101
|
Miller JB, Brandon JA, McKinnon LM, Sabra HW, Lucido CC, Gonzalez Murcia JD, Nations KA, Payne SH, Ebbert MT, Kauwe JS, Ridge PG. Ramp sequence may explain synonymous variant association with Alzheimer's disease in the Paired Immunoglobulin-like Type 2 Receptor Alpha ( PILRA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631528. [PMID: 39829933 PMCID: PMC11741268 DOI: 10.1101/2025.01.06.631528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND Synonymous variant NC_000007.14:g.100373690T>C (rs2405442:T>C) in the Paired Immunoglobulin-like Type 2 Receptor Alpha (PILRA) gene was previously associated with decreased risk for Alzheimer's disease (AD) in genome-wide association studies, but its biological impact is largely unknown. OBJECTIVE We hypothesized that rs2405442:T>C decreases mRNA and protein levels by destroying a ramp of slowly translated codons at the 5' end of PILRA. METHODS We assessed rs2405442:T>C predicted effects on PILRA through quantitative polymerase chain reactions (qPCR) and enzyme-linked immunosorbent assays (ELISA) using Chinese hamster ovary (CHO) cells. RESULTS Both mRNA (P=1.9184 × 10-13) and protein (P=0.01296) levels significantly decreased in the mutant versus the wildtype in the direction that we predicted based on destroying a ramp sequence. CONCLUSIONS We show that rs2405442:T>C alone directly impacts PILRA mRNA and protein expression, and ramp sequences may play a role in regulating AD-associated genes without modifying the protein product.
Collapse
Affiliation(s)
- Justin B. Miller
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - J. Anthony Brandon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | | | - Hady W. Sabra
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Chloe C. Lucido
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | | | - Kayla A. Nations
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Samuel H. Payne
- Department of Biology, Brigham Young University, Provo, UT 84602
| | - Mark T.W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40506, USA
| | - John S.K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
102
|
Mishra S, Morshed N, Sindhu S, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's disease gene SORL1 regulates lysosome function in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600648. [PMID: 38979155 PMCID: PMC11230436 DOI: 10.1101/2024.06.25.600648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The SORL1 gene encodes the sortilin related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1 deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to development of AD. Additionally, our findings may inform development of novel lysosome and microglia associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Nader Morshed
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Sindhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Beth Stevens
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Neurology, University of Washington, Seattle, WA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
103
|
Sampatakakis SN, Mourtzi N, Charisis S, Mamalaki E, Ntanasi E, Hatzimanolis A, Ramirez A, Lambert JC, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Megalou M, Sakka P, Scarmeas N. Walking time and genetic predisposition for Alzheimer's disease: Results from the HELIAD study. Clin Neuropsychol 2025; 39:83-99. [PMID: 38741352 DOI: 10.1080/13854046.2024.2344869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Objective: Our study aimed to explore whether physical condition might affect the association between genetic predisposition for Alzheimer's Disease (AD) and AD incidence. Methods: The sample of participants consisted of 561 community-dwelling adults over 64 years old, without baseline dementia (508 cognitively normal and 53 with mild cognitive impairment), deriving from the HELIAD, an ongoing longitudinal study with follow-up evaluations every 3 years. Physical condition was assessed at baseline through walking time (WT), while a Polygenic Risk Score for late onset AD (PRS-AD) was used to estimate genetic predisposition. The association between WT and PRS-AD with AD incidence was evaluated with Cox proportional hazard models adjusted for age, sex, education years, global cognition score and APOE ε-4 genotype. Then, the association between WT and AD incidence was investigated after stratifying participants by low and high PRS-AD. Finally, we examined the association between PRS-AD and AD incidence after stratifying participants by WT. Results: Both WT and PRS-AD were connected with increased AD incidence (p < 0.05), after adjustments. In stratified analyses, in the slow WT group participants with a greater genetic risk had a 2.5-fold higher risk of developing AD compared to participants with lower genetic risk (p = 0.047). No association was observed in the fast WT group or when participants were stratified based on PRS-AD. Conclusions: Genetic predisposition for AD is more closely related to AD incidence in the group of older adults with slow WT. Hence, physical condition might be a modifier in the relationship of genetic predisposition with AD incidence.
Collapse
Affiliation(s)
- Stefanos N Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Niki Mourtzi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Sokratis Charisis
- Department of Neurology, UT Health San Antonio, San Antonio, TX, USA
| | - Eirini Mamalaki
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alex Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Aiginition Hospital, Athens, Greece
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Charles Lambert
- U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | | | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Marousi, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
104
|
Wu H, Gu X, Liu S, Wang P, Lu H, Guan Y, Shi Z, Ji Y. ApoE Genotype, Age, and Cognitive Decline in Old Chinese Individuals Without Dementia: A Population-Based Study With Five-Year Follow-Up. Int J Geriatr Psychiatry 2025; 40:e70045. [PMID: 39814697 DOI: 10.1002/gps.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Apolipoprotein E (ApoE) ε4 genotype is a well-known risk factor for Alzheimer's disease (AD). However, its effect on predicting cognitive decline in individuals without dementia and its association with age are unclear. OBJECTIVE To investigate the relationship between ApoE polymorphism and risk of cognitive decline and dementia incidence in the elderly without dementia. METHODS This population-based prospective study was conducted between 2011 and 2016. The study involved 767 dementia-free individuals who had undergone ApoE genotype analysis, were aged ≥ 60 years, and lived in rural China. Participants were divided into three ApoE groups: E3 (genotype 3/3), E4 (genotypes 3/4 and 4/4), and E2 (genotype 2/3) groups. RESULTS After 5 years, 666 (86.8%) individuals were followed up. The rate of change in MMSE score was faster in the E4 group than in the E3 and E2 groups (5.0 ± 4.4 vs. 3.5 ± 3.8 vs. 3.9 ± 3.9, p = 0.001), after adjusting for age, sex, educational level and baseline MMSE scores, especially in the 70-79 years age group. In the same age group, the incidence rate of dementia was higher in the E4 group than in the E3 group (OR = 2.850; 95% CI: 1.146-7.090). After adjusting for age, sex, hypertensive status, educational level, marital status, engagement in social activities, and past history of stroke, the ApoE ε4 allele remained an independent risk factor for dementia incidence (OR = 3.070; 95% CI: 1.162-8.110) in individuals aged 70-79 years after follow-up. CONCLUSIONS ApoE ε4 carriers with age ≥ 60 years had faster cognitive decline. The ApoE ε4 allele was an independent risk factor for dementia incidence in extremely old individuals.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xingzhong Gu
- Department of Psychiatry, Tianjin Jianhua Hospital, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Hui Lu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yalin Guan
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
105
|
Gao S, Zhu P, Wang T, Han Z, Xue Y, Zhang Y, Wang L, Zhang H, Chen Y, Liu G. Alzheimer's disease genome-wide association studies in the context of statistical heterogeneity. Mol Psychiatry 2025; 30:342-348. [PMID: 38965422 DOI: 10.1038/s41380-024-02654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Affiliation(s)
- Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Ping Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Tao Wang
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Zhifa Han
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Acadamy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, 100029, Beijing, China
| | - Yanli Xue
- School of Biomedical Engineering, Capital Medical University, 10069, Beijing, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Haihua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Wuhu, 241002, Anhui, China
- Institute of Chronic Disease Prevention and Control, Wannan Medical College, No.22, Wenchang Road, Wuhu, 241002, Anhui, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China.
- Chinese Institute for Brain Research, 102206, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Wuhu, 241002, Anhui, China.
- Institute of Chronic Disease Prevention and Control, Wannan Medical College, No.22, Wenchang Road, Wuhu, 241002, Anhui, China.
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Brain Hospital, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong, China.
| |
Collapse
|
106
|
Redaelli V, Ricci M, Del Sole A, Piccione M, Prioni S, Rossi G. A novel SORL1 mutation in a pedigree affected by early-onset Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823241296017. [PMID: 40182695 PMCID: PMC11967206 DOI: 10.1177/25424823241296017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/02/2024] [Indexed: 04/05/2025] Open
Abstract
Familial cases of Alzheimer's disease (AD) with autosomal dominant transmission and early onset have a prevalence around 1%. Since only a small fraction of them has a monogenic inheritance due to APP, PSEN1, and PSEN2 genes, genetic studies are ongoing to unravel the missing heritability. By sequencing panels including multiple dementia-related genes, we identified a novel likely pathogenic mutation in SORL1 in a pedigree including five members affected by AD. This loss of function mutation may lead to a reduction of SORL1 receptor, worsening amyloidogenic burden. As the contribution of SORL1 mutations to heritability of AD is presently not well established, we think that it is very important to signal new familial (likely) pathogenic SORL1 mutations in order to define the actual genetic involvement of SORL1 in AD pathogenesis.
Collapse
Affiliation(s)
- Veronica Redaelli
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Ricci
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Del Sole
- Department of Diagnostic Services, Unit of Nuclear Medicine, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Marina Piccione
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Prioni
- Clinical Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomina Rossi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
107
|
Maure-Blesa L, Rodríguez-Baz I, Carmona-Iragui M, Fortea J. What Can We Learn About Alzheimer's Disease from People with Down Syndrome? Curr Top Behav Neurosci 2025; 69:197-226. [PMID: 39509049 DOI: 10.1007/7854_2024_546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Down syndrome (DS) is the most frequent cause of intellectual disability of genetic origin, estimated to affect about 1 in 700 babies born worldwide (CDC 2023). In Europe and the United States, current estimates indicate a population prevalence of 5.6 and 6.7 per 10,000 individuals, respectively, which translates to more than 200,000 people in the United States, more than 400,000 people in Europe, and approximately six million worldwide. Advances in healthcare and the treatment of accompanying conditions have significantly prolonged the lifespan of those with DS over the past 50 years. Consequently, there is a pressing need to address the challenges associated with ageing among this population, with Alzheimer's disease (AD) being the primary concern. In this chapter, we will review the significance of studying this population to understand AD biology, the insights gained on AD in DS (DSAD), and how this knowledge can help us understand the AD not only in DS but also in the general population. We will conclude by exploring the objectives that remain to be accomplished.
