101
|
Zhang X, Shi J, Sun Y, Wang Y, Zhang Z. The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:62-73. [PMID: 34998096 DOI: 10.1016/j.fsi.2021.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The X-organ-sinus gland complex (XO-SG) in the eyestalk is an important neuroendocrine regulatory organ of crustaceans such as Litopenaeus vannamei, a prominent aquaculture species. The current study found significant changes in the enzyme activities of ALP, ACP, and T-SOD of hepatopancreatic in response to Vibrio parahaemolyticus exposure following eyestalk ablation, indicating that they were all involved in the immunological regulation of shrimps against V. parahaemolyticus infection. A total of 52,656 unigenes were obtained after RNA-Seq, with an average length of 1036 bp and an N50 of 1847 bp. Subsequently, 1899 eyestalk positive regulation genes (EPRGs), 745 eyestalk negative regulation genes (ENRGs), and 2077 non-eyestalk regulatory genes (NEGs) were identified. KEGG analysis of EPRGs revealed that eyestalk ablation might activate the neuroendocrine-immune (NEI) system. The RNA-Seq data were validated using quantitative real-time PCR (qRT-PCR). The findings suggested that eyestalk ablation might affect the expression of genes involved in the prophenoloxidase-activating system, the TLR signaling pathway, and numerous other immune-related genes in L. vannamei. All of these findings revealed that the eyestalk might have a role in the immune response of L. vannamei. The genes and pathways discovered in this study will help to elucidate the molecular mechanisms of hemocytes' immune response to V. parahaemolyticus following eyestalk ablation in shrimp, as well as provide the framework for building crustacean immunity theory.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jialong Shi
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
102
|
Dinan TG, Kennedy PJ, Morais LH, Murphy A, Long-Smith CM, Moloney GM, Bastiaanssen TF, Allen AP, Collery A, Mullins D, Cusack AM, Berding K, O'Toole PW, Clarke G, Stanton C, Cryan JF. Altered stress responses in adults born by Caesarean section. Neurobiol Stress 2022; 16:100425. [PMID: 35024387 PMCID: PMC8733342 DOI: 10.1016/j.ynstr.2021.100425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Birth by Caesarean-section (C-section), which increases the risk for metabolic and immune disorders, disrupts the normal initial microbial colonisation of the gut, in addition to preventing early priming of the stress and immune-systems.. Animal studies have shown there are enduring psychological processes in C-section born mice. However, the long-term impact of microbiota-gut-brain axis disruptions due to birth by C-section on psychological processes in humans is unknown. Forty age matched healthy young male university students born vaginally and 36 C-section delivered male students were recruited. Participants underwent an acute stressor, the Trier social stress test (TSST), during a term-time study visit. A subset of participants also completed a study visit during the university exam period, representing a naturalistic stressor. Participants completed a battery of cognitive tests and self-report measures assessing mood, anxiety, and perceived stress. Saliva, blood, and stool samples were collected for analysis of cortisol, peripheral immune profile, and the gut microbiota. Young adults born by C-section exhibit increased psychological vulnerability to acute stress and a prolonged period of exam-related stress. They did not exhibit an altered salivary cortisol awakening response to the TSST, but their measures of positive affect were significantly lower than controls throughout the procedure. Both C-section and vaginally-delivered participants performed equally well on cognitive assessments. Most of the initial effects of delivery mode on the gut microbiome did not persist into adulthood as the gut microbiota profile showed modest changes in composition in adult vaginally-delivered and C-sectioned delivered subjects. From an immune perspective, concentrations of IL-1β and 1L-10 were higher in C-section participants. These data confirm that there is a potential enduring effect of delivery mode on the psychological responses to acute stress during early adulthood. The mental health implications of these observations require further study regarding policies on C-section use.
Collapse
Affiliation(s)
- Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul J. Kennedy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Livia H. Morais
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Amy Murphy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | - Gerard M. Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Andrew P. Allen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Aoife Collery
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Mullins
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul W. O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
103
|
Chiang JJ, Lam PH, Chen E, Miller GE. Psychological Stress During Childhood and Adolescence and Its Association With Inflammation Across the Lifespan: A Critical Review and Meta-Analysis. Psychol Bull 2022; 148:27-66. [PMID: 39247904 PMCID: PMC11378952 DOI: 10.1037/bul0000351] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Psychological stress during childhood and adolescence increases risk of health problems across the lifecourse, and inflammation is implicated as an underlying mechanism. To evaluate the viability of this hypothesis, we used meta-analysis to quantify the association between childhood/adolescent stress and inflammation over the lifecourse. Furthermore, we addressed three unresolved conceptual questions: (a) Does the strength of this association change over the lifecourse? (b) Are different types of childhood/adolescent stressors differentially associated with inflammation? (c) And which components of the inflammatory response are involved? A systematic search identified 187 articles reporting 922 associations. Meta-analyses were conducted using a three-level multilevel approach and controlled for study quality, conversion confidence, and whether effect sizes were unadjusted or adjusted (n = 662, 72%). Results indicated a small but reliable overall adjusted association ( r ^ = .04 ) . The magnitude of the association strengthened across the lifecourse-effect sizes were smallest in studies that measured inflammation in childhoodr ^ = .02 and became progressively larger in studies of adolescencer ^ = .04 and adulthoodr ^ = .05 , suggesting the impact of early stress strengthens with time. By contrast, effect sizes did not vary by adversity type (socioeconomic disadvantage, maltreatment, other interpersonal stressors, and cumulative exposure across stressors), or component of inflammation (circulating biomarkers of low-grade inflammation vs. cytokine responses to microbial stimuli). Implications and future directions are discussed.
Collapse
Affiliation(s)
| | - Phoebe H Lam
- Department of Psychology, Northwestern University
| | - Edith Chen
- Department of Psychology, Northwestern University
- Institute for Policy Research, Northwestern University
| | - Gregory E Miller
- Department of Psychology, Northwestern University
- Institute for Policy Research, Northwestern University
| |
Collapse
|
104
|
Fischer L, Barop H, Ludin SM, Schaible HG. Regulation of acute reflectory hyperinflammation in viral and other diseases by means of stellate ganglion block. A conceptual view with a focus on Covid-19. Auton Neurosci 2022; 237:102903. [PMID: 34894589 PMCID: PMC9761017 DOI: 10.1016/j.autneu.2021.102903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
Whereas the autonomic nervous system (ANS) and the immune system used to be assigned separate functions, it has now become clear that the ANS and the immune system (and thereby inflammatory cascades) work closely together. During an acute immune response (e. g., in viral infection like Covid-19) the ANS and the immune system establish a fast interaction resulting in "physiological" inflammation. Based on our knowledge of the modulation of inflammation by the ANS we propose that a reflectory malfunction of the ANS with hyperactivity of the sympathetic nervous system (SNS) may be involved in the generation of acute hyperinflammation. We believe that sympathetic hyperactivity triggers a hyperresponsiveness of the immune system ("cytokine storm") with consecutive tissue damage. These reflectory neuroimmunological and inflammatory cascades constitute a general reaction principle of the organism under the leadership of the ANS and does not only occur in viral infections, although Covid-19 is a typical current example therefore. Within the overreaction several interdependent pathological positive feedback loops can be detected in which the SNS plays an important part. Consequently, there is a chance to regulate the hyperinflammation by influencing the SNS. This can be achieved by a stellate ganglion block (SGB) with local anesthetics, temporarily disrupting the pathological positive feedback loops. Thereafter, the complex neuroimmune system has the chance to reorganize itself. Previous clinical and experimental data have confirmed a favorable outcome in hyperinflammation (including pneumonia) after SGB (measurable e. g. by a reduction in proinflammatory cytokines).
Collapse
Affiliation(s)
- Lorenz Fischer
- University of Bern, Interventional Pain Management, General Internal Medicine, Schwanengasse 5/7, 3011 Bern, Switzerland.
| | - Hans Barop
- Neural Therapy, Friedrich-Legahn-Str. 2, 22587 Hamburg, Germany
| | | | - Hans-Georg Schaible
- University Hospital Jena, Institute of Physiology1/Neurophysiology, Teichgraben 8, 07743 Jena, Germany.
