101
|
Garcia-Casal MN, Peña-Rosas JP, Giyose B. Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy. Ann N Y Acad Sci 2016; 1390:3-13. [PMID: 27936288 DOI: 10.1111/nyas.13293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 01/21/2023]
Abstract
Biofortification of staple crops has been proposed as a strategy to address micronutrient malnutrition, particularly with respect to insufficient intake of vitamin A, iron, zinc, and folate. The World Health Organization, in collaboration with the Food and Agriculture Organization of the United Nations and the Sackler Institute for Nutrition Science at the New York Academy of Sciences, convened a technical consultation entitled "Staple Crops Biofortified with Vitamins and Minerals: Considerations for a Public Health Strategy" in April 2016. Participants of the consultation reviewed the definition of biofortification of staple crops, patterns of crops production, processing, consumption, seed varieties, and micronutrient stability and bioavailability, as well as farmers' adoption and acceptability of the modified crops. Also discussed were economic, environmental, safety, and equity aspects of biofortified crops, as well as legal, policy, regulatory, and ethical issues for the implementation of biofortification strategies in agriculture and nutrition. Consultation working groups identified important and emerging technical issues, lessons learned, and research priorities to better support the evidence of improved nutrition and unintended adverse effects of biofortification. This paper provides the background and rationale of the technical consultation, synopsizes the presentations, and provides a summary of the main considerations proposed by the working groups.
Collapse
Affiliation(s)
- Maria Nieves Garcia-Casal
- Evidence and Programme Guidance, Department of Nutrition for Health and Development, World Health Organization, Geneva, Switzerland
| | - Juan Pablo Peña-Rosas
- Evidence and Programme Guidance, Department of Nutrition for Health and Development, World Health Organization, Geneva, Switzerland
| | - Boitshepo Giyose
- Division of Nutrition, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | |
Collapse
|
102
|
Lessa JHL, Araujo AM, Silva GNT, Guilherme LRG, Lopes G. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome. CHEMOSPHERE 2016; 164:271-277. [PMID: 27592316 DOI: 10.1016/j.chemosphere.2016.08.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Soil management may affect selenium (Se) adsorption capacity. This study investigated adsorption and desorption of Se (VI) in selected Brazilian soils from the Cerrado biome, an area of ever increasing importance for agriculture expansion in Brazil. Soil samples were collected from cultivated and uncultivated soils, comprising clayed and sandy soils. Following chemical and mineralogical characterization, soil samples were subjected to Se adsorption and desorption tests. Adsorption was evaluated after a 72-h reaction with increasing concentrations of Se (0-2000 μg L-1) added as Na2SeO4 in a NaCl electrolyte solution (pH 5.5; ionic strength 15 mmol L-1). Desorption, as well as distribution coefficients (Kd) for selenate were also assessed. Soil management affected Se adsorption capacity, i.e., Se adsorbed amounts were higher for uncultivated soils, when compared to cultivated ones. Such results were also supported by data of Kd and maximum adsorption capacity of Se. This fact was attributed mainly to the presence of greater amounts of competing anions, especially phosphate, in cultivated soils, due to fertilizer application. Phosphate may compete with selenate for adsorption sites, decreasing Se retention. For the same group of soils (cultivated and uncultivated), Se adsorption was greater in the clayed soils compared to sandy ones. Our results support the idea that adding Se (VI) to the soil is a good strategy to increase Se levels in food crops (agronomic biofortification), especially when crops are grown in soils that have been cultivated over the time due to their low Se adsorption capacity (high Se availability).
Collapse
Affiliation(s)
- J H L Lessa
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - A M Araujo
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - G N T Silva
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - L R G Guilherme
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - G Lopes
- Department of Soil Science, Federal University of Lavras, Lavras, MG, CEP 37200-000, Brazil.
| |
Collapse
|
103
|
Rodak BW, Freitas DS, Bamberg SM, Carneiro MAC, Guilherme LRG. X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N 2-fixing bacteria and mycorrhizal fungi. J Microbiol Methods 2016; 132:14-20. [PMID: 27838542 DOI: 10.1016/j.mimet.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N2-fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis.
Collapse
Affiliation(s)
- Bruna Wurr Rodak
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil
| | - Douglas Siqueira Freitas
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil.
| | - Soraya Marx Bamberg
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil
| | - Marco Aurélio Carbone Carneiro
- Department of Soil Science, Federal University of Lavras (UFLA), University Campus, 372000-000, Lavras, Minas Gerais, Brazil
| | | |
Collapse
|
104
|
Versini A, Di Tullo P, Aubry E, Bueno M, Thiry Y, Pannier F, Castrec-Rouelle M. Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:372-380. [PMID: 27522266 DOI: 10.1016/j.plaphy.2016.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/05/2016] [Accepted: 07/31/2016] [Indexed: 05/12/2023]
Abstract
The success of biofortification and phytoremediation practices, addressing Se deficiency and Se pollution issues, hinges crucially on the fate of selenium in the plant media in response to uptake, translocation and assimilation processes. We investigate the fate of selenium in root and shoot compartments after 3 and 6 weeks of experiment using a total of 128 plants grown in hydroponic solution supplied with 0.2, 2, 5, 20 and 100 mg L-1 of selenium in the form of selenite, selenate and a mixture of both species. Selenate-treated plants exhibited higher root-to-shoot Se translocation and total Se uptake than selenite-treated plants. Plants took advantage of the selenate mobility and presumably of the storage capacity of leaf vacuoles to circumvent selenium toxicity within the plant. Surprisingly, 28% of selenate was found in shoots of selenite-treated plants, questioning the ability of plants to oxidize selenite into selenate. Selenomethionine and methylated organo-selenium amounted to 30% and 8% respectively in shoots and 35% and 9% in roots of the identified Se, suggesting that selenium metabolization occurred concomitantly in root and shoot plant compartments and demonstrating that non-accumulator plants can synthesize notable quantities of precursor compound for volatilization. The present study demonstrated that non-accumulator plants can develop the same strategies as hyper-accumulator plants to limit selenium toxicity. When both selenate and selenite were supplied together, plants used selenate in a storage pathway and selenite in an assimilation pathway. Plants might thereby benefit from mixed supplies of selenite and selenate by saving enzymes and energy required for selenate reduction.
Collapse
Affiliation(s)
- Antoine Versini
- CIRAD, UPR Recyclage et risque, Station de la Bretagne, 40 Chemin de Grand Canal, CS 12014, 97743 Saint-Denis Cedex 9, La Réunion, France.
| | - Pamela Di Tullo
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254 IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France; French Agency for Radioactive Waste Management (Andra), Research and Development Division, Parc de la Croix Blanche, 1-7 Rue Jean Monnet, 92298 Châtenay-Malabry, France
| | - Emmanuel Aubry
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR7619 METIS, 4 Place Jussieu, 75005 Paris, France
| | - Maïté Bueno
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254 IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France
| | - Yves Thiry
- French Agency for Radioactive Waste Management (Andra), Research and Development Division, Parc de la Croix Blanche, 1-7 Rue Jean Monnet, 92298 Châtenay-Malabry, France
| | - Florence Pannier
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254 IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France
| | - Maryse Castrec-Rouelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR7619 METIS, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
105
|
Garousi F, Veres S, Kovács B. Comparison of Selenium Toxicity in Sunflower and Maize Seedlings Grown in Hydroponic Cultures. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:709-713. [PMID: 27613423 DOI: 10.1007/s00128-016-1912-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/27/2016] [Indexed: 05/05/2023]
Abstract
Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.
