101
|
Hatefi Z, Soltani G, Khosravi S, Kazemi M, Salehi AR, Salehi R. Micro R-410 Binding Site Single Nucleotide Polymorphism rs13702 in Lipoprotein Lipase Gene is Effective to Increase Susceptibility to Type 2 Diabetes in Iranian Population. Adv Biomed Res 2018; 7:79. [PMID: 29930919 PMCID: PMC5991288 DOI: 10.4103/abr.abr_286_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The relationship between dyslipidemia and type 2 diabetes mellitus (T2DM) has been frequently reported. Lipoprotein lipase (LPL) is considered to be an effective gene in regulating lipid profile. MicroRNAs (miRNAs) are small noncoding RNAs involved in posttranscriptional regulation of gene expression. In the present study, we have evaluated rs13702 (C/T) polymorphism located in miRNA-410 binding site of LPL gene in subset of Iranian T2DM patients and their normal counterparts. MATERIALS AND METHODS In this case-control study, 102 T2DM patients and 98 healthy controls were worked out for rs13702 single nucleotide polymorphism genotypes. High resolution meting (HRM) analysis was used for genotyping. RESULTS C allele of rs13702 C/T polymorphism located in miRNA-410 binding site in LPL gene was detected to be significantly associated with T2DM (C allele; odds ratios (OR) = 1.729 (95% confidential intervals (CI) = 1.184-2.523); P = 0.005) also its CC genotype (OR = 3.28 (95% CI 8.68-1.24); P = 0.010) showed the same association. CONCLUSION Correlation of rs13702 C allele with susceptibility to T2DM may be due to the higher level of LPL that leads to increased plasma fatty acids and its entry into peripheral tissues such as skeletal muscle, liver, and adipocytes causing development of insulin resistance and ultimately T2DM.
Collapse
Affiliation(s)
- Zahra Hatefi
- From the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Goljahan Soltani
- From the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharifeh Khosravi
- From the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- From the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- From the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- From the Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Gerfa Namayesh Azmayesh (GENAZMA) Science and Research Institute, Isfahan, Iran
| |
Collapse
|
102
|
Gevi F, Fanelli G, Zolla L. Metabolic patterns in insulin-resistant male hypogonadism. Cell Death Dis 2018; 9:671. [PMID: 29867095 PMCID: PMC5986816 DOI: 10.1038/s41419-018-0587-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 01/21/2023]
Abstract
Male hypogonadism associated with insulin resistance (IR) very often leads to metabolic syndrome, at variance with hypogonadism in its first stadium of insulin sensitivity (IS). A plasma metabolomic investigation of these patients can provide useful information in comparison with the values of IS patients. To this aim plasma from insulin-resistant males with hypogonadism were analysed by using ultra high-performance liquid chromatography (UHPLC) and high-resolution mass spectrometry (HRMS). Thus, metabolites were compared to the controls through multivariate statistical analysis and grouped by metabolic pathways. Metabolite database searches and pathway analyses identified imbalances in 18-20 metabolic pathways. Glucose metabolism (e.g., glycolysis and the Krebs cycle) is fuelled by amino acids degradation, in particular of branched amino acids, in individuals with lean body mass. Gluconeogenesis is strongly activated. Some crucial pathways such as glycerol are skewed. Mitochondrial electron transport is affected with a reduction in ATP production. Beta-oxidation of short and medium chain fatty acids did not represent an energy source in hypogonadism, at variance with long and branched fatty acids, justifying the increase in fat mass. Carnosine and β-alanine are strongly reduced resulting in increased fatigue and mental confusion. A comparison of IR with IS male hypogonadism will contribute to a better understanding of how these two hormones work in synergy or antagonise each other in humans. It could also help to select patients who will respond to hormone treatment, and provide accurate biomarkers to measure the response to treatment eventually leading to better strategies in preventing systemic complications in patients not fit for hormone replacement therapy.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
103
|
Liu C, Han T, Stachura DL, Wang H, Vaisman BL, Kim J, Klemke RL, Remaley AT, Rana TM, Traver D, Miller YI. Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nat Commun 2018; 9:1310. [PMID: 29615667 PMCID: PMC5882990 DOI: 10.1038/s41467-018-03775-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
Lipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish. A human APOC2 mimetic peptide or the human very low-density lipoprotein, which carries APOC2, rescues the phenotype in apoc2 but not in lpl mutant zebrafish. Creating parabiotic apoc2 and lpl mutant zebrafish rescues the hematopoietic defect in both. Docosahexaenoic acid (DHA) is identified as an important factor in HSPC expansion. FFA-DHA, but not TG-DHA, rescues the HSPC defects in apoc2 and lpl mutant zebrafish. Reduced blood cell counts are also observed in Apoc2 mutant mice at the time of weaning. These results indicate that LPL-mediated release of the essential fatty acid DHA regulates HSPC expansion and definitive hematopoiesis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tianxu Han
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David L Stachura
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Huawei Wang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Boris L Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Richard L Klemke
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
104
|
Li D, Long W, Huang R, Chen Y, Xia M. 27-Hydroxycholesterol Inhibits Sterol Regulatory Element-Binding Protein 1 Activation and Hepatic Lipid Accumulation in Mice. Obesity (Silver Spring) 2018; 26:713-722. [PMID: 29476609 DOI: 10.1002/oby.22130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/18/2017] [Accepted: 01/06/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Although 27-hydroxycholesterol (27-HC) has been reported as a potent regulator of lipid homeostasis, its role in hepatic lipogenesis remains obscure. The present study was designed to investigate the impact of 27-HC on sterol regulatory element-binding protein 1 (SREBP-1) and hepatic steatosis. METHODS In this study, the 27-HC level in mice was upregulated by overexpressing CYP27A1 or treating primary hepatocytes with 27-HC, and then the hepatic lipid accumulation was detected. RESULTS 27-HC inhibited hepatic lipid accumulation and decreased the levels of the mature active form of SREBP-1. The expression of lipogenic genes, including acetyl coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, and glycerol-3-phosphate acyltransferase, were also suppressed after 27-HC intervention. Furthermore, 27-HC induced expression of insulin-induced gene-2 (Insig-2), an endoplasmic reticulum protein that prevents SREBP activation, both in vivo and in vitro. The inhibitory effect of 27-HC on SREBP-1 activation was absent when Insig-2 was silenced. Finally, coimmunoprecipitation showed that 27-HC promoted the binding of Insig-2 to SREBP-1. CONCLUSIONS These studies demonstrated the suppressive effect of 27-HC on hepatic lipid accumulation and revealed a novel mechanism by which 27-HC regulates lipogenesis.
Collapse
Affiliation(s)
- Di Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| | - Weiqing Long
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| | - Ying Chen
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| | - Min Xia
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangdong Province, China
| |
Collapse
|
105
|
Duan X, Meng Q, Wang C, Liu Z, Sun H, Huo X, Sun P, Ma X, Peng J, Liu K. Effects of calycosin against high-fat diet-induced nonalcoholic fatty liver disease in mice. J Gastroenterol Hepatol 2018; 33:533-542. [PMID: 28699662 DOI: 10.1111/jgh.13884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) has become a major health concern worldwide. The present study was designed to investigate the effects of calycosin against high-fat diet (HFD)-induced NAFLD in mice. METHODS C57BL/6 J male mice were fed with HFD to induce NAFLD model and treated with or without calycosin for 12 weeks. The levels of ALT, AST, insulin, and adiponectin were measured using biochemical methods. Hemotoxylin and eosin staining and Oil Red O staining were used to determine the liver histopathology changes and measure the degree of lipid accumulation respectively. Glucose tolerance tests and insulin tolerance tests were performed followed by quantitative insulin sensitivity check index determination. Western blot and quantitative real-time polymerase chain reaction were used to explore the potential mechanism involved in the beneficial effects of calycosin. RESULTS Calycosin effectively decreased the levels of ALT and AST, increased the levels of adiponectin and insulin. Hemotoxylin and eosin staining indicated calycosin treatment remarkably improved liver injury. Oil Red O staining indicated calycosin treatment remarkably improved lipid accumulation. Quantitative insulin sensitivity check index in HFD fed mice was significantly lower than in the standard chow fed mice. Further, calycosin suppressed phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, sterol-regulatory element binding protein 1c, and FASN involved in gluconeogenesis and triglyceride synthesis. Calycosin increased glycogen synthase kinase 3 beta, glucose transporter 4, and phosphorylated insulin receptor substrates 1 and 2 expressions involved in glucose metabolism. The aforementioned beneficial effects of calycosin against HFD-induced NAFLD may be attributed to farnesoid X receptor activation. CONCLUSION Calycosin could produce the favorable effects against HFD-induced NAFLD in mice.