Collapse
Affiliation(s)
- Lucia Maure-Blesa
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Iñigo Rodríguez-Baz
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Facultad de Medicina, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain.
| |
Collapse
|
108
|
Zhou X, Cao H, Jiang Y, Chen Y, Zhong H, Fu WY, Lo RMN, Wong BWY, Cheng EYL, Mok KY, Kwok TCY, Mok VCT, Ip FCF, Alzheimer's Disease Neuroimaging Initiative, Miyashita A, Hara N, Ikeuchi T, Hardy J, Chen Y, Fu AKY, Ip NY. Transethnic analysis identifies SORL1 variants and haplotypes protective against Alzheimer's disease. Alzheimers Dement 2025; 21:e14214. [PMID: 39655505 PMCID: PMC11772736 DOI: 10.1002/alz.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
Abstract
INTRODUCTION The SORL1 locus exhibits protective effects against Alzheimer's disease (AD) across ancestries, yet systematic studies in diverse populations are sparse. METHODS Logistic regression identified AD-associated SORL1 haplotypes in East Asian (N = 5249) and European (N = 8588) populations. Association analysis between SORL1 haplotypes and AD-associated traits or plasma biomarkers was conducted. The effects of non-synonymous mutations were assessed in cell-based systems. RESULTS Protective SORL1 variants/haplotypes were identified in the East Asian and European populations. Haplotype Hap_A showed a strong protective effect against AD in East Asians, linked to less severe AD phenotypes, higher SORL1 transcript levels, and plasma proteomic changes. A missense variant within Hap_A, rs2282647-C allele, was linked to a lower risk of AD and decreased expression of a truncated SORL1 protein isoform. DISCUSSION Our transethnic analysis revealed key SORL1 haplotypes that exert protective effects against AD, suggesting mechanisms of the protective role of SORL1 in AD. HIGHLIGHTS We examined the AD-protective mechanisms of SORL1 in the general population across diverse ancestral backgrounds by jointly analyzing data from three East Asian cohorts (ie, mainland China, Hong Kong, and Japan) and a European cohort. Comparative analysis unveiled key ethnic-specific SORL1 genetic variants and haplotypes. Among these, the SORL1 minor haplotype, Hap_A, emerged as the primary AD-protective factor in East Asians. Hap_A exerts significant AD-protective effects in both APOE ε4 carriers and non-carriers. SORL1 haplotype Hap_A is associated with cognitive function, brain volume, and the activity of specific neuronal and immune-related pathways closely connected to AD risk. Protective variants within Hap_A are linked to increased SORL1 expression in human tissues. We identified an isoform-specific missense variant in Hap_A that modifies the function and levels of a truncated SORL1 protein isoform that is poorly investigated.
Collapse
Affiliation(s)
- Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - Han Cao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Yuanbing Jiang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen–Hong Kong Institute of Brain Science – Shenzhen Fundamental Research InstitutionsShenzhenGuangdongChina
| | - Huan Zhong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Wing Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
| | - Ronnie Ming Nok Lo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Bonnie Wing Yan Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Elaine Yee Ling Cheng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kin Ying Mok
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Timothy C. Y. Kwok
- Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Geriatrics, Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
| | - Vincent C. T. Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Neurology, Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
| | - Fanny C. F. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | | | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - John Hardy
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
- Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong KongChina
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen–Hong Kong Institute of Brain Science – Shenzhen Fundamental Research InstitutionsShenzhenGuangdongChina
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHong KongChina
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- SIAT–HKUST Joint Laboratory for Brain ScienceShenzhenGuangdongChina
| |
Collapse
|
109
|
Güzel Ö, Kehoe PG. The Contribution of the Renin-Angiotensin System to Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:107-127. [PMID: 39543022 DOI: 10.1007/7854_2024_525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The renin-angiotensin system (RAS) is becoming increasingly recognised as a biochemical pathway relevant to the development and progression of Alzheimer's disease (AD). RAS involvement in AD was initially linked to AD via numerous genetic association studies and more recent Genome-Wide Association Studies (GWAS), and in some cases in relation to classical hallmarks of AD pathology. Since these initial findings, which will be summarised here, several complementary areas of research are converging in support of what has been proposed as the Angiotensin Hypothesis for Alzheimer's disease. This hypothesis proposes how the RAS and disease-associated changes to the normal balance between opposing regulatory pathways within RAS warrant careful consideration in the pathogenesis of AD and its pathology. We discuss some of these in relation to RAS-targeting therapeutics, originally developed for the treatment of cardiovascular conditions, and how they might be repurposed as interventions for AD.
Collapse
Affiliation(s)
- Özge Güzel
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK.
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Patrick G Kehoe
- Cerebrovascular and Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
110
|
Ranganathan R, Li S, Sapozhnikov G, Wang S, Song YQ. Lower expression of BIN1's neuronal isoform in vulnerable excitatory neurons increases risk in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823241296018. [PMID: 40034505 PMCID: PMC11864243 DOI: 10.1177/25424823241296018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 03/05/2025] Open
Abstract
Background Neurons in Alzheimer's disease (AD) experience elevated DNA damage, with DNA repair sites enriched at enhancer regions of genes essential for neuronal survival. Excitatory neurons in the cortical superficial layers expressing CUX2 and RORB (Cux2+/Rorb+), are selectively vulnerable in AD, but their relationship to single nucleotide polymorphisms (SNPs) in AD genome-wide association studies (GWAS) is unclear. Objective This study aimed to identify and characterize functional AD-GWAS SNPs using single-nucleus RNA sequencing data, focusing on selectively vulnerable neurons and DNA repair hotspots. Methods Filters were applied to identify candidate SNPs based on overlap with repair hotspots, RNA expression, transcription factor binding, AD association, and epigenetic significance. In vitro assays and analyses of large datasets from bulk RNA-seq (n = 1894), proteomics (n = 400), and single-nucleus RNA-seq (n = 424, 1.6 M cells) were conducted. Results BIN1 SNP, rs78710909, met multiple criteria - located in an AD-GWAS locus, repair hotspot, and promoter region. rs78710909C exhibits 1.52× higher AD risk and 5.4× differential transcription factor binding. In vitro, rs78710909C shows greater enhancer activity and weaker p53 but stronger E2F1 binding. BIN1's neuronal isoform is neuroprotective, but its AD expression is lower (p < 0.01). Moreover, only in AD and Cux2+/Rorb + neurons, rs78710909C is associated with a lower average BIN1 neuronal isoform ratio (p < 0.01). The genes upregulated in neurons with lower neuronal isoform ratio were associated with the hallmarks of AD pathology. Conclusions In a disease-relevant mechanism, the BIN1 SNP rs78710909C is associated with a lower ratio of BIN1's neuronal isoform which increases the vulnerability of specific excitatory neurons in AD patients.
Collapse
Affiliation(s)
- Rajesh Ranganathan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Siwen Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Georgy Sapozhnikov
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shoutang Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
111
|
Zheng J, Huang J, Yang Q, Zhou R, Huang Y, Wu X, Tang S. Hospital-Treated Infectious Diseases, Infection Burden, and Risk of Lung Cancer: An Observational and Mendelian Randomization Study. Chest 2025; 167:270-282. [PMID: 39084518 DOI: 10.1016/j.chest.2024.06.3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Although infections play a role in the development of lung cancer, the longitudinal association between infection and the risk of lung cancer is disputed, and data relating to pathogen types and infection sites are sparse. RESEARCH QUESTION How do infections affect subsequent lung cancer risk, and is the impact limited to specific microbes rather than infection burden? STUDY DESIGN AND METHODS Data on > 900 infectious diseases were gathered from the UK Biobank study. Short- and long-term effects of infections were assessed by using time-varying Cox proportional hazards models. The analysis was repeated, excluding patients with concurrent multi-pathogen infections or outcomes within the 10 years following the initial hospitalization for the index infection. A life table approach was used to estimate years of life lost from lung cancer. Infection burden was defined as the sum of the number of infection episodes over time and co-occurring infections. The genome-wide association studies used in two-sample Mendelian randomization were obtained from mostly European ancestry. RESULTS Hospital-treated infectious disease was associated with a greater risk of lung cancer (adjusted hazard ratio [aHR], 1.79; 95% CI, 1.74-1.83). aHRs for lung cancer ranged from 1.39 to 2.82 across pathogen types. The impact of lower respiratory tract infections (LRTIs) on lung cancer was the strongest, with an aHR of 3.22 (95% CI, 2.64-3.92); the aHR for extra-LRTIs was 1.29 (95% CI, 1.16-1.44). A dose-response association was observed between infection burden and lung cancer risk across different FEV1 percent predicted (Ptrend < .001). Multiple infections led to significant life lost from lung cancer at the age of 50 years. Mendelian randomization analysis reaffirmed the causal association. INTERPRETATION Both observational and genetic analyses suggest that infectious diseases could increase the risk of lung cancer. The dual perspective on the LRTIs and extra-LRTIs impacts may inform lung cancer prevention strategies.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Bioscience and Biomedical Engineering Thrust (J. Z. and S.T.), Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Jinghan Huang
- Biomedical Genetics Section (J. H.), School of Medicine, Boston University, Boston, MA; Department of Chemical Pathology (J. H.), Faculty of Medicine, Chinese University of Hong Kong, Hong Kong
| | - Quan Yang
- Cardiac and Vascular Center (Q. Y.), The University of Hong Kong-Shenzhen Hospital, Shenzhen
| | - Rui Zhou
- Department of Epidemiology (R. Z., Y. H., and X. W.), School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou
| | - Yining Huang
- Department of Epidemiology (R. Z., Y. H., and X. W.), School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou
| | - Xianbo Wu
- Department of Epidemiology (R. Z., Y. H., and X. W.), School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust (J. Z. and S.T.), Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China; Division of Emerging Interdisciplinary Areas (S. T.), Center for Aging Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
112
|
Breddels EM, Snihirova Y, Pishva E, Gülöksüz S, Blokland GAM, Luykx J, Andreassen OA, Linden DEJ, van der Meer D, For the Alzheimer's Disease Neuroimaging Initiative. Brain morphology mediating the effects of common genetic risk variants on Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823251328300. [PMID: 40144144 PMCID: PMC11938454 DOI: 10.1177/25424823251328300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Background Late-onset Alzheimer's disease (LOAD) has been associated with alterations in the morphology of multiple brain structures, and it is likely that disease mechanisms differ between brain regions. Coupling genetic determinants of LOAD with measures of brain morphology could localize and identify primary causal neurobiological pathways. Objective To determine causal pathways from genetic risk variants of LOAD via brain morphology to LOAD. Methods Mediation and Mendelian randomization (MR) analysis were performed using common genetic variation, T1 MRI and clinical data collected by UK Biobank and Alzheimer's Disease Neuroimaging Initiative. Results Thickness of the entorhinal cortex and the volumes of the hippocampus, amygdala and inferior lateral ventricle mediated the effect of APOE ε4 on LOAD. MR showed that a thinner entorhinal cortex, a smaller hippocampus and amygdala, and a larger volume of the inferior lateral ventricles, increased the risk of LOAD as well as vice versa. Conclusions Combining neuroimaging and genetic data can give insight into the causal neuropathological pathways of LOAD.
