101
|
Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proc Natl Acad Sci U S A 2018; 115:5265-5270. [PMID: 29712852 DOI: 10.1073/pnas.1715590115] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) control organ-specific autoimmunity in a tissue antigen-specific manner, yet little is known about their specificity in a natural repertoire. In this study, we used the nonobese diabetic (NOD) mouse model of autoimmune diabetes to investigate the antigen specificity of Tregs present in the inflamed tissue, the islets of Langerhans. Compared with Tregs present in spleen and lymph node, Tregs in the islets showed evidence of antigen stimulation that correlated with higher proliferation and expression of activation markers CD103, ICOS, and TIGIT. T cell receptor (TCR) repertoire profiling demonstrated that islet Treg clonotypes are expanded in the islets, suggesting localized antigen-driven expansion in inflamed islets. To determine their specificity, we captured TCRαβ pairs from islet Tregs using single-cell TCR sequencing and found direct evidence that some of these TCRs were specific for islet-derived antigens including insulin B:9-23 and proinsulin. Consistently, insulin B:9-23 tetramers readily detected insulin-specific Tregs in the islets of NOD mice. Lastly, islet Tregs from prediabetic NOD mice were effective at preventing diabetes in Treg-deficient NOD.CD28-/- recipients. These results provide a glimpse into the specificities of Tregs in a natural repertoire that are crucial for opposing the progression of autoimmune diabetes.
Collapse
|
102
|
Immature Dendritic Cell Therapy Confers Durable Immune Modulation in an Antigen-Dependent and Antigen-Independent Manner in Nonobese Diabetic Mice. J Immunol Res 2018; 2018:5463879. [PMID: 29651443 PMCID: PMC5832131 DOI: 10.1155/2018/5463879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 01/25/2023] Open
Abstract
Dendritic cell (DC) immunotherapy has been effective for prevention of type 1 diabetes (T1D) in NOD mice but fails to protect if initiated after active autoimmunity. As autoreactivity expands inter- and intramolecularly during disease progression, we investigated whether DCs unpulsed or pulsed with β cell antigenic dominant determinants (DD), subdominant determinants (SD), and ignored determinants (ID) could prevent T1D in mice with advanced insulitis. We found that diabetes was significantly delayed by DC therapy. Of interest, DCs pulsed with SD or ID appeared to provide better protection. T lymphocytes from DC-treated mice acquired spontaneous proliferating capability during in vitro culture, which could be largely eliminated by IL-2 neutralizing antibodies. This trend maintained even 29 weeks after discontinuing DC therapy and appeared antigen-independent. Furthermore, CD4+Foxp3+ T regulatory cells (Tregs) from DC-treated mice proliferated more actively in vitro compared to the controls, and Tregs from DC-treated mice showed significantly enhanced immunosuppressive activities in contrast to those from the controls. Our study demonstrates that DC therapy leads to long-lasting immunomodulatory effects in an antigen-dependent and antigen-independent manner and provides evidence for peptide-based intervention during a clinically relevant window to guide DC-based immunotherapy for autoimmune diabetes.
Collapse
|
103
|
Gołąb K, Grose R, Placencia V, Wickrema A, Solomina J, Tibudan M, Konsur E, Ciepły K, Marek-Trzonkowska N, Trzonkowski P, Millis JM, Fung J, Witkowski P. Cell banking for regulatory T cell-based therapy: strategies to overcome the impact of cryopreservation on the Treg viability and phenotype. Oncotarget 2018; 9:9728-9740. [PMID: 29515766 PMCID: PMC5839397 DOI: 10.18632/oncotarget.23887] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
The first clinical trials with adoptive Treg therapy have shown safety and potential efficacy. Feasibility of such therapy could be improved if cells are cryopreserved and stored until optimal timing for infusion. Herein, we report the evaluation of two cell-banking strategies for Treg therapy: 1) cryopreservation of CD4+ cells for subsequent Treg isolation/expansion and 2) cryopreservation of ex-vivo expanded Tregs (CD4+CD25hiCD127lo/- cells). First, we checked how cryopreservation affects cell viability and Treg markers expression. Then, we performed Treg isolation/expansion with the final products release testing. We observed substantial decrease in cell number recovery after thawing and overnight culture. This observation might be explained by the high percentage of necrotic and apoptotic cells found just after thawing. Furthermore, we noticed fluctuations in percentage of CD4+CD25hiCD127- and CD4+FoxP3+ cells obtained from cryopreserved CD4+ as well as Treg cells. However, after re-stimulation Tregs expanded well, presented a stable phenotype and fulfilled the release criteria at the end of expansions. Cryopreservation of CD4+ cells for subsequent Treg isolation/expansion and cryopreservation of expanded Tregs with re-stimulation and expansion after thawing, are promising solutions to overcome detrimental effects of cryopreservation. Both of these cell-banking strategies for Treg therapy can be applied when designing new clinical trials.