Collapse
Affiliation(s)
- Xingping Duan
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zigong, Zigong, Sichuan, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, China
| |
Collapse
|
106
|
Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice. Food Chem Toxicol 2018; 113:73-82. [PMID: 29366871 DOI: 10.1016/j.fct.2018.01.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
The Western diet contributes to nonalcoholic fatty liver disease (NAFLD) pathogenesis. Benzo[a]pyrene (BaP), a prototypical environmental pollutant produced by combustion processes, is present in charcoal-grilled meat. Cytochrome P450 1A1 (CYP1A1) metabolizes BaP, resulting in either detoxication or metabolic activation in a context-dependent manner. To elucidate a role of CYP1A1-BaP in NAFLD pathogenesis, we compared the effects of a Western diet, with or without oral BaP treatment, on the development of NAFLD in Cyp1a1(-/-) mice versus wild-type mice. A Western diet plus BaP induced lipid-droplet accumulation in liver of Cyp1a1(-/-) mice, but not wild-type mice. The hepatic steatosis observed in Cyp1a1(-/-) mice was associated with increased cholesterol, triglyceride and bile acid levels. Cyp1a1(-/-) mice fed Western diet plus BaP had changes in expression of genes involved in bile acid and lipid metabolism, and showed no increase in Cyp1a2 expression but did exhibit enhanced Cyp1b1 mRNA expression, as well as hepatic inflammation. Enhanced BaP metabolic activation, oxidative stress and inflammation may exacerbate metabolic dysfunction in liver of Cyp1a1(-/-) mice. Thus, Western diet plus BaP induces NAFLD and hepatic inflammation in Cyp1a1(-/-) mice in comparison to wild-type mice, indicating a protective role of CYP1A1 against NAFLD pathogenesis.
Collapse
Affiliation(s)
- Shigeyuki Uno
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
107
|
Effects of daily walking on intermuscular adipose tissue accumulation with age: a 5-year follow-up of participants in a lifestyle-based daily walking program. Eur J Appl Physiol 2018; 118:785-793. [DOI: 10.1007/s00421-018-3812-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/06/2018] [Indexed: 01/14/2023]
|
108
|
Samuel VT, Shulman GI. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab 2018; 27:22-41. [PMID: 28867301 PMCID: PMC5762395 DOI: 10.1016/j.cmet.2017.08.002] [Citation(s) in RCA: 514] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
NAFLD is closely linked with hepatic insulin resistance. Accumulation of hepatic diacylglycerol activates PKC-ε, impairing insulin receptor activation and insulin-stimulated glycogen synthesis. Peripheral insulin resistance indirectly influences hepatic glucose and lipid metabolism by increasing flux of substrates that promote lipogenesis (glucose and fatty acids) and gluconeogenesis (glycerol and fatty acid-derived acetyl-CoA, an allosteric activator of pyruvate carboxylase). Weight loss with diet or bariatric surgery effectively treats NAFLD, but drugs specifically approved for NAFLD are not available. Some new pharmacological strategies act broadly to alter energy balance or influence pathways that contribute to NAFLD (e.g., agonists for PPAR γ, PPAR α/δ, FXR and analogs for FGF-21, and GLP-1). Others specifically inhibit key enzymes involved in lipid synthesis (e.g., mitochondrial pyruvate carrier, acetyl-CoA carboxylase, stearoyl-CoA desaturase, and monoacyl- and diacyl-glycerol transferases). Finally, a novel class of liver-targeted mitochondrial uncoupling agents increases hepatocellular energy expenditure, reversing the metabolic and hepatic complications of NAFLD.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
109
|
Kim JH, Lee E, Friedline RH, Suk S, Jung DY, Dagdeviren S, Hu X, Inashima K, Noh HL, Kwon JY, Nambu A, Huh JR, Han MS, Davis RJ, Lee AS, Lee KW, Kim JK. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity. FASEB J 2018; 32:2292-2304. [PMID: 29242277 DOI: 10.1096/fj.201701017r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78-/-) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78-/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78-/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78-/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.
Collapse
Affiliation(s)
- Jong Hun Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Eunjung Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sezin Dagdeviren
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kunikazu Inashima
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jung Yeon Kwon
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aya Nambu
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun R Huh
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Myoung Sook Han
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Wellness Emergence Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
110
|
Sağlam Aykut D, Özkorumak Karagüzel E. A comparison of depot and oral atypical antipsychotics in terms of metabolic syndrome markers. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1414575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Demet Sağlam Aykut
- Department of Psychiatry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | | |
Collapse
|
111
|
Lipotoxicity in Obesity: Benefit of Olive Oil. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:607-617. [PMID: 28585218 DOI: 10.1007/978-3-319-48382-5_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical implication of Lipotoxicity in obesity derives primarily from its potential to progress to insulin resistance, endothelial dysfunction and atherosclerosis. Olive oil rich diet decrease accumulation of triglyceride in the liver, improved postprandial triglyceride levels, improve glucose and GLP-1 response in insulin resistant subjects, and up regulate GLUT-2 expression in the liver. The exact molecular mechanism is unknown but, decreasing NFkB activation, decreasing LDL oxidation and improving insulin resistance by less production of inflammatory cytokines (TNF-a, IL-6) and improvement of kinases JNK-mediated phosphorylation of IRS-1 are the principle mechanisms. The beneficial effect of the Mediterranean diet derived from monounsaturated fatty acids (MUFA), mainly from olive oil. In this review we document lipotoxicity in obesity and the benefit of olive oil.
Collapse
|
112
|
Insulin Resistance, Obesity and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:277-304. [PMID: 28585204 DOI: 10.1007/978-3-319-48382-5_12] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipotoxicity , originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. Lipotoxicity has roles in insulin resistance and pancreatic beta cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling, have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
|
113
|
Abstract
Hepatic steatosis is an underlying feature of nonalcoholic fatty liver disease (NAFLD), which is the most common form of liver disease and is present in up to ∼70% of individuals who are overweight. NAFLD is also associated with hypertriglyceridaemia and low levels of HDL, glucose intolerance, insulin resistance and type 2 diabetes mellitus. Hepatic steatosis is a strong predictor of the development of insulin resistance and often precedes the onset of other known mediators of insulin resistance. This sequence of events suggests that hepatic steatosis has a causal role in the development of insulin resistance in other tissues, such as skeletal muscle. Hepatokines are proteins that are secreted by hepatocytes, and many hepatokines have been linked to the induction of metabolic dysfunction, including fetuin A, fetuin B, retinol-binding protein 4 (RBP4) and selenoprotein P. In this Review, we describe the factors that influence the development of hepatic steatosis, provide evidence of strong links between hepatic steatosis and insulin resistance in non-hepatic tissues, and discuss recent advances in our understanding of how steatosis alters hepatokine secretion to influence metabolic phenotypes through inter-organ communication.
Collapse
Affiliation(s)
- Ruth C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
114
|
Matone A, Derlindati E, Marchetti L, Spigoni V, Dei Cas A, Montanini B, Ardigò D, Zavaroni I, Priami C, Bonadonna RC. Identification of an early transcriptomic signature of insulin resistance and related diseases in lymphomonocytes of healthy subjects. PLoS One 2017; 12:e0182559. [PMID: 28777829 PMCID: PMC5544197 DOI: 10.1371/journal.pone.0182559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
Insulin resistance is considered to be a pathogenetic mechanism in several and diverse diseases (e.g. type 2 diabetes, atherosclerosis) often antedating them in apparently healthy subjects. The aim of this study is to investigate with a microarray based approach whether IR per se is characterized by a specific pattern of gene expression. For this purpose we analyzed the transcriptomic profile of peripheral blood mononuclear cells in two groups (10 subjects each) of healthy individuals, with extreme insulin resistance or sensitivity, matched for BMI, age and gender, selected within the MultiKnowledge Study cohort (n = 148). Data were analyzed with an ad-hoc rank-based classification method. 321 genes composed the gene set distinguishing the insulin resistant and sensitive groups, within which the "Adrenergic signaling in cardiomyocytes" KEGG pathway was significantly represented, suggesting a pattern of increased intracellular cAMP and Ca2+, and apoptosis in the IR group. The same pathway allowed to discriminate between insulin resistance and insulin sensitive subjects with BMI >25, supporting his role as a biomarker of IR. Moreover, ASCM pathway harbored biomarkers able to distinguish healthy and diseased subjects (from publicly available data sets) in IR-related diseases involving excitable cells: type 2 diabetes, chronic heart failure, and Alzheimer's disease. The altered gene expression profile of the ASCM pathway is an early molecular signature of IR and could provide a common molecular pathogenetic platform for IR-related disorders, possibly representing an important aid in the efforts aiming at preventing, early detecting and optimally treating IR-related diseases.