Collapse
Affiliation(s)
- Esmee M Breddels
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Yelyzaveta Snihirova
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Faculty of Health and Life Sciences, Medical School, University of Exeter, Exeter, UK
| | - Sinan Gülöksüz
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Faculty of Health and Life Sciences, Medical School, University of Exeter, Exeter, UK
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Gabriëlla AM Blokland
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jurjen Luykx
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, the Netherlands
- GGZ in Geest Mental Health Care, Amsterdam, The Netherlands
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders Research, Oslo University Hospital & University of Oslo, Oslo, Norway
| | - David EJ Linden
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Dennis van der Meer
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
113
|
Tripathi S, Sharma Y, Kumar D. Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:259-281. [PMID: 39722484 DOI: 10.2174/0113892037326839241014054430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ε4 allele is one of the main genetic risk factors for AD. While the APOE gene's ε4 allele considerably increases the chance of developing AD, the ε2 allele is protective compared to the prevalent ε3 variant. It is fiercely discussed how APOE affects the development and course of disease since it has a variety of activities that influence both neuronal and non-neuronal cells. ApoE4 contributes to the formation of tau tangles, deposition of Aβ, neuroinflammation, and other processes. Four decades of research have provided a significant understanding of the structure of APOE and how this may affect the neuropathology and pathogenesis of AD. APOE is a crucial lipid transporter essential for the growth of the central nervous system (CNS), upkeep, and repair. The mechanisms by which APOE contributes to the pathophysiology of AD are still up for discussion, though. Evidence suggests that APOE affects the brain's clearance and deposition of Aβ. Additionally, APOE has Aβ-independent pathways in AD, which has led to the identification of new functions for APOE, including mitochondrial dysfunction. This study summarizes important studies that describe how APOE4 affects well-known AD pathologies, including tau pathology, Aβ, neuroinflammation, and dysfunction of neural networks. This study also envisions some of the therapeutic approaches being used to target APOE4 in the hopes of preventing or treating AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
114
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran‐Laforet V, Elyaman W, Evans EE, Fitzgerald‐Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin‐Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2025; 21:e14291. [PMID: 39692624 PMCID: PMC11772715 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
|
115
|
Chen J, Cammann D, Liu T, Liu Y, Cummings M, Chen X, Oh E, Rotter J. Shared Genetic Architecture Between COVID-19 Severity and Alzheimer's Disease Across European and African Ancestries. RESEARCH SQUARE 2024:rs.3.rs-5619229. [PMID: 39764106 PMCID: PMC11703345 DOI: 10.21203/rs.3.rs-5619229/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
The global outbreak of COVID-19, caused by the SARS-CoV-2 virus, has been linked to long-term neurological complications, including an increased risk of Alzheimer's disease (AD) among older adults. However, the precise genetic impact of COVID-19 on long-term AD development remains unclear. This study leveraged genome-wide association study (GWAS) data and genotype data to explore the genetic association between AD and various COVID-19 phenotypes across European ancestry (EA) and African ancestry (AA) cohorts, and the possibility of a causal effect of COVID-19 on AD. We first calculated polygenic risk scores (PRSs) of three COVID-19 phenotypes in AD cases and controls from both EA and AA populations, then determined the genetic associations between COVID-19 PRSs and AD by logistic regression analyses with or without adjusting for age, sex, and APOE genotypes. Significant positive associations were found between AD diagnosis and COVID-19 PRSs in both populations, with the strongest associations identified in the AA population. However, Mendelian randomization (MR) analyses revealed no evidence of a causal effect of COVID-19 phenotypes on AD liability. We explored this finding further through the analysis of shared genomic regions between the COVID-19 phenotypes and AD and found a region of overlap on chromosome 17 that was highly pleiotropic for traits implicating immune function, psychiatric disorders, and lung function phenotypes. These findings suggest that while COVID-19 and AD share overlapping polygenic contributions involving peripheral genes across multiple traits, they lack a direct connection involving core genes that drive the development of their respective pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangning Chen
- The university of Texas Health Science Center at Houston
| | | | - Jerome Rotter
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| |
Collapse
|
116
|
Ahmad SR, Zeyaullah M, Khan MS, AlShahrani AM, Altijani AAG, Ali H, Dawria A, Mohieldin A, Alam MS, Mohamed AOA. Pharmacogenomics for neurodegenerative disorders - a focused review. Front Pharmacol 2024; 15:1478964. [PMID: 39759457 PMCID: PMC11695131 DOI: 10.3389/fphar.2024.1478964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 01/07/2025] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by the progressive degeneration of neuronal structure and function, leading to severe cognitive and motor impairments. These conditions present significant challenges to healthcare systems, and traditional treatments often fail to account for genetic variability among patients, resulting in inconsistent therapeutic outcomes. Pharmacogenomics aims to tailor medical treatments based on an individual's genetic profile, thereby improving therapeutic efficacy and reducing adverse effects. This focused review explores the genetic factors influencing drug responses in neurodegenerative diseases and the potential of pharmacogenomics to revolutionize their treatment. Key genetic markers, such as the APOE ε4 allele in AD and the CYP2D6 polymorphisms in PD, are highlighted for their roles in modulating drug efficacy. Additionally, advancements in pharmacogenomic tools, including genome-wide association studies (GWAS), next-generation sequencing (NGS), and CRISPR-Cas9, are discussed for their contributions to personalized medicine. The application of pharmacogenomics in clinical practice and its prospects, including ethical and data integration challenges, are also examined.
Collapse
Affiliation(s)
- S. Rehan Ahmad
- Hiralal Mazumdar Memorial College for Women, West Bengal State University, Kolkata, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdelrhman A. Galaleldin Altijani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Haroon Ali
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Adam Dawria
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Ali Mohieldin
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Awad Osman Abdalla Mohamed
- Department of Anaesthesia Technology, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
117
|
Anderson EL. Response to Schmidt et al.: Lower activity of cholesteryl ester transfer protein (CETP) and the risk of dementia: a Mendelian randomization analysis. Alzheimers Res Ther 2024; 16:264. [PMID: 39702548 DOI: 10.1186/s13195-024-01631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
A recent paper concluded that cholesteryl ester transfer protein (CETP) inhibition may be a viable target to treat dementia, based on human genetic evidence of a protective effect of target inhibition on risk of Lewy body and Parkinson's dementia. Alzheimer's disease, which is by far the most prevalent cause of dementia (around 80% of all dementia cases) was not included as an outcome. Evidence shows CETP inhibition is unlikely to affect Alzheimer's risk and may even potentially modestly increase risk. There is also little evidence to support an effect of CETP inhibition on all-cause or vascular dementia. Thus, CETP inhibition is unlikely to be a viable target to treat the most prevalent causes of dementia.
Collapse
Affiliation(s)
- Emma L Anderson
- Division of Psychiatry, University College London, 149 Tottenham Court Road, W1T 7NF, London, UK.
| |
Collapse
|
118
|
Roe JM, Vidal-Piñeiro D, Sørensen Ø, Grydeland H, Leonardsen EH, Iakunchykova O, Pan M, Mowinckel A, Strømstad M, Nawijn L, Milaneschi Y, Andersson M, Pudas S, Bråthen ACS, Kransberg J, Falch ES, Øverbye K, Kievit RA, Ebmeier KP, Lindenberger U, Ghisletta P, Demnitz N, Boraxbekk CJ, Drevon CA, Penninx B, Bertram L, Nyberg L, Walhovd KB, Fjell AM, Wang Y. Brain change trajectories in healthy adults correlate with Alzheimer's related genetic variation and memory decline across life. Nat Commun 2024; 15:10651. [PMID: 39690174 PMCID: PMC11652687 DOI: 10.1038/s41467-024-53548-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
Throughout adulthood and ageing our brains undergo structural loss in an average pattern resembling faster atrophy in Alzheimer's disease (AD). Using a longitudinal adult lifespan sample (aged 30-89; 2-7 timepoints) and four polygenic scores for AD, we show that change in AD-sensitive brain features correlates with genetic AD-risk and memory decline in healthy adults. We first show genetic risk links with more brain loss than expected for age in early Braak regions, and find this extends beyond APOE genotype. Next, we run machine learning on AD-control data from the Alzheimer's Disease Neuroimaging Initiative using brain change trajectories conditioned on age, to identify AD-sensitive features and model their change in healthy adults. Genetic AD-risk linked with multivariate change across many AD-sensitive features, and we show most individuals over age ~50 are on an accelerated trajectory of brain loss in AD-sensitive regions. Finally, high genetic risk adults with elevated brain change showed more memory decline through adulthood, compared to high genetic risk adults with less brain change. Our findings suggest quantitative AD risk factors are detectable in healthy individuals, via a shared pattern of ageing- and AD-related neurodegeneration that occurs along a continuum and tracks memory decline through adulthood.
Collapse
Grants
- U01 AG024904 NIA NIH HHS
- The infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (ZonMw, grant number 10-000‐1002) and financial contributions by participating universities and mental health care organizations (VU University Medical Center, GGZ inGeest, Leiden University Medical Center, Leiden University, GGZ Rivierdu-inen, University Medical Center Groningen, University of Groningen, Lentis, GGZ Friesland, GGZ Drenthe, Rob Giel Onderzoekscentrum).
- Scholar grant from Knut and Alice Wallenberg’s (KAW) foundation to L.N.
- European Research Council 313440 (to K.B.W.) Norwegian Research Council (to A.M.F. and K.B.W.) under grants 249931 (TOPPFORSK)
- European Research Council under grants 283634, 725025 (to A.M.F.) Norwegian Research Council (to A.M.F. and K.B.W.) under grants 249931 (TOPPFORSK) The National Association for Public Health’s dementia research program, Norway (to A.M.F)
- Norwegian Research Council grant 302854 (FRIPRO; to Y.W.)