| |
Collapse
|
105
|
Beopoulos A, Gea M, Fasano A, Iris F. Autonomic Nervous System Neuroanatomical Alterations Could Provoke and Maintain Gastrointestinal Dysbiosis in Autism Spectrum Disorder (ASD): A Novel Microbiome-Host Interaction Mechanistic Hypothesis. Nutrients 2021; 14:65. [PMID: 35010940 PMCID: PMC8746684 DOI: 10.3390/nu14010065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Dysbiosis secondary to environmental factors, including dietary patterns, antibiotics use, pollution exposure, and other lifestyle factors, has been associated to many non-infective chronic inflammatory diseases. Autism spectrum disorder (ASD) is related to maternal inflammation, although there is no conclusive evidence that affected individuals suffer from systemic low-grade inflammation as in many psychological and psychiatric diseases. However, neuro-inflammation and neuro-immune abnormalities are observed within ASD-affected individuals. Rebalancing human gut microbiota to treat disease has been widely investigated with inconclusive and contradictory findings. These observations strongly suggest that the forms of dysbiosis encountered in ASD-affected individuals could also originate from autonomic nervous system (ANS) functioning abnormalities, a common neuro-anatomical alteration underlying ASD. According to this hypothesis, overactivation of the sympathetic branch of the ANS, due to the fact of an ASD-specific parasympathetic activity deficit, induces deregulation of the gut-brain axis, attenuating intestinal immune and osmotic homeostasis. This sets-up a dysbiotic state, that gives rise to immune and osmotic dysregulation, maintaining dysbiosis in a vicious cycle. Here, we explore the mechanisms whereby ANS imbalances could lead to alterations in intestinal microbiome-host interactions that may contribute to the severity of ASD by maintaining the brain-gut axis pathways in a dysregulated state.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA 022114, USA;
| | - François Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| |
Collapse
|
106
|
Hinkle L, Liu Y, Meng C, Chen Z, Mai J, Zhang L, Xu Y, Pan PY, Chen SH, Shen H. The Sympathetic Nervous System Modulates Cancer Vaccine Activity through Monocyte-Derived Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:3131-3140. [PMID: 34772699 PMCID: PMC9583274 DOI: 10.4049/jimmunol.2100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022]
Abstract
The sympathetic nervous system (SNS) is an important regulator of immune cell function during homeostasis and states of inflammation. Recently, the SNS has been found to bolster tumor growth and impair the development of antitumor immunity. However, it is unclear whether the SNS can modulate APC function. Here, we investigated the effects of SNS signaling in murine monocyte-derived macrophages (moMФ) and dendritic cells (DCs) and further combined the nonspecific β-blocker propranolol with a peptide cancer vaccine for the treatment of melanoma in mice. We report that norepinephrine treatment dramatically altered moMФ cytokine production, whereas DCs were unresponsive to norepinephrine and critically lack β2-adrenergic receptor expression. In addition, we show that propranolol plus cancer vaccine enhanced peripheral DC maturation, increased the intratumor proportion of effector CD8+ T cells, and decreased the presence of intratumor PD-L1+ myeloid-derived suppressor cells. Furthermore, this combination dramatically reduced tumor growth compared with vaccination alone. Taken together, these results offer insights into the cell-specific manner by which the SNS regulates the APC immune compartment and provide strong support for the use of propranolol in combination with cancer vaccines to improve patient response rates and survival.
Collapse
Affiliation(s)
- Louis Hinkle
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX
- Texas A&M Health Science Center, Bryan, TX
| | - Yongbin Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX
| | - Chaoyang Meng
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX
- Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhe Chen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX
- Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX
| | - Licheng Zhang
- Center for Cancer Immunotherapy, Houston Methodist Research Institute, Houston, TX; and
| | - Yitian Xu
- Center for Cancer Immunotherapy, Houston Methodist Research Institute, Houston, TX; and
| | - Ping-Ying Pan
- Center for Cancer Immunotherapy, Houston Methodist Research Institute, Houston, TX; and
- Weill Cornell Medical College, New York, NY
| | - Shu-Hsia Chen
- Center for Cancer Immunotherapy, Houston Methodist Research Institute, Houston, TX; and
- Weill Cornell Medical College, New York, NY
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX;
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
107
|
Guo H, Dixon B. Understanding acute stress-mediated immunity in teleost fish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100010. [DOI: 10.1016/j.fsirep.2021.100010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022] Open
|
108
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:4080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
109
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
110
|
Cox SM, Kheirkhah A, Aggarwal S, Abedi F, Cavalcanti BM, Cruzat A, Hamrah P. Alterations in corneal nerves in different subtypes of dry eye disease: An in vivo confocal microscopy study. Ocul Surf 2021; 22:135-142. [PMID: 34407488 PMCID: PMC11549962 DOI: 10.1016/j.jtos.2021.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To evaluate corneal subbasal nerve alterations in evaporative and aqueous-deficient dry eye disease (DED) as compared to controls. METHODS In this retrospective, cross-sectional, controlled study, eyes with a tear break-up time of less than 10 s were classified as DED. Those with an anesthetized Schirmer's strip of less than 5 mm were classified as aqueous-deficient DED. Three representative in vivo confocal microscopy images were graded for each subject for total, main, and branch nerve density and numbers. RESULTS Compared to 42 healthy subjects (42 eyes), the 70 patients with DED (139 eyes) showed lower total (18,579.0 ± 687.7 μm/mm2 vs. 21,014.7 ± 706.5, p = 0.026) and main (7,718.9 ± 273.9 vs. 9,561.4 ± 369.8, p < 0.001) nerve density, as well as lower total (15.5 ± 0.7/frame vs. 20.5 ± 1.3, p = 0.001), main (3.0 ± 0.1 vs. 3.8 ± 0.2, p = 0.001) and branch (12.5 ± 0.7 vs. 16.5 ± 1.2, p = 0.004) nerve numbers. Compared to the evaporative DED group, the aqueous-deficient DED group showed reduced total nerve density (19,969.9 ± 830.7 vs. 15,942.2 ± 1,135.7, p = 0.006), branch nerve density (11,964.9 ± 749.8 vs. 8,765.9 ± 798.5, p = 0.006), total nerves number (16.9 ± 0.8/frame vs. 13.0 ± 1.2, p = 0.002), and branch nerve number (13.8 ± 0.8 vs. 10.2 ± 1.1, p = 0.002). CONCLUSIONS Patients with DED demonstrate compromised corneal subbasal nerves, which is more pronounced in aqueous-deficient DED. This suggests a role for neurosensory abnormalities in the pathophysiology of DED.
Collapse
Affiliation(s)
- Stephanie M Cox
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ahmad Kheirkhah
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shruti Aggarwal
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Farshad Abedi
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Bernardo M Cavalcanti
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrea Cruzat
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
111
|
Kautz MM. Applications of psychoneuroimmunology models of toxic stress in prevention and intervention efforts across early development. Brain Behav Immun Health 2021; 16:100322. [PMID: 34589810 PMCID: PMC8474171 DOI: 10.1016/j.bbih.2021.100322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although evidence supporting psychoneuroimmunology (PNI) models of toxic stress have emerged over the past decade, the PNI field has struggled to integrate these important findings into real-world practical applications. There is great potential for these models to reduce the societal burden of childhood adversity by facilitating early detection and prevention with those children and adolescents at greatest risk for stress-related physical and psychological disorders. But further research is needed to validate and scale developmentally appropriate interventions with specific immune and endocrine mechanism-based targets that are developmentally sensitive. The allostatic load and additive PNI models of toxic stress exposure in youth are summarized. These models highlight the importance of integrating a standardized screening of environmental and interpersonal risk factors with stable and scalable cognitive and biological markers of risk. PNI models of toxic stress illustrate the need for intervention delivery as early as possible to prevent negative health outcomes in youth and comprehensive screening efforts would facilitate the deployment of community and family level interventions. This review discusses practical applications of toxic stress models that are currently under investigation, clarifies key obstacles, such as research gaps and scalability, and provides potential solutions, including cross-disciplinary partnerships.
Collapse
Affiliation(s)
- Marin M. Kautz
- Department of Psychology, Temple University Psychology, 1701 N. 13th St., Weiss Hall, Philadelphia, PA, 19122, United States
| |
Collapse
|
112
|
Schalow PR, Kimball KA, Schurger FT, Sooley GR, Bales SP, Rochester RP, Brooks RT, Hunt JM. Secretory Immunoglobulin A and Upper Cervical Chiropractic: A Preliminary Prospective, Multicenter, Observational Study. J Chiropr Med 2021; 20:121-127. [PMID: 35463842 PMCID: PMC9023133 DOI: 10.1016/j.jcm.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Kelly A. Kimball
- International Chiropractors Association, Falls Church, Virginia
- Corresponding author: Kelly A. Kimball
| | | | | | | | | | | | | |
Collapse
|
113
|
Chen XX, Xu LP, Zeng CC, Zhang XY, Tao FB, Sun Y. Prolonged parent-child separation and pain in adolescence: The role of HPA-axis genetic variations. J Affect Disord 2021; 292:255-260. [PMID: 34134023 DOI: 10.1016/j.jad.2021.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increasing evidence has demonstrated that childhood adversity was a predictor of pain and hypothalamic-pituitary-adrenal (HPA) axis genetic variation is associated with pain risk. This study aims to explore possible effects of prolonged childhood separation from parents and HPA polygenic risk score (PRS) on pain among adolescents in rural China. METHOD We used data from 219 adolescents in rural area of Fuyang city, Anhui province, China. Parent-child separation was collected through interview and pain intensity was reported using the 11-point Numerical Rating Scale. SNP genotyping was performed using an improved multiplex ligation detection reaction (iMLDR) technique. The PRS was computed based on 3 single nucleotide polymorphisms (SNPs) in 2 genes (FKBP5 and NR3C1) related to HPA-axis stress reactivity. RESULTS Pain among adolescents separated from both parents scored higher compared to those without parent-child separation, however, this association was only observed in adolescents with moderate to high tertiles of PRS groups (parent-child separation in moderate group vs. no parent-child separation in moderate group: 3.07 vs. 1.57, P < 0.001; parent-child separation in highest group vs. no parent-child separation in highest group: 3.02 vs. 1.26, P < 0.001; parent-child separation in lowest group vs. no parent-child separation in lowest group: 2.34 vs. 1.25, P = 0.225). After controlled for demographic characteristics, psychopathological symptoms, adverse childhood experiences, parental warmth, prolonged childhood parent-child separation increased pain scores by 1.52 points (95% CI:0.72, 2.33) and 1.72 points (95% CI:1.13, 2.31) in moderate and high PRS groups, respectively. CONCLUSION Our findings suggest that adolescents separated from both parents while carrying more risk alleles related to HPA-axis stress reactivity are at heightened risk of pain.