Collapse
Affiliation(s)
- Alice Matone
- The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | - Luca Marchetti
- The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Valentina Spigoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessandra Dei Cas
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Diego Ardigò
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ivana Zavaroni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Corrado Priami
- The Microsoft Research—University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
- Department of Mathematics, University of Trento, Trento, Italy
| | - Riccardo C. Bonadonna
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
- * E-mail:
| |
Collapse
|
115
|
Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7132941. [PMID: 28828387 PMCID: PMC5554547 DOI: 10.1155/2017/7132941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
Feed efficiency (FE) is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57) × Kunming (KM) F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR) and feed intake (FI) traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.
Collapse
|
116
|
Rodríguez-Carrio J, Salazar N, Margolles A, González S, Gueimonde M, de Los Reyes-Gavilán CG, Suárez A. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Front Immunol 2017; 8:823. [PMID: 28791008 PMCID: PMC5522850 DOI: 10.3389/fimmu.2017.00823] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence highlights the relevance of free fatty acids (FFA) for human health, and their role in the cross talk between the metabolic status and immune system. Altered serum FFA profiles are related to several metabolic conditions, although the underlying mechanisms remain unclear. Recent studies have highlighted the link between gut microbiota and host metabolism. However, although most of the studies have focused on different clinical conditions, evidence on the role of these mediators in healthy populations is lacking. Therefore, we have addressed the analysis of the relationship among gut microbial populations, short-chain fatty acid (SCFA) production, FFA levels, and immune mediators (IFNγ, IL-6, and MCP-1) in 101 human adults from the general Spanish population. Levels of selected microbial groups, representing the major phylogenetic types present in the human intestinal microbiota, were determined by quantitative PCR. Our results showed that the intestinal abundance of Akkermansia was the main predictor of total FFA serum levels, displaying a negative association with total FFA and the pro-inflammatory cytokine IL-6. Similarly, an altered FFA profile, identified by cluster analysis, was related to imbalanced levels of Akkermansia and Lactobacillus as well as increased fecal SCFA, enhanced IL-6 serum levels, and higher prevalence of subclinical metabolic alterations. Although no differences in nutritional intakes were observed, divergent patterns in the associations between nutrient intakes with intestinal microbial populations and SCFA were denoted. Overall, these findings provide new insights on the gut microbiota–host lipid metabolism axis and its potential relevance for human health, where FFA and SCFA seem to play an important role.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Sonia González
- Area of Physiology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
117
|
Lazzari P, Serra V, Marcello S, Pira M, Mastinu A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur Neuropsychopharmacol 2017; 27:667-678. [PMID: 28377074 DOI: 10.1016/j.euroneuro.2017.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Weight gain is an important side effect of most atypical antipsychotic drugs such as olanzapine. Moreover, although many animal models with metabolic side effects have been well defined, the interaction with other pathways has to be considered. The endocannabinoid system and the CB1 receptor (CB1R) are among the most promising central and peripheral targets involved in weight and energy balance. In this study we developed a rat model based 15-days treatment with olanzapine that shows weight gain and an alteration of the blood parameters involved in the regulation of energy balance and glucose metabolism. Consequently, we analysed whether, and by which mechanism, a co-treatment with the novel CB1R neutral antagonist NESS06SM, could attenuate the adverse metabolic effects of olanzapine compared to the reference CB1R inverse agonist rimonabant. Our results showed alterations of the cannabinoid markers in the nucleus accumbens and of orexigenic/anorexigenic markers in the hypothalamus of female rats treated with olanzapine. These molecular modifications could explain the excessive food intake and the resulting weight gain. Moreover, we confirmed that a co-treatment with CB1R antagonist/inverse agonist compounds decreased food intake and weight increment and restored all blood parameters, without altering the positive effects of olanzapine on behaviour. Furthermore, rimonabant and NESS06SM restored the metabolic enzymes in the liver and fat tissue altered by olanzapine. Therefore, CB1 receptor antagonist/inverse agonist compounds could be good candidate agents for the treatment of weight gain induced by olanzapine.
Collapse
Affiliation(s)
- P Lazzari
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - V Serra
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - S Marcello
- Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy
| | - M Pira
- Kemotech Srl, Edificio 3, Località Piscinamanna, 09010 Pula, CA, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Institute of Translational Pharmacology, UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia - Polaris, Pula, CA, Italy.
| |
Collapse
|
118
|
Angiopoietin-like 4 directs uptake of dietary fat away from adipose during fasting. Mol Metab 2017; 6:809-818. [PMID: 28752045 PMCID: PMC5518724 DOI: 10.1016/j.molmet.2017.06.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022] Open
Abstract
Objective Angiopoietin-like 4 (ANGPTL4) is a fasting-induced inhibitor of lipoprotein lipase (LPL) and a regulator of plasma triglyceride metabolism. Here, we examined the kinetics of Angptl4 induction and tested the hypothesis that ANGPTL4 functions physiologically to reduce triglyceride delivery to adipose tissue during nutrient deprivation. Methods Gene expression, LPL activity, and triglyceride uptake were examined in fasted and fed wild-type and Angptl4−/− mice. Results Angptl4 was strongly induced early in fasting, and this induction was suppressed in mice with access to food during the light cycle. Fasted Angptl4−/− mice manifested increased LPL activity and triglyceride uptake in adipose tissue compared to wild-type mice. Conclusions Angptl4 is induced early in fasting to divert uptake of fatty acids and triglycerides away from adipose tissues. •Angptl4 is induced within the first few hours of fasting. •Angptl4 expression is driven by fasting rather than circadian rhythms. •Fasted Angptl4−/− mice have increased triglyceride uptake in adipose tissue. •Angptl4−/− mice also have increased LPL activity specifically in adipose tissue. •Data support a model where ANGPTL4 acts locally in adipose during fasting.
Collapse
|
119
|
Engin A. Non-Alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:443-467. [DOI: 10.1007/978-3-319-48382-5_19] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
120
|
Kanaki M, Tiniakou I, Thymiakou E, Kardassis D. Physical and functional interactions between nuclear receptor LXRα and the forkhead box transcription factor FOXA2 regulate the response of the human lipoprotein lipase gene to oxysterols in hepatic cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:848-860. [PMID: 28576574 DOI: 10.1016/j.bbagrm.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
Lipoprotein lipase (LPL) catalyzes the hydrolysis of triglycerides from triglyceride-rich lipoproteins such as VLDL and chylomicrons in the circulation. Mutations in LPL or its activator apolipoprotein C-II cause hypertriglyceridemia in humans and animal models. The levels of LPL in the liver are low but they can be strongly induced by a high cholesterol diet or by synthetic ligands of Liver X Receptors (LXRs). However, the mechanism by which LXRs activate the human LPL gene is unknown. In the present study we show that LXR agonists increased the mRNA and protein levels as well as the promoter activity of human LPL in HepG2 cells. A promoter deletion analysis defined the proximal -109/-28 region, which contains a functional FOXA2 element, as essential for transactivation by ligand-activated LXRα/RXRα heterodimers. Silencing of endogenous FOXA2 in HepG2 cells by siRNAs or by treatment with insulin compromised the induction of the LPL gene by LXR agonists whereas mutations in the FOXA2 site abolished the synergistic transactivation of the LPL promoter by LXRα/RXRα and FOXA2. Physical and functional interactions between LXRα and FOXA2 were established in vitro and ex vivo. In summary, the present study revealed a novel mechanism of human LPL gene induction by oxysterols in the liver with is based on physical and functional interactions between transcription factors LXRα and FOXA2. This mechanism, which may not be restricted to the LPL gene, is critically important for a better understanding of the regulation of cholesterol and triglyceride metabolism in the liver under healthy or pathological states.