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten H Leonardsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olena Iakunchykova
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Athanasia Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura Nawijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Micael Andersson
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anne Cecilie Sjøli Bråthen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Jonas Kransberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie Sogn Falch
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Knut Øverbye
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus P Ebmeier
- Department of Psychiatry and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Carl-Johan Boraxbekk
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Sciences, Diagnostic Radiology, and Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo Science Park, Oslo, Norway
| | - Brenda Penninx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
119
|
Bhardwaj K, Jha A, Roy A, Kumar H. The crucial role of VPS35 and SHH in Parkinson's disease: Understanding the mechanisms behind the neurodegenerative disorder. Brain Res 2024; 1845:149204. [PMID: 39197569 DOI: 10.1016/j.brainres.2024.149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches. At the molecular level, the complexity is more due to the involvement of vacuolar protein sorting 35 (VPS35) and sonic hedgehog (SHH) signaling in PD (directly or indirectly), leading to one of the most prominent hallmarks of the disease, which is an accumulation of α-synuclein. This elevated pathogenesis may result from impaired autophagy due to mutation in the case of VPS35 and impairment in SHH signaling at the molecular level. The traditional understanding of PD is marked by the disruption of dopaminergic neurons and dopaminergic signaling, which exacerbates symptoms of motor function deficits. However, the changes at the molecular level that are being disregarded also impact the overall health of the dopaminergic system. Gaining insight into these two unique mechanisms is essential to determine whether they give neuroprotection or have no effect on the health of neurons. Hence, here we tried to simplify the understanding of the role of VPS35 and SHH signaling to comprehend it in one direction.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akanksha Jha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
120
|
Dilliott AA, Costanzo MC, Bandres-Ciga S, Blauwendraat C, Casey B, Hoang Q, Iwaki H, Jang D, Kim JJ, Leonard HL, Levine KS, Makarious M, Nguyen TT, Rouleau GA, Singleton AB, Smadbeck P, Solle J, Vitale D, Nalls MA, Flannick J, Burtt NP, Farhan SM. The Neurodegenerative Disease Knowledge Portal: Propelling Discovery Through the Sharing of Neurodegenerative Disease Genomic Resources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.27.24307990. [PMID: 38853922 PMCID: PMC11160810 DOI: 10.1101/2024.05.27.24307990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Although large-scale genetic association studies have proven useful for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathological mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across ten different phenotypic groups, including neurological conditions such as Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively utilize the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use-cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open-science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Allison A. Dilliott
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Maria C. Costanzo
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Bradford Casey
- Michael J. Fox Foundation for Parkinson’s Research, NY, NY USA
| | - Quy Hoang
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Dongkeun Jang
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Hampton L. Leonard
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Kristin S. Levine
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Mary Makarious
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Trang T. Nguyen
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A. Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Andrew B. Singleton
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
| | - Patrick Smadbeck
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J Solle
- Michael J. Fox Foundation for Parkinson’s Research, NY, NY USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- DataTecnica LLC, Washington, DC, USA
| | - Mike A. Nalls
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD USA
- Laboratory of Neurogenetics, NIH, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Jason Flannick
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Noël P. Burtt
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sali M.K. Farhan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
121
|
Kuzma A, Valladares O, Greenfest-Allen E, Nicaretta H, Kirsch M, Ren Y, Katanic Z, White H, Wilk A, Bass L, Brettschneider J, Carter L, Cifello J, Chuang WH, Clark K, Gangadharan P, Haut J, Ho PC, Horng W, Iqbal T, Jin Y, Keskinen P, Rose AL, Moon MK, Manuel J, Qu L, Robbins F, Saravanan N, Sha J, Tate S, Zhao Y, Cantwell L, Gardner J, Chou SY, Tzeng JY, Bush W, Naj A, Kuksa P, Lee WP, Leung YY, Schellenberg G, Wang LS. NIAGADS: A Comprehensive National Data Repository for Alzheimer's Disease and Related Dementia Genetics and Genomics Research. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315029. [PMID: 39417134 PMCID: PMC11483014 DOI: 10.1101/2024.10.07.24315029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
NIAGADS is the National Institute on Aging (NIA) designated national data repository for human genetics research on Alzheimer's Disease and related dementia (ADRD). NIAGADS maintains a high-quality data collection for ADRD genetic/genomic research and supports genetics data production and analysis. NIAGADS hosts whole genome and exome sequence data from the Alzheimer's Disease Sequencing Project (ADSP) and other genotype/phenotype data, encompassing 209,000 samples. NIAGADS shares these data with hundreds of research groups around the world via the Data Sharing Service, a FISMA moderate compliant cloud-based platform that fully supports the NIH Genome Data Sharing Policy. NIAGADS Open Access consists of multiple knowledge bases with genome-wide association summary statistics and rich annotations on the biological significance of genetic variants and genes across the human genome. NIAGADS stands as a keystone in promoting collaborations to advance the understanding and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Amanda Kuzma
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily Greenfest-Allen
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heather Nicaretta
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Maureen Kirsch
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Youli Ren
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zivadin Katanic
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heather White
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Wilk
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Bass
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jascha Brettschneider
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Luke Carter
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Cifello
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wei-Hsuan Chuang
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kaylyn Clark
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Prabhakaran Gangadharan
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jacob Haut
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pei-Chuan Ho
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenhwai Horng
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taha Iqbal
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yumi Jin
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter Keskinen
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexis Lerro Rose
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michelle K Moon
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Manuel
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liming Qu
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Flawless Robbins
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Naveensri Saravanan
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jin Sha
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sam Tate
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Zhao
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura Cantwell
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jake Gardner
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin-Yi Chou
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Economics, Lehigh University, Bethlehem, PA, United States
- National Bureau of Economic Research, Cambridge, MA, United States
| | - Jung-Ying Tzeng
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Bioinformatics Research Center, North Carolina State University, NC, USA
- Department of Statistics, North Carolina State University, NC, USA
| | - William Bush
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam Naj
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pavel Kuksa
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
122
|
Leung YY, Lee WP, Kuzma AB, Nicaretta H, Valladares O, Gangadharan P, Qu L, Zhao Y, Ren Y, Cheng PL, Kuksa PP, Wang H, White H, Katanic Z, Bass L, Saravanan N, Greenfest-Allen E, Kirsch M, Cantwell L, Iqbal T, Wheeler NR, Farrell JJ, Zhu C, Turner SL, Gunasekaran TI, Mena PR, Jin J, Carter L, Alzheimer’s Disease Sequencing Project, Zhang X, Vardarajan BN, Toga A, Cuccaro M, Hohman TJ, Bush WS, Naj AC, Martin E, Dalgard C, Kunkle BW, Farrer LA, Mayeux RP, Haines JL, Pericak-Vance MA, Schellenberg GD, Wang LS. Alzheimer's Disease Sequencing Project Release 4 Whole Genome Sequencing Dataset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24317000. [PMID: 39677464 PMCID: PMC11643159 DOI: 10.1101/2024.12.03.24317000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Alzheimer's Disease Sequencing Project (ADSP) is a national initiative to understand the genetic architecture of Alzheimer's Disease and Related Dementias (AD/ADRD) by sequencing whole genomes of affected participants and age-matched cognitive controls from diverse populations. The Genome Center for Alzheimer's Disease (GCAD) processed whole-genome sequencing data from 36,361 ADSP participants, including 35,014 genetically unique participants of which 45% are from non-European ancestry, across 17 cohorts in 14 countries in this fourth release (R4). This sequencing effort identified 387 million bi-allelic variants, 42 million short insertions/deletions, and 2.2 million structural variants. Annotations and quality control data are available for all variants and samples. Additionally, detailed phenotypes from 15,927 participants across 10 domains are also provided. A linkage disequilibrium panel was created using unrelated AD cases and controls. Researchers can access and analyze the genetic data via NIAGADS Data Sharing Service, the VariXam tool, or NIAGADS GenomicsDB.
Collapse
Affiliation(s)
- Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Heather Nicaretta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Prabhakaran Gangadharan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Liming Qu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Yi Zhao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Youli Ren
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Pavel P Kuksa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Heather White
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Zivadin Katanic
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Lauren Bass
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Naveen Saravanan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Emily Greenfest-Allen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Maureen Kirsch
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Laura Cantwell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Taha Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas R Wheeler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - John J. Farrell
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Shannon L Turner
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tamil I Gunasekaran
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pedro R Mena
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jimmy Jin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Luke Carter
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | | | - Xiaoling Zhang
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Badri N Vardarajan
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California
| | - Michael Cuccaro
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eden Martin
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Clifton Dalgard
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brian W Kunkle
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Richard P Mayeux
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Margaret A Pericak-Vance
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
123
|
Huang K, Zeng T, Koc S, Pettet A, Zhou J, Jain M, Sun D, Ruiz C, Ren H, Howe L, Richardson TG, Cortes A, Aiello K, Branson K, Pfenning A, Engreitz JM, Zhang MJ, Leskovec J. Small-cohort GWAS discovery with AI over massive functional genomics knowledge graph. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24318375. [PMID: 39677475 PMCID: PMC11643201 DOI: 10.1101/2024.12.03.24318375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Genome-wide association studies (GWASs) have identified tens of thousands of disease associated variants and provided critical insights into developing effective treatments. However, limited sample sizes have hindered the discovery of variants for uncommon and rare diseases. Here, we introduce KGWAS, a novel geometric deep learning method that leverages a massive functional knowledge graph across variants and genes to improve detection power in small-cohort GWASs significantly. KGWAS assesses the strength of a variant's association to disease based on the aggregate GWAS evidence across molecular elements interacting with the variant within the knowledge graph. Comprehensive simulations and replication experiments showed that, for small sample sizes ( N =1-10K), KGWAS identified up to 100% more statistically significant associations than state-of-the-art GWAS methods and achieved the same statistical power with up to 2.67× fewer samples. We applied KGWAS to 554 uncommon UK Biobank diseases ( N case <5K) and identified 183 more associations (46.9% improvement) than the original GWAS, where the gain further increases to 79.8% for 141 rare diseases (N case <300). The KGWAS-only discoveries are supported by abundant functional evidence, such as rs2155219 (on 11q13) associated with ulcerative colitis potentially via regulating LRRC32 expression in CD4+ regulatory T cells, and rs7312765 (on 12q12) associated with the rare disease myasthenia gravis potentially via regulating PPHLN1 expression in neuron-related cell types. Furthermore, KGWAS consistently improves downstream analyses such as identifying disease-specific network links for interpreting GWAS variants, identifying disease-associated genes, and identifying disease-relevant cell populations. Overall, KGWAS is a flexible and powerful AI model that integrates growing functional genomics data to discover novel variants, genes, cells, and networks, especially valuable for small cohort diseases.
Collapse
|
124
|
Ramirez AM, Bertholim-Nasciben L, Moura S, Coombs LE, Rajabli F, DeRosa BA, Whitehead PG, Adams LD, Starks TD, Mena P, Illannes-Manrique M, Tejada SJ, Byrd GS, Caban-Holt A, Cuccaro M, McInerney K, Cornejo-Olivas M, Feliciano-Astacio B, Wang L, Robayo MC, Xu W, Jin F, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM, Young JI, Vance JM. Ancestral Genomic Functional Differences in Oligodendroglia: Implications for Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-5338140. [PMID: 39678342 PMCID: PMC11643296 DOI: 10.21203/rs.3.rs-5338140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background This study aims to elucidate ancestry-specific changes to the genomic regulatory architecture in induced pluripotent stem cell (iPSC)-derived oligodendroglia, focusing on their implications for Alzheimer's disease (AD). This work addresses the lack of diversity in previous iPSC studies by including ancestries that contribute to African American (European/African) and Hispanic/Latino populations (Amerindian/African/European). Methods We generated 12 iPSC lines-four African, four Amerindian, and four European- from both AD patients and non-cognitively impaired individuals, with varying APOE genotypes (APOE3/3 and APOE4/4). These lines were differentiated into neural spheroids containing oligodendrocyte lineage cells. Single-nuclei RNA sequencing and ATAC sequencing were employed to analyze transcriptional and chromatin accessibility profiles, respectively. Differential gene expression, chromatin accessibility, and Hi-C analyses were conducted, followed by pathway analysis to interpret the results. Results We identified ancestry-specific differences in gene expression and chromatin accessibility. Notably, numerous AD GWAS-associated genes were differentially expressed across ancestries. The largest number of differentially expressed genes (DEGs) were found in European vs. Amerindian and African vs. Amerindian iPSC-derived oligodendrocyte progenitor cells (OPCs). Pathway analysis of APOE4/4 carriers vs APOE3/3 carriers exhibited upregulation of a large number of disease and metabolic pathways in APOE4/4 individuals of all ancestries. Of particular interest was that APOE4/4 carriers had significantly upregulated cholesterol biosynthesis genes relative to APOE3/3 individuals across all ancestries, strongest in iOPCs. Comparison of iOPC and iOL transcriptome data with corresponding human frontal cortex data demonstrated a high correlation (R2 > 0.85). Conclusions This research emphasizes the importance of including diverse ancestries in AD research to uncover critical gene expression differences between populations and ancestries that may influence disease susceptibility and therapeutic interventions. The upregulation of cholesterol biosynthesis genes in APOE4/4 carriers of all three ancestries supports the concept that APOE4 may produce disease effects early in life, which could have therapeutic implications as we move forward towards specific therapy for APOE4 carriers. These findings and the high correlation between brain and iPSC-derived OPC and OL transcriptomes support the relevance of this approach as a model for disease study.