Collapse
Affiliation(s)
- Farzaneh Garousi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, 4032, Hungary.
| | - Szilvia Veres
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Crop Sciences, Department of Agricultural Botany, Crop Physiology and Biotechnology, University of Debrecen, Böszörményi str. 138, 4032, Debrecen, Hungary
| | - Béla Kovács
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, 4032, Hungary
| |
Collapse
|
106
|
Sharma S, Kaur N, Kaur S, Nayyar H. Selenium as a nutrient in biostimulation and biofortification of cereals. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
107
|
Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P, Dall'Acqua S, Pilon-Smits EAH. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids. FRONTIERS IN PLANT SCIENCE 2016; 7:1371. [PMID: 27683583 PMCID: PMC5021693 DOI: 10.3389/fpls.2016.01371] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/29/2016] [Indexed: 05/21/2023]
Abstract
Two selenium (Se) fertilization methods were tested for their effects on levels of anticarcinogenic selenocompounds in radish (Raphanus sativus), as well as other nutraceuticals. First, radish was grown on soil and foliar selenate applied 7 days before harvest at 0, 5, 10, and 20 mg Se per plant. Selenium levels were up to 1200 mg Se/kg DW in leaves and 120 mg Se/kg DW in roots. The thiols cysteine and glutathione were present at 2-3-fold higher levels in roots of Se treated plants, and total glucosinolate levels were 35% higher, due to increases in glucoraphanin. The only seleno-aminoacid detected in Se treated plants was Se-methyl-SeCys (100 mg/kg FW in leaves, 33 mg/kg FW in roots). The levels of phenolic aminoacids increased with selenate treatment, as did root total nitrogen and protein content, while the level of several polyphenols decreased. Second, radish was grown in hydroponics and supplied with 0, 5, 10, 20, or 40 μM selenate for 1 week. Selenate treatment led to a 20-30% increase in biomass. Selenium concentration was 242 mg Se/kg DW in leaves and 85 mg Se/kg DW in roots. Cysteine levels decreased with Se in leaves but increased in roots; glutatione levels decreased in both. Total glucosinolate levels in leaves decreased with Se treatment due to repression of genes involved in glucosinolates metabolism. Se-methyl-SeCys concentration ranged from 7-15 mg/kg FW. Aminoacid concentration increased with Se treatment in leaves but decreased in roots. Roots of Se treated plants contained elevated transcript levels of sulfate transporters (Sultr) and ATP sulfurylase, a key enzyme of S/Se assimilation. No effects on polyphenols were observed. In conclusion, Se biofortification of radish roots may be achieved via foliar spray or hydroponic supply. One to ten radishes could fulfill the daily human requirement (70 μg) after a single foliar spray of 5 mg selenate per plant or 1 week of 5-10 μM selenate supply in hydroponics. The radishes metabolized selenate to the anticarcinogenic compound Se-methyl-selenocysteine. Selenate treatment enhanced levels of other nutraceuticals in radish roots, including glucoraphanin. Therefore, Se biofortification can produce plants with superior health benefits.
Collapse
Affiliation(s)
- Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
- Biology Department, Colorado State UniversityFort Collins, MS, USA
| | - Chiara Berto
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadova, Italy
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Annarita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Paolo Sambo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadova, Italy
| | | |
Collapse
|
108
|
Di Tullo P, Pannier F, Thiry Y, Le Hécho I, Bueno M. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:280-288. [PMID: 27100008 DOI: 10.1016/j.scitotenv.2016.03.207] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for (77)Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas (77)Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on Kd distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium.
Collapse
Affiliation(s)
- Pamela Di Tullo
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France; Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France.
| | - Florence Pannier
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France.
| | - Yves Thiry
- Andra, Research and Development Division, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France.
| | - Isabelle Le Hécho
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France.
| | - Maïté Bueno
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France.
| |
Collapse
|
109
|
Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB, Alsaleh A, Kahraman A, Ozkan H, Vandenberg A, Tanyolac B. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds. PLoS One 2016; 11:e0149210. [PMID: 26978666 PMCID: PMC4792374 DOI: 10.1371/journal.pone.0149210] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/28/2016] [Indexed: 01/03/2023] Open
Abstract
Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross “PI 320937” × “Eston” grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3–16.9% of the phenotypic variation.
Collapse
Affiliation(s)
- Duygu Ates
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Tugce Sever
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Secil Aldemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Bulent Yagmur
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Hulya Yilmaz Temel
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Hilal Betul Kaya
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Alsaleh
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanlı Urfa, Turkey
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Albert Vandenberg
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bahattin Tanyolac
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| |
Collapse
|
110
|
Ning N, Yuan XY, Dong SQ, Wen YY, Gao ZP, Guo MJ, Guo PY. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite. Biol Trace Elem Res 2016. [PMID: 26201681 DOI: 10.1007/s12011-015-0440-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.
Collapse
Affiliation(s)
- Na Ning
- Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Xiang-Yang Yuan
- Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, People's Republic of China.
| | - Shu-Qi Dong
- Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Yin-Yuan Wen
- Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Zhen-Pan Gao
- Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Mei-Jun Guo
- Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, People's Republic of China
| | - Ping-Yi Guo
- Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, People's Republic of China.
| |
Collapse
|
111
|
White PJ. Selenium accumulation by plants. ANNALS OF BOTANY 2016; 117:217-35. [PMID: 26718221 PMCID: PMC4724052 DOI: 10.1093/aob/mcv180] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. SCOPE This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. CONCLUSIONS The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Collapse
Affiliation(s)
- Philip J White
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK and Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
112
|
Messias RDS, Galli V, Silva SDDAE, Schirmer MA, Rombaldi CV. Micronutrient and functional compounds biofortification of maize grains. Crit Rev Food Sci Nutr 2015; 55:123-39. [PMID: 24915397 DOI: 10.1080/10408398.2011.649314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maize, in addition to being the main staple food in many countries, is used in the production of hundreds of products. It is rich in compounds with potential benefits to health, such as carotenoids, phenolic compounds, vitamin E, and minerals that act as cofactors for antioxidant enzymes. Many of these compounds have been neglected thus far in the scientific literature. Nevertheless, deficiencies in the precursors of vitamin A and some minerals, such as iron and zinc, in maize, in association with the great genetic variability in its cultivars and our genomic, transcriptomic, and metabolomic knowledge of this species make targeted biofortification strategies for maize promising. This review discusses the potential of the main microconstituents found in maize with a focus on studies aimed at biofortification.
Collapse
Affiliation(s)
- Rafael da Silva Messias
- a EMBRAPA Clima Temperado, Rodovia BR 396 , Km 78 Caixa Postal 403, CEP 96001-970, Pelotas , RS , Brazil
| | | | | | | | | |
Collapse
|
113
|
Joy EJM, Kumssa DB, Broadley MR, Watts MJ, Young SD, Chilimba ADC, Ander EL. Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. BMC Nutr 2015. [DOI: 10.1186/s40795-015-0036-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
114
|
Supriatin S, Weng L, Comans RNJ. Selenium speciation and extractability in Dutch agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:368-382. [PMID: 26093220 DOI: 10.1016/j.scitotenv.2015.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/24/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97 mg kg(-1) (on average 0.58 mg kg(-1)). Organic Se after NaOCl oxidation-extraction accounted for on average 82% of total Se, whereas inorganic selenite (selenate was not measurable) measured in ammonium oxalate extraction using HPLC-ICP-MS accounted for on average 5% of total Se. The predominance of organic Se in the soils is supported by the positive correlations between total Se (aqua regia) and total soil organic matter content, and Se and organic C content in all the other extractions performed in this study. The amount of Se extracted followed the order of aqua regia > 1 M NaOCl (pH8) > 0.1 M NaOH>ammonium oxalate (pH3) > hot water>0.43 M HNO3 > 0.01 M CaCl2. None of these extractions selectively extracts only inorganic Se, and relative to other extractions 0.43 M HNO3 extraction contains the lowest fraction of organic Se, followed by ammonium oxalate extraction. In the 0.1M NaOH extraction, the hydrophobic neutral (HON) fraction of soil organic matter is richer in Se than in the hydrophilic (Hy) and humic acid (HA) fractions. The organic matter extracted in 0.01 M CaCl2 and hot water is in general richer in Se compared to the organic matter extracted in 0.1M NaOH, and other extractions (HNO3, ammonium oxalate, NaOCl, and aqua regia). Although the extractability of Se follows to a large extent the extractability of soil organic carbon, there is several time variations in the Se to organic C ratios, reflecting the changes in composition of organic matter extracted.
Collapse
Affiliation(s)
- Supriatin Supriatin
- Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen, the Netherlands
| | - Liping Weng
- Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen, the Netherlands.
| | - Rob N J Comans
- Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
115
|
Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.). Anal Bioanal Chem 2015; 407:9029-42. [DOI: 10.1007/s00216-015-9069-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
116
|
Jain R, Seder-Colomina M, Jordan N, Dessi P, Cosmidis J, van Hullebusch ED, Weiss S, Farges F, Lens PNL. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2015; 295:193-200. [PMID: 25919502 DOI: 10.1016/j.jhazmat.2015.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/05/2015] [Accepted: 03/21/2015] [Indexed: 06/04/2023]
Abstract
Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods. The entrapment of the elemental selenium nanoparticles in the selenium fed activated sludge flocs leads to faster settling rates, higher hydrophilicity and poorer dewaterability compared to the control activated sludge (i.e., not fed with selenite). The selenium fed activated sludge showed a less negative surface charge density as compared to the control activated sludge. The presence of trapped elemental selenium nanoparticles further affected the spatial distribution of Al and Mg in the activated sludge flocs. This study demonstrated that the formation and subsequent trapping of elemental selenium nanoparticles in the activated sludge flocs affects their physicochemical properties.