Collapse
Affiliation(s)
- Karolina Gołąb
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Randall Grose
- South Australian Health and Medical Research Institute, University of Adelaide, SA, Australia
| | - Veronica Placencia
- Department of Medicine, Hematology-Oncology, Cancer Research Center, University of Chicago, Chicago, IL, USA
| | - Amittha Wickrema
- Department of Medicine, Hematology-Oncology, Cancer Research Center, University of Chicago, Chicago, IL, USA
| | - Julia Solomina
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Martin Tibudan
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Evelyn Konsur
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Kamil Ciepły
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | | | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - John Fung
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Piotr Witkowski
- Department of Surgery, University of Chicago, Chicago, IL, USA
| |
Collapse
|
104
|
Nowak A, Lock D, Bacher P, Hohnstein T, Vogt K, Gottfreund J, Giehr P, Polansky JK, Sawitzki B, Kaiser A, Walter J, Scheffold A. CD137+CD154- Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures. Front Immunol 2018; 9:199. [PMID: 29467769 PMCID: PMC5808295 DOI: 10.3389/fimmu.2018.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/23/2018] [Indexed: 01/30/2023] Open
Abstract
Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154- expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro.
Collapse
Affiliation(s)
- Anna Nowak
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Dominik Lock
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Thordis Hohnstein
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Katrin Vogt
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | - Judith Gottfreund
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine, Berlin, Germany
| | - Birgit Sawitzki
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | | | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Alexander Scheffold
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.,Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| |
Collapse
|
105
|
Sprouse ML, Scavuzzo MA, Blum S, Shevchenko I, Lee T, Makedonas G, Borowiak M, Bettini ML, Bettini M. High self-reactivity drives T-bet and potentiates Treg function in tissue-specific autoimmunity. JCI Insight 2018; 3:97322. [PMID: 29367462 DOI: 10.1172/jci.insight.97322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
T cell receptor (TCR) affinity is a critical factor of Treg lineage commitment, but whether self-reactivity is a determining factor in peripheral Treg function remains unknown. Here, we report that a high degree of self-reactivity is crucial for tissue-specific Treg function in autoimmunity. Based on high expression of CD5, we identified a subset of self-reactive Tregs expressing elevated levels of T-bet, GITR, CTLA-4, and ICOS, which imparted significant protection from autoimmune diabetes. We observed that T-bet expression in Tregs, necessary for control of Th1 autoimmunity, could be induced in an IFNγ-independent fashion and, unlike in conventional T cells (Tconv), was strongly correlated with the strength of TCR signaling. The level of CD5 similarly identified human Tregs with an increased functional profile, suggesting that CD5hi Tregs may constitute an efficacious subpopulation appropriate for use in adoptive Treg therapies for treatment of inflammatory conditions. Overall, this work establishes an instrumental role of high TCR self-reactivity in driving Treg function.