Collapse
Affiliation(s)
- Aura M Ramirez
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sofia Moura
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Lauren E Coombs
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Farid Rajabli
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Brooke A DeRosa
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Patrice G Whitehead
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Larry D Adams
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Takiyah D Starks
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Pedro Mena
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sergio J Tejada
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Goldie S Byrd
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Allison Caban-Holt
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Michael Cuccaro
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Katalina McInerney
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Mario Cornejo-Olivas
- Universidad Científica del Sur Facultad de Ciencias de la Salud: Universidad Cientifica del Sur Facultad de Ciencias de la Salud
| | | | - Liyong Wang
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Maria C Robayo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Wanying Xu
- Case Western Reserve University School of Medicine
| | - Fulai Jin
- Case Western Reserve University School of Medicine
| | | | - Anthony J Griswold
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Derek M Dykxhoorn
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Juan I Young
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Jeffery M Vance
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
125
|
Verma S, Kurdekar A. Effectiveness of neuro-feedback on Alzheimer's rehabilitation: a bibliometric analysis. Neurodegener Dis Manag 2024; 14:257-266. [PMID: 39630012 PMCID: PMC11703126 DOI: 10.1080/17582024.2024.2435250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder with limited treatment options. Neurofeedback, a technique that trains brainwaves, has shown promise in addressing cognitive impairments. OBJECTIVES To conduct a bibliometric analysis to explore the current research on neurofeedback as a treatment for AD. METHODS A systematic literature review was performed based on PRISMA guidelines on 142 papers. Different bibliometric parameters like the author's country, author names, keywords, journal names, and country of citations were analyzed, and a network visualization chart was generated to understand the correlation of Alzheimer-related search terms to neurofeedback. RESULTS Research is concentrated in Europe and North America, with a significant gap in Asian countries. A growing body of evidence supports the potential benefits of neurofeedback for AD. A strong correlation has been found between neurofeedback and AD-related terms. Clinical trials suggest positive outcomes for neurofeedback in improving cognitive impairments and working memory. CONCLUSION Neurofeedback shows promise as a potential treatment for AD. Further research and clinical studies are needed to explore the full potential of neurofeedback for enhancing the quality of life for individuals with AD.
Collapse
Affiliation(s)
- Shruti Verma
- Symbiosis Centre for Media and Communication, Symbiosis International (Deemed University), Pune, India
| | - Aditya Kurdekar
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
126
|
Saveleva L, Cervena T, Mengoni C, Sima M, Krejcik Z, Vrbova K, Sikorova J, Mussalo L, de Crom TOE, Šímová Z, Ivanova M, Shahbaz MA, Penttilä E, Löppönen H, Koivisto AM, Ikram MA, Jalava PI, Malm T, Chew S, Vojtisek-Lom M, Topinka J, Giugno R, Rössner P, Kanninen KM. Transcriptomic and epigenomic profiling reveals altered responses to diesel emissions in Alzheimer's disease both in vitro and in population-based data. Alzheimers Dement 2024; 20:8825-8843. [PMID: 39579047 DOI: 10.1002/alz.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/15/2024] [Accepted: 09/21/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
Collapse
Affiliation(s)
- Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tereza Cervena
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claudia Mengoni
- Department of Computer Science, University of Verona, Verona, Italy
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Sikorova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zuzana Šímová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Department Driving Assessment, Neuro Centre, Kuopio University Hospital, Kuopio, Finland
- Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
- Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michal Vojtisek-Lom
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Mechatronics and Computer Engineering, the Technical University of Liberec, Liberec, Czech Republic
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
127
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
128
|
Xi D, Cui D, Zhang M, Zhang J, Shang M, Guo L, Han J, Du L. Identification of genetic basis of brain imaging by group sparse multi-task learning leveraging summary statistics. Comput Struct Biotechnol J 2024; 23:3288-3299. [PMID: 39296810 PMCID: PMC11409045 DOI: 10.1016/j.csbj.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Brain imaging genetics is an evolving neuroscience topic aiming to identify genetic variations related to neuroimaging measurements of interest. Traditional linear regression methods have shown success, but their reliance on individual-level imaging and genetic data limits their applicability. Herein, we proposed S-GsMTLR, a group sparse multi-task linear regression method designed to harness summary statistics from genome-wide association studies (GWAS) of neuroimaging quantitative traits. S-GsMTLR directly employs GWAS summary statistics, bypassing the requirement for raw imaging genetic data, and applies multivariate multi-task sparse learning to these univariate GWAS results. It amalgamates the strengths of conventional sparse learning methods, including sophisticated modeling techniques and efficient feature selection. Additionally, we implemented a rapid optimization strategy to alleviate computational burdens by identifying genetic variants associated with phenotypes of interest across the entire chromosome. We first evaluated S-GsMTLR using summary statistics derived from the Alzheimer's Disease Neuroimaging Initiative. The results were remarkably encouraging, demonstrating its comparability to conventional methods in modeling and identification of risk loci. Furthermore, our method was evaluated with two additional GWAS summary statistics datasets: One focused on white matter microstructures and the other on whole brain imaging phenotypes, where the original individual-level data was unavailable. The results not only highlighted S-GsMTLR's ability to pinpoint significant loci but also revealed intriguing structures within genetic variations and loci that went unnoticed by GWAS. These findings suggest that S-GsMTLR is a promising multivariate sparse learning method in brain imaging genetics. It eliminates the need for original individual-level imaging and genetic data while demonstrating commendable modeling and feature selection capabilities.
Collapse
Affiliation(s)
- Duo Xi
- Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dingnan Cui
- Northwestern Polytechnical University, Xi'an, 710072, China
| | | | - Jin Zhang
- Northwestern Polytechnical University, Xi'an, 710072, China
| | - Muheng Shang
- Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lei Guo
- Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junwei Han
- Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lei Du
- Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
129
|
Ohi K, Fujikane D, Shioiri T. Genetic overlap between schizophrenia spectrum disorders and Alzheimer's disease: Current evidence and future directions - An integrative review. Neurosci Biobehav Rev 2024; 167:105900. [PMID: 39298993 DOI: 10.1016/j.neubiorev.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Schizophrenia and Alzheimer's disease (AD) are distinct neurodegenerative disorders characterized by progressive cognitive deficits and structural alterations in the brain. Schizophrenia typically emerges in adolescence or early adulthood with symptoms such as hallucinations, delusions, and cognitive impairments, whereas AD primarily affects elderly individuals, causing progressive memory loss, cognitive decline, and behavioral changes. Delusional disorder, which often emerges later in life, shares some features with schizophrenia and is considered a schizophrenia spectrum disorder. Patients with schizophrenia or delusional disorder, particularly women and those aged 65 years or older, have an increased risk of developing AD later in life. In contrast, approximately 30 % of AD patients exhibit psychotic symptoms, which accelerate cognitive decline and worsen health outcomes. This integrative review explored the genetic overlap between schizophrenia spectrum disorders and AD to identify potential shared genetic factors. The genetic correlations between schizophrenia and AD were weak but positive (rg=0.03-0.10). Polygenic risk scores (PRSs) for schizophrenia and AD indicate some genetic predisposition, although findings are inconsistent among studies; e.g., PRS-schizophrenia or PRS-AD were associated with the risk of developing psychosis in patients with AD. A higher PRS for various developmental and psychiatric disorders was correlated with an earlier age at onset of schizophrenia. Research gaps include the need for studies on the impacts of PRS-AD on the risk of schizophrenia, genetic correlations between later-onset delusional disorder and AD, and genetic relationships between AD and late-onset schizophrenia (LOS) with a greater risk of progressing to AD. Further investigation into these genetic overlaps is crucial to enhance prevention, treatment, and prognosis for affected patients.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
130
|
Deng F, Dounavi ME, Plini ERG, Ritchie K, Muniz-Terrera G, Hutchinson S, Malhotra P, Ritchie CW, Lawlor B, Naci L. Cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals. Neurobiol Aging 2024; 144:78-92. [PMID: 39293163 DOI: 10.1016/j.neurobiolaging.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's Disease (AD) neuropathology start decades before clinical manifestations, but whether risk factors are associated with early cognitive and brain changes in midlife remains poorly understood. We examined whether AD risk factors were associated with cognition and functional connectivity (FC) between the Locus Coeruleus (LC) and hippocampus - two key brain structures in AD neuropathology - cross-sectionally and longitudinally in cognitively healthy midlife individuals. Neuropsychological assessments and functional Magnetic Resonance Imaging were obtained at baseline (N=210), and two-years follow-up (N=188). Associations of cognition and FC with apolipoprotein ε4 (APOE ε4) genotype, family history of dementia, and the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) score were investigated. Cross-sectionally, higher CAIDE scores were associated with worse cognition. Menopausal status interacted with the CAIDE risk on cognition. Furthermore, the CAIDE score significantly moderated the relationship between cognition and LC-Hippocampus FC. Longitudinally, the LC-Hippocampus FC decreased significantly over 2 years. These results suggest that cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals.