Collapse
Affiliation(s)
- Xing-Xing Chen
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Luo-Piao Xu
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chen-Chen Zeng
- Fuyang Vocational Technical College, Fuyang, Anhui Province, China
| | - Xing-Yan Zhang
- Bengbu High-tech Education Group, Bengbu, Anhui Province, China
| | - Fang-Biao Tao
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Sun
- School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
114
|
Wang L, Zhang Y, Wei Z, Cao K, Su G, Hamrah P, Labbe A, Liang Q. Characteristics of Toxic Keratopathy, an In Vivo Confocal Microscopy Study. Transl Vis Sci Technol 2021; 10:11. [PMID: 34495329 PMCID: PMC8431974 DOI: 10.1167/tvst.10.11.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Toxic keratopathy (TK) involves complex clinical manifestations and is difficult to differentiate from other ocular surface diseases by conventional slit-lamp examination. The challenge faced by clinicians in confidently diagnosing TK cannot be underestimated. This study aimed to explore the microstructural characteristics and diagnostic parameters by in vivo confocal microscopy (IVCM) in TK. METHODS In this prospective, cross-sectional, comparative study, slit-lamp and IVCM examinations were performed on 20 normal eyes and 54 eyes with TK. Based on slit-lamp imaging, TK subjects were divided into four groups: superficial punctate keratitis (n = 10 eyes), pseudodendritic keratitis (n = 14 eyes), ulcerative keratitis (UK; n = 16 eyes), and ring keratitis (RK; n = 14 eyes). The microstructural characteristics of TK were described according to the following IVCM parameters: basal cell (BC) density, dendritiform cell (DC) density, DC size, corneal nerve fiber (CNF) length, nerve tortuosity, and keratocyte reflectivity. A receiver operating characteristic (ROC) curve model was also formulated to compare the predictive power of BC density, DC density, and CNF length. RESULTS TK eyes showed significantly higher values for DC density (45.8 cells/mm2; range, 25.0-100.0) compared with normal eyes (24.0 cells/mm2; range, 20.8-32.3; P = 0.013; DC size (111.0 µm2; range, 92.0-137.8) compared with normal eyes (63.7 µm2; range, 47.7-70.3; P < 0.001); nerve tortuosity (0.08; range, 0.05-0.09) compared with normal eyes (0.04; range, 0.02-0.04; P < 0.001); and keratocyte reflectivity. BC density and CNF length values were found to be significantly less than those for normal controls (both P < 0.001). In all subgroups, CNF length appeared to be significantly lower than that of controls (all P < 0.001), and DC density was only statistically significantly higher in the UK (P = 0.003) and RK (P < 0.001) groups. Corneal fluorescein staining had no correlation with the analyzed IVCM parameters (all P ˃ 0.05). However, the increase in DC density and DC size showed negative correlations to CNF length (density: r = -0.325, P < 0.005; size: r = -0.493, P < 0.005), as well as positive correlations to duration and frequency of topical eye drops and DC size (density: r = 0.361, P < 0.05; size: r = 0.581, P < 0.05). A ROC curve showed that CNF length had the strongest predictive power, with the estimated area under the curve being 0.992 ± 0.008. CONCLUSIONS Lower BC density and CNF length, greater DC density and DC size, and greater keratocyte reflectivity were the microstructural characteristics of TK. The role of subbasal nerve, inflammatory response, and limbal stem cells in the progression of TK and the appropriate treatment of different TK stages are future research directions. TRANSLATIONAL RELEVANCE The evaluation of basal cells, subbasal nerve, and dendritiform cells is helpful to our understanding of the pathological process of TK.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guanyu Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Antoine Labbe
- Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, Paris and Versailles Saint-Quentin-en-Yvelines University, Versailles, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
115
|
Lukácsi S, Farkas Z, Saskői É, Bajtay Z, Takács-Vellai K. Conserved and Distinct Elements of Phagocytosis in Human and C. elegans. Int J Mol Sci 2021; 22:ijms22168934. [PMID: 34445642 PMCID: PMC8396242 DOI: 10.3390/ijms22168934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis—the engulfment and elimination of dying cells and cell debris—are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Éva Saskői
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
- Department of Immunology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
- Correspondence:
| |
Collapse
|
116
|
Tammayan M, Jantaratnotai N, Pachimsawat P. Differential responses of salivary cortisol, amylase, and chromogranin A to academic stress. PLoS One 2021; 16:e0256172. [PMID: 34383867 PMCID: PMC8360508 DOI: 10.1371/journal.pone.0256172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Salivary biomarkers have been widely used to help diagnose stress, anxiety, and/or depression. This study aimed to compare the responses of three commonly investigated salivary stress biomarkers that represent the hypothalamic-pituitary-adrenal activity (cortisol; sCort) and the sympathetic activity (alpha-amylase; sAA and chromogranin A; sCgA), using academic oral presentation as a model of stress. Twenty postgraduate dental students attended the seminar class as presenter and audience. The presenters' performances were evaluated by the instructors suggesting more stress than the audience. The saliva was collected two times: before attending class and after an academic presentation (for presenters) or during the class (for audience). The pulse rates (PR) were also recorded. The results showed that the levels of all three biomarkers, as well as PR, were significantly higher in the presenter group compared with the audience group; however, the changes were most prominent with sCort and sAA (99.56 ± 12.76% for sCort, 93.48 ± 41.29% for sAA, 16.86 ± 6.42% for sCgA, and 15.06 ± 3.41% for PR). When compared between pre-post presentation, the levels of sCgA were not different, while those of sCort and sAA were significantly increased. These results suggest more sensitive reactivity to academic stress of sCort and sAA compared with sCgA and that the response of sCgA did not necessarily follow sAA pattern even though both are claimed to reflect the sympathetic activity. More studies are needed to elucidate the roles of sCgA in stress.
Collapse
Affiliation(s)
- Manita Tammayan
- Faculty of Dentistry, Department of Advanced General Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Praewpat Pachimsawat
- Faculty of Dentistry, Department of Advanced General Dentistry, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
117
|
Yi Y, Zhou X, Xiong X, Wang J. Neuroimmune interactions in painful TMD: Mechanisms and treatment implications. J Leukoc Biol 2021; 110:553-563. [PMID: 34322892 DOI: 10.1002/jlb.3mr0621-731rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
The underlying mechanisms and treatment of painful temporomandibular disorders (TMDs) are important but understudied topics in craniofacial research. As a group of musculoskeletal diseases, the onset of painful TMD is proved to be a result of disturbance of multiple systems. Recently, emerging evidence has revealed the involvement of neuroimmune interactions in painful TMD. Inflammatory factors play an important role in peripheral sensitization of temporomandibular joint (TMJ), and neurogenic inflammation in turn enhances TMJs dysfunction in TMD. Furthermore, centralized neuroimmune communications contribute to neuron excitability amplification, leading to pain sensitization, and is also responsible for chronic TMD pain and other CNS symptoms. Therapeutics targeting neuroimmune interactions may shed light on new approaches for treating TMD. In this review, we will discuss the role of neuroimmune interactions in the onset of painful TMD from the peripheral and centralized perspectives, and how understanding this mechanism could provide new treatment options. Insights into the neuroimmune interactions within TMJs and painful TMD would broaden the knowledge of mechanisms and treatments of this multifactorial disease.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xueman Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
118
|
Suuring M, Moreau A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. Int J Mol Sci 2021; 22:7970. [PMID: 34360736 PMCID: PMC8348814 DOI: 10.3390/ijms22157970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn's disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.