Collapse
Affiliation(s)
- Rohan Jain
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands; Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne la Vallée, France.
| | - Marina Seder-Colomina
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne la Vallée, France; Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités - UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Norbert Jordan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Paolo Dessi
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Julie Cosmidis
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités - UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne la Vallée, France
| | - Stephan Weiss
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - François Farges
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités - UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| |
Collapse
|
117
|
Selenium in commercial beer and losses in the brewing process from wheat to beer. Food Chem 2015; 182:9-13. [DOI: 10.1016/j.foodchem.2015.02.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/07/2015] [Accepted: 02/24/2015] [Indexed: 11/22/2022]
|
118
|
Jaiswal S, Prakash R, Nagaraja T. Selenium in storage proteins of wheat cultivated on selenium impacted soils of Punjab, India. ACTA ALIMENTARIA 2015. [DOI: 10.1556/aalim.2014.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
119
|
Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 2015; 7:4199-239. [PMID: 26035246 PMCID: PMC4488781 DOI: 10.3390/nu7064199] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels.
Collapse
Affiliation(s)
- Lenny H E Winkel
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Bas Vriens
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Gerrad D Jones
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, CH-8600 Duebendorf, Switzerland.
| | - Leila S Schneider
- Swiss Federal Institute of Technology (ETH), Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Center, 9611 South Riverbend Avenue, Parlier, CA 93648, USA.
| |
Collapse
|
120
|
Huang Q, Yu Y, Wang Q, Luo Z, Jiang R, Li H. Uptake kinetics and translocation of selenite and selenate as affected by iron plaque on root surfaces of rice seedlings. PLANTA 2015; 241:907-16. [PMID: 25526963 DOI: 10.1007/s00425-014-2227-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/10/2014] [Indexed: 05/26/2023]
Abstract
Iron plaque on root surfaces greatly influenced selenium uptake and played different roles in selenite and selenate uptake. Iron plaque commonly forms on rice root surfaces under flooded conditions, but little is known about the relationship between iron plaque and selenium (Se) accumulation. Here, we investigate the effects of iron plaque on Se uptake by and translocation within rice (Oryza sativa) seedlings, and the kinetics of selenite and selenate influx into rice roots (with or without iron plaque) were determined in short-term (30 min) experiments. Rice seedlings were planted in nutrient solutions containing different levels of ferrous ion for 3 days and then transplanted into nutrient solutions with selenite or selenate. Se concentrations in iron plaque were positively associated with the amounts of iron plaque in both selenite and selenate treatments and iron plaque had a higher affinity for selenite than selenate. Results showed that iron plaque on root surfaces greatly influenced Se uptake and played different roles in selenite and selenate uptake. The selenite and selenate uptake kinetics results demonstrated that the presence of iron plaque enhanced selenite uptake, but decreased selenate uptake. In addition, root-Se concentrations increased with the increasing amounts of iron plaque, but Se translocation from roots to shoots was reduced with the increasing amounts of iron plaque in the +selenite treatment. Iron plaque significantly influenced selenite uptake and might act as a pool to selenite accumulation in rice plants. However, iron plaque had no significant effect on selenate uptake or even as a barrier to selenate uptake.
Collapse
Affiliation(s)
- Qingqing Huang
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
121
|
Wu Z, Bañuelos GS, Lin ZQ, Liu Y, Yuan L, Yin X, Li M. Biofortification and phytoremediation of selenium in China. FRONTIERS IN PLANT SCIENCE 2015; 6:136. [PMID: 25852703 PMCID: PMC4367174 DOI: 10.3389/fpls.2015.00136] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/20/2015] [Indexed: 05/07/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed.
Collapse
Affiliation(s)
- Zhilin Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment–School of Plant Protection, Anhui Agriculture University, Hefei, China
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Gary S. Bañuelos
- United States Department of Agriculture—Agricultural Research Service, Parlier, CA, USA
| | - Zhi-Qing Lin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
- Environmental Sciences Program, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Ying Liu
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Linxi Yuan
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebin Yin
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment–School of Plant Protection, Anhui Agriculture University, Hefei, China
| |
Collapse
|
122
|
Matich AJ, McKenzie MJ, Lill RE, McGhie TK, Chen RKY, Rowan DD. Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1896-905. [PMID: 25625473 DOI: 10.1021/jf505963c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Brassica species, hydrolysis of (methylthio)glucosinolates produces sulfur-containing aglycons which have demonstrated anticancer benefits. Selenized Brassicaceae contain (methylseleno)glucosinolates and their selenium-containing aglycons. As a prelude to biological testing, broccoli, cauliflower, and forage rape plants were treated with sodium selenate and their tap roots, stems, leaves, and florets analyzed for selenoglucosinolates and their Se aglycons. Two new selenoglucosinolates were identified: glucoselenoraphanin in broccoli florets and glucoselenonasturtiin in forage rape roots. A new aglycon, selenoberteroin nitrile, was identified in forage rape. The major selenoglucosinolates were glucoselenoerucin in broccoli, glucoselenoiberverin in cauliflower, and glucoselenoerucin and glucoselenoberteroin in forage rape roots. In broccoli florets, the concentrations of selenglucosinolates exceeded those of their sulfur analogues. Fertilization with selenium slightly reduced (methylthio)glucosinolates and aglycons in the roots, but increased them in the florets, the leaves, and sometimes the stems. These discoveries provide a new avenue for investigating how consumption of Brassica vegetables and their organoselenides may promote human health.
Collapse
Affiliation(s)
- Adam J Matich
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) , Private Bag 11600, Palmerston North 4442, New Zealand
| | | | | | | | | | | |
Collapse
|
123
|
Bazihizina N, Redwan M, Taiti C, Giordano C, Monetti E, Masi E, Azzarello E, Mancuso S. Root based responses account for Psidium guajava survival at high nickel concentration. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:137-146. [PMID: 25462976 DOI: 10.1016/j.jplph.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The presence of Psidium guajava in polluted environments has been reported in recent studies, suggesting that this species has a high tolerance to the metal stress. The present study aims at a physiological characterization of P. guajava response to high nickel (Ni) concentrations in the root-zone. Three hydroponic experiments were carried out to characterize the effects of toxic Ni concentrations on morphological and physiological parameters of P. guajava, focusing on Ni-induced damages at the root-level and root ion fluxes. With up to 300μM NiSO4 in the root-zone, plant growth was similar to that in control plants, whereas at concentrations higher than 1000μM NiSO4 there was a progressive decline in plant growth and leaf gas exchange parameters; this occurred despite, at all considered concentrations, plants limited Ni(2+) translocation to the shoot, therefore avoiding shoot Ni(2+) toxicity symptoms. Maintenance of plant growth with 300μM Ni(2+) was associated with the ability to retain K(+) in the roots meanwhile 1000 and 3000μM NiSO4 led to substantial K(+) losses. In this study, root responses mirror all plant performances suggesting a direct link between root functionality and Ni(2+) tolerance mechanisms and plant survival. Considering that Ni was mainly accumulated in the root system, the potential use of P. guajava for Ni(2+) phytoextraction in metal-polluted soils is limited; nevertheless, the observed physiological changes indicate a good Ni(2+) tolerance up to 300μM NiSO4 suggesting a potential role for the phytostabilization of polluted soils.