Collapse
Affiliation(s)
- Feng Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - Emanuele R G Plini
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Karen Ritchie
- U1061 Neuropsychiatry, INSERM, University of Montpellier, Montpellier, France
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK; Department of Social medicine, Ohio University, USA
| | | | - Paresh Malhotra
- Department of Brain Science, Imperial College Healthcare NHS Trust, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
131
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024; 24:896-911. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
132
|
Kang M, Farrell JJ, Zhu C, Park H, Kang S, Seo EH, Choi KY, Jun GR, Won S, Gim J, Lee KH, Farrer LA. Whole-genome sequencing study in Koreans identifies novel loci for Alzheimer's disease. Alzheimers Dement 2024; 20:8246-8262. [PMID: 39428694 DOI: 10.1002/alz.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION The genetic basis of Alzheimer's disease (AD) in Koreans is poorly understood. METHODS We performed an AD genome-wide association study using whole-genome sequence data from 3540 Koreans (1583 AD cases, 1957 controls) and single-nucleotide polymorphism array data from 2978 Japanese (1336 AD cases, 1642 controls). Significant findings were evaluated by pathway enrichment and differential gene expression analysis in brain tissue from controls and AD cases with and without dementia prior to death. RESULTS We identified genome-wide significant associations with APOE in the total sample and ROCK2 (rs76484417, p = 2.71×10-8) among APOE ε4 non-carriers. A study-wide significant association was found with aggregated rare variants in MICALL1 (MICAL like 1) (p = 9.04×10-7). Several novel AD-associated genes, including ROCK2 and MICALL1, were differentially expressed in AD cases compared to controls (p < 3.33×10-3). ROCK2 was also differentially expressed between AD cases with and without dementia (p = 1.34×10-4). DISCUSSION Our results provide insight into genetic mechanisms leading to AD and cognitive resilience in East Asians. HIGHLIGHTS Novel genome-wide significant associations for AD identified with ROCK2 and MICALL1. ROCK2 and MICALL1 are differentially expressed between AD cases and controls in the brain. This is the largest whole-genome-sequence study of AD in an East Asian population.
Collapse
Affiliation(s)
- Moonil Kang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Hyeonseul Park
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
| | - Sarang Kang
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Eun Hyun Seo
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Premedical Science, College of Medicine, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Kolab Inc., Dong-gu, Gwangju, Republic of Korea
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- RexSoft Corps, Gwanak-gu, Seoul, Republic of Korea
| | - Jungsoo Gim
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Well-ageing Medicare Institute, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Korea Brain Research Institute, Dong-gu, Daegu, Republic of Korea
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
133
|
Zhai Y, Li N, Zhang Y, Li H, Wu L, Wei C, Ji J, Zheng D. Identification of JAZF1, KNOP1, and PLEKHA1 as causally associated genes and drug targets for Alzheimer's disease: a summary data-based Mendelian randomization study. Inflammopharmacology 2024; 32:3913-3923. [PMID: 39455528 DOI: 10.1007/s10787-024-01583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND There is a growing body of evidence indicating the significant role of the immune system and immune cells in the progression of Alzheimer's disease (AD). However, the exact role of genes from various immune cell types in AD remains unclear. We aimed to utilize summary data-based Mendelian randomization (SMR) to explore the potential causal relationships between genes in specific immune cells and the risk of AD. METHODS By utilizing data sets of expression quantitative trait loci (eQTL) for 14 different immune cell types and large-scale AD genome-wide association study (GWAS), we employed SMR to identify key genes associated with AD within specific immune cells. Sensitivity analyses, including F-statistic, colocalization, and assessment of horizontal pleiotropy, were further conducted to validate the discovered genes. In addition, replication analyses were performed in AD GWAS from the FinnGen consortium. Finally, we further identified existing drugs that target or interact with the druggable genes and reviewed the studies about the associations between these drugs and AD. RESULTS SMR analysis revealed 342 genes associated with AD across 14 immune cell types. Further sensitivity analyses identified nine genes, CTSH, FCER1G, FNBP4, HLA-E, JAZF1, KNOP1, PLEKHA1, RP11-960L18.1, and ZNF638 that had significant associations with AD across nine specific immune cell types. JAZF1, KNOP1 and PLEKHA1 were replicated in an independent analysis using the GWAS data. The review on gene-related drugs also supported these findings. CONCLUSIONS Our research suggests that the expression of the genes JAZF1, KNOP1, and PLEKHA1 in specific immune cell types is related to the risk of AD.
Collapse
Affiliation(s)
- Yuhan Zhai
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yujie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Haibin Li
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Cuibai Wei
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianguang Ji
- Faculty of Health Science, University of Macau, Taipa, Macao SAR, China.
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
134
|
Wu Y, Sun Z, Zheng Q, Miao J, Dorn S, Mukherjee S, Fletcher JM, Lu Q. Pervasive biases in proxy genome-wide association studies based on parental history of Alzheimer's disease. Nat Genet 2024; 56:2696-2703. [PMID: 39496879 PMCID: PMC11929606 DOI: 10.1038/s41588-024-01963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
Almost every recent Alzheimer's disease (AD) genome-wide association study (GWAS) has performed meta-analysis to combine studies with clinical diagnosis of AD with studies that use proxy phenotypes based on parental disease history. Here, we report major limitations in current GWAS-by-proxy (GWAX) practices due to uncorrected survival bias and nonrandom participation in parental illness surveys, which cause substantial discrepancies between AD GWAS and GWAX results. We demonstrate that the current AD GWAX provide highly misleading genetic correlations between AD risk and higher education, which subsequently affects a variety of genetic epidemiological applications involving AD and cognition. Our study sheds light on potential issues in the design and analysis of middle-aged biobank cohorts and underscores the need for caution when interpreting genetic association results based on proxy-reported parental disease history.
Collapse
Affiliation(s)
- Yuchang Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinwen Zheng
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen Dorn
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Jason M Fletcher
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
- La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
135
|
Bijelic A, Macheroux P. Structure of human phospholipase D3, a single-strand exonuclease associated with Alzheimer's disease. FEBS J 2024; 291:5394-5397. [PMID: 39517096 DOI: 10.1111/febs.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Phospholipase D3 (PLD3) has emerged as an important 5'-exonuclease in charge of removing single-stranded DNA in lysosomes. Rare genetic variants of the gene encoding PLD3 have been implicated in late-onset Alzheimer's disease (AD). Ishii et al. have produced the soluble domain of human PLD3 with the aim of determining its three-dimensional structure using X-ray crystallography. The high-resolution structure (2.3 Å) provides new insights into the biochemical properties of the enzyme and paves the way to a deeper understanding of amino acid replacements affecting the stability and activity of the enzyme.
Collapse
Affiliation(s)
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
136
|
Jie J, Gong Y, Hu H, Liu S. The role of cerebrospinal fluid metabolites in mediating the impact of lipids on Late-Onset Alzheimer's Disease: a two-step mendelian randomization analysis. J Transl Med 2024; 22:1077. [PMID: 39609832 PMCID: PMC11603644 DOI: 10.1186/s12967-024-05796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Although research has indicated correlations between lipids, cerebrospinal fluid (CSF) metabolites, and Late-Onset Alzheimer's Disease (LOAD), the specific causal relationships among these elements, as well as the roles and mechanisms of the cerebrospinal fluid metabolites, remain unclear. METHODS Statistical datasets derived from Genome-Wide Association Studies (GWAS) were utilized to assess the bidirectional causal relationships between lipids and LOAD. Subsequently, genetic variants associated with CSF metabolites and established lipids underwent a two-step Mendelian randomization (MR) analysis to explore potential mediators and analyze mediation effects. Sensitivity analyses were employed to assess the robustness of the detection systems. RESULTS Genetically predicted cholesterol (IVW OR = 0.989; 95% CI 0.982-0.996) was found to reduce the risk of LOAD, whereas Phosphatidylcholine (PC) (18:1_0:0) (IVW OR = 1.015; 95% CI 1.005-1.025) posed a risk factor. The potential mediator, CSF metabolite N-acetylneuraminate (NeuAC), was identified with a mediation proportion of 21.02% (3.25%, 45.50%). No pleiotropy or heterogeneity was detected across MR analyses. CONCLUSIONS The findings underscore the pivotal role of CSF metabolomics in elucidating the lipid-mediated pathogenesis of LOAD, highlighting potential diagnostic and preventative biomarkers.
Collapse
Affiliation(s)
- Jie Jie
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China
| | - Yonglu Gong
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China
| | - Hongbo Hu
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China
| | - Su Liu
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People' s Hospital of Changde City), 818 Renmin Road, Changde City, Hunan Province, 415000, China.
| |
Collapse
|
137
|
Zhang W, Lukacsovich D, Young JI, Gomez L, Schmidt MA, Martin ER, Kunkle BW, Chen X, O’Shea DM, Galvin JE, Wang L. DNA Methylation Signature of a Lifestyle-based Resilience Index for Cognitive Health. RESEARCH SQUARE 2024:rs.3.rs-5423573. [PMID: 39649166 PMCID: PMC11623774 DOI: 10.21203/rs.3.rs-5423573/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Cognitive resilience (CR) contributes to the variability in risk for developing and progressing in Alzheimer's disease (AD) among individuals. Beyond genetics, recent studies highlight the critical role of lifestyle factors in enhancing CR and delaying cognitive decline. DNA methylation (DNAm), an epigenetic mechanism influenced by both genetic and environmental factors, including CR-related lifestyle factors, offers a promising pathway for understanding the biology of CR. We studied DNAm changes associated with the Resilience Index (RI), a composite measure of lifestyle factors, using blood samples from the Healthy Brain Initiative (HBI) cohort. After corrections for multiple comparisons, our analysis identified 19 CpGs and 24 differentially methylated regions significantly associated with the RI, adjusting for covariates age, sex, APOE ε4, and immune cell composition. The RI-associated methylation changes are significantly enriched in pathways related to lipid metabolism, synaptic plasticity, and neuroinflammation, and highlight the connection between cardiovascular health and cognitive function. By identifying RI-associated DNAm, our study provided an alternative approach to discovering future targets and treatment strategies for AD, complementary to the traditional approach of identifying disease-associated variants directly. Furthermore, we developed a Methylation-based Resilience Score (MRS) that successfully predicted future cognitive decline in an external dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), even after accounting for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. Our findings are particularly relevant for a better understanding of epigenetic architecture underlying cognitive resilience. Importantly, the significant association between baseline MRS and future cognitive decline demonstrated that DNAm could be a predictive marker for AD, laying the foundation for future studies on personalized AD prevention.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian W. Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33433, USA
| | - Deirdre M. O’Shea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33433, USA
| | - James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33433, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
138
|
Shen J, Zhao X, Bai X, Zhu W, Li Z, Yang Z, Wang Q, Ji J. Phosphoproteomic analysis reveals CDK5-Mediated phosphorylation of MTDH inhibits protein synthesis in microglia. Biochem Biophys Res Commun 2024; 735:150669. [PMID: 39260336 DOI: 10.1016/j.bbrc.2024.150669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
CDK5 plays a crucial role in maintaining normal central nervous system (CNS) development and synaptic function, while microglia are the primary immune cells present in the CNS and play vital physiological roles in CNS development, immune surveillance, and regulation of synaptic plasticity. Despite this, our understanding of both the substrate proteins and functional mechanisms of CDK5 in microglia remains limited. To address this, we utilized CRISPR-Cas9 knockout of Cdk5 in BV2 cells and conducted quantitative phosphoproteomics analysis to systematically screen potential CDK5 substrates in microglia. Our findings identified 335 phosphorylation sites on 234 proteins as potential CDK5 substrates in microglia based on the reported sequence motif. Through in vitro kinase assay and intracellular inhibition and knockout of CDK5 experiments, we confirmed that ER proteins MTDH (protein LYRIC) and Calnexin are novel substrate proteins of CDK5. Moreover, we demonstrated for the first time a critical mechanism for regulating protein synthesis in microglia, that the phosphorylation of S565 site on MTDH, a key protein mediating cell growth, by CDK5 inhibits protein synthesis. Our data provide valuable insights for the discovery of new substrate proteins of CDK5 and the in-depth investigation of the function and mechanism of CDK5 in microglia.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
139
|
Moore A, Ritchie MD. Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review. Genes (Basel) 2024; 15:1509. [PMID: 39766777 PMCID: PMC11675426 DOI: 10.3390/genes15121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level. METHODS Following PRISMA-ScR guidelines for a scoping review, we searched the PubMed and Scopus databases from 1990 to October 2024 for articles that involved (1) CVDs, (2) AD, and (3) used statistical methods to parse genetic relationships. RESULTS Our search yielded 2918 articles, of which 274 articles passed screening and were organized into two main sections: (1) evidence of shared genetic risk; and (2) shared mechanisms. The genes APOE, PSEN1, and PSEN2 reportedly have wide effects across the AD and CVD spectrum, affecting both cardiac and brain tissues. Mechanistically, changes in three main pathways (lipid metabolism, blood pressure regulation, and the breakdown of the blood-brain barrier (BBB)) contribute to subclinical and etiological changes that promote both AD and CVD progression. However, genetic studies continue to be limited by the availability of longitudinal data and lack of cohorts that are representative of diverse populations. CONCLUSIONS Highly penetrant familial genes simultaneously increase the risk of CVDs and AD. However, in most cases, sets of dysregulated genes within larger-scale mechanisms, like changes in lipid metabolism, blood pressure regulation, and BBB breakdown, increase the risk of both AD and CVDs and contribute to disease progression.