Collapse
Affiliation(s)
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie—UMR1064, INSERM—ITUN, Nantes Université, CHU Nantes, 44000 Nantes, France;
| |
Collapse
|
119
|
Herrera NJ, Bland NA, Ribeiro FA, Henriott ML, Hofferber EM, Meier J, Petersen JL, Iverson NM, Calkins CR. Oxidative stress and postmortem meat quality in crossbred lambs. J Anim Sci 2021; 99:6276237. [PMID: 33991192 DOI: 10.1093/jas/skab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate effects of different levels of lipopolysaccharide (LPS)-mediated oxidative stress on fresh meat quality. Crossbred lambs (n = 29) were blocked by weight and fed a standard finishing ration for the duration of the study. Lambs were individually housed and treatment groups were administered one of three intravenous injections every 72 h across a three-injection (9-day) cycle: saline control (control), 50 ng LPS/kg body weight (BW) (LPS50), or 100 ng LPS/kg BW (LPS100). Rectal temperatures were measured to indicate inflammatory response. Lambs were harvested at the Loeffel Meat Laboratory and 80 mg of pre-rigor Longissimus lumborum were collected in control and LPS100 treatments within 30 min postmortem for RNA analysis. Wholesale loins were split and randomly assigned 1 or 14 d of wet aging. Chops were fabricated after aging and placed under retail display (RD) for 0 or 7 d. Animal was the experimental unit. LPS-treated lambs had increased (P < 0.05) rectal temperatures at 1, 2, 4, and 24 h post-injection. Transcriptomics revealed significant (Praw < 0.05) upregulation in RNA pathways related to generation of oxidative stress in LPS100 compared with control. A trend was found for tenderness (Warner-Bratzler shear force, WBSF; P = 0.10), chops from LPS50 having lower shear force compared with control at 1 d postmortem. Muscle from LPS50 treatment lambs exhibited greater troponin T degradation (P = 0.02) compared with all treatments at 1 d. Aging decreased WBSF (P < 0.0001), increased sarcoplasmic calcium concentration (P < 0.0001), pH (P < 0.0001), and proteolysis (P < 0.0001) across treatments. Following aging, chops increased discoloration as RD increased (P < 0.0001), with control chops aged 14 d being the most discolored. Chops from lambs given LPS had higher (P < 0.05) a* values compared with control at 14 d of aging. The L* values were greater (P < 0.05) in LPS100 compared with both LPS50 and control. Aging tended (P = 0.0608) to increase lipid oxidation during RD across either aging period. No significant differences (P > 0.05) in sarcomere length, proximate composition, fatty acid composition, or isoprostane content were found. These results suggest that defined upregulation of oxidative stress has no detriment on fresh meat color, but may alter biological pathways responsible for muscle stress response, apoptosis, and enzymatic processes, resulting in changes in tenderness early postmortem.
Collapse
Affiliation(s)
- Nicolas J Herrera
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Nicolas A Bland
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Felipe A Ribeiro
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Morgan L Henriott
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Eric M Hofferber
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Jakob Meier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Nicole M Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Chris R Calkins
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| |
Collapse
|
120
|
Chandrasekaran VRM, Periasamy S, Chien SP, Tseng CH, Tsai PJ, Liu MY. Physical and psychological stress along with candle fumes induced-cardiopulmonary injury mimicking restaurant kitchen workers. Curr Res Toxicol 2021; 2:246-253. [PMID: 34345867 PMCID: PMC8320639 DOI: 10.1016/j.crtox.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022] Open
Abstract
Restaurant kitchens are work areas where involve strict and hierarchal environments that promote opportunity for bullying and workplace aggression and violence. These physical and psychological stress and fumes ultimately trigger severe occupational stress by disrupting the body's homeostasis that might induce cardiopulmonary injury. The study aimed to investigate the physical and psychological stress and candle fumes on cardiopulmonary injury in an animal model mimicking a restaurant kitchen worker. Social disruption stress (SDR) mice were exposed to scented candle fumes (4.5 h/d, 5 d/wk) in an exposure chamber for 8 weeks. Exposure to burning scented candles failed to reduce serum corticosterone level and increased proinflammatory cytokines levels and NF-ƙB activity in the lung. In addition, burning scented candle fumes synergistically increased SDR-induced serum LDH, CPK, CKMB levels, proinflammatory cytokines production as well as NF-ƙB activation in the lung and heart. Further, cardiac HIF-1α and BNP levels were also increased. We conclude that the physical and psychological stress along with candle fumes might induce cardiopulmonary injury in mice. These results could be extrapolated to restaurant kitchen workers.
Collapse
Affiliation(s)
- Victor Raj Mohan Chandrasekaran
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Se-Ping Chien
- Department of Food and Beverage Services, Tainan University of Technology, Tainan 71002, Taiwan
| | - Chu-Han Tseng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Perng-Jy Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
121
|
Alvarez GM, Hackman DA, Miller AB, Muscatell KA. Systemic inflammation is associated with differential neural reactivity and connectivity to affective images. Soc Cogn Affect Neurosci 2021; 15:1024-1033. [PMID: 32441308 PMCID: PMC7657451 DOI: 10.1093/scan/nsaa065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation is increasingly appreciated as a predictor of health and well-being. Further, inflammation has been shown to influence and be influenced by affective experiences. Although prior work has substantiated associations between inflammatory and affective processes, fewer studies have investigated the neurobiological correlates that underlie links between systemic, low-grade inflammation and affective reactivity. Thus, the current study examined whether markers of systemic inflammation (i.e. interleukin-6, C-reactive protein) are associated with differential patterns of neural activation and connectivity in corticolimbic regions in response to affective images. We investigated this question in a sample of 66 adults (44 women, M age = 54.98 years, range = 35–76) from the Midlife in the United States study. Higher levels of inflammation were associated with lower activity in limbic regions (i.e. amygdala, hippocampus, anterior insula, temporal pole) when viewing positive (vs neutral) images. Higher levels of inflammation were also associated with greater connectivity between the hippocampus and the medial prefrontal cortex in response to positive images. Inflammatory markers were not associated with significant differences in activation or connectivity to negative images. These findings highlight the utility of health neuroscience approaches in demonstrating that physiological processes such as inflammation are related to how our brains respond to affective information.
Collapse
Affiliation(s)
- Gabriella M Alvarez
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Adam Bryant Miller
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA
| | - Keely A Muscatell
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
122
|
Aguiló Mir S, García Pagès E, López Barbeito B, Ribeiro TC, Garzón-Rey JM, Aguiló Llobet J. Design and validation of an electrophysiological based tool to assess chronic stress. Case study: burnout syndrome in caregivers. Stress 2021; 24:384-393. [PMID: 32865469 DOI: 10.1080/10253890.2020.1807512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Caregiver burnout syndrome is an increasingly seen condition, although the subjective nature of self-administered psychometric tests and the lack of a consensual diagnostic tool might hinder a proper diagnosis. The availability of objective psychosomatic measures of stress might facilitate the early diagnosis and clinical management of these patients. For this reason, the aim of this work was to develop a quantitative tool to evaluate the stress level of caregivers in a noninvasive and repeatable manner. An observational, controlled, matched study was designed including a group of 38 principal caregivers of chronic patients and a control group of 38 non-caregivers. Psychometric, biochemical, and electrophysiological data were analyzed along with sociodemographic data. A quantitative chronic stress reference scale (CSRs) was constructed based on the weighted contribution of several psychometric and biochemical variables and afterwards, a predictive psychosomatic model (ESBSm) correlated with CSRs was elaborated from extracted variables of several electrophysiological signals monitored for 10 min. The resulting CSR scale shows a high power to discriminate caregivers from the control group while the ESBSm shows a 79% correlation with the CSR scale validated through a 5-fold process. Therefore, the results demonstrate that the ESBS model is an objective and validated tool to diagnose the degree of stress linked to burnout in caregivers of chronic patients from a 10-min session of noninvasive monitoring with a reliability equivalent to the questionnaires currently used to quantify stress in caregivers.