Collapse
Affiliation(s)
- Maria Kanaki
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Ioanna Tiniakou
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71003, Greece,.
| |
Collapse
|
121
|
Berg SM, Havelund J, Hasler-Sheetal H, Kruse V, Pedersen AJT, Hansen AB, Nybo M, Beck-Nielsen H, Højlund K, Færgeman NJ. The heterozygous N291S mutation in the lipoprotein lipase gene impairs whole-body insulin sensitivity and affects a distinct set of plasma metabolites in humans. J Clin Lipidol 2017; 11:515-523.e6. [PMID: 28502509 DOI: 10.1016/j.jacl.2017.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/03/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mutations in the lipoprotein lipase gene causing decreased lipoprotein lipase activity are associated with surrogate markers of insulin resistance and the metabolic syndrome in humans. OBJECTIVE We investigated the hypothesis that a heterozygous lipoprotein lipase mutation (N291S) induces whole-body insulin resistance and alterations in the plasma metabolome. METHODS In 6 carriers of a heterozygous lipoprotein lipase mutation (N291S) and 11 age-matched and weight-matched healthy controls, we examined insulin sensitivity and substrate metabolism by euglycemic-hyperinsulinemic clamps combined with indirect calorimetry. Plasma samples were taken before and after the clamp (4 hours of physiological hyperinsulinemia), and metabolites were measured enzymatically or by gas chromatography-mass spectrometry. RESULTS Compared with healthy controls, heterozygous carriers of a defective lipoprotein lipase allele had elevated fasting plasma levels triglycerides (P < .006), and markedly impaired insulin-stimulated glucose disposal rates (P < .024) and nonoxidative glucose metabolism (P < .015). Plasma metabolite profiling demonstrated lower circulating levels of pyruvic acid and α-tocopherol in the N291S carriers than in controls both before and after stimulation with insulin (all >1.5-fold change and P < .05). CONCLUSION Heterozygous carriers with a defective lipoprotein lipase allele are less insulin sensitive and have increased plasma levels of nonesterified fatty acids and triglycerides. The heterozygous N291S carriers also have a distinct plasma metabolomic signature, which may serve as a diagnostic tool for deficient lipoprotein lipase activity and as a marker of lipid-induced insulin resistance.
Collapse
Affiliation(s)
- Sofia Mikkelsen Berg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Department of Molecular Biology and Biochemistry, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Jesper Havelund
- Department of Molecular Biology and Biochemistry, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Harald Hasler-Sheetal
- Department of Molecular Biology and Biochemistry, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Department of Biology, University of Southern Denmark, Odense, Denmark; Nordic Center of Earth Evolution, NordCEE, Department of Biology, University of Southern Demark, Odense, Denmark
| | - Vibeke Kruse
- Department of Molecular Biology and Biochemistry, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Mads Nybo
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | | | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; The Section of Molecular Diabetes and Metabolism, Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Molecular Biology and Biochemistry, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
122
|
Wang Z, Shang P, Li Q, Wang L, Chamba Y, Zhang B, Zhang H, Wu C. iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs. Sci Rep 2017; 7:46717. [PMID: 28436483 PMCID: PMC5402282 DOI: 10.1038/srep46717] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/23/2017] [Indexed: 02/06/2023] Open
Abstract
Growth rate and meat quality, two economically important traits in pigs, are controlled by multiple genes and biological pathways. In the present study, we performed a proteomic analysis of longissimus dorsi muscle from six-month-old pigs from two Chinese native mini-type breeds (TP and DSP) and two introduced western breeds (YY and LL) using isobaric tag for relative and absolute quantification (iTRAQ). In total, 4,815 peptides corresponding to 969 proteins were detected. Comparison of expression patterns between TP-DSP and YY-LL revealed 288 differentially expressed proteins (DEPs), of which 169 were up-regulated and 119 were down-regulated. Functional annotation suggested that 28 DEPs were related to muscle growth and 15 to lipid deposition. Protein interaction network predictions indicated that differences in muscle growth and muscle fibre between TP-DSP and YY-LL groups were regulated by ALDOC, ENO3, PGK1, PGK2, TNNT1, TNNT3, TPM1, TPM2, TPM3, MYL3, MYH4, and TNNC2, whereas differences in lipid deposition ability were regulated by LPL, APOA1, APOC3, ACADM, FABP3, ACADVL, ACAA2, ACAT1, HADH, and PECI. Twelve DEPs were analysed using parallel reaction monitoring to confirm the reliability of the iTRAQ analysis. Our findings provide new insights into key proteins involved in muscle growth and lipid deposition in the pig.
Collapse
Affiliation(s)
- Zhixiu Wang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Peng Shang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China.,College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 100086, China
| | - Qinggang Li
- Institute of Animal Sciences and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Liyuan Wang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 100086, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, China
| |
Collapse
|
123
|
Kim M, Yun JW, Shin K, Cho Y, Yang M, Nam KT, Lim KM. Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity. Biomol Ther (Seoul) 2017; 25:112-121. [PMID: 27530116 PMCID: PMC5340535 DOI: 10.4062/biomolther.2016.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix GeneChip® Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760,
Republic of Korea
| | - Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080
| | - Kyeho Shin
- Department of Beauty Coordination, Suwon Science College, Suwon 18516,
Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Republic of Korea
| | - Mijeong Yang
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760,
Republic of Korea
| |
Collapse
|
124
|
Kanaki M, Kardassis D. Regulation of the human lipoprotein lipase gene by the forkhead box transcription factor FOXA2/HNF-3β in hepatic cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:327-336. [DOI: 10.1016/j.bbagrm.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
|
125
|
Blaak EE. Characterisation of fatty acid metabolism in different insulin-resistant phenotypes by means of stable isotopes. Proc Nutr Soc 2017; 76:1-7. [PMID: 28100287 DOI: 10.1017/s0029665116003013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obese insulin resistant and/or prediabetic state is characterised by systemic lipid overflow, mainly driven by an impaired lipid buffering capacity of adipose tissue, and an impaired capacity of skeletal muscle to increase fat oxidation upon increased supply. This leads to the accumulation of bioactive lipid metabolites in skeletal muscle interfering with insulin sensitivity via various mechanisms. In this review, the contribution of dietary v. endogenous fatty acids to lipid overflow, their extraction or uptake by skeletal muscle as well as the fractional synthetic rate, content and composition of the muscle lipid pools is discussed in relation to the development or presence of insulin resistance and/or an impaired glucose metabolism. These parameters are studied in vivo in man by combining a dual stable isotope methodology with [2H2]- and [U-13C]-palmitate tracers with the arterio-venous balance technique across forearm muscle and biochemical analyses in muscle biopsies. The insulin-resistant state is characterised by an elevated muscle TAG extraction, despite similar supply, and a reduced skeletal muscle lipid turnover, in particular after intake of a high fat, SFA fat meal, but not after a high fat, PUFA meal. Data are placed in the context of current literature, and underlying mechanisms and implications for long-term nutritional interventions are discussed.
Collapse
Affiliation(s)
- Ellen E Blaak
- Department of Human Biology,Maastricht University,Maastricht,The Netherlands
| |
Collapse
|
126
|
Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest 2017; 127:43-54. [PMID: 28045398 DOI: 10.1172/jci88880] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.