Collapse
Affiliation(s)
- Nadia Bazihizina
- LINV - Department of Agrifood Production and Environmental Sciences - University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| | - Mirvat Redwan
- LINV - Department of Agrifood Production and Environmental Sciences - University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| | - Cosimo Taiti
- LINV - Department of Agrifood Production and Environmental Sciences - University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| | - Cristiana Giordano
- Centro di Microscopie Elettroniche "Laura Bonzi" (Ce.M.E.), ICCOM, CNR, Via Madonna del Piano, 50019 Sesto F.no, Florence, Italy
| | - Emanuela Monetti
- LINV - Department of Agrifood Production and Environmental Sciences - University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| | - Elisa Masi
- LINV - Department of Agrifood Production and Environmental Sciences - University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| | - Elisa Azzarello
- LINV - Department of Agrifood Production and Environmental Sciences - University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy.
| | - Stefano Mancuso
- LINV - Department of Agrifood Production and Environmental Sciences - University of Florence, Viale delle Idee 30, 50019 Sesto F.no, Florence, Italy
| |
Collapse
|
124
|
El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SEDA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smits EA, Domokos-Szabolcsy É. Selenium and its Role in Higher Plants. POLLUTANTS IN BUILDINGS, WATER AND LIVING ORGANISMS 2015. [DOI: 10.1007/978-3-319-19276-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
125
|
Selenium Accumulating Leafy Vegetables Are a Potential Source of Functional Foods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2015; 2015:549676. [PMID: 26955635 PMCID: PMC4756630 DOI: 10.1155/2015/549676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022]
Abstract
Selenium deficiency in humans has been associated with various diseases, the risks of which can be reduced through dietary supplementation. Selenium accumulating plants may provide a beneficial nutrient for avoiding such illnesses. Thus, leafy vegetables such as Amaranthus hybridus, Amaranthus sp., Cucurbita maxima, Ipomoea batatas, Solanum villosum, Solanum scabrum, and Vigna unguiculata were explored for their capabilities to accumulate selenium when grown on selenium enriched soil and for use as a potential source of selenium enriched functional foods. Their selenium contents were determined by spectrophotometry using the complex of 3,3′-diaminobenzidine hydrochloride (DABH) as a chromogen. The mean concentrations in the leaves were found to range from 7.90 ± 0.40 to 1.95 ± 0.12 μg/g dry weight (DW), with C. maxima accumulating the most selenium. In stems, the accumulated selenium content ranged from 1.12 ± 0.10 μg/g in Amaranthus sp. to 5.35 ± 0.78 μg/g DW in C. maxima and was hence significantly different (P < 0.01). The cancer cell line MDA-MB-231 was used in cytotoxicity assays to determine the anticancer potential of these extracts. With exception of S. scabrum and S. villosum, no cytotoxicity was detected for the selenium enriched vegetable extracts up to 100 μg/mL concentration. Hence, following careful evaluation the studied vegetables may be considered as selenium enriched functional foods.
Collapse
|
126
|
Malagoli M, Schiavon M, dall’Acqua S, Pilon-Smits EAH. Effects of selenium biofortification on crop nutritional quality. FRONTIERS IN PLANT SCIENCE 2015; 6:280. [PMID: 25954299 PMCID: PMC4404738 DOI: 10.3389/fpls.2015.00280] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/08/2015] [Indexed: 05/02/2023]
Abstract
Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.
Collapse
Affiliation(s)
- Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padova, Italy
- *Correspondence: Mario Malagoli, Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Agripolis, 35020 Legnaro Padova, Italy
| | - Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padova, Italy
| | - Stefano dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
127
|
Schiavon M, Pilon M, Malagoli M, Pilon-Smits EAH. Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). FRONTIERS IN PLANT SCIENCE 2015; 6:2. [PMID: 25688247 PMCID: PMC4304243 DOI: 10.3389/fpls.2015.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/05/2015] [Indexed: 05/07/2023]
Abstract
Selenium (Se) hyperaccumulation, the capacity of some species to concentrate Se to levels upwards of 0.1% of dry weight, is an intriguing phenomenon that is only partially understood. Questions that remain to be answered are: do hyperaccumulators have one or more Se-specific transporters? How are these regulated by Se and sulfur (S)? In this study, hyperaccumulator Stanleya pinnata was compared with related non-hyperaccumulator Brassica juncea with respect to S-dependent selenate uptake and translocation, as well as for the expression levels of three sulfate/selenate transporters (Sultr) and three ATP sulphurylases (APS). Selenium accumulation went down ~10-fold with increasing sulfate supply in B. juncea, while S. pinnata only had a 2-3-fold difference in Se uptake between the highest (5 mM) and lowest sulfate (0 mM) treatments. The Se/S ratio was generally higher in the hyperaccumulator than the non-hyperaccumulator, and while tissue Se/S ratio in B. juncea largely reflected the ratio in the growth medium, S. pinnata enriched itself up to 5-fold with Se relative to S. The transcript levels of Sultr1;2 and 2;1 and APS1, 2, and 4 were generally much higher in S. pinnata than B. juncea, and the species showed differential transcript responses to S and Se supply. These results indicate that S. pinnata has at least one transporter with significant selenate specificity over sulfate. Also, the hyperaccumulator has elevated expression levels of several sulfate/selenate transporters and APS enzymes, which likely contribute to the Se hyperaccumulation and hypertolerance phenotype.
Collapse
Affiliation(s)
- Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Padova, Italy
| | - Marinus Pilon
- Department of Biology, Colorado State UniversityFort Collins, CO, USA
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Padova, Italy
- *Correspondence: Mario Malagoli, Department of Agronomy, Food, Natural Resources, Animals and the Environment, Agripolis, Viale dell'Università 16, Legnaro, Padova 35020, Italy e-mail:
| | | |
Collapse
|
128
|
Zemková Ľ, Hlušek J, Lošák T, Jůzl M, Elzner P. The effect of selenium application to the soil on the sulphur and phosphorus content in potatoes. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200856050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
129
|
Alford ÉR, Lindblom SD, Pittarello M, Freeman JL, Fakra SC, Marcus MA, Broeckling C, Pilon-Smits EAH, Paschke MW. Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:1895-905. [PMID: 25366855 DOI: 10.3732/ajb.1400223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY Are there dimensions of symbiotic root interactions that are overlooked because plant mineral nutrition is the foundation and, perhaps too often, the sole explanation through which we view these relationships? In this paper we investigate how the root nodule symbiosis in selenium (Se) hyperaccumulator and nonaccumulator Astragalus species influences plant selenium (Se) accumulation. METHODS In greenhouse studies, Se was added to nodulated and nonnodulated hyperaccumulator and nonaccumulator Astragalus plants, followed by investigation of nitrogen (N)-Se relationships. Selenium speciation was also investigated, using x-ray microprobe analysis and liquid chromatography-mass spectrometry (LC-MS). KEY RESULTS Nodulation enhanced biomass production and Se to S ratio in both hyperaccumulator and nonaccumulator plants. The hyperaccumulator contained more Se when nodulated, while the nonaccumulator contained less S when nodulated. Shoot [Se] was positively correlated with shoot N in Se-hyperaccumulator species, but not in nonhyperaccumulator species. The x-ray microprobe analysis showed that hyperaccumulators contain significantly higher amounts of organic Se than nonhyperaccumulators. LC-MS of A. bisulcatus leaves revealed that nodulated plants contained more γ-glutamyl-methylselenocysteine (γ-Glu-MeSeCys) than nonnodulated plants, while MeSeCys levels were similar. CONCLUSIONS Root nodule mutualism positively affects Se hyperaccumulation in Astragalus. The microbial N supply particularly appears to contribute glutamate for the formation of γ-Glu-MeSeCys. Our results provide insight into the significance of symbiotic interactions in plant adaptation to edaphic conditions. Specifically, our findings illustrate that the importance of these relationships are not limited to alleviating macronutrient deficiencies.
Collapse
Affiliation(s)
- Élan R Alford
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Stormy D Lindblom
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Marco Pittarello
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - John L Freeman
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Corey Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Elizabeth A H Pilon-Smits
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Mark W Paschke
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA
| |
Collapse
|
130
|
Alifar N, Zaharah A, Ishak C, Awang Y. Effects of Applied Selenium on Rice Root Parameters. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajps.2014.190.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
131
|
Galinha C, Sánchez-Martínez M, Pacheco AMG, Freitas MDC, Coutinho J, Maçãs B, Almeida AS, Pérez-Corona MT, Madrid Y, Wolterbeek HT. Characterization of selenium-enriched wheat by agronomic biofortification. Journal of Food Science and Technology 2014; 52:4236-45. [PMID: 26139888 DOI: 10.1007/s13197-014-1503-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2014] [Indexed: 01/20/2023]
Abstract
Agronomic biofortification of staple crops is an effective way to enhance their contents in essential nutrients up the food chain, with a view to correcting for their deficiencies in animal or human status. Selenium (Se) is one such case, for its uneven distribution in the continental crust and, therefore, in agricultural lands easily translates into substantial variation in nutritional intakes. Cereals are far from being the main sources of Se on a content basis, but they are likely the major contributors to intake on a dietary basis. To assess their potential to assimilate and biotransform Se, bread and durum wheat were enriched with Se through foliar and soil addition at an equivalent field rate of 100 g of Se per hectare (ha), using sodium selenate and sodium selenite as Se-supplementation matrices, in actual field conditions throughout. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS after enzymatic hydrolysis for Se-species extraction in the resulting mature wheat grains. Selenomethionine and Se(VI) were identified and quantified: the former was the predominant species, representing 70-100 % of the total Se in samples; the maximum amount of inorganic Se was below 5 %. These results were similar for both supplementation methods and for both wheat varieties. Judging from the present results, one can conclude that agronomic biofortification of wheat may improve the nutritional quality of wheat grains with significant amounts of selenomethionine, which is an attractive option for increasing the Se status in human diets through Se-enriched, wheat-based foodstuff.