Collapse
Affiliation(s)
- Sira Aguiló Mir
- Emergency Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Esther García Pagès
- Networking Biomedical Research Center: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Thais Castro Ribeiro
- Microelectronics and Electronic Systems Department, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Jorge M Garzón-Rey
- Aragon Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Jordi Aguiló Llobet
- Networking Biomedical Research Center: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Microelectronics and Electronic Systems Department, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
123
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
124
|
Passaro AP, Lebos AL, Yao Y, Stice SL. Immune Response in Neurological Pathology: Emerging Role of Central and Peripheral Immune Crosstalk. Front Immunol 2021; 12:676621. [PMID: 34177918 PMCID: PMC8222736 DOI: 10.3389/fimmu.2021.676621] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a key component of neurological disorders and is an important therapeutic target; however, immunotherapies have been largely unsuccessful. In cases where these therapies have succeeded, particularly multiple sclerosis, they have primarily focused on one aspect of the disease and leave room for improvement. More recently, the impact of the peripheral immune system is being recognized, since it has become evident that the central nervous system is not immune-privileged, as once thought. In this review, we highlight key interactions between central and peripheral immune cells in neurological disorders. While traditional approaches have examined these systems separately, the immune responses and processes in neurological disorders consist of substantial crosstalk between cells of the central and peripheral immune systems. Here, we provide an overview of major immune effector cells and the role of the blood-brain barrier in regard to neurological disorders and provide examples of this crosstalk in various disorders, including stroke and traumatic brain injury, multiple sclerosis, neurodegenerative diseases, and brain cancer. Finally, we propose targeting central-peripheral immune interactions as a potential improved therapeutic strategy to overcome failures in clinical translation.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
| | - Abraham L. Lebos
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Microbiology, University of Georgia, Athens, GA, United States
| | - Yao Yao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
125
|
Dadkhah M, Talei S, Doostkamel D, Molaei S, Rezaei N. The impact of COVID-19 on diagnostic biomarkers in neuropsychiatric and neuroimmunological diseases: a review. Rev Neurosci 2021; 33:79-92. [PMID: 34087964 DOI: 10.1515/revneuro-2020-0154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/24/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious respiratory disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence-based emerging reports of neurological manifestations show that SARS-CoV-2 can attack the nervous system. However, little is known about the biomarkers in disease in neuropsychiatric and neuroimmunological disorders. One of the important keys in the management of COVID-19 is an accurate diagnosis. Biomarkers could provide valuable information in the early detection of disease etiology, diagnosis, further treatment, and prognosis. Moreover, ongoing investigations on hematologic, biochemical, and immunologic biomarkers in nonsevere, severe, or fatal forms of COVID-19 patients provide an urgent need for the identification of clinical and laboratory predictors. In addition, several cytokines acting through mechanisms to emerge immune response against SARS-CoV-2 infection are known to play a major role in neuroinflammation. Considering the neuroinvasive potential of SARS-CoV-2, which can be capable of triggering a cytokine storm, the current evidence on inflammation in psychiatry and neurodegenerative by emerging neuroinflammation is discussed in this review. We also highlighted the hematologic, biochemical, and immunologic biomarkers in COVID-19 diagnosis. COVID-19 prognostic biomarkers in patients with neuropsychiatric and neuroimmunological diseases are also explained.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Donya Doostkamel
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran.,USERN Ardabil Office, Universal Scientific Education and Research Network (USERN), Ardabil 5618985991, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
126
|
Gao Y, Li B, Liu H, Tian Y, Gu C, Du X, Bu R, Gao J, Liu Y, Li G. Cistanche deserticola polysaccharides alleviate cognitive decline in aging model mice by restoring the gut microbiota-brain axis. Aging (Albany NY) 2021; 13:15320-15335. [PMID: 34081627 PMCID: PMC8221331 DOI: 10.18632/aging.203090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/13/2021] [Indexed: 12/16/2022]
Abstract
Recent evidence suggests alterations in the gut microbiota-brain axis may drive cognitive impairment with aging. In the present study, we observed that prolonged administration of D-galactose to mice induced cognitive decline, gut microbial dysbiosis, peripheral inflammation, and oxidative stress. In this model of age-related cognitive decline, Cistanche deserticola polysaccharides (CDPS) improved cognitive function in D-galactose-treated mice by restoring gut microbial homeostasis, thereby reducing oxidative stress and peripheral inflammation. The beneficial effects of CDPS in these aging model mice were abolished through ablation of gut microbiota with antibiotics or immunosuppression with cyclophosphamide. Serum metabolomic profiling showed that levels of creatinine, valine, L-methionine, o-Toluidine, N-ethylaniline, uric acid and proline were all altered in the aging model mice, but were restored by CDPS. These findings demonstrated that CDPS improves cognitive function in a D-galactose-induced aging model in mice by restoring homeostasis of the gut microbiota-brain axis, which alleviated an amino acid imbalance, peripheral inflammation, and oxidative stress. CDPS thus shows therapeutic potential for patients with memory and learning disorders, especially those related to gut microbial dysbiosis.
Collapse
Affiliation(s)
- Yuan Gao
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Bing Li
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Hong Liu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Yajuan Tian
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Chao Gu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiaoli Du
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Ren Bu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Jie Gao
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Yang Liu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Gang Li
- Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
127
|
Haavik H, Niazi IK, Kumari N, Amjad I, Duehr J, Holt K. The Potential Mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:536. [PMID: 34071880 PMCID: PMC8226758 DOI: 10.3390/medicina57060536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.
Collapse
Affiliation(s)
- Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Jenna Duehr
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| |
Collapse
|
128
|
Imai J, Katagiri H. Regulation of systemic metabolism by the autonomic nervous system consisting of afferent and efferent innervation. Int Immunol 2021; 34:67-79. [PMID: 33982088 DOI: 10.1093/intimm/dxab023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Autonomic nerves, sympathetic and parasympathetic, innervate organs and modulate their functions. It has become evident that afferent and efferent signals of the autonomic nervous system play important roles in regulating systemic metabolism, thereby maintaining homeostasis at the whole-body level. Vagal afferent nerves receive signals, such as nutrients and hormones, from the peripheral organs/tissues including the gastrointestinal tract and adipose tissue then transmit these signals to the hypothalamus, thereby regulating feeding behavior. In addition to roles in controlling appetite, areas in the hypothalamus serves as regulatory centers of both sympathetic and parasympathetic efferent fibers. These efferent innervations regulate the functions of peripheral organs/tissues, such as pancreatic islets, adipose tissues and the liver, which play roles in metabolic regulation. Furthermore, recent evidence has unraveled the metabolic regulatory systems governed by autonomic nerve circuits. In these systems, afferent nerves transmit metabolic information from peripheral organs to the central nervous system (CNS) and the CNS thereby regulates the organ functions through the efferent fibers of autonomic nerves. Thus, the autonomic nervous system regulates the homeostasis of systemic metabolism, and both afferent and efferent fibers play critical roles in its regulation. In addition, several lines of evidence demonstrate the roles of the autonomic nervous system in regulating and dysregulating the immune system. This review introduces variety of neuron-mediated inter-organ cross-talk systems and organizes the current knowledge of autonomic control/coordination of systemic metabolism, focusing especially on a liver-brain-pancreatic β-cell autonomic nerve circuit, as well as highlighting the potential importance of connections with the neuronal and immune systems.
Collapse
Affiliation(s)
- Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
129
|
Melzer TM, Manosso LM, Yau SY, Gil-Mohapel J, Brocardo PS. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int J Mol Sci 2021; 22:5026. [PMID: 34068525 PMCID: PMC8126018 DOI: 10.3390/ijms22095026] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Consuming a balanced, nutritious diet is important for maintaining health, especially as individuals age. Several studies suggest that consuming a diet rich in antioxidants and anti-inflammatory components such as those found in fruits, nuts, vegetables, and fish may reduce age-related cognitive decline and the risk of developing various neurodegenerative diseases. Numerous studies have been published over the last decade focusing on nutrition and how this impacts health. The main objective of the current article is to review the data linking the role of diet and nutrition with aging and age-related cognitive decline. Specifically, we discuss the roles of micronutrients and macronutrients and provide an overview of how the gut microbiota-gut-brain axis and nutrition impact brain function in general and cognitive processes in particular during aging. We propose that dietary interventions designed to optimize the levels of macro and micronutrients and maximize the functioning of the microbiota-gut-brain axis can be of therapeutic value for improving cognitive functioning, particularly during aging.
Collapse
Affiliation(s)
- Thayza Martins Melzer
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Luana Meller Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, SC, Brazil;
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| |
Collapse
|
130
|
Pearson AL, Clevenger KA, Horton TH, Gardiner JC, Asana V, Dougherty BV, Pfeiffer KA. Feelings of safety during daytime walking: associations with mental health, physical activity and cardiometabolic health in high vacancy, low-income neighborhoods in Detroit, Michigan. Int J Health Geogr 2021; 20:19. [PMID: 33941196 PMCID: PMC8091672 DOI: 10.1186/s12942-021-00271-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Individuals living in low-income neighborhoods have disproportionately high rates of obesity, Type-2 diabetes, and cardiometabolic conditions. Perceived safety in one's neighborhood may influence stress and physical activity, with cascading effects on cardiometabolic health. METHODS In this study, we examined relationships among feelings of safety while walking during the day and mental health [perceived stress (PSS), depression score], moderate-to-vigorous physical activity (PA), Body Mass Index (BMI), and hemoglobin A1C (A1C) in low-income, high-vacancy neighborhoods in Detroit, Michigan. We recruited 69 adults who wore accelerometers for one week and completed a survey on demographics, mental health, and neighborhood perceptions. Anthropometrics were collected and A1C was measured using A1CNow test strips. We compiled spatial data on vacant buildings and lots across the city. We fitted conventional and multilevel regression models to predict each outcome, using perceived safety during daytime walking as the independent variable of interest and individual or both individual and neighborhood-level covariates (e.g., number of vacant lots). Last, we examined trends in neighborhood features according to perceived safety. RESULTS In this predominantly African American sample (91%), 47% felt unsafe during daytime walking. Feelings of perceived safety significantly predicted PSS (β = - 2.34, p = 0.017), depression scores (β = - 4.22, p = 0.006), and BMI (β = - 2.87, p = 0.01), after full adjustment. For PA, we detected a significant association for sex only. For A1C we detected significant associations with blighted lots near the home. Those feeling unsafe lived in neighborhoods with higher park area and number of blighted lots. CONCLUSION Future research is needed to assess a critical pathway through which neighborhood features, including vacant or poor-quality green spaces, may affect obesity-via stress reduction and concomitant effects on cardiometabolic health.