Collapse
|
127
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
128
|
Abstract
Lipoprotein lipase (LPL) is a rate-limiting enzyme for hydrolysing circulating triglycerides (TG) into free fatty acids that are taken up by peripheral tissues. Postprandial LPL activity rises in white adipose tissue (WAT), but declines in the heart and skeletal muscle, thereby directing circulating TG to WAT for storage; the reverse is true during fasting. However, the mechanism for the tissue-specific regulation of LPL activity during the fed–fast cycle has been elusive. Recent identification of lipasin/angiopoietin-like 8 (Angptl8), a feeding-induced hepatokine, together with Angptl3 and Angptl4, provides intriguing, yet puzzling, insights, because all the three Angptl members are LPL inhibitors, and the deficiency (overexpression) of any one causes hypotriglyceridaemia (hypertriglyceridaemia). Then, why does nature need all of the three? Our recent data that Angptl8 negatively regulates LPL activity specifically in cardiac and skeletal muscles suggest an Angptl3-4-8 model: feeding induces Angptl8, activating the Angptl8–Angptl3 pathway, which inhibits LPL in cardiac and skeletal muscles, thereby making circulating TG available for uptake by WAT, in which LPL activity is elevated owing to diminished Angptl4; the reverse is true during fasting, which suppresses Angptl8 but induces Angptl4, thereby directing TG to muscles. The model suggests a general framework for how TG trafficking is regulated.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
129
|
Dagdeviren S, Jung DY, Friedline RH, Noh HL, Kim JH, Patel PR, Tsitsilianos N, Inashima K, Tran DA, Hu X, Loubato MM, Craige SM, Kwon JY, Lee KW, Kim JK. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J 2016; 31:701-710. [PMID: 27811060 DOI: 10.1096/fj.201600832r] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (MIL10) and in wild-type mice during hyperinsulinemic-euglycemic clamping. Despite similar fat mass and energy balance, MIL10 mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P < 0.05), as compared to age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging MIL10 mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.-Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dae Young Jung
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall H Friedline
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jong Hun Kim
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Wellness Emergence Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Payal R Patel
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nicholas Tsitsilianos
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kunikazu Inashima
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Duy A Tran
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marilia M Loubato
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Siobhan M Craige
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jung Yeon Kwon
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Wellness Emergence Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea; and.,Wellness Emergence Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Jason K Kim
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; .,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea; and.,Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
130
|
Akbar S, Pinçon A, Lanhers MC, Claudepierre T, Corbier C, Gregory-Pauron L, Malaplate-Armand C, Visvikis A, Oster T, Yen FT. Expression profile of hepatic genes related to lipid homeostasis in LSR heterozygous mice contributes to their increased response to high-fat diet. Physiol Genomics 2016; 48:928-935. [PMID: 27789735 DOI: 10.1152/physiolgenomics.00077.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
Perturbations of lipid homeostasis manifest as dyslipidemias and obesity, which are significant risk factors for atherosclerosis and diabetes. Lipoprotein receptors in the liver are key players in the regulation of lipid homeostasis, among which the hepatic lipolysis stimulated lipoprotein receptor, LSR, was recently shown to play an important role in the removal of lipoproteins from the circulation during the postprandial phase. Since heterozygous LSR+/- mice demonstrate moderate dyslipidemia and develop higher body weight gain in response to high-fat diet compared with littermate LSR+/+ controls, we questioned if LSR heterozygosity could affect genes related to hepatic lipid metabolism. A target-specific qPCR array for 84 genes related to lipid metabolism was performed on mRNA isolated from livers of 6 mo old female LSR+/- mice and LSR+/+ littermates following a 6 wk period on a standard (STD) or high-fat diet (60% kcal, HFD). Of the 84 genes studied, 32 were significantly downregulated in STD-LSR+/- mice compared with STD-LSR+/+, a majority of which were PPARα target genes involved in lipid metabolism and transport, and insulin and adipokine-signaling pathways. Of these 32 genes, 80% were also modified in HFD-LSR+/+, suggesting that STD-LSR+/- mice demonstrated a predisposition towards a "high-fat"-like profile, which could reflect dysregulation of liver lipid homeostasis. Since similar profiles of genes were affected by either LSR heterozygosity or by high-fat diet, this would suggest that LSR is a key receptor in regulating hepatic lipid homeostasis, and whose downregulation combined with a Western-type diet may increase predisposition to diet-induced obesity.
Collapse
Affiliation(s)
- Samina Akbar
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Anthony Pinçon
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marie-Claire Lanhers
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Thomas Claudepierre
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Catherine Corbier
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Lynn Gregory-Pauron
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Athanase Visvikis
- UMR 7365 CNRS IMOPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Thierry Oster
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Frances T Yen
- EA3998 INRA USC 0340 UR AFPA, Université de Lorraine, Vandœuvre-lès-Nancy, France; .,INSERM, Nancy, France; and
| |
Collapse
|
131
|
Zhu Q, Zhu R, Jin J. Neutral ceramidase-enriched exosomes prevent palmitic acid-induced insulin resistance in H4IIEC3 hepatocytes. FEBS Open Bio 2016; 6:1078-1084. [PMID: 27833848 PMCID: PMC5095145 DOI: 10.1002/2211-5463.12125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 01/11/2023] Open
Abstract
Oversupply of free fatty acids such as palmitic acid (PA) from the portal vein may cause liver insulin resistance. Production of reactive oxygen species plays a pivotal role in PA‐induced insulin resistance in H4IIEC3 hepatocytes. Recently, we found that exosomes secreted from INS‐1 cells that were transfected with neutral ceramidase (NCDase) plasmids had raised NCDase activity; these NCDase‐enriched exosomes could inhibit PA‐induced INS‐1 cell apoptosis. Here, we showed that PA reduced insulin‐stimulated tyrosine phosphorylation of insulin receptor substrate 2 and decreased insulin‐stimulated uptake of the fluorescent glucose analog 2‐NBDG, confirming that insulin resistance occurred in PA‐treated H4IIEC3 cells. Moreover, NCDase‐enriched exosomes from INS‐1 cells rescued PA‐induced H4IIEC3 insulin resistance and blocked PA‐induced reactive oxygen species production in which ceramide was involved.
Collapse
Affiliation(s)
- Qun Zhu
- Department of Endocrinology the Second Affiliated Hospital of Nanjing Medical University Jiangsu China; China-USA Lipids in Health and Disease Research Center Guilin Medical University Guangxi China
| | - Rongping Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Guilin Medical University Guangxi China
| | - Junfei Jin
- China-USA Lipids in Health and Disease Research Center Guilin Medical University Guangxi China; Laboratory of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Guilin Medical University Guangxi China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair Guilin Medical University Guangxi China
| |
Collapse
|
132
|
Glatz JF, Nabben M, Heather LC, Bonen A, Luiken JJ. Regulation of the subcellular trafficking of CD36, a major determinant of cardiac fatty acid utilization. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1461-71. [DOI: 10.1016/j.bbalip.2016.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
|
133
|
Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells. PLoS One 2016; 11:e0158055. [PMID: 27348124 PMCID: PMC4922563 DOI: 10.1371/journal.pone.0158055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022] Open
Abstract
Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.
Collapse
|
134
|
Wan A, Rodrigues B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res 2016; 111:172-83. [PMID: 27288009 DOI: 10.1093/cvr/cvw159] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022] Open
Abstract
The incidence of diabetes is increasing globally, with cardiovascular disease accounting for a substantial number of diabetes-related deaths. Although atherosclerotic vascular disease is a primary reason for this cardiovascular dysfunction, heart failure in patients with diabetes might also be an outcome of an intrinsic heart muscle malfunction, labelled diabetic cardiomyopathy. Changes in cardiomyocyte metabolism, which encompasses a shift to exclusive fatty acid utilization, are considered a leading stimulus for this cardiomyopathy. In addition to cardiomyocytes, endothelial cells (ECs) make up a significant proportion of the heart, with the majority of ATP generation in these cells provided by glucose. In this review, we will discuss the metabolic machinery that drives energy metabolism in the cardiomyocyte and EC, its breakdown following diabetes, and the research direction necessary to assist in devising novel therapeutic strategies to prevent or delay diabetic heart disease.
Collapse
Affiliation(s)
- Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
135
|
Liu G, Xu JN, Liu D, Ding Q, Liu MN, Chen R, Fan M, Zhang Y, Zheng C, Zou DJ, Lyu J, Zhang WJ. Regulation of plasma lipid homeostasis by hepatic lipoprotein lipase in adult mice. J Lipid Res 2016; 57:1155-61. [PMID: 27234787 PMCID: PMC4918845 DOI: 10.1194/jlr.m065011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
LPL is a pivotal rate-limiting enzyme to catalyze the hydrolysis of TG in circulation, and plays a critical role in regulating lipid metabolism. However, little attention has been paid to LPL in the adult liver due to its relatively low expression. Here we show that endogenous hepatic LPL plays an important physiological role in plasma lipid homeostasis in adult mice. We generated a mouse model with the Lpl gene specifically ablated in hepatocytes with the Cre/LoxP approach, and found that specific deletion of hepatic Lpl resulted in a significant decrease in plasma LPL contents and activity. As a result, the postprandial TG clearance was markedly impaired, and plasma TG and cholesterol levels were significantly elevated. However, deficiency of hepatic Lpl did not change the liver TG and cholesterol contents or glucose homeostasis. Taken together, our study reveals that hepatic LPL is involved in the regulation of plasma LPL activity and lipid homeostasis.