Collapse
Affiliation(s)
- Maran L Sprouse
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Samuel Blum
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Ivan Shevchenko
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Thomas Lee
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Malgorzata Borowiak
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, and.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew L Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
106
|
Marshall GP, Cserny J, Perry DJ, Yeh WI, Seay HR, Elsayed AG, Posgai AL, Brusko TM. Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. CELL & GENE THERAPY INSIGHTS 2018; 4:405-429. [PMID: 34984106 PMCID: PMC8722436 DOI: 10.18609/cgti.2018.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interest in adoptive T-cell therapies has been ignited by the recent clinical success of genetically-modified T cells in the cancer immunotherapy space. In addition to immune targeting for malignancies, this approach is now being explored for the establishment of immune tolerance with regulatory T cells (Tregs). Herein, we will summarize the basic science and clinical results emanating from trials directed at inducing durable immune regulation through administration of Tregs. We will discuss some of the current challenges facing the field in terms of maximizing cell purity, stability and expansion capacity, while also achieving feasibility and GMP production. Indeed, recent advances in methodologies for Treg isolation, expansion, and optimal source materials represent important strides toward these considerations. Finally, we will review the emerging genetic and biomaterial-based approaches on the horizon for directing Treg specificity to augment tissue-targeting and regenerative medicine.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Ahmed G Elsayed
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Todd M Brusko
- OneVax LLC, Sid Martin Biotechnology Institute, Alachua, Florida, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
107
|
Wilkinson DS, Ghosh D, Nickle RA, Moorman CD, Mannie MD. Partial CD25 Antagonism Enables Dominance of Antigen-Inducible CD25 high FOXP3 + Regulatory T Cells As a Basis for a Regulatory T Cell-Based Adoptive Immunotherapy. Front Immunol 2017; 8:1782. [PMID: 29312311 PMCID: PMC5735073 DOI: 10.3389/fimmu.2017.01782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/29/2017] [Indexed: 02/02/2023] Open
Abstract
FOXP3+ regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3+ Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3+ lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during in vitro propagation. Because Tregs and Tcons differentially express CD25, we hypothesized that anti-CD25 monoclonal antibodies (mAbs) would only partially block IL-2 signaling in CD25high FOXP3+ Tregs while completely blocking IL-2 responses of CD25low-intermediate Tcons to enable preferential outgrowth of Tregs during in vitro propagation. Indeed, murine TGF-β-induced MOG-specific Treg lines from 2D2 transgenic mice that were maintained in IL-2 with the anti-CD25 PC61 mAb rapidly acquired and indefinitely maintained a FOXP3high phenotype during long-term in vitro propagation (>90% FOXP3+ Tregs), whereas parallel cultures lacking PC61 rapidly lost FOXP3. These results pertained to TGF-β-inducible "iTregs" because Tregs from 2D2-FIG Rag1-/- mice, which lack thymic or natural Tregs, were stabilized by continuous culture in IL-2 and PC61. MOG-specific and polyclonal Tregs upregulated the Treg-associated markers Neuropilin-1 (NRP1) and Helios (IKZF2). Just as PC61 stabilized FOXP3+ Tregs during expansion in IL-2, TGF-β fully stabilized FOXP3+ Tregs during cellular activation in the presence of dendritic cells and antigen/mitogen. Adoptive transfer of blastogenic CD25high FOXP3+ Tregs from MOG35-55-specific 2D2 TCR transgenic mice suppressed experimental autoimmune encephalomyelitis in pretreatment and therapeutic protocols. In conclusion, low IL-2 concentrations coupled with high PC61 concentrations constrained IL-2 signaling to a low-intensity range that enabled dominant stable outgrowth of suppressive CD25high FOXP3+ Tregs. The ability to indefinitely expand stable Treg lines will provide insight into FOXP3+ Treg physiology and will be foundational for Treg-based immunotherapy.