Collapse
Affiliation(s)
- Amber L Pearson
- Department of Geography, Environment & Spatial Sciences, Michigan State University, East Lansing, MI, USA
- Department of Public Health, University of Otago, Wellington, New Zealand
| | | | - Teresa H Horton
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | | | - Benjamin V Dougherty
- Department of Geography, Environment & Spatial Sciences, Michigan State University, East Lansing, MI, USA
| | - Karin A Pfeiffer
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
131
|
Resting state brain network functional connectivity is not associated with inflammatory markers and blood cell counts in older adults. Clin Neurophysiol 2021; 132:1677-1686. [PMID: 34044190 DOI: 10.1016/j.clinph.2021.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Systemic inflammation and monocyte counts have previously been associated with changes in resting state functional connectivity (rsFC) in cross-sectional neuroimaging studies. We therefore investigated this association in a longitudinal study of older patients. METHODS We performed a secondary analysis of longitudinal data from older patients who underwent functional magnet resonance imaging (fMRI) scans before and 3 months after elective surgery. Additionally, serum levels of C-reactive protein and Interleukin-6 as markers of inflammation and leukocyte, lymphocyte and monocyte counts were determined. Correlations between these markers and pre- or postoperative rsFC between regions previously associated with inflammatory markers were investigated using general linear regression models. RESULTS We found no significant correlations between inflammatory markers or blood cell counts and mean connectivity within four resting state networks (RSNs), neither preoperatively nor postoperatively. Significant inter-region rsFC was found within these RSNs between a few regions either pre- or postoperatively, but no inter-region connections were consistently observed in both pre- and postoperative fMRI scans. CONCLUSIONS Inflammatory markers and monocyte counts were not associated with rsFC in our study, contrasting previous results. SIGNIFICANCE Multiple measurements in the same individuals, as performed here, provide a way to reduce the high risk of false positive results in fMRI studies. TRIAL REGISTRATION Clinicaltrials.gov (registration number NCT02265263).
Collapse
|
132
|
Baekelandt S, Cornet V, Mandiki SNM, Lambert J, Dubois M, Kestemont P. Ex vivo approach supports both direct and indirect actions of melatonin on immunity in pike-perch Sander lucioperca. FISH & SHELLFISH IMMUNOLOGY 2021; 112:143-150. [PMID: 33741521 DOI: 10.1016/j.fsi.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The melatonin hormone, which is a multifunctional molecule in vertebrates, has been shown to exert complex actions on the immune system of mammals. In teleosts, the immunomodulatory capacity of this hormone has seldom been investigated. In the present experiment, we exposed ex vivo spleen and head kidney tissues of pike-perch to melatonin (Mel) and cortisol (Cort). We applied three concentrations of both hormones, alone and in combination, namely (1) Mel (10, 100 or 1000 pg mL-1) (2) Cort (50, 500 or 5000 ng mL-1) (3) Mel + Cort (10 + 50, 100 + 500 or 1000 pg mL-1+5000 ng mL-1). Pure medium without Mel or Cort served as control. After 15 h of incubation, we assessed the expression of a set of immunity-related genes, including genes encoding for pro-inflammatory proteins (il-1β, cxcl8 and tnf-α), acute-phase proteins (fgl2, fth1, hepc, hp and saa1) and key factors of the adaptive immune system (fκbp4 and tcrg). Both Mel and Cort, when used alone or combined at physiological concentrations, significantly influenced immune gene expressions that may lead to a global immune stimulation. Our results support both, an indirect action of the Mel hormone on the immune system through the regulation of intermediates such as Cort, as well as a direct action on immune targets through specific receptors.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Mickaël Dubois
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
133
|
Tripathy S, Marsland AL, Kinnee EJ, Tunno BJ, Manuck SB, Gianaros PJ, Clougherty JE. Long-Term Ambient Air Pollution Exposures and Circulating and Stimulated Inflammatory Mediators in a Cohort of Midlife Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57007. [PMID: 34014775 PMCID: PMC8136520 DOI: 10.1289/ehp7089] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chronic exposure to air pollution may prime the immune system to be reactive, increasing inflammatory responses to immune stimulation and providing a pathway to increased risk for inflammatory diseases, including asthma and cardiovascular disease. Although long-term exposure to ambient air pollution has been associated with increased circulating markers of inflammation, it is unknown whether it also relates to the magnitude of inflammatory response. OBJECTIVES The aim of this study was to examine associations between chronic ambient pollution exposures and circulating and stimulated levels of inflammatory mediators in a cohort of healthy adults. METHODS Circulating interleukin (IL)-6, C-reactive protein (CRP) (n=392), and lipopolysaccharide stimulated production of IL-1β, IL-6, and tumor necrosis factor (TNF)-α (n=379) were measured in the Adult Health and Behavior II cohort. Fine particulate matter [particulate matter with aerodynamic diameter less than or equal to 2.5 μm (PM2.5)] and constituents [black carbon (BC), and lead (Pb), manganese (Mn), zinc (Zn), and iron (Fe)] were estimated for each residential address using hybrid dispersion land use regression models. Associations between pollutant exposures and inflammatory measures were examined using linear regression; models were adjusted for age, sex, race, education, smoking, body mass index, and month of blood draw. RESULTS There were no significant correlations between circulating and stimulated measures of inflammation. Significant positive associations were found between exposure to PM2.5 and BC with stimulated production of IL-6, IL-1β, and TNF-α. Pb, Mn, Fe, and Zn exposures were positively associated with stimulated production of IL-1β and TNF-α. No pollutants were associated with circulating IL-6 or CRP levels. DISCUSSION Exposure to PM2.5, BC, Pb, Mn, Fe, and Zn was associated with increased production of inflammatory mediators by stimulated immune cells. In contrast, pollutant exposure was not related to circulating markers of inflammation. These results suggest that chronic exposure to some pollutants may prime immune cells to mount larger inflammatory responses, possibly contributing to increased risk for inflammatory disease. https://doi.org/10.1289/EHP7089.
Collapse
Affiliation(s)
- Sheila Tripathy
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania, USA
| | - Anna L. Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellen J. Kinnee
- University Center for Social and Urban Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brett J. Tunno
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Stephen B. Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jane E. Clougherty
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania, USA
| |
Collapse
|
134
|
Łoś K, Waszkiewicz N. Biological Markers in Anxiety Disorders. J Clin Med 2021; 10:1744. [PMID: 33920547 PMCID: PMC8073190 DOI: 10.3390/jcm10081744] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Anxiety disorders are one of the most commonly reported disorders in psychiatry, causing a high medical and socio-economic burden. Recently, there has been a soaring interest in the biological basis of anxiety disorders, which is reflected in an increasing number of articles related to the topic. Due to the ambiguity of the diagnosis and a large number of underdiagnosed patients, researchers are looking for laboratory tests that could facilitate the diagnosis of anxiety disorders in clinical practice and would allow for the earliest possible implementation of appropriate treatment. Such potential biomarkers may also be useable in monitoring the efficacy of pharmacological therapy for anxiety disorders. Therefore this article reviews the literature of potential biomarkers such as components of saliva, peripheral blood, cerebrospinal fluid (CSF), and neuroimaging studies. There are promising publications in the literature that can be useful. The most valuable and promising markers of saliva are cortisol, lysozyme, and α-amylase (sAA). In the blood, in turn, we can distinguish serotonin, brain-derived serum neurotrophic factor (BDNF), cortisol, and microRNA. Structural changes in the amygdala and hippocampus are promising neuroimaging markers, while in CSF, potential markers include oxytocin and 5-Hydroxyindoleacetic acid (5-HIAA). Unfortunately, research in the field of biomarkers is hampered by insufficient knowledge about the etiopathogenesis of anxiety disorders, the significant heterogeneity of anxiety disorders, frequent comorbidities, and low specificity of biomarkers. The development of appropriate biomarker panels and their assessment using new approaches may have the prospective to overcome the above-mentioned obstacles.
Collapse
Affiliation(s)
- Kacper Łoś
- Department of Psychiatry, Medical University of Bialystok, Plac Brodowicza 1, 16-070 Choroszcz, Poland;
| | | |
Collapse
|
135
|
Ueno M. Restoring neuro-immune circuitry after brain and spinal cord injuries. Int Immunol 2021; 33:311-325. [PMID: 33851981 DOI: 10.1093/intimm/dxab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Niigata 951-8585, Japan
| |
Collapse
|
136
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
137
|
Abstract
Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- Genomics Core, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
138
|
Afridi R, Seol S, Kang HJ, Suk K. Brain-immune interactions in neuropsychiatric disorders: Lessons from transcriptome studies for molecular targeting. Biochem Pharmacol 2021; 188:114532. [PMID: 33773976 DOI: 10.1016/j.bcp.2021.114532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Understanding the pathophysiological mechanisms of neuropsychiatric disorders has been a challenging quest for neurobiologists. Recent years have witnessed enormous technological advances in the field of neuroimmunology, blurring boundaries between the central nervous system and the periphery. Consequently, the discipline has expanded to cover interactions between the nervous and immune systems in health and diseases. The complex interplay between the peripheral and central immune pathways in neuropsychiatric disorders has recently been documented in various studies, but the genetic determinants remain elusive. Recent transcriptome studies have identified dysregulated genes involved in peripheral immune cell activation, blood-brain barrier integrity, glial cell activation, and synaptic plasticity in major depressive disorder, bipolar disorder, autism spectrum disorder, and schizophrenia. Herein, the key transcriptomic techniques applied in investigating differentially expressed genes and pathways responsible for altered brain-immune interactions in neuropsychiatric disorders are discussed. The application of transcriptomics that can aid in identifying molecular targets in various neuropsychiatric disorders is highlighted.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sihwan Seol
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
139
|
Altıntaş A, Yildiz-Tas A, Yilmaz S, Bayraktutar BN, Comert MC, Zimmermann H, Brandt AU, Paul F, Sahin A. A novel investigation method for axonal damage in neuromyelitis optica spectrum disorder: In vivo corneal confocal microscopy. Mult Scler J Exp Transl Clin 2021; 7:2055217321998060. [PMID: 33796330 PMCID: PMC7985945 DOI: 10.1177/2055217321998060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disorder that damages optic nerves, brainstem, and spinal cord. In vivo corneal confocal microscopy (IVCM) is a noninvasive technique that provides corneal images with dendritic cells (DCs) and corneal subbasal nerve plexus (SBP), which arises from the trigeminal nerve. Objective We investigated corneal SBP changes in NMOSD and proposed IVCM as a potential new disease severity biomarker for NMOSD. Methods Seventeen age-sex matched NMOSD patients and 19 healthy participants underwent complete neurologic and ophthalmologic examinations. The duration of disease, first symptom, presence of optic neuritis attack, antibody status, Expanded Disability Status Scale(EDSS) score and disease severity score(DSS) were recorded. Retinal nerve fibre layer (RNFL) thickness was measured with optical coherence tomography, and corneal SBP images were taken with IVCM. Results NMOSD patients had significantly reduced corneal nerve fibre lenght-density and corneal nerve branch lenght-density compared with controls, while DC density was increased. NMOSD patients also showed significantly reduced RNFL thickness compared with controls. EDSS,DSS levels were inversely correlated with IVCM parameters. Conclusion We observed significant corneal nerve fibre loss in NMOSD patients in relation to disease severity. IVCM can be a candidate noninvasive imaging method for axonal damage assessment in NMOSD that warrants further investigation.