Collapse
Affiliation(s)
- Gan Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Jun-Nan Xu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Dong Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Qingli Ding
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Meng-Na Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Rong Chen
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Mengdi Fan
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Ye Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Chao Zheng
- Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Da-Jin Zou
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Weiping J Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
136
|
Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice. Nutrients 2016; 8:nu8050305. [PMID: 27213439 PMCID: PMC4882717 DOI: 10.3390/nu8050305] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/24/2023] Open
Abstract
Several in vitro and in vivo studies have reported the anti-inflammatory, anti-diabetic and anti-obesity effects of the flavonoid apigenin. However, the long-term supplementary effects of low-dose apigenin on obesity are unclear. Therefore, we investigated the protective effects of apigenin against obesity and related metabolic disturbances by exploring the metabolic and transcriptional responses in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed an HFD or apigenin (0.005%, w/w)-supplemented HFD for 16 weeks. In HFD-fed mice, apigenin lowered plasma levels of free fatty acid, total cholesterol, apolipoprotein B and hepatic dysfunction markers and ameliorated hepatic steatosis and hepatomegaly, without altering food intake and adiposity. These effects were partly attributed to upregulated expression of genes regulating fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain and cholesterol homeostasis, downregulated expression of lipolytic and lipogenic genes and decreased activities of enzymes responsible for triglyceride and cholesterol ester synthesis in the liver. Moreover, apigenin lowered plasma levels of pro-inflammatory mediators and fasting blood glucose. The anti-hyperglycemic effect of apigenin appeared to be related to decreased insulin resistance, hyperinsulinemia and hepatic gluconeogenic enzymes activities. Thus, apigenin can ameliorate HFD-induced comorbidities via metabolic and transcriptional modulations in the liver.
Collapse
|
137
|
Scheja L, Heeren J. Metabolic interplay between white, beige, brown adipocytes and the liver. J Hepatol 2016; 64:1176-1186. [PMID: 26829204 DOI: 10.1016/j.jhep.2016.01.025] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
In mammalian evolution, three types of adipocytes have developed, white, brown and beige adipocytes. White adipocytes are the major constituents of white adipose tissue (WAT), the predominant store for energy-dense triglycerides in the body that are released as fatty acids during catabolic conditions. The less abundant brown adipocytes, the defining parenchymal cells of brown adipose tissue (BAT), internalize triglycerides that are stored intracellularly in multilocular lipid droplets. Beige adipocytes (also known as brite or inducible brown adipocytes) are functionally very similar to brown adipocytes and emerge in specific WAT depots in response to various stimuli including sustained cold exposure. The activation of brown and beige adipocytes (together referred to as thermogenic adipocytes) causes both the hydrolysis of stored triglycerides as well as the uptake of lipids and glucose from the circulation. Together, these fuels are combusted for heat production to maintain body temperature in mammals including adult humans. Given that heating by brown and beige adipocytes is a very-well controlled and energy-demanding process which entails pronounced shifts in energy fluxes, it is not surprising that an intensive interplay exists between the various adipocyte types and parenchymal liver cells, and that this influences systemic metabolic fluxes and endocrine networks. In this review we will emphasize the role of hepatic factors that regulate the metabolic activity of white and thermogenic adipocytes. In addition, we will discuss the relevance of lipids and hormones that are secreted by white, brown and beige adipocytes regulating liver metabolism in order to maintain systemic energy metabolism in health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
138
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
139
|
Zhu WF, Zhu JF, Liang L, Shen Z, Wang YM. Maternal undernutrition leads to elevated hepatic triglycerides in male rat offspring due to increased expression of lipoprotein lipase. Mol Med Rep 2016; 13:4487-93. [PMID: 27035287 DOI: 10.3892/mmr.2016.5040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
Small for gestational age (SGA) at birth increases the risk of developing metabolic syndrome, which encompasses various symptoms including hypertriglyceridemia. The aim of the present study was to determine whether maternal undernutrition during pregnancy may lead to alterations in hepatic triglyceride content and the gene expression levels of hepatic lipoprotein lipase (LPL) in SGA male offspring. The present study focused on the male offspring in order to prevent confounding factors, such as estrus cycle and hormone profile. Female Sprague Dawley rats were arbitrarily assigned to receive an ad libitum chow diet or 50% food restricted diet from pregnancy day 1 until parturition. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to measure the gene expression levels of hepatic LPL at day 1 and upon completion of the third week of age. Chromatin immunoprecipitation quantified the binding activity of liver X receptor‑α (LXR‑α) gene to the LXR response elements (LXRE) on LPL promoter and LPL epigenetic characteristics. At 3 weeks of age, SGA male offspring exhibited significantly elevated levels of hepatic triglycerides, which was concomitant with increased expression levels of LPL. Since LPL is regulated by LXR‑α, the expression levels of LXR‑α were detected in appropriate for gestational age and SGA male offspring. Maternal undernutrition during pregnancy led to an increase in the hepatic expression levels of LXR‑α, and enriched binding to the putative LXR response elements in the LPL promoter regions in 3‑week‑old male offspring. In addition, enhanced acetylation of histone H3 [H3 lysine (K)9 and H3K14] was detected surrounding the LPL promoter. The results of the present study indicated that maternal undernutrition during pregnancy may lead to an increase in hepatic triglycerides, via alterations in the transcriptional and epigenetic regulation of the LPL gene.
Collapse
Affiliation(s)
- Wei-Fen Zhu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian-Fang Zhu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Zheng Shen
- Department of Central Laboratory, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying-Min Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
140
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
141
|
Medium-chain TAG improve energy metabolism and mitochondrial biogenesis in the liver of intra-uterine growth-retarded and normal-birth-weight weanling piglets. Br J Nutr 2016; 115:1521-30. [PMID: 26960981 DOI: 10.1017/s0007114516000404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We previously reported that medium-chain TAG (MCT) could alleviate hepatic oxidative damage in weanling piglets with intra-uterine growth retardation (IUGR). There is a relationship between oxidative status and energy metabolism, a process involved in substrate availability and glucose flux. Therefore, the aim of this study was to investigate the effects of IUGR and MCT on hepatic energy metabolism and mitochondrial function in weanling piglets. Twenty-four IUGR piglets and twenty-four normal-birth-weight (NBW) piglets were fed a diet of either soyabean oil (SO) or MCT from 21 d of postnatal age to 49 d of postnatal age. Then, the piglets' biochemical parameters and gene expressions related to energy metabolism and mitochondrial function were determined (n 4). Compared with NBW, IUGR decreased the ATP contents and succinate oxidation rates in the liver of piglets, and reduced hepatic mitochondrial citrate synthase (CS) activity (P<0·05). IUGR piglets exhibited reductions in hepatic mitochondrial DNA (mtDNA) contents and gene expressions related to mitochondrial biogenesis compared with NBW piglets (P<0·05). The MCT diet increased plasma ghrelin concentration and hepatic CS and succinate dehydrogenase activities, but decreased hepatic pyruvate kinase activity compared with the SO diet (P<0·05). The MCT-fed piglets showed improved mtDNA contents and PPARγ coactivator-1α expression in the liver (P<0·05). The MCT diet alleviated decreased mRNA abundance of the hepatic PPARα induced by IUGR (P<0·05). It can therefore be postulated that MCT may have beneficial effects in improving energy metabolism and mitochondrial function in weanling piglets.
Collapse
|
142
|
Abdel-Razik A, Mousa N, Abdel-Aziz M, Elhelaly R, Elzehery R, Zalata K, Elkashef W, Fouda O, Awad M, Hafez M, Eldars W. Elevated serum α-fetoprotein levels in patients with chronic hepatitis C virus genotype 4: not the end of the story. Eur J Gastroenterol Hepatol 2016; 28:313-322. [PMID: 26618566 DOI: 10.1097/meg.0000000000000534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Elevated serum α-fetoprotein (AFP) is not uncommonly seen among patients with chronic hepatitis C. This study aimed to identify clinical characteristics, histological characteristics, and biochemical markers associated with increased serum AFP levels in hepatitis C virus genotype 4-infected patients with no evidence of hepatocellular carcinoma and to determine the effect of lifestyle modification on these parameters. METHODS The study included 447 chronic hepatitis C patients with no evidence of hepatocellular carcinoma and 100 healthy controls. They underwent liver biopsies, homeostasis model assessment-insulin resistance (HOMA-IR), measurement of serum insulin, leptin, adiponectin, tumor necrosis factor-α, and interleukin-6 levels by an enzyme-linked immunosorbent assay, and assessment of AFP levels. Eighty patients with HOMA-IR greater than 3 received prospective longitudinal lifestyle intervention. RESULTS In a multivariate analysis, platelet count less than 140×10/cm, a mean platelet volume of at least 9.5 fl, a neutrophil-lymphocyte ratio (NLR) of at least 2, an aspartate transaminase level of at least 55 IU/l, a γ-glutamyl transpeptidase level of at least 40 IU/l, an albumin level of up to 3.8 g/dl, HOMA-IR greater than 3, a leptin level of at least 10 pg/ml, an iron level of at least 165 μg/dl, a ferritin level of at level 175 ng/ml, and hepatic fibrosis F3-F4 were found to be independently associated with elevated AFP levels. The lifestyle intervention significantly improved BMI, platelet indices, NLR, γ-glutamyl transpeptidase, leptin, leptin/adiponectin ratio, tumor necrosis factor-α, interleukin-6, HOMA-IR, and AFP levels. CONCLUSION Elevated insulin resistance, leptin, serum iron, ferritin, mean platelet volume, NLR, and advanced fibrosis, as well as decreased platelet count and serum albumin, are independently associated with an elevated AFP level. Lifestyle modification can improve (reduce) insulin resistance, leptin, leptin/adiponectin ratio, platelet count and their indices, NLR, and AFP level.