Collapse
Affiliation(s)
- Daniel S Wilkinson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Debjani Ghosh
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Rebecca A Nickle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
108
|
Yu H, Paiva R, Flavell RA. Harnessing the power of regulatory T-cells to control autoimmune diabetes: overview and perspective. Immunology 2017; 153:161-170. [PMID: 29155454 DOI: 10.1111/imm.12867] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 12/26/2022] Open
Abstract
Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disease resulting in islet β-cell destruction, hypoinsulinaemia and severely altered glucose homeostasis. Although the mechanisms that initiate T1D still remain elusive, a breakdown of immune tolerance between effector T-cells (Teff ) and regulatory T-cells (Treg ) is considered to be the crucial component leading to autoimmunity. As such, strategies have been developed to boost the number and/or function of Treg in the hope of specifically hampering the pathogenic Teff activity. In this review, we will summarize the current understanding of biomarkers and functions of both forkhead box protein 3 (FoxP3)+ Treg and type 1 regulatory T (Tr1) cells in health and in T1D, examine the outcome of experimental therapies in both animal models and humans via manipulation of Treg responses and also provide an outlook on the potential of Treg -based immunotherapies in the prevention and treatment of this disease. Discussed immunotherapies include adoptive transfer of ex-vivo expanded FoxP3+ Treg , manipulation of Treg cells via the interleukin (IL)-2/IL-2R pathway and induction of Treg by tolerogenic peptides, tolerogenic dendritic cells or altered gut microbiota.
Collapse
Affiliation(s)
- Hua Yu
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Ricardo Paiva
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
109
|
McGovern JL, Wright GP, Stauss HJ. Engineering Specificity and Function of Therapeutic Regulatory T Cells. Front Immunol 2017; 8:1517. [PMID: 29176976 PMCID: PMC5686054 DOI: 10.3389/fimmu.2017.01517] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023] Open
Abstract
Adoptive therapy with polyclonal regulatory T cells (Tregs) has shown efficacy in suppressing detrimental immune responses in experimental models of autoimmunity and transplantation. The lack of specificity is a potential limitation of Treg therapy, as studies in mice have demonstrated that specificity can enhance the therapeutic potency of Treg. We will discuss that vectors encoding T cell receptors or chimeric antigen receptors provide an efficient gene-transfer platform to reliably produce Tregs of defined antigen specificity, thus overcoming the considerable difficulties of isolating low-frequency, antigen-specific cells that may be present in the natural Treg repertoire. The recent observations that Tregs can polarize into distinct lineages similar to the Th1, Th2, and Th17 subsets described for conventional T helper cells raise the possibility that Th1-, Th2-, and Th17-driven pathology may require matching Treg subsets for optimal therapeutic efficacy. In the future, genetic engineering may serve not only to enforce FoxP3 expression and a stable Treg phenotype but it may also enable the expression of particular transcription factors that drive differentiation into defined Treg subsets. Together, established and recently developed gene transfer and editing tools provide exciting opportunities to produce tailor-made antigen-specific Treg products with defined functional activities.
Collapse
Affiliation(s)
- Jenny L McGovern
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Graham P Wright
- School of Applied Science, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Hans J Stauss
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
110
|
Hull CM, Peakman M, Tree TIM. Regulatory T cell dysfunction in type 1 diabetes: what's broken and how can we fix it? Diabetologia 2017; 60:1839-1850. [PMID: 28770318 PMCID: PMC6448885 DOI: 10.1007/s00125-017-4377-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/17/2017] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes is an autoimmune disease characterised by the destruction of insulin producing beta cells in the pancreas. Whilst it remains unclear what the original triggering factors for this destruction are, observations from the natural history of human type 1 diabetes, including incidence rates in twins, suggest that the disease results from a combination of genetic and environmental factors. Whilst many different immune cells have been implicated, including members of the innate and adaptive immune systems, a view has emerged over the past 10 years that beta cell damage is mediated by the combined actions of CD4+ and CD8+ T cells with specificity for islet autoantigens. In health, these potentially pathogenic T cells are held in check by multiple regulatory mechanisms, known collectively as 'immunological tolerance'. This raises the question as to whether type 1 diabetes develops, at least in part, as a result of a defect in one or more of these control mechanisms. Immunological tolerance includes both central mechanisms (purging of the T cell repertoire of high-affinity autoreactive T cells in the thymus) and peripheral mechanisms, a major component of which is the action of a specialised subpopulation of T cells, known as regulatory T cells (Tregs). In this review, we highlight the evidence suggesting that a reduction in the functional capacity of different Treg populations contributes to disease development in type 1 diabetes. We also address current controversies regarding the putative causes of this defect and discuss strategies to correct it as a means to reduce or prevent islet destruction in a clinical setting.