Collapse
Affiliation(s)
- Anni Moore
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Informatics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
140
|
Bissar N, Kassir R, Salami A, El Shamieh S. Association of immunity-related gene SNPs with Alzheimer's disease. Exp Biol Med (Maywood) 2024; 249:10303. [PMID: 39651329 PMCID: PMC11620869 DOI: 10.3389/ebm.2024.10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline. Genetic factors have been implicated in disease susceptibility as its etiology remains multifactorial. The CD33 and the HLA-DRB1 genes, involved in immune responses, have emerged as potential candidates influencing AD risk. In this study, 644 Lebanese individuals, including 127 AD patients and 250 controls, were genotyped, by KASP assay, for six SNPs selected from the largest GWAS study in 2021. Logistic regression analysis assessed the association between SNP genotypes and AD risk, adjusting for potential confounders. Among the six SNPs analyzed, rs1846190G>A in HLA-DRB1 and rs1354106T>G in CD33 showed significant associations with AD risk in the Lebanese population (p < 0.05). Carriers of the AG and AA genotypes of rs1846190 in HLA-DRB1 exhibited a protective effect against AD (AG: OR = 0.042, p = 0.026; AA: OR = 0.052, p = 0.031). The GT genotype of rs1354106T>G in CD33 was also associated with reduced risk (OR = 0.173, p = 0.005). Following Bonferroni correction, a significant correlation of rs1354106T > G with AD risk was established. Our results might highlight the complex interplay between genetic and immunological factors contributing to the development of the disease.
Collapse
Affiliation(s)
- Nisrine Bissar
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Rayan Kassir
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Ali Salami
- Faculty of Sciences (V), Lebanese University, Nabatieh, Lebanon
| | - Said El Shamieh
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
141
|
Ghose U, Sproviero W, Winchester L, Amin N, Zhu T, Newby D, Ulm BS, Papathanasiou A, Shi L, Liu Q, Fernandes M, Adams C, Albukhari A, Almansouri M, Choudhry H, van Duijn C, Nevado-Holgado A. Genome-wide association neural networks identify genes linked to family history of Alzheimer's disease. Brief Bioinform 2024; 26:bbae704. [PMID: 39775791 PMCID: PMC11707606 DOI: 10.1093/bib/bbae704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Augmenting traditional genome-wide association studies (GWAS) with advanced machine learning algorithms can allow the detection of novel signals in available cohorts. We introduce "genome-wide association neural networks (GWANN)" a novel approach that uses neural networks (NNs) to perform a gene-level association study with family history of Alzheimer's disease (AD). In UK Biobank, we defined cases (n = 42 110) as those with AD or family history of AD and sampled an equal number of controls. The data was split into an 80:20 ratio of training and testing samples, and GWANN was trained on the former followed by identifying associated genes using its performance on the latter. Our method identified 18 genes to be associated with family history of AD. APOE, BIN1, SORL1, ADAM10, APH1B, and SPI1 have been identified by previous AD GWAS. Among the 12 new genes, PCDH9, NRG3, ROR1, LINGO2, SMYD3, and LRRC7 have been associated with neurofibrillary tangles or phosphorylated tau in previous studies. Furthermore, there is evidence for differential transcriptomic or proteomic expression between AD and healthy brains for 10 of the 12 new genes. A series of post hoc analyses resulted in a significantly enriched protein-protein interaction network (P-value < 1 × 10-16), and enrichment of relevant disease and biological pathways such as focal adhesion (P-value = 1 × 10-4), extracellular matrix organization (P-value = 1 × 10-4), Hippo signaling (P-value = 7 × 10-4), Alzheimer's disease (P-value = 3 × 10-4), and impaired cognition (P-value = 4 × 10-3). Applying NNs for GWAS illustrates their potential to complement existing algorithms and methods and enable the discovery of new associations without the need to expand existing cohorts.
Collapse
Affiliation(s)
- Upamanyu Ghose
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
| | - William Sproviero
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Laura Winchester
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Taiyu Zhu
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Centre for Statistics in Medicine, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Brittany S Ulm
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Translational Medicine, Nxera Pharma UK Limited, Cambridge, United Kingdom
| | - Qiang Liu
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- School of Engineering Mathematics and Technology University of Bristol, Ada Lovelace Building, Bristol, United Kingdom
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Cassandra Adams
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Almansouri
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Cornelia van Duijn
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Alejo Nevado-Holgado
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
| |
Collapse
|
142
|
Waithira N, Mukaka M, Kestelyn E, Chotthanawathit K, Thi Phuong DN, Thanh HN, Osterrieder A, Lang T, Cheah PY. Data sharing and reuse in clinical research: Are we there yet? A cross-sectional study on progress, challenges and opportunities in LMICs. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003392. [PMID: 39565766 PMCID: PMC11578489 DOI: 10.1371/journal.pgph.0003392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024]
Abstract
Data sharing holds promise to accelerate innovative discoveries through artificial intelligence (AI) and traditional analytics. However, it remains unclear whether these prospects translate into tangible benefits in improving health care and scientific progress. In this cross-sectional study, we investigate current data reuse practices and explore ways to enhance the use of existing data in clinical research, focusing on low- and middle-income countries. 643 clinical researchers and data professionals participated in the study. 55.5% analysed clinical trial data. 75.3% of data users analysed data from observational studies obtained mainly through personal requests or downloads from publicly available sources. Data was mainly used to influence the design of new studies or in pooled and individual patient-level data meta-analyses. Key benefits realised were career progression and academic qualification, with more gains reported by users affiliated with high-income and upper-middle-income countries (p = 0.046, chi = 8.0). Scientific progress through publications and collaborations was associated with gender (p = 0.012, chi = 10.9), with males more likely to contribute. Benefits to the public although minimal, were associated with career seniority (p = 0.001, chi = 18.8), with works by senior researchers being more likely to influence health policy or treatment guidelines. Although 54% of the respondents accessed at least 3 datasets in the past 5 years, 79.4% of data users encountered difficulty finding relevant data for planned analyses. Researchers affiliated with low and middle income institutions reported more difficulty interpreting data (p = 0.012, chi = 25.7), while challenges with language were regionally influenced (p = 0.000, chi = 51.3) and more commonly reported by researchers in Latin America and South and East Asia institutions. While the utilisation of shared data is lower than expected, focused efforts to enrich existing data with extensive metadata using standard terminologies can enhance data findability. Investment in training programmes, building professional networks, and mentorship in data science may improve the quality of data generated and increase researchers' ability to use existing datasets.
Collapse
Affiliation(s)
- Naomi Waithira
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mavuto Mukaka
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Evelyne Kestelyn
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Hoa Nguyen Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Anne Osterrieder
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Trudie Lang
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Health Data Research, London, United Kingdom
| | - Phaik Yeong Cheah
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|
143
|
Miao J, Lin J, Dong J, Amarasinghe O, Mason ER, Chu S, Qu Z, Cullers CC, Putt KS, Zhang ZY. Discovery and evaluation of novel SHIP-1 inhibitors. Bioorg Med Chem 2024; 114:117965. [PMID: 39454561 PMCID: PMC11551725 DOI: 10.1016/j.bmc.2024.117965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Src Homology 2-containing Inositol 5'-Phosphatase-1 (SHIP-1), encoded by INPP5D, has been identified as an Alzheimer's disease (AD) risk-associated gene through recent genetic and epigenetic studies. SHIP-1 confers AD risk by inhibiting the TREM2 cascade and reducing beneficial microglial cellular processes, including phagocytosis. While several small molecules have been reported to modulate SHIP-1 activity, their limited selectivity and efficacy in advanced models restricted their potential as therapeutic agents or probes for biological studies. Herein, we validated and implemented a high-throughput screening platform to explore new chemotypes that can modulate the phosphatase activity of SHIP-1. We screened 49,260 central nervous system (CNS)-penetrate compounds sourced from commercial vendors using the malachite green-based assay for anti-SHIP-1 activity. Through analysis, prioritization, and validation of the screening hits, we identified three novel types of scaffolds that inhibit the SHIP-1 phosphatase activity with IC50s as low as 46.6 µM. To improve the inhibitory activity of these promising hits, we carried out structure-activity relationship (SAR) studies, resulting in a lead molecule SP3-12 that inhibits SHIP-1 with an IC50 value of 6.1 μM. Kinetic analyses of SP3-12 revealed that its inhibition mechanism is competitive, with a Ki value of 3.2 µM for SHIP-1 and a 7-fold selectivity over SHIP-2. Furthermore, results from testing in a microglial phagocytosis/cell health high content assay indicated that SP3-12 could effectively activate phagocytosis in human microglial clone 3 (HMC3) cells, with an EC50 of 2.0 µM, without cytotoxicity in the dose range. Given its potency, selectivity, and cellular activity, SP3-12 emerges as a promising small molecule inhibitor with potential for investigating the biological functions of SHIP-1.