Collapse
Affiliation(s)
- Ahmed Abdel-Razik
- Departments of aTropical Medicine, Faculty of Medicine bClinical Pathology cPathology dInternal Medicine eMedical Microbiology and Immunology, Mansoura University, Mansoura fDepartment of Internal Medicine, Aswan University, Aswan, Egypt
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with atorvastatin attenuates progression of insulin resistance and pancreatic fibrosis in the Otsuka Long-Evans Tokushima fatty rats. Metabolism 2016; 65:41-53. [PMID: 26773928 DOI: 10.1016/j.metabol.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/20/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE The effects of statins on insulin resistance (IR) and type 2 diabetes mellitus (T2DM) are still controversial and its effects on pancreatic fibrosis are poorly defined. The purpose of this study is to examine the effects of atorvastatin on these issues using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, an animal model of IR, T2DM and pancreatic fibrosis. METHODS Male OLETF rats were divided into 2 groups at 6weeks of age. The first group received a standard diet until the end of experimental period at age 28weeks. The second group was given a diet containing 0.05% atorvastatin from 6weeks of age, before the onset of IR and pancreatic fibrosis. The age-matched Long-Evans Tokushima Otsuka rats without presence of IR, T2DM and pancreatic fibrosis, received a standard diet and were used as a normal control. RESULTS Atorvastatin slightly decreased serum fasting glucose and insulin levels, but significantly improved index of IR compared with the untreated OLETF rats. In addition, atorvastatin markedly decreased transforming growth factor-β1 mRNA expression, myeloperoxidase activity and proportion of fibrotic area, and elevated superoxide dismutase activity in the pancreas compared with the untreated OLETF rats. CONCLUSIONS These findings suggest that atorvastatin exerts favorable influence on progression of IR and pancreatic inflammation and fibrosis via pleiotropic effect such as anti-oxidative property.
Collapse
Affiliation(s)
- Limin Wei
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Mitsuyoshi Yamamoto
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | - Masaru Harada
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Makoto Otsuki
- The Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan; Department of Internal Medicine, Kitasuma Hospital, Kobe, Japan
| |
Collapse
|
144
|
Association studies on the bovine lipoprotein lipase gene polymorphism with growth and carcass quality traits in Qinchuan cattle. Mol Cell Probes 2016; 30:61-5. [PMID: 26806454 DOI: 10.1016/j.mcp.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 11/22/2022]
Abstract
Lipoprotein lipase (LPL) is considered as an essential enzyme in lipid deposition and tissue metabolism. It has been proposed to be a lead candidate gene for genetic markers of lipid deposition and energy balance. In this paper, polymorphisms in the LPL gene were investigated in 554 Chinese Qinchuan cattle by PCR-RFLP and DNA sequencing. Seven single nucleotide polymorphisms (SNPs) were identified, which included one mutation (g.91C > T) in the 5'untranslated region (UTR), four synonymous mutations (g.17015A > G, g.18362G > A, g.18377T > C and g.19873T > C) and two mutations (g.25225A > G and g.25316T > G) in the 3'UTR. The frequencies of SNP g.18377T > C and g.25316T > G were skewed from Hardy-Weinberg equilibrium in all the samples (chi-square test, P < 0.05). An association analysis showed that five loci (except for g.91C > T and g.18377T > C) were significantly correlated with some growth and carcass quality traits. These results demonstrate that LPL might be a potential candidate gene for marker-assisted selection (MAS).
Collapse
|
145
|
Buch A, Carmeli E, Boker LK, Marcus Y, Shefer G, Kis O, Berner Y, Stern N. Muscle function and fat content in relation to sarcopenia, obesity and frailty of old age--An overview. Exp Gerontol 2016; 76:25-32. [PMID: 26785313 DOI: 10.1016/j.exger.2016.01.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/14/2015] [Accepted: 01/14/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM In western countries, the proportion of people over age 60 is increasing faster than any other group. This is linked to higher rates of obesity. Older age, co-morbidities and obesity are all associated with frailty syndrome. In the core of both frailty and sarcopenia there are dysfunction and deterioration of the muscle and the fat tissues. This overview interlinks the phenotypes presented in older adults such as sarcopenia and frailty-alone and with relation to obesity, muscle function and fat tissue accumulation. RECENT FINDINGS Observational studies have well described the loss of muscle mass and strength through the years of adult life, both components of frailty and sarcopenia. They have shown that these changes are associated with dysmetabolism and functional deterioration, independent of common explanatory variables. In the metabolic mechanism core of this link, insulin resistance and higher ectopic fat accumulation may play a role. Basic experiments have partially validated this hypothesis. Whether there is a synergistic effect of obesity and frailty phenotype on morbidity risk is still questionable and currently under investigation; however, few cohort studies have shown that the frail-obese or sarcopenic-obese group have higher probability for metabolic complications. SUMMARY Muscle mass loss and fat accumulation in the muscle in the elderly, with or without the presence of obesity, may explain some of the functional and metabolic defects shown in the frail, sarcopenic population.
Collapse
Affiliation(s)
- Assaf Buch
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | - Eli Carmeli
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; School of Public Health, Haifa University, Haifa, Israel
| | | | - Yonit Marcus
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Gabi Shefer
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Ofer Kis
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yitshal Berner
- The Sackler Faculty of Medicine, Tel-Aviv University, Israel; Meir Medical Center, Kfar Saba, Israel
| | - Naftali Stern
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
146
|
Pardina E, Ferrer R, Rossell J, Baena-Fustegueras JA, Lecube A, Fort JM, Caubet E, González Ó, Vilallonga R, Vargas V, Balibrea JM, Peinado-Onsurbe J. Diabetic and dyslipidaemic morbidly obese exhibit more liver alterations compared with healthy morbidly obese. BBA CLINICAL 2016; 5:54-65. [PMID: 27051590 PMCID: PMC4802404 DOI: 10.1016/j.bbacli.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Background & aims To study the origin of fat excess in the livers of morbidly obese (MO) individuals, we analysed lipids and lipases in both plasma and liver and genes involved in lipid transport, or related with, in that organ. Methods Thirty-two MO patients were grouped according to the absence (healthy: DM − DL −) or presence of comorbidities (dyslipidemic: DM − DL +; or dyslipidemic with type 2 diabetes: DM + DL +) before and one year after gastric bypass. Results The livers of healthy, DL and DM patients contained more lipids (9.8, 9.5 and 13.7 times, respectively) than those of control subjects. The genes implicated in liver lipid uptake, including HL, LPL, VLDLr, and FAT/CD36, showed increased expression compared with the controls. The expression of genes involved in lipid-related processes outside of the liver, such as apoB, PPARα and PGC1α, CYP7a1 and HMGCR, was reduced in these patients compared with the controls. PAI1 and TNFα gene expression in the diabetic livers was increased compared with the other obese groups and control group. Increased steatosis and fibrosis were also noted in the MO individuals. Conclusions Hepatic lipid parameters in MO patients change based on their comorbidities. The gene expression and lipid levels after bariatric surgery were less prominent in the diabetic patients. Lipid receptor overexpression could enable the liver to capture circulating lipids, thus favouring the steatosis typically observed in diabetic and dyslipidaemic MO individuals. The criteria used to define the “metabolically healthy” obese is not applicable to morbidly obese patients. Virtually no studies of how bariatric surgery affects depending on comorbidities and less how affect to the liver. Anthropometrics, fat, lipid profile and inflammation parameters are different depending of comorbidities, not only in plasma but also in liver. The extent of lipases and lipids in the liver biopsies could help not only the diagnosis but also to follow the course of recovery after surgery. The morbidly obese individuals with diabetes and dyslipidemia have more altered metabolic profiles than the other two groups.