Collapse
Affiliation(s)
- Catarina Galinha
- CERENA-IST, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal ; CCTN-IST, University of Lisbon, Estrada Nacional 10, 2695-066 Bobadela, Portugal ; Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - María Sánchez-Martínez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Adriano M G Pacheco
- CERENA-IST, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | | | - José Coutinho
- INIAV, National Institute of Agricultural and Veterinary Research, Estrada de Gil Vaz, 7350-228 Elvas, Portugal
| | - Benvindo Maçãs
- INIAV, National Institute of Agricultural and Veterinary Research, Estrada de Gil Vaz, 7350-228 Elvas, Portugal
| | - Ana Sofia Almeida
- INIAV, National Institute of Agricultural and Veterinary Research, Estrada de Gil Vaz, 7350-228 Elvas, Portugal
| | - María Teresa Pérez-Corona
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Hubert T Wolterbeek
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| |
Collapse
|
132
|
Joy EJM, Ander EL, Young SD, Black CR, Watts MJ, Chilimba ADC, Chilima B, Siyame EWP, Kalimbira AA, Hurst R, Fairweather-Tait SJ, Stein AJ, Gibson RS, White PJ, Broadley MR. Dietary mineral supplies in Africa. PHYSIOLOGIA PLANTARUM 2014; 151:208-29. [PMID: 24524331 PMCID: PMC4235459 DOI: 10.1111/ppl.12144] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 05/04/2023]
Abstract
Dietary micronutrient deficiencies (MNDs) are widespread, yet their prevalence can be difficult to assess. Here, we estimate MND risks due to inadequate intakes for seven minerals in Africa using food supply and composition data, and consider the potential of food-based and agricultural interventions. Food Balance Sheets (FBSs) for 46 countries were integrated with food composition data to estimate per capita supply of calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn), and also phytate. Deficiency risks were quantified using an estimated average requirement (EAR) 'cut-point' approach. Deficiency risks are highest for Ca (54% of the population), followed by Zn (40%), Se (28%) and I (19%, after accounting for iodized salt consumption). The risk of Cu (1%) and Mg (<1%) deficiency are low. Deficiency risks are generally lower in the north and west of Africa. Multiple MND risks are high in many countries. The population-weighted mean phytate supply is 2770 mg capita(-1) day(-1). Deficiency risks for Fe are lower than expected (5%). However, 'cut-point' approaches for Fe are sensitive to assumptions regarding requirements; e.g. estimates of Fe deficiency risks are 43% under very low bioavailability scenarios consistent with high-phytate, low-animal protein diets. Fertilization and breeding strategies could greatly reduce certain MNDs. For example, meeting HarvestPlus breeding targets for Zn would reduce dietary Zn deficiency risk by 90% based on supply data. Dietary diversification or direct fortification is likely to be needed to address Ca deficiency risks.
Collapse
Affiliation(s)
- Edward J M Joy
- School of Biosciences, University of Nottingham, Sutton Bonington CampusLoughborough LE12 5RD, UK
- British Geological SurveyKeyworth, Nottingham NG12 5GG, UK
| | - E Louise Ander
- British Geological SurveyKeyworth, Nottingham NG12 5GG, UK
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington CampusLoughborough LE12 5RD, UK
| | - Colin R Black
- School of Biosciences, University of Nottingham, Sutton Bonington CampusLoughborough LE12 5RD, UK
| | | | - Allan D C Chilimba
- Ministry of Agriculture and Food SecurityLunyangwa Research Station, P.O. Box 59, Mzuzu, Malawi
| | - Benson Chilima
- Community Health Sciences Unit, Ministry of HealthPrivate Bag 65, Lilongwe, Malawi
| | - Edwin W P Siyame
- Department of Human Nutrition and Health, Lilongwe University of Agriculture and Natural ResourcesP.O. Box 219, Lilongwe, Malawi
| | - Alexander A Kalimbira
- Department of Human Nutrition and Health, Lilongwe University of Agriculture and Natural ResourcesP.O. Box 219, Lilongwe, Malawi
| | - Rachel Hurst
- Norwich Medical School, University of East AngliaNorwich NR4 7TJ, UK
| | | | | | - Rosalind S Gibson
- Department of Human Nutrition, University of OtagoP.O. Box 56, Dunedin, New Zealand
| | - Philip J White
- Ecological Sciences, The James Hutton InstituteInvergowrie, Dundee DD2 5DA, UK
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Sutton Bonington CampusLoughborough LE12 5RD, UK
| |
Collapse
|
133
|
El-Ramady HR, Alshaal TA, Amer M, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M. Soil Quality and Plant Nutrition. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-06016-3_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
134
|
Tolu J, Thiry Y, Bueno M, Jolivet C, Potin-Gautier M, Le Hécho I. Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 479-480:93-101. [PMID: 24548882 DOI: 10.1016/j.scitotenv.2014.01.079] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Selenium adsorption onto oxy-hydroxides mainly controls its mobility in volcanic soils, red earths and soils poor in organic matter (OM) while the influence of OM was emphasized in podzol and peat soils. This work aims at deciphering how those solid phases influence ambient Se mobility and speciation under less contrasted conditions in 26 soils spanning extensive ranges of OM (1-32%), Fe/Al oxy-hydroxides (0.3-6.1%) contents and pH (4.0-8.3). The soil collection included agriculture, meadow and forest soils to assess the influence of OM quality as well. Trace concentrations of six ambient Se species (Se(IV), Se(VI) and 4 organo-Se compounds) were analyzed by HPLC-ICP-MS in three extractants (ultrapure water, phosphate and sodium hydroxide) targeting Se associated to different soil phases. The Kd values determined from ultrapure water extraction were higher than those reported in commonly used short-term experiments after Se-spiking. Correlations of ambient Se content and distribution with soil parameters explained this difference by an involvement of slow processes in Se retention in soils. The 26 Kd values determined here for a wide variety of soils thus represent a relevant database for long-term prediction of Se mobility. For soils containing less than 20% OM, ambient Se solubility is primarily controlled by its adsorption onto crystalline oxy-hydroxides. However, OM plays an important role in Se mobility by forming organo-mineral associations that may protect adsorbed Se from leaching and/or create anoxic zones (aggregates) where Se is immobilized after its reduction. Although for the first time, inorganic Se(IV), Se(VI) and organo-Se compounds were simultaneously investigated in a large soil collection, high Se proportions remain unidentified in each soil extract, most probably due to Se incorporation and/or binding to colloidal-sized OM. Variations of environmental factors regulating the extent of OM-mineral associations/aggregation may thus lead to changes in Se mobility and bio-availability.