Collapse
Affiliation(s)
- Ayşe Altıntaş
- Neurology Department, School of Medicine, Koç University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ayse Yildiz-Tas
- Ophthalmology Department, School of Medicine, Koç University, Istanbul, Turkey
| | - Sezen Yilmaz
- School of Medicine, Koç University, Istanbul, Turkey
| | - Betul N Bayraktutar
- Ophthalmology Department, School of Medicine, Koç University, Istanbul, Turkey
| | | | - Hanna Zimmermann
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Afsun Sahin
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Ophthalmology Department, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
140
|
Alewel DI, Henriquez AR, Colonna CH, Snow SJ, Schladweiler MC, Miller CN, Kodavanti UP. Ozone-induced acute phase response in lung versus liver: the role of adrenal-derived stress hormones. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:235-248. [PMID: 33317425 PMCID: PMC8082230 DOI: 10.1080/15287394.2020.1858466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acute-phase response (APR) is an innate stress reaction to tissue trauma or injury, infection, and environmental insults like ozone (O3). Regardless of the location of stress, the liver has been considered the primary contributor to circulating acute-phase proteins (APPs); however, the mechanisms underlying APR induction are unknown. Male Wistar-Kyoto rats were exposed to air or O3 (1 ppm, 6-hr/day, 1 or 2 days) and examined immediately after each exposure and after 18-hr recovery for APR proteins and gene expression. To assess the contribution of adrenal-derived stress hormones, lung and liver global gene expression data from sham and adrenalectomized rats exposed to air or O3 were compared for APR transcriptional changes. Data demonstrated serum protein alterations for selected circulating positive and negative APPs following 2 days of O3 exposure and during recovery. At baseline, APP gene expression was several folds higher in the liver relative to the lung. O3-induced increases were significant for lung but not liver for some genes including orosomucoid-1. Further, comparative assessment of mRNA seq data for known APPs in sham rats exhibited marked elevation in the lung but not liver, and a near-complete abolishment of APP mRNA levels in lung tissue of adrenalectomized rats. Thus, the lung appears to play a critical role in O3-induced APP synthesis and requires the presence of circulating adrenal-derived stress hormones. The relative contribution of lung versus liver and the role of neuroendocrine stress hormones need to be considered in future APR studies involving inhaled pollutants.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Catherine H. Colonna
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Mette C. Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Colette N. Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
141
|
Cercy SP. Pericytes and the Neurovascular Unit: The Critical Nexus of Alzheimer Disease Pathogenesis? EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021. [DOI: 10.14218/erhm.2020.00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
142
|
Xu X, Cai X, Liu X, Guo SW. Possible involvement of neuropeptide and neurotransmitter receptors in Adenomyosis. Reprod Biol Endocrinol 2021; 19:25. [PMID: 33602248 PMCID: PMC7893711 DOI: 10.1186/s12958-021-00711-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Accumulating data indicate that sensory nerve derived neuropeptides such as substance P and calcitonin gene related-protein (CGRP) can accelerate the progression of endometriosis via their respective receptors, so can agonists to their respective receptors receptor 1 (NK1R), receptor activity modifying protein 1 (RAMP-1) and calcitonin receptor-like receptor (CRLR). Adrenergic β2 receptor (ADRB2) agonists also can facilitate lesional progression. In contrast, women with endometriosis appear to have depressed vagal activity, concordant with reduced expression of α7 nicotinic acetylcholine receptor (α7nAChR). The roles of these receptors in adenomyosis are completely unknown. METHODS Adenomyotic tissue samples from 30 women with adenomyosis and control endometrial tissue samples from 24 women without adenomyosis were collected and subjected to immunohistochemistry analysis of RAMP1, CRLR, NK1R, ADRB2 and α7nAChR, along with their demographic and clinical information. The extent of tissue fibrosis was evaluated by Masson trichrome staining. RESULTS We found that the staining levels of NK1R, CRLR, RAMP1 and ADRB2 were all significantly elevated in adenomyotic lesions as compared with control endometrium. In contrast, α7nAChR staining levels were significantly reduced. The severity of dysmenorrhea correlated positively with lesional ADRB2 staining levels. CONCLUSIONS Our results suggest that SP, CGRP and noradrenaline may promote, while acetylcholine may stall, the progression of adenomyosis through their respective receptors on adenomyotic lesions. Additionally, through the activation of the hypothalamic-pituitary-adrenal (HPA)-sympatho-adrenal-medullary (SAM) axes and the lesional overexpression of ADRB2, adenomyosis-associated dysmenorrhea and adenomyotic lesions may be mutually promotional, forming a viscous feed-forward cycle.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Obstetrics and Gynecology, Ningbo No. 7 Hospital, Ningbo, Zhejiang, 315200, China
| | - Xianjun Cai
- Department of Obstetrics and Gynecology, Ningbo No. 7 Hospital, Ningbo, Zhejiang, 315200, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
143
|
Conceição F, Sousa DM, Paredes J, Lamghari M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021; 9:9. [PMID: 33547275 PMCID: PMC7864971 DOI: 10.1038/s41413-021-00137-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic "metastatic vicious cycle". The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.
Collapse
Affiliation(s)
- Francisco Conceição
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M. Sousa
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Meriem Lamghari
- grid.5808.50000 0001 1503 7226I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
144
|
Chojnowska S, Ptaszyńska-Sarosiek I, Kępka A, Knaś M, Waszkiewicz N. Salivary Biomarkers of Stress, Anxiety and Depression. J Clin Med 2021; 10:jcm10030517. [PMID: 33535653 PMCID: PMC7867141 DOI: 10.3390/jcm10030517] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/06/2023] Open
Abstract
Stress, anxiety and depressive disorders are often characterized by the activation of the stress axis, which results in similar symptoms at some point in these disorders. These disorders are closely related to each other—they occur simultaneously or follow one another. The diagnosis of stress, anxiety and depression is not a perfect procedure currently—it is based on patient observation and an interview with the patient and their family. There are no laboratory tests that would dispel the doubts of the doctor making the diagnosis and allow the appropriate treatment to be implemented as soon as possible. Therefore, this study will review the components of saliva that could be helpful in the quick diagnosis of stress, anxiety and/or depression. Such potential salivary biomarkers could also be useful in monitoring the effectiveness of pharmacological treatment prescribed by a psychiatrist. The following are promising salivary biomarkers of stress, anxiety or depression: cortisol, immunoglobulin A (sIgA), lysozyme, melatonin, α-amylase (sAA), chromogranin A (CgA) and fibroblast growth factor 2 (FGF-2). To the best valuable potential salivary markers of stress, we can include cortisol, lysozyme, sAA and CgA. To differentiate depression from stress, salivary cortisol and melatonin can be helpful. Fluctuations in the concentrations of the above-mentioned substances in saliva indicate a particularly strong relationship with typical human psychological problems, such as stress, depression or anxiety.