Collapse
Key Words
- ALT, Alanine transaminase
- AST, Aspartate transaminase
- ATGL, Adipose Tissue Glycerol Lipase
- ApoA1, Apolipoprotein A1
- BMI, Body Mass Index
- CPT1a, Carnitine Palmitoyltransferase 1a
- CRP, C-reactive protein
- CYP7a1, Cholesterol 7 Alpha-Hydroxylase
- DL, Dyslipidaemia
- DM, Type 2 diabetes mellitus
- DM + DL +, Obese patients with type 2 diabetes and dyslipidaemia
- DM − DL +, Dyslipidemic obese patients
- DM − DL −, “Healthy” obese patients, or patients without type 2 diabetes or dyslipidaemia
- Diabetes
- FAT/CD36, Fatty Acid Translocase or Cluster of Differentiation 36
- GGT, gamma-glutaryl transferase
- HL, Hepatic lipase
- HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase
- HOMA-IR, Homeostasis Model Assessment of Insulin Resistance
- HSL, Hormone-sensitive lipase
- HTA, Hypertension
- IL6, Interleukin-6
- IR, Insulin resistance
- KBs, Ketone bodies
- LDLr, Low-Density Lipoprotein receptor
- Lipases
- Lipids
- Liver
- MO, Morbidly obese
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NASH, Non-alcoholic liver steatohepatitis
- NEFA, Non-esterified fatty acid
- PAI1, Plasminogen Activator Inhibitor of Type 1
- PLs, Phospholipids
- PPARα, Peroxisome Proliferator-Activated Receptor alpha
- PPARα, Peroxisome Proliferator-Activated Receptor gamma Coactivator 1-alpha
- QMs, Chylomicrons
- RYGBP, Roux-en-Y gastric bypass
- SAT, Subcutaneous adipose tissue
- SCARB1, Scavenger Receptor Class B, Member 1
- Steatosis
- TAGs, Triacylglycerides
- TC, Total cholesterol
- TNFα, Tumour Necrosis Factor-alpha
- UCP2, Uncoupling Protein 2
- VAT, Visceral adipose tissue
- VLDLr, Very-Low-Density Lipoprotein receptor
- apoB, Apolipoprotein B
- cHDL, High-Density Lipoprotein Cholesterol
- cLDL, Low-Density Lipoprotein Cholesterol
- eNOS3, Endothelial Nitric Oxide Synthase 3
- iNOS2, Inducible Nitric Oxide Synthase 2
Collapse
Affiliation(s)
- Eva Pardina
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | - Roser Ferrer
- Biochemistry Department, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Joana Rossell
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | | | - Albert Lecube
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital (UdL), Diabetes and Metabolism Research Unit (VHIR, UAB), CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM) del Instituto de Salud Carlos III, Spain
| | - Jose Manuel Fort
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Enric Caubet
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Óscar González
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Ramón Vilallonga
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Víctor Vargas
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD) del Instituto de Salud Carlos III (ISCIII), Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - José María Balibrea
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Julia Peinado-Onsurbe
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| |
Collapse
|
147
|
Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 2016; 126:12-22. [PMID: 26727229 DOI: 10.1172/jci77812] [Citation(s) in RCA: 905] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance arises when the nutrient storage pathways evolved to maximize efficient energy utilization are exposed to chronic energy surplus. Ectopic lipid accumulation in liver and skeletal muscle triggers pathways that impair insulin signaling, leading to reduced muscle glucose uptake and decreased hepatic glycogen synthesis. Muscle insulin resistance, due to ectopic lipid, precedes liver insulin resistance and diverts ingested glucose to the liver, resulting in increased hepatic de novo lipogenesis and hyperlipidemia. Subsequent macrophage infiltration into white adipose tissue (WAT) leads to increased lipolysis, which further increases hepatic triglyceride synthesis and hyperlipidemia due to increased fatty acid esterification. Macrophage-induced WAT lipolysis also stimulates hepatic gluconeogenesis, promoting fasting and postprandial hyperglycemia through increased fatty acid delivery to the liver, which results in increased hepatic acetyl-CoA content, a potent activator of pyruvate carboxylase, and increased glycerol conversion to glucose. These substrate-regulated processes are mostly independent of insulin signaling in the liver but are dependent on insulin signaling in WAT, which becomes defective with inflammation. Therapies that decrease ectopic lipid storage and diminish macrophage-induced WAT lipolysis will reverse the root causes of type 2 diabetes.
Collapse
|
148
|
White MF, Copps KD. The Mechanisms of Insulin Action. ENDOCRINOLOGY: ADULT AND PEDIATRIC 2016:556-585.e13. [DOI: 10.1016/b978-0-323-18907-1.00033-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
149
|
Asrih M, Jornayvaz FR. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol Cell Endocrinol 2015; 418 Pt 1:55-65. [PMID: 25724480 DOI: 10.1016/j.mce.2015.02.018] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/02/2015] [Accepted: 02/17/2015] [Indexed: 12/24/2022]
Abstract
Metabolic syndrome (MetS) is a disease composed of different risk factors such as obesity, type 2 diabetes or dyslipidemia. The prevalence of this syndrome is increasing worldwide in parallel with the rise in obesity. Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in western countries, affecting more than 30% of the general population. NAFLD encompasses a spectrum of liver manifestations ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, which may ultimately progress to hepatocellular carcinoma. There is accumulating evidence supporting an association between NAFLD and MetS. Indeed, NAFLD is recognized as the liver manifestation of MetS. Insulin resistance is increasingly recognized as a key factor linking MetS and NAFLD. Insulin resistance is associated with excessive fat accumulation in ectopic tissues, such as the liver, and increased circulating free fatty acids, which can further promote inflammation and endoplasmic reticulum stress. This in turn aggravates and maintains the insulin resistant state, constituting a vicious cycle. Importantly, evidence shows that most of the patients developing NAFLD present at least one of the MetS traits. This review will define MetS and NAFLD, provide an overview of the common pathophysiological mechanisms linking MetS and NAFLD, and give a perspective regarding treatment of these ever growing metabolic diseases.
Collapse
Affiliation(s)
- Mohamed Asrih
- Service of Endocrinology, Diabetes and Metabolism, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes and Metabolism, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, Lausanne 1011, Switzerland.
| |
Collapse
|
150
|
Yin F, Sancheti H, Liu Z, Cadenas E. Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. J Physiol 2015; 594:2025-42. [PMID: 26293414 DOI: 10.1113/jp270541] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/13/2015] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction entailing decreased energy-transducing capacity and perturbed redox homeostasis is an early and sometimes initiating event in ageing and age-related disorders involving tissues with high metabolic rate such as brain, liver and heart. In the central nervous system (CNS), recent findings from our and other groups suggest that the mitochondrion-centred hypometabolism is a key feature of ageing brains and Alzheimer's disease. This hypometabolic state is manifested by lowered neuronal glucose uptake, metabolic shift in the astrocytes, and alternations in mitochondrial tricarboxylic acid cycle function. Similarly, in liver and adipose tissue, mitochondrial capacity around glucose and fatty acid metabolism and thermogenesis is found to decline with age and is implicated in age-related metabolic disorders such as obesity and type 2 diabetes mellitus. These mitochondrion-related disorders in peripheral tissues can impact on brain functions through metabolic, hormonal and inflammatory signals. At the cellular level, studies in CNS and non-CNS tissues support the notion that instead of being viewed as autonomous organelles, mitochondria are part of a dynamic network with close interactions with other cellular components through energy- or redox-sensitive cytosolic kinase signalling and transcriptional pathways. Hence, it would be critical to further understand the molecular mechanisms involved in the communication between mitochondria and the rest of the cell. Therapeutic strategies that effectively preserves or improve mitochondrial function by targeting key component of these signalling cascades could represent a novel direction for numerous mitochondrion-implicated, age-related disorders.
Collapse
Affiliation(s)
- Fei Yin
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
| | - Harsh Sancheti
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
| | - Zhigang Liu
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
| | - Enrique Cadenas
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
| |
Collapse
|