Collapse
Affiliation(s)
- Julie Tolu
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), IPREM, Université de Pau et des Pays de l'Adour/CNRS UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France; Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France.
| | - Yves Thiry
- Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
| | - Maïté Bueno
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), IPREM, Université de Pau et des Pays de l'Adour/CNRS UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France
| | - Claudy Jolivet
- Institut National de La Recherche Agronomique (INRA), US 1106 INFOSOL, 2163 avenue de la Pomme de Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France
| | - Martine Potin-Gautier
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), IPREM, Université de Pau et des Pays de l'Adour/CNRS UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France
| | - Isabelle Le Hécho
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), IPREM, Université de Pau et des Pays de l'Adour/CNRS UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France
| |
Collapse
|
135
|
DalCorso G, Manara A, Furini A. An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 2014; 5:1117-32. [PMID: 23739766 DOI: 10.1039/c3mt00038a] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heavy metals are often present naturally in soils, but many human activities (e.g. mining, agriculture, sewage processing, the metal industry and automobiles) increase their prevalence in the environment resulting in concentrations that are toxic to animals and plants. Excess heavy metals affect plant physiology by inducing stress symptoms, but many plants have adapted to avoid the damaging effects of metal toxicity, using strategies such as metal chelation, transport and compartmentalization. Understanding the molecular basis of heavy metal tolerance in plants will facilitate the development of new strategies to create metal-tolerant crops, biofortified foods and plants suitable for the phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Giovanni DalCorso
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | |
Collapse
|
136
|
Selenium fortification of an Italian rice cultivar via foliar fertilization with sodium selenate and its effects on human serum selenium levels and on erythrocyte glutathione peroxidase activity. Nutrients 2014; 6:1251-61. [PMID: 24667132 PMCID: PMC3967191 DOI: 10.3390/nu6031251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 11/16/2022] Open
Abstract
Selenium food fortification could be a cost-effective strategy to counteract the inadequacy of selenium intake among the Italian population. In this study, the effect of foliar fertilization with sodium selenate of an Italian rice cultivar and the increase of serum selenium and of erythrocyte glutathione peroxidase (GPx) activity after intake of fortified rice, have been evaluated. The effect of foliar fertilization with sodium selenate (50 g Se/ha) vs. water was studied. Moreover, in a randomized, double-blind study, 10 healthy women supplemented their usual diet with a daily dose of 80 g of Se-enriched-rice and 10 matched-women with 80 g of regular rice. Before, after 5 and 20 days of supplementation, serum Se and GPx-activity were evaluated. The mean selenium content in Se-enriched-rice was 1.64 ± 0.28 μg/g, while in regular rice it was 0.36 ± 0.15 μg/g (p < 0.001). A significant increase of serum Se and GPx-activity was observed only in the intervention group and only after 20 days. The results show that selenium fortification of rice can be achieved with foliar fertilization with sodium selenate and that the 20 days intake of this Se-enriched-rice increases the serum selenium levels and GPx-activity.
Collapse
|
137
|
Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. THE NEW PHYTOLOGIST 2014; 201:1183-1191. [PMID: 24491113 PMCID: PMC4284032 DOI: 10.1111/nph.12596] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
• Selenite is a predominant form of selenium (Se) available to plants, especially in anaerobic soils, but the molecular mechanism of selenite uptake by plants is not well understood. • ltn1, a rice mutant previously shown to have increased phosphate (Pi) uptake, was found to exhibit higher selenite uptake than the wild-type in both concentration- and time-dependent selenite uptake assays. Respiratory inhibitors significantly inhibited selenite uptake in the wildtype and the ltn1 mutant, indicating that selenite uptake was coupled with H(+) and energy-dependent. Selenite uptake was greatly enhanced under Pi-starvation conditions, suggesting that Pi transporters are involved in selenite uptake. • OsPT2, the most abundantly expressed Pi transporter in the roots, is also significantly up-regulated in ltn1 and dramatically induced by Pi starvation. OsPT2-overexpressing and knockdown plants displayed significantly increased and decreased rates of selenite uptake, respectively, suggesting that OsPT2 plays a crucial role in selenite uptake. Se content in rice grains also increased significantly in OsPT2-overexpressing plants. • These data strongly demonstrate that selenite and Pi share similar uptake mechanisms and that OsPT2 is involved in selenite uptake, which provides a potential strategy for breeding Se-enriched rice varieties.
Collapse
Affiliation(s)
- Lianhe Zhang
- Henan University of Science and TechnologyLuoyang, 471003, China
- These authors contributed equally to this work
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- These authors contributed equally to this work
| | - Wei Li
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Ronghui Che
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Kun Deng
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Hua Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Feiyan Yu
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Youjun Li
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| |
Collapse
|
138
|
De Temmerman L, Waegeneers N, Thiry C, Du Laing G, Tack F, Ruttens A. Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:77-82. [PMID: 24013513 DOI: 10.1016/j.scitotenv.2013.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/27/2013] [Accepted: 08/07/2013] [Indexed: 05/08/2023]
Abstract
A series of 695 food crops were collected on 539 soils throughout Belgium. All samples were collected on commercial production fields, omitting private gardens. All crops were analyzed for their selenium (Se) concentration. The soils represent different soil types occurring in Belgium, with soil textures ranging from sand to silt loam, and including a few clay soils. They were analyzed for Se concentration, organic carbon content, cation exchange capacity and extractable sulphur (S) concentration. The Se concentrations in the soils were low (range 0.14-0.70 mg kg(-1) dw), but increasing soil Se concentrations were observed with increasing clay content. Stepwise multiple regressions were applied to determine relations between Se concentrations in crops and soil characteristics. Among field crops, wheat is the most important accumulator of selenium but the concentration remains rather low on the Belgian low Se-soils. Based on dry weight, leafy vegetables contain more Se than wheat. The soil is the most important source of Se and the element is transported with the water stream to the leaves, where it is accumulated. Vegetables rich in S, e.g. some Brassica and Allium species, have a higher capacity to accumulate Se as it can replace S in the proteins, although this accumulation is still limited at low soil Se concentrations. In loamy soils, weak correlations were found between the soil Se concentration and its concentration in wheat and potato. The uptake of Se increased with increasing pH. The Se concentrations in Belgian soils are far too low to generate a driving force on Se uptake. General climatic conditions such as temperature, air humidity and soil moisture are also important for the transfer of Se within the plant, and plant linked factors such as cultivar, growth stage and edible part are important as well, although their influence remains limited at low soil Se concentrations.
Collapse
Affiliation(s)
- Ludwig De Temmerman
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Chemical Safety of the Food Chain, Leuvensesteenweg 17, B-3080 Tervuren, Belgium
| | | | | | | | | | | |
Collapse
|
139
|
Hall JA, Bobe G, Vorachek WR, Gorman ME, Mosher WD, Pirelli GJ. Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol Trace Elem Res 2013; 156:96-110. [PMID: 24142411 DOI: 10.1007/s12011-013-9843-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
Previously, we reported that feeding selenium (Se)-enriched forage improves antibody titers in mature beef cows, and whole-blood Se concentrations and growth rates in weaned beef calves. Our current objective was to test whether beef calves fed Se-enriched alfalfa hay during the transition period between weaning and movement to a feedlot also have improved immune responses and slaughter weights. Recently weaned beef calves (n = 60) were fed an alfalfa-hay-based diet for 7 weeks, which was harvested from fields fertilized with sodium selenate at 0, 22.5, 45.0, or 89.9 g Se/ha. All calves were immunized with J-5 Escherichia coli bacterin. Serum was collected for antibody titers 2 weeks after the third immunization. Whole-blood neutrophils collected at 6 or 7 weeks were evaluated for total antioxidant potential, bacterial killing activity, and expression of genes associated with selenoproteins and innate immunity. Calves fed the highest versus the lowest level of Se-enriched alfalfa hay had higher antibody titers (P = 0.02), thioredoxin reductase-2 mRNA levels (P = 0.07), and a greater neutrophil total antioxidant potential (P = 0.10), whereas mRNA levels of interleukin-8 receptor (P = 0.02), L-selectin (P = 0.07), and thioredoxin reductase-1 (P = 0.07) were lower. In the feedlot, calves previously fed the highest-Se forage had lower mortality (P = 0.04) and greater slaughter weights (P = 0.02). Our results suggest that, in areas with low-forage Se concentrations, feeding beef calves Se-enriched alfalfa hay during the weaning transition period improves vaccination responses and subsequent growth and survival in the feedlot.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331-4802, USA,
| | | | | | | | | | | |
Collapse
|
140
|
Schiavon M, Dall'acqua S, Mietto A, Pilon-Smits EAH, Sambo P, Masi A, Malagoli M. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10542-54. [PMID: 24079300 DOI: 10.1021/jf4031822] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although selenium (Se) is a known anticarcinogen, little is known regarding how Se affects other nutritional qualities in crops. Tomato ( Solanum lycopersicon ) was supplied with 0-50 μM selenate and analyzed for elemental composition and antioxidant compounds. When supplied at low doses (5 and 10 μM) via the roots, Se stimulated the synthesis of phenolic compounds in leaves and reduced the levels of Mo, Fe, Mn, and Cu in roots. At higher doses (25 and 50 μM Se) leaf glutathione levels were 3-5-fold enhanced. Supply of selenate via foliar spray (0, 2, or 20 mg Se plant(-1)) resulted in Se-biofortified tomato fruits, with Se levels low enough not to pose a health risk. The Se-biofortified fruits showed enhanced levels of the antioxidant flavonoids naringenin chalcone and kaempferol and a concomitant decrease of cinnamic acid derivatives. Thus, tomato fruits can be safely enriched with Se, and Se biofortification may enhance levels of other neutraceutical compounds.
