3, PIN4 and PIN7 (downregulation) emerged as potential targets for genetic manipulation aiming at improving AR development.
Collapse
Affiliation(s)
- Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Remko Offringa
- Department of Plant Developmental Genetics, Institute of Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 CB, Leiden, the Netherlands.
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
148
|
Deletion in the Promoter of PcPIN-L Affects the Polar Auxin Transport in Dwarf Pear (Pyrus communis L.). Sci Rep 2019; 9:18645. [PMID: 31819123 PMCID: PMC6901534 DOI: 10.1038/s41598-019-55195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Dwarf cultivars or dwarfing rootstocks enable high-density planting and are therefore highly desirable in modern pear production. Previously, we found that the dwarf growth habit of pear is controlled by a single dominant gene PcDw. In this study, PcPIN-L (PCP021016) was cloned from dwarf-type and standard-type pears. PcPIN-L expression was significantly lower in the dwarf-type pears than in standard-type pears, which was caused by the CT repeat deletion in the promoter of dwarf-type pears. PcPIN-L overexpression in tobacco plants enhanced the growth of the stems and the roots. Notably, the indole acetic acid (IAA) content decreased in the shoot tips and increased in the stems of transgenic lines compared with wild type, which is consistent with the greater IAA content in the shoot tips and lower IAA content in the stems of dwarf-type pears than in standard-type pears. The CT repeat deletion in the promoter that causes a decrease in promoter activity is associated with lower PcPIN-L expression in the dwarf-type pears, which might limit the polar auxin transport and in turn result in the dwarf phenotype. Taken together, the results provide a novel dwarfing molecular mechanism in perennial woody plants.
Collapse
|
149
|
Verna C, Ravichandran SJ, Sawchuk MG, Linh NM, Scarpella E. Coordination of tissue cell polarity by auxin transport and signaling. eLife 2019; 8:51061. [PMID: 31793881 PMCID: PMC6890459 DOI: 10.7554/elife.51061] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023] Open
Abstract
Plants coordinate the polarity of hundreds of cells during vein formation, but how they do so is unclear. The prevailing hypothesis proposes that GNOM, a regulator of membrane trafficking, positions PIN-FORMED auxin transporters to the correct side of the plasma membrane; the resulting cell-to-cell, polar transport of auxin would coordinate tissue cell polarity and induce vein formation. Contrary to predictions of the hypothesis, we find that vein formation occurs in the absence of PIN-FORMED or any other intercellular auxin-transporter; that the residual auxin-transport-independent vein-patterning activity relies on auxin signaling; and that a GNOM-dependent signal acts upstream of both auxin transport and signaling to coordinate tissue cell polarity and induce vein formation. Our results reveal synergism between auxin transport and signaling, and their unsuspected control by GNOM in the coordination of tissue cell polarity during vein patterning, one of the most informative expressions of tissue cell polarization in plants. Plants, animals and other living things grow and develop over their lifetimes: for example, oak trees come from acorns and chickens begin their lives as eggs. To achieve these transformations, the cells in those living things must grow, divide and change their shape and other features. Plants and animals specify the directions in which their cells will grow and develop by gathering specific proteins to one side of the cells. This makes one side different from all the other sides, which the cells use as an internal compass that points in one direction. To align their internal compasses, animal cells touch one another and often move around inside the body. Plant cells, on the other hand, are surrounded by a wall that keeps them apart and prevents them from moving around. So how do plant cells align their internal compasses? Scientists have long thought that a protein called GNOM aligns the internal compasses of plant cells. The hypothesis proposes that GNOM gathers another protein, called PIN1, to one side of a cell. PIN1 would then pump a plant hormone known as auxin out of this first cell and, in doing so, would also drain auxin away from the cell on the opposite side. In this second cell, GNOM would then gather PIN1 to the side facing the first cell, and this process would repeat until all the cells' compasses were aligned. To test this hypothesis, Verna et al. combined microscopy with genetic approaches to study how cells' compasses are aligned in the leaves of a plant called Arabidopsis thaliana. The experiments revealed that auxin needs to move from cell-to-cell to align the cells’ compasses. However, contrary to the above hypothesis, this movement of auxin was not sufficient: the cells also needed to be able to detect and respond to the auxin that entered them. Along with controlling how auxin moved between the cells, GNOM also regulated how the cells responded to the auxin. These findings reveal how plants specify which directions their cells grow and develop. In the future, this knowledge may eventually aid efforts to improve crop yields by controlling the growth and development of crop plants.
Collapse
Affiliation(s)
- Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
150
|
Blakeslee JJ, Spatola Rossi T, Kriechbaumer V. Auxin biosynthesis: spatial regulation and adaptation to stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5041-5049. [PMID: 31198972 DOI: 10.1093/jxb/erz283] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
The plant hormone auxin is essential for plant growth and development, controlling both organ development and overall plant architecture. Auxin homeostasis is regulated by coordination of biosynthesis, transport, conjugation, sequestration/storage, and catabolism to optimize concentration-dependent growth responses and adaptive responses to temperature, water stress, herbivory, and pathogens. At present, the best defined pathway of auxin biosynthesis is the TAA/YUC route, in which the tryptophan aminotransferases TAA and TAR and YUCCA flavin-dependent monooxygenases produce the auxin indole-3-acetic acid from tryptophan. This review highlights recent advances in our knowledge of TAA/YUC-dependent auxin biosynthesis focusing on membrane localization of auxin biosynthetic enzymes, differential regulation in root and shoot tissue, and auxin biosynthesis during abiotic stress.
Collapse
Affiliation(s)
- Joshua J Blakeslee
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | - Tatiana Spatola Rossi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|