Collapse
Affiliation(s)
- Caroline M Hull
- Programme of Infection and Immunity, Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
| | - Mark Peakman
- Programme of Infection and Immunity, Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Timothy I M Tree
- Programme of Infection and Immunity, Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
| |
Collapse
|
111
|
Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The Importance of Dendritic Cells in Maintaining Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 198:2223-2231. [PMID: 28264998 DOI: 10.4049/jimmunol.1601629] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/11/2016] [Indexed: 12/30/2022]
Abstract
Immune tolerance is necessary to prevent the immune system from reacting against self, and thus to avoid the development of autoimmune diseases. In this review, we discuss key findings that position dendritic cells (DCs) as critical modulators of both thymic and peripheral immune tolerance. Although DCs are important for inducing both immunity and tolerance, increased autoimmunity associated with decreased DCs suggests their nonredundant role in tolerance induction. DC-mediated T cell immune tolerance is an active process that is influenced by genetic variants, environmental signals, as well as the nature of the specific DC subset presenting Ag to T cells. Answering the many open questions with regard to the role of DCs in immune tolerance could lead to the development of novel therapies for the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tae Jin Yun
- Laboratory of Cellular Physiology and Immunology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada; and.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
112
|
Dawson NAJ, Levings MK. Antigen-specific regulatory T cells: are police CARs the answer? Transl Res 2017; 187:53-58. [PMID: 28688236 DOI: 10.1016/j.trsl.2017.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 01/26/2023]
Abstract
Cellular therapy with T-regulatory cells (Tregs) is a promising strategy to control immune responses and restore immune tolerance in a variety of immune-mediated diseases, such as transplant rejection and autoimmunity. Multiple clinical trials are currently testing this approach, typically by infusing a single dose of polyclonal Tregs that have been expanded in vitro. However, evidence from animal models of Treg therapy has clearly shown that antigen-specific Tregs are vastly superior to polyclonal cells, meaning that fewer cells are needed for the desired therapeutic effect. Traditional methods to obtain antigen-specific Tregs include antigen-stimulated expansion or T-cell receptor (TCR) overexpression. However, these methods are limited by low cell numbers, complex manufacturing procedures, and knowledge of patient-specific TCRs which recognize disease-relevant MHC-peptide complexes. Recently, several groups have explored the potential to use chimeric antigen receptors (CARs) to generate antigen-specific Tregs. Here, we discuss the progress in this field and highlight the major outstanding questions that remain to be addressed as this approach moves toward clinical applications.
Collapse
Affiliation(s)
- Nicholas A J Dawson
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
113
|
Yang QY, Yang JD, Wang YS. Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunol Lett 2017; 190:201-205. [PMID: 28837818 DOI: 10.1016/j.imlet.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023]
Abstract
Adoptive immunotherapy adopting chimeric antigen receptor (CAR) modified T cells has arisen attention as a hard-hitting therapy for numerous cancers. CARs are genetically engineered receptors that could stimulate tumor cytotoxicity once binding to the specific tumor epitopes. In spite of current noteworthy achievements in hematologic malignancies, the safety problems have aroused public awareness. In this review, we will focus on recent potential strategies to improve the security of CAR modified T cells.