Collapse
Affiliation(s)
- Michela Schiavon
- DAFNAE, University of Padova , Agripolis 35020 Legnaro PD, Italy
| | | | | | | | | | | | | |
Collapse
|
141
|
Punshon T, Ricachenevsky FK, Hindt M, Socha AL, Zuber H. Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: examples from Arabidopsis thaliana. Metallomics 2013; 5:1133-45. [PMID: 23912758 PMCID: PMC3869573 DOI: 10.1039/c3mt00120b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present approaches for using multi-elemental imaging (specifically synchrotron X-ray fluorescence microscopy, SXRF) in ionomics, with examples using the model plant Arabidopsis thaliana. The complexity of each approach depends on the amount of a priori information available for the gene and/or phenotype being studied. Three approaches are outlined, which apply to experimental situations where a gene of interest has been identified but has an unknown phenotype (phenotyping), an unidentified gene is associated with a known phenotype (gene cloning) and finally, a screening approach, where both gene and phenotype are unknown. These approaches make use of open-access, online databases with which plant molecular genetics researchers working in the model plant Arabidopsis will be familiar, in particular the Ionomics Hub and online transcriptomic databases such as the Arabidopsis eFP browser. The approaches and examples we describe are based on the assumption that altering the expression of ion transporters can result in changes in elemental distribution. We provide methodological details on using elemental imaging to aid or accelerate gene functional characterization by narrowing down the search for candidate genes to the tissues in which elemental distributions are altered. We use synchrotron X-ray microprobes as a technique of choice, which can now be used to image all parts of an Arabidopsis plant in a hydrated state. We present elemental images of leaves, stem, root, siliques and germinating hypocotyls.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Department of Biological Sciences, Life Science Center, 78 College Street, Hanover, NH 03755
| | | | - Maria Hindt
- Dartmouth College, Department of Biological Sciences, Life Science Center, 78 College Street, Hanover, NH 03755
| | - Amanda L Socha
- Dartmouth College, Department of Biological Sciences, Life Science Center, 78 College Street, Hanover, NH 03755
| | - Hélène Zuber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
142
|
Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Sci Rep 2013; 3:1425. [PMID: 23478344 PMCID: PMC3594796 DOI: 10.1038/srep01425] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/21/2013] [Indexed: 11/08/2022] Open
Abstract
Selenium (Se) is an essential human micronutrient with critical roles in immune functioning and antioxidant defence. Estimates of dietary Se intakes and status are scarce for Africa although crop surveys indicate deficiency is probably widespread in Malawi. Here we show that Se deficiency is likely endemic in Malawi based on the Se status of adults consuming food from contrasting soil types. These data are consistent with food balance sheets and composition tables revealing that >80% of the Malawi population is at risk of dietary Se inadequacy. Risk of dietary Se inadequacy is >60% in seven other countries in Southern Africa, and 22% across Africa as a whole. Given that most Malawi soils cannot supply sufficient Se to crops for adequate human nutrition, the cost and benefits of interventions to alleviate Se deficiency should be determined; for example, Se-enriched nitrogen fertilisers could be adopted as in Finland.
Collapse
|
143
|
Parshukova O, Potolitsyna N, Shadrina V, Chernykh A, Bojko E. Features of selenium metabolism in humans living under the conditions of North European Russia. Int Arch Occup Environ Health 2013; 87:607-14. [DOI: 10.1007/s00420-013-0895-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/16/2013] [Indexed: 12/25/2022]
|
144
|
Hall JA, Bobe G, Hunter JK, Vorachek WR, Stewart WC, Vanegas JA, Estill CT, Mosher WD, Pirelli GJ. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS One 2013; 8:e58188. [PMID: 23536788 PMCID: PMC3594272 DOI: 10.1371/journal.pone.0058188] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/31/2013] [Indexed: 11/23/2022] Open
Abstract
Selenium (Se) is an essential micronutrient in cattle, and Se-deficiency can affect morbidity and mortality. Calves may have greater Se requirements during periods of stress, such as during the transitional period between weaning and movement to a feedlot. Previously, we showed that feeding Se-fertilized forage increases whole-blood (WB) Se concentrations in mature beef cows. Our current objective was to test whether feeding Se-fertilized forage increases WB-Se concentrations and performance in weaned beef calves. Recently weaned beef calves (n = 60) were blocked by body weight, randomly assigned to 4 groups, and fed an alfalfa hay based diet for 7 wk, which was harvested from fields fertilized with sodium-selenate at a rate of 0, 22.5, 45.0, or 89.9 g Se/ha. Blood samples were collected weekly and analyzed for WB-Se concentrations. Body weight and health status of calves were monitored during the 7-wk feeding trial. Increasing application rates of Se fertilizer resulted in increased alfalfa hay Se content for that cutting of alfalfa (0.07, 0.95, 1.55, 3.26 mg Se/kg dry matter for Se application rates of 0, 22.5, 45.0, or 89.9 g Se/ha, respectively). Feeding Se-fertilized alfalfa hay during the 7-wk preconditioning period increased WB-Se concentrations (PLinear<0.001) and body weights (PLinear = 0.002) depending upon the Se-application rate. Based upon our results we suggest that soil-Se fertilization is a potential management tool to improve Se-status and performance in weaned calves in areas with low soil-Se concentrations.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Rees K, Hartley L, Day C, Flowers N, Clarke A, Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2013; 2013:CD009671. [PMID: 23440843 PMCID: PMC7433291 DOI: 10.1002/14651858.cd009671.pub2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Selenium is a key component of a number of selenoproteins which protect against oxidative stress and have the potential to prevent chronic diseases including cardiovascular disease (CVD). However, observational studies have shown inconsistent associations between selenium intake and CVD risk; in addition, there is concern around a possible increased risk of type 2 diabetes with high selenium exposure. OBJECTIVES To determine the effectiveness of selenium only supplementation for the primary prevention of CVD and examine the potential adverse effect of type 2 diabetes. SEARCH METHODS The following electronic databases were searched: the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 10 of 12, October 2012) on The Cochrane Library; MEDLINE (Ovid) (1946 to week 2 October 2012); EMBASE Classic + EMBASE (Ovid) (1947 to 2012 Week 42); CINAHL (EBSCO) (to 24 October 2012); ISI Web of Science (1970 to 24 October 2012); PsycINFO (Ovid) (1806 to week 3 October 2012); Database of Abstracts of Reviews of Effects (DARE), Health Technology Assessment Database and Health Economics Evaluations Database (Issue 4 of 4, October 2012) on The Cochrane Library. Trial registers and reference lists of reviews and articles were searched and experts in the field were approached. No language restrictions were applied. SELECTION CRITERIA Randomised controlled trials on the effects of selenium only supplementation on major CVD end-points, mortality, changes in CVD risk factors, and type 2 diabetes were included both in adults of all ages from the general population and in those at high risk of CVD. Trials were only considered where the comparison group was placebo or no intervention. Only studies with at least three months follow-up were included in the meta-analyses, shorter term studies were dealt with descriptively. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. Study authors were contacted for additional information. MAIN RESULTS Twelve trials (seven with duration of at least three months) met the inclusion criteria, with 19,715 participants randomised. The two largest trials that were conducted in the USA (SELECT and NPC) reported clinical events. There were no statistically significant effects of selenium supplementation on all cause mortality (RR 0.97, 95% CI 0.88 to 1.08), CVD mortality (RR 0.97, 95% CI 0.79 to 1.2), non-fatal CVD events (RR 0.96, 95% CI 0.89 to 1.04) or all CVD events (fatal and non-fatal) (RR 1.03, 95% CI 0.95 to 1.11). There was a small increased risk of type 2 diabetes with selenium supplementation but this did not reach statistical significance (RR 1.06, 95% CI 0.97 to 1.15). Other adverse effects that increased with selenium supplementation, as reported in the SELECT trial, included alopecia (RR 1.28, 95% CI 1.01 to 1.62) and dermatitis grade 1 to 2 (RR 1.17, 95% CI 1.0 to 1.35). Selenium supplementation reduced total cholesterol but this did not reach statistical significance (WMD - 0.11 mmol/L, 95% CI - 0.3 to 0.07). Mean high density lipoprotein (HDL) levels were unchanged. There was a statistically significant reduction in non-HDL cholesterol (WMD - 0.2 mmol/L, 95% CI - 0.41 to 0.00) in one trial of varying selenium dosage. None of the longer term trials examined effects on blood pressure. Overall, the included studies were regarded as at low risk of bias. AUTHORS' CONCLUSIONS The limited trial evidence that is available to date does not support the use of selenium supplements in the primary prevention of CVD.