Collapse
Affiliation(s)
- Sylwia Chojnowska
- Faculty of Health Sciences, Lomza State University of Applied Sciences, Akademicka Street 14, 18-400 Lomza, Poland;
- Correspondence:
| | | | - Alina Kępka
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Małgorzata Knaś
- Faculty of Health Sciences, Lomza State University of Applied Sciences, Akademicka Street 14, 18-400 Lomza, Poland;
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland;
| |
Collapse
|
145
|
Li J, Bi J, Zhang P, Wang Z, Zhong Y, Xu S, Wang L, Li B. Functions of a C-type lectin with a single carbohydrate-recognition domain in the innate immunity and movement of the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2021; 30:90-101. [PMID: 33145845 DOI: 10.1111/imb.12680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins (CTLs) are a superfamily of proteins found in almost all vertebrates and invertebrates. They play an important role in innate immune defences, development and epidermal structure. Here, a CTL with one carbohydrate-recognition domain containing a highly conserved Gln-Pro-Asp (QPD) motif was identified in Tribolium castaneum and given the name TcCTL5. Spatiotemporal analyses showed that Tcctl5 was highly expressed in the late pupa stage and mainly existed in the central nervous system and haemolymph. The transcript level of Tcctl5 was prominently induced after bacterial infection. Recombinant TcCTL5 proteins (rTcCTL5) were found to bind to lipopolysaccharide, peptidoglycan and tested bacteria and induce microbial agglutination in the presence of Ca2+ . Interestingly, when Tcctl5 was knocked down, the transcript level of antimicrobial peptides (AMPs) (attacin1, defensins3, coleoptericin1 and cecropins3) was prominently downregulated after induction with Gram-negative Escherichia coli. More interestingly, Tcctl5 was knocked down, leading to increased mortality and loss of locomotor activity, which exhibited less travel distances among early adults. These results demonstrate that Tcctl5 plays an important role in the innate immune reaction and the movement of T. castaneum. Thus, it may represent an alternative molecular target for pest control and thus reduce the use of pesticides in agricultural production.
Collapse
Affiliation(s)
- J Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - J Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - P Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Z Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - L Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
146
|
Wang L, Liu C, Geng X. Identify immune-related genes of adzuki bean weevil (Callosobruchus chinensis) in response to bacteria challenge by transcriptome analysis. Microb Pathog 2021; 151:104749. [PMID: 33484809 DOI: 10.1016/j.micpath.2021.104749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Callosobruchus chinensis is one of the important postharvest pests in legume growing areas. Bacterial pesticide is a potential alternative method to control storage pests. However, the effect of these pathogen bacteria on storage pests, and the molecular mechanisms of insect response remain to be to investigated. RESULTS Using the next generation sequencing technology, we established a transcriptomic library for C. chinensis larvae in response to Escherichia coli. Total of 355 differential expressed genes (DEGs) were identified, which 178 DEGs were upregulated, and 177 DEGs were downregulated compared to control group. To validate the RNA-seq analysis, 20 DEGs and 14 immune-related genes were selected to perform quantitative polymerase chain reaction (RT-qPCR). These immune-related genes were involved in recognition (peptidoglycan recognition proteins), signal transduction (fibrinogen-related proteins, serine proteinases and NF-κB), and execution effectors (phenoloxidase, defensin, attacin, and antimicrobial peptide). In addition, genes that encode digestive and respiratory enzymes were altered in C. chinensis larvae in response to infection. Some genes that involved in juvenile hormone and insulin pathway appeared to express differentially, suggesting that pathogen infection might lead to developmental arrest. Furthermore, iron homeostasis and chitin metabolism appeared significantly altered after infection. CONCLUSION In this study, we characterized the immune response of C. chinensis larvae in response to E. coli using RNA-seq, from pathogen recognition, signal transduction, to execution. Some other identified genes were involved in iron homeostasis, respiration, and digestion. A better understanding of molecular response of beetle to pathogen will facilitate us to develop an available strategy to control storage pests.
Collapse
Affiliation(s)
- Lei Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
147
|
Reduced vagal tone in women with endometriosis and auricular vagus nerve stimulation as a potential therapeutic approach. Sci Rep 2021; 11:1345. [PMID: 33446725 PMCID: PMC7809474 DOI: 10.1038/s41598-020-79750-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Sensory and sympathetic nerves have been shown to promote the progression of endometriosis through the release of neuromediators and the lesional activation of respective receptors. The role of vagus nerves (VN) in lesional progression, however, is completely unclear, despite the signs suggestive of increased sympathetic tone in women with endometriosis. This study was undertaken to investigate whether VN plays any role in the progression of endometriosis. We recruited 45 patients with endometriosis and 42 healthy women, who were given electrocardiogram test and their heart rate variability was evaluated. In addition, three prospective, and randomized mouse experiments were conducted that evaluated, respectively, the effect of vagotomy, the effect of VN stimulation (VNS), and the therapeutic potential of VNS after the endometriosis was well established. All lesions were excised, weighed, and processed for immunohistochemistry and histochemistry analysis of select markers for lesional progression and fibrosis. We found that endometriosis patients exhibited reduced vagal activity as compared with controls, indicative of disrupted autonomic balance. Vagotomy increased while VNS decreased the lesion weight as compared with control mice, concomitant with more progressive and retarded lesion development and fibrogenesis, respectively. In addition, VNS demonstrated promising therapeutic effect, as evidenced by significantly reduced lesion weight, more attenuated lesional progression concomitant with improved hyperalgesia. Taken together, our data indicate that VN activity may play a dampening role in the progression of endometriosis. Consequently, boosting the VN activity may have therapeutic potentials for patients with endometriosis.
Collapse
|
148
|
Campbell JH, Dixon B, Whitehouse LM. The intersection of stress, sex and immunity in fishes. Immunogenetics 2021; 73:111-129. [PMID: 33426582 DOI: 10.1007/s00251-020-01194-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 11/27/2022]
Abstract
While sexual dimorphism in immune responses has been documented in other vertebrates, evidence for a similar phenomenon in fish is lacking. Here, we review the relationship between immunity, stress, spawning, and sex hormones in fish to gain a better understanding of sex-based differences in fish immune responses and its consequences for aquaculture. It is well known that there is a strong link between the stress response and immune function in fish. In addition, research to date has demonstrated that sexual dimorphism in the stress response exists in many species; yet, the relationship between the sexual dimorphic stress responses and immune function has rarely been explored together. Aside from stress, spawning is also known to trigger changes in fish immune responses. Estrogens and androgens have been shown to modulate the immune system which could account for differences between the two sexes of fish when spawning; however, evidence regarding the sexual dimorphism of these changes varies between fishes and is likely related to the spawning strategy employed by a given species. Sex hormones are also used in aquaculture practices to produce monosex populations, and exposure to these hormones early in development has been shown to impact the development of immune organs in several fishes. While female fish are generally thought to be more robust than males, aquaculture practices should also consider the role that maternal stress has on the immune function of the offspring and what role this plays in compromising the immune response of farmed fish.
Collapse
Affiliation(s)
- James H Campbell
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, USA
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, USA.
| | - Lindy M Whitehouse
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, USA
| |
Collapse
|
149
|
Gao W, Yang X, Du J, Wang H, Zhong H, Jiang J, Yang C. Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling. Stem Cell Res Ther 2021; 12:16. [PMID: 33413641 PMCID: PMC7791823 DOI: 10.1186/s13287-020-02071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/06/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated. We aimed to study the relative importance of the hypothalamic-pituitary-adrenal (HPA) axis in the glucocorticoid-induced BMSPC mobilization. Methods The circulating mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were examined in Crh (+/+, −/−) mice after running stress or glucocorticoid mini-infusion. The MSCs and EPCs were investigated ex vivo after treatment with glucocorticoid and glucocorticoid receptor (GR) antagonist, RU486. The expression of chemotaxis receptors, N-formyl peptide receptor (FPR), and Cys-X-Cys receptor 4 (CXCR4) of MSCs and EPCs as well as their colocalization were investigated after treatment with glucocorticoid, glucocorticoid receptor (GR) antagonist (RU486), and FPR antagonist (Cyclosporin H). Results Forced running stress increased circulating MSCs and EPCs in mice, which was blunted when Crh was knocked out, and positively related to the levels of serum glucocorticoid. Prolonged glucocorticoid mini-infusion imitated the stress-induced increase in circulating MSCs and EPCs in Crh+/+ mice and rescued the impaired mobilization in circulating MSCs and EPCs in Crh−/− mice. Meanwhile, glucocorticoid promoted the chemotaxis of MSCs and EPCs ex vivo via GR, inhibited by RU486 (10 μM). Concurrently, glucocorticoid increased the expression of FPR of MSCs and EPCs, but inhibited their expression of CXCR4, followed by their changing colocalization in the cytoplasm. The GC-induced colocalization of FPR and CXCR4 was blunted by Cyclosporin H (1 μM). Conclusion Glucocorticoid-induced CXCR4-FPR responsiveness selectively guides the mobilization of BMSPCs, which is essential to functional tissue repair. Graphical abstract Schematic view of the role of glucocorticoid on the mobilization of bone marrow-derived stem/progenitor cells subsets in the present study. The HPA axis activation promotes the release of glucocorticoid, which regulates the directional migration of MSCs and EPCs mainly via GR. The possible mechanisms refer to the signal coupling of FPR and CXCR4. Their two-sided changes regulated by glucocorticoid are involved in the egress of MSCs and EPCs from BM, which is helpful for wound healing. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02071-1.
Collapse
Affiliation(s)
- Wenting Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, People's Republic of China
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Chinese PLA 952th Hospital, Geermu, 816000, Qinghai, People's Republic of China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Hejiang Zhong
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
150
|
Russell AM, Saketkoo LA. Patient-Centredness and Patient-Reported Measures (PRMs) in Palliation of Lung Disease. Respir Med 2021. [DOI: 10.1007/978-3-030-81788-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|