Collapse
Affiliation(s)
- Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ovini Amarasinghe
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily R Mason
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaoyou Chu
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Clayton C Cullers
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
144
|
Zhang DF, Penwell T, Chen YH, Koehler A, Wu R, Nik Akhtar S, Lu Q. G-Protein Signaling in Alzheimer's Disease: Spatial Expression Validation of Semi-supervised Deep Learning-Based Computational Framework. J Neurosci 2024; 44:e0587242024. [PMID: 39327003 PMCID: PMC11551890 DOI: 10.1523/jneurosci.0587-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Systemic study of pathogenic pathways and interrelationships underlying genes associated with Alzheimer's disease (AD) facilitates the identification of new targets for effective treatments. Recently available large-scale multiomics datasets provide opportunities to use computational approaches for such studies. Here, we devised a novel disease gene identification (digID) computational framework that consists of a semi-supervised deep learning classifier to predict AD-associated genes and a protein-protein interaction (PPI) network-based analysis to prioritize the importance of these predicted genes in AD. digID predicted 1,529 AD-associated genes and revealed potentially new AD molecular mechanisms and therapeutic targets including GNAI1 and GNB1, two G-protein subunits that regulate cell signaling, and KNG1, an upstream modulator of CDC42 small G-protein signaling and mediator of inflammation and candidate coregulator of amyloid precursor protein (APP). Analysis of mRNA expression validated their dysregulation in AD brains but further revealed the significant spatial patterns in different brain regions as well as among different subregions of the frontal cortex and hippocampi. Super-resolution STochastic Optical Reconstruction Microscopy (STORM) further demonstrated their subcellular colocalization and molecular interactions with APP in a transgenic mouse model of both sexes with AD-like mutations. These studies support the predictions made by digID while highlighting the importance of concurrent biological validation of computationally identified gene clusters as potential new AD therapeutic targets.
Collapse
Affiliation(s)
- Daniel F Zhang
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, Texas 77005
| | - Timothy Penwell
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208
- Center for Neurotherapeutics, College of Arts and Sciences, The University of South Carolina, Columbia, South Carolina 29208
| | - Addison Koehler
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Rui Wu
- Department of Computer Science, College of Engineering and Technology, East Carolina University, Greenville, North Carolina 27858
| | - Shayan Nik Akhtar
- Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208
- Center for Neurotherapeutics, College of Arts and Sciences, The University of South Carolina, Columbia, South Carolina 29208
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208
- Center for Neurotherapeutics, College of Arts and Sciences, The University of South Carolina, Columbia, South Carolina 29208
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
145
|
Main LR, Song YE, Lynn A, Laux RA, Miskimen KL, Osterman MD, Cuccaro ML, Ogrocki PK, Lerner AJ, Vance JM, Fuzzell D, Fuzzell SL, Hochstetler SD, Dorfsman DA, Caywood LJ, Prough MB, Adams LD, Clouse JE, Herington SD, Scott WK, Pericak-Vance MA, Haines JL. Genetic analysis of cognitive preservation in the midwestern Amish reveals a novel locus on chromosome 2. Alzheimers Dement 2024; 20:7453-7464. [PMID: 39376159 PMCID: PMC11567819 DOI: 10.1002/alz.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS A total of 12 single nucleotide polymorphisms (SNPs) demonstrated suggestive association (P ≤ 5 × 10-4) with cognitive preservation. Genetic linkage analyses identified > 100 significant (logarithm of the odds [LOD] ≥ 3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2. HIGHLIGHTS GWAS and linkage identified over 100 loci associated with cognitive preservation. One locus on Chromosome 2 retained significance over multiple analyses. Predicted TFBSs near rs1402906 regulate genes associated with neurocognition.
Collapse
Affiliation(s)
- Leighanne R Main
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Renee A Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristy L Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael D Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael L Cuccaro
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paula K Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alan J Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeffery M Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sarada L Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sherri D Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel A Dorfsman
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura J Caywood
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael B Prough
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Larry D Adams
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jason E Clouse
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sharlene D Herington
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - William K Scott
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Margaret A Pericak-Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jonathan L Haines
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
146
|
Zhan T, Tian S, Chen S. Border-Associated Macrophages: From Embryogenesis to Immune Regulation. CNS Neurosci Ther 2024; 30:e70105. [PMID: 39496482 PMCID: PMC11534460 DOI: 10.1111/cns.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Border-associated macrophages (BAMs) play a pivotal role in maintaining brain homeostasis and responding to pathological conditions. Understanding their origins, characteristics, and roles in both healthy and diseased brains is crucial for advancing our knowledge of neuroinflammatory and neurodegenerative diseases. This review addresses the ontogeny, replenishment, microenvironmental regulation, and transcriptomic heterogeneity of BAMs, highlighting recent advancements in lineage tracing and fate-mapping studies. Furthermore, we examine the roles of BAMs in maintaining brain homeostasis, immune surveillance, and responses to injury and neurodegenerative diseases. Further research is crucial to clarify the dynamic interplay between BAMs and the brain's microenvironment in health and disease. This effort will not only resolve existing controversies but also reveal new therapeutic targets for neuroinflammatory and neurodegenerative disorders, pushing the boundaries of neuroscience.
Collapse
Affiliation(s)
- Tiantong Zhan
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sixuan Tian
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| |
Collapse
|
147
|
Wang Y, Mi N, Liao K, Li Y, Sun Y, Xie P, Hu L, Wu S, Liang Z, He Q, Li Z, Ma M, Yang K, Yuan J, Xia B, Li X. Associations among dietary 1-carbon metabolism nutrients, genetic risk, and Alzheimer disease: a prospective cohort study. Am J Clin Nutr 2024; 120:1009-1018. [PMID: 39216592 DOI: 10.1016/j.ajcnut.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The associations between 1-carbon metabolism (OCM) nutrients (methionine, folate, vitamin B-6, and vitamin B-12) and Alzheimer disease (AD) remains inconclusive. OBJECTIVES This study aimed to investigate the association of dietary OCM nutrients with subsequent risk of AD and further assess whether participants with high genetic risk for AD might benefit from dietary OCM nutrients. METHODS We analyzed data from 192,214 participants who completed at least one 24-h dietary questionnaire and had no previous history of AD based on the UK Biobank. Nutrients intake was calculated using McCance and Widdowson's The Composition of Food and USDA's Food and Nutrient Database for Dietary Studies. Cox proportional models with restricted cubic splines were applied to explore the associations. RESULTS Over a median follow-up of 13.35 y, 959 cases of AD (41 early-onset cases and 918 late-onset cases) were identified. Compared with those in the low-intake OCM group (quartile 1), participants in the high-intake OCM group (quartile 4) had reduced risk of developing AD. The corresponding hazard ratios (HRs) and 95% confidence intervals (CIs) for methionine, folate, vitamin B-6, and vitamin B-12 intake were 0.66 (0.54, 0.80), 0.71 (0.58, 0.87), 0.71 (0.59, 0.87), and 0.77 (0.64, 0.93), respectively. Similar associations were observed in late-onset AD. In early-onset AD, high methionine and vitamin B-12 intake were associated with 70% (HR: 0.30; 95% CI: 0.10, 0.86) and 71% (HR: 0.29; 95% CI: 0.09, 0.96) reduction in risk, respectively. Participants with low genetic risk and high OCM nutrients intake had >75% reduced AD risk compared with high-risk, low-intake participants. CONCLUSIONS In this prospective cohort study, we found that higher intake of OCM nutrients is associated with reduced risk of AD. Participants with high genetic risk of AD are more likely to benefit from dietary OCM nutrients intake.
Collapse
Affiliation(s)
- Yongsheng Wang
- Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; The Cross-innovation Laboratory of Evidence-based Social Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuxuan Sun
- Department of Epidemiology and Biostatistics, Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Peng Xie
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Linmin Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Siqing Wu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zixin Liang
- Department of Epidemiology and Biostatistics, Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Qiangsheng He
- Department of Epidemiology and Biostatistics, Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Zijun Li
- Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; The Cross-innovation Laboratory of Evidence-based Social Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Mina Ma
- The Cross-innovation Laboratory of Evidence-based Social Sciences, Lanzhou University, Lanzhou, Gansu, China; Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kehu Yang
- Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; The Cross-innovation Laboratory of Evidence-based Social Sciences, Lanzhou University, Lanzhou, Gansu, China; Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jinqiu Yuan
- Department of Epidemiology and Biostatistics, Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China.
| | - Bin Xia
- Department of Epidemiology and Biostatistics, Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China.
| | - Xiuxia Li
- Health Technology Assessment Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; The Cross-innovation Laboratory of Evidence-based Social Sciences, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
148
|
Madhu LN, Kodali M, Upadhya R, Rao S, Somayaji Y, Attaluri S, Shuai B, Kirmani M, Gupta S, Maness N, Rao X, Cai JJ, Shetty AK. Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease. J Extracell Vesicles 2024; 13:e12519. [PMID: 39499013 PMCID: PMC11536387 DOI: 10.1002/jev2.12519] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 11/07/2024] Open
Abstract
As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.
Collapse
Affiliation(s)
- Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maha Kirmani
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shreyan Gupta
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Nathaniel Maness
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - James J. Cai
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| |
Collapse
|
149
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
150
|
Juul Rasmussen I, Luo J, Frikke-Schmidt R. Lipids, lipoproteins, and apolipoproteins: Associations with cognition and dementia. Atherosclerosis 2024; 398:118614. [PMID: 39340935 DOI: 10.1016/j.atherosclerosis.2024.118614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Due to increasing lifespan and aging populations globally there has been a steep rise in late-life dementia, which is now the second most common cause of death in high-income countries. In general, dementia can be divided into two major groups: Alzheimer's disease (AD) and vascular-related dementia (VD). AD is pathologically characterised by senile plaques containing amyloid-β and neurofibrillary tangles composed of hyperphosphorylated tau, whereas VD is dominated by vascular pathology such as cerebral small vessel disease, major strokes, and white matter lesions. Recently, the importance of vascular components in AD is increasingly recognized and it is estimated that up to 45 % of all dementia cases can be prevented by preventing or treating midlife cardiovascular risk factors such as physical inactivity, diabetes, and hypertension. Even though the brain contains approximately 25 % of the total body cholesterol pool, and several genetic variants related to the lipid metabolism have been identified in genome-wide associations studies of AD, the role of lipids, lipoproteins, and apolipoproteins in dementia risk is less well-known. In this review, we go through the current literature on lipids, lipoproteins, and apolipoproteins and risk of dementia. We conclude that the evidence is primarily insufficient or conflicting, possibly due to nonoptimal study designs. The future calls for large, prospective studies of midlife measurements of lipids, lipoproteins, and apolipoproteins and one-sample, individual level data Mendelian randomization studies to overcome survival bias. However, the current literature suggests that it is safe to say that what is good for the heart is good for the brain.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev, Denmark.
| | - Jiao Luo
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| |
Collapse
|