Collapse
Affiliation(s)
- Karen Rees
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | | | | | | | |
Collapse
|
146
|
Poblaciones MJ, Rodrigo SM, Santamaría O. Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol Trace Elem Res 2013; 151:132-7. [PMID: 23129527 DOI: 10.1007/s12011-012-9539-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
Abstract
Selenium (Se), which has antioxidant, anticancer, and antiviral properties, is an essential micronutrient for humans and animals. This micronutrient is found in high quantity in legumes. Peas have an ever-increasing importance in Spain, and to increase their nutritional value, two foliar Se fertilizers: sodium selenate and sodium selenite, at five different rates: 0, 10, 20, 40, 80 g ha(-1), were studied during the 2010/2011 crop season on semiarid Mediterranean conditions. Sodium selenate was much more effectively taken up by plants compared to sodium selenite. There was a strong linear relationship between the total Se content and Se rate in both sodium selenate and selenite. For each gram of Se fertilization as either sodium selenate or sodium selenite, the increase of total Se concentration in the grain was 148 and 19 μg Se kg(-1) dry weight, respectively. Ingestion of 100 g of peas previously fertilized with 10 g of sodium selenate per hectare would result in an intake of 179 μg of Se. This is almost 90 % of the daily recommended dose needed to reduce the chance of some cancers and about 179 % of the minimum concentration required to prevent Se deficiency diseases in animals. The pea has shown to have a strong ability to uptake and accumulate Se under Mediterranean conditions; therefore, this would make it a very strong candidate for inclusion in biofortification programs aiming to increase Se in the food chain.
Collapse
Affiliation(s)
- María J Poblaciones
- Department of Ingeniería del Medio Agronómico y Forestal, University of Extremadura, Avda. Adolfo Suárez s/n, Badajoz, Spain.
| | | | | |
Collapse
|
147
|
Lavu RVS, Du Laing G, Van de Wiele T, Pratti VL, Willekens K, Vandecasteele B, Tack F. Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10930-5. [PMID: 23078411 DOI: 10.1021/jf302931z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leek was fertilized with sodium selenite (Na(2)SeO(3)) and sodium selenate (Na(2)SeO(4)) in a green house to assess the impact of selenium (Se) fertilization on Se uptake by the crop and its speciation in the crop. The bioaccessibility of Se in the Se-enriched leek was assessed using an in vitro extraction protocol mimicking the human gastrointestinal tract (stomach, small intestine, and colon). The lowest Se uptake was observed when Na(2)SeO(3) was used as a fertilizer, which results in a higher risk for Se accumulation in the soil on a longer term. When soil was amended with Na(2)SeO(4), 55 ± 5% of total Se in the leek occurred in an inorganic form, while only 21 ± 8% was inorganic when Na(2)SeO(3) was applied. Se-methylselenocysteine and selenomethione were the major organic species in both treatments. However, concentrations of Se-methylselenocysteine and γ-glutamyl-Se-methyl-selenocysteine, which were previously reported to induce positive health effects, were lower as compared to other Allium species. The majority of the Se in the leek was found to be bioaccessible in the stomach (around 60%) and small intestine (around 80%). However, a significant fraction also has good chances to reach the colon, where it seems to be taken up by the microbial community and may also induce positive health effects.
Collapse
Affiliation(s)
- Rama V Srikanth Lavu
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
148
|
Buiatti M, Christou P, Pastore G. The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view. GENES AND NUTRITION 2012; 8:255-70. [PMID: 23076994 PMCID: PMC3639326 DOI: 10.1007/s12263-012-0316-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/03/2012] [Indexed: 12/21/2022]
Abstract
This commentary is a face-to-face debate between two almost opposite positions regarding the application of genetic engineering in agriculture and food production. Seven questions on the potential benefits of the application of genetic engineering in agriculture and on the potentially adverse impacts on the environment and human health were posed to two scientists: one who is sceptical about the use of GMOs in Agriculture, and one who views GMOs as an important tool for quantitatively and qualitatively improving food production.
Collapse
Affiliation(s)
- M Buiatti
- University of Florence, Florence, Italy,
| | | | | |
Collapse
|
149
|
Meyer HA, Endermann T, Stephan C, Stoedter M, Behrends T, Wolff I, Jung K, Schomburg L. Selenoprotein P status correlates to cancer-specific mortality in renal cancer patients. PLoS One 2012; 7:e46644. [PMID: 23056383 PMCID: PMC3467258 DOI: 10.1371/journal.pone.0046644] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/03/2012] [Indexed: 12/21/2022] Open
Abstract
Selenium (Se) is an essential trace element for selenoprotein biosynthesis. Selenoproteins have been implicated in cancer risk and tumor development. Selenoprotein P (SePP) serves as the major Se transport protein in blood and as reliable biomarker of Se status in marginally supplied individuals. Among the different malignancies, renal cancer is characterized by a high mortality rate. In this study, we aimed to analyze the Se status in renal cell cancer (RCC) patients and whether it correlates to cancer-specific mortality. To this end, serum samples of RCC patients (n = 41) and controls (n = 21) were retrospectively analyzed. Serum Se and SePP concentrations were measured by X-ray fluorescence and an immunoassay, respectively. Clinical and survival data were compared to serum Se and SePP concentrations as markers of Se status by receiver operating characteristic (ROC) curve and Kaplan-Meier and Cox regression analyses. In our patients, higher tumor grade and tumor stage at diagnosis correlated to lower SePP and Se concentrations. Kaplan-Meier analyses indicated that low Se status at diagnosis (SePP<2.4 mg/l, bottom tertile of patient group) was associated with a poor 5-year survival rate of 20% only. We conclude that SePP and Se concentrations are of prognostic value in RCC and may serve as additional diagnostic biomarkers identifying a Se deficit in kidney cancer patients potentially affecting therapy regimen. As poor Se status was indicative of high mortality odds, we speculate that an adjuvant Se supplementation of Se-deficient RCC patients might be beneficial in order to stabilize their selenoprotein expression hopefully prolonging their survival. However, this assumption needs to be rigorously tested in prospective clinical trials.
Collapse
Affiliation(s)
- Hellmuth A. Meyer
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Endermann
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Stephan
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Mette Stoedter
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Behrends
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingmar Wolff
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
150
|
Premarathna L, McLaughlin MJ, Kirby JK, Hettiarachchi GM, Stacey S, Chittleborough DJ. Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6037-44. [PMID: 22630040 DOI: 10.1021/jf3005788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study examined the effects of applied selenium (Se) species, time of application, method of application, and soil water management regimen on the accumulation of Se in rice plants. Plants were grown to maturity in a temperature- and humidity-controlled growth chamber using three water management methods: field capacity (FC), submerged until harvest, and submerged and drained 2 weeks before harvest. Two Se species, selenate (SeO4(2-)) and selenite (SeO3(2-)), were applied at a rate equivalent to 30 g ha(-1). Four application methods were employed as follows: (i) Se applied at soil preparation, (ii) Se-enriched urea granules applied to floodwater at heading; (iii) foliar Se applied at heading; and (iv) fluid fertilizer Se applied to soil or floodwater at heading. Total Se concentrations in rice grains, husks, leaves, culms, and roots were measured, as well as Se speciation in grains from the Se-enriched urea granule treatment. Highest Se concentrations in the grain occurred with SeO4(2-) and with fertilizer applied at heading stage; SeO4(2-)-enriched urea granules applied at heading increased grain Se concentrations 5-6-fold (by 450-600 μg kg(-1)) compared to the control (no fertilizer Se applied) in all water treatments. Under paddy conditions other Se fertilization strategies were much less effective. Drainage before harvesting caused Se to accumulate in/on rice roots, possibly through adsorption onto iron plaque on roots. Rice grains contained Se mainly in the organic form as selenomethionine (SeM), which comprised >90% of the total grain Se in treatments fertilized with SeO4(2-)-enriched urea granules. The results of this study clearly show that of the fertilizer strategies tested biofortification of Se in rice grains can best be achieved in lowland rice by broadcast application of SeO4(2-)-enriched urea granules to floodwater at heading stage.
Collapse
Affiliation(s)
- Lakmalie Premarathna
- Soil Science, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide , Urrbrae, SA 5064, Australia
| | | | | | | | | | | |
Collapse
|