Collapse
Affiliation(s)
- Qi-Yu Yang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia-Dan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong-Sheng Wang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, China.
| |
Collapse
|
114
|
Visperas A, Vignali DAA. Are Regulatory T Cells Defective in Type 1 Diabetes and Can We Fix Them? THE JOURNAL OF IMMUNOLOGY 2017; 197:3762-3770. [PMID: 27815439 DOI: 10.4049/jimmunol.1601118] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are critical regulators of peripheral immune tolerance. Treg insufficiency can lead to autoimmune disorders, including type 1 diabetes (T1D). Increasing evidence in mouse models of T1D, as well as other autoimmune disorders, suggests that there are defects in Treg-mediated suppression. Indeed, whereas Treg frequency in the peripheral blood of T1D patients is unaltered, their suppressive abilities are diminished compared with Tregs in healthy controls. Although expression of the transcription factor Foxp3 is a prerequisite for Treg development and function, there are many additional factors that can alter their stability, survival, and function. Much has been learned in other model systems, such as tumors, about the mechanism and pathways that control Treg stability and function. This review poses the question of whether we can use these findings to develop new therapeutic approaches that might boost Treg stability, survival, and/or function in T1D and possibly other autoimmune disorders.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and .,Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| |
Collapse
|
115
|
Klementowicz JE, Mahne AE, Spence A, Nguyen V, Satpathy AT, Murphy KM, Tang Q. Cutting Edge: Origins, Recruitment, and Regulation of CD11c + Cells in Inflamed Islets of Autoimmune Diabetes Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:27-32. [PMID: 28550204 DOI: 10.4049/jimmunol.1601062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/26/2017] [Indexed: 01/07/2023]
Abstract
In NOD mice, CD11c+ cells increase greatly with islet inflammation and contribute to autoimmune destruction of pancreatic β cells. In this study, we investigated their origin and mechanism of recruitment. CD11c+ cells in inflamed islets resembled classical dendritic cells based on their transcriptional profile. However, the majority of these cells were not from the Zbtb46-dependent dendritic-cell lineage. Instead, monocyte precursors could give rise to CD11c+ cells in inflamed islets. Chemokines Ccl5 and Ccl8 were persistently elevated in inflamed islets and the influx of CD11c+ cells was partially dependent on their receptor Ccr5. Treatment with islet Ag-specific regulatory T cells led to a marked decrease of Ccl5 and Ccl8, and a reduction of monocyte recruitment. These results implicate a monocytic origin of CD11c+ cells in inflamed islets and suggest that therapeutic regulatory T cells directly or indirectly regulate their influx by altering the chemotactic milieu in the islets.
Collapse
Affiliation(s)
- Joanna E Klementowicz
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Ashley E Mahne
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Allyson Spence
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143;
| |
Collapse
|
116
|
Zwang NA, Leventhal JR. Cell Therapy in Kidney Transplantation: Focus on Regulatory T Cells. J Am Soc Nephrol 2017; 28:1960-1972. [PMID: 28465379 DOI: 10.1681/asn.2016111206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Renal transplantation is the renal replacement modality of choice for suitable candidates with advanced CKD or ESRD. Prevention of rejection, however, requires treatment with nonspecific pharmacologic immunosuppressants that carry both systemic and nephrologic toxicities. Use of a patient's own suppressive regulatory T cells (Tregs) is an attractive biologic approach to reduce this burden. Here, we review the immunologic underpinnings of Treg therapy and technical challenges to developing successful cell therapy. These issues include the selection of appropriate Treg subsets, ex vivo Treg expansion approaches, how many Tregs to administer and when, and how to care for patients after Treg administration.
Collapse
Affiliation(s)
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Northwestern Memorial Hospital, Chicago, Illinois
| |
Collapse
|
117
|
Hull CM, Nickolay LE, Estorninho M, Richardson MW, Riley JL, Peakman M, Maher J, Tree TI. Generation of human islet-specific regulatory T cells by TCR gene transfer. J Autoimmun 2017; 79:63-73. [DOI: 10.1016/j.jaut.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
118
|
Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E, Geffers R, Hust M, Huehn J, Galla M, Morgan M, Jokuszies A, Manns MP, Jaeckel E. Prevention of Allograft Rejection by Use of Regulatory T Cells With an MHC-Specific Chimeric Antigen Receptor. Am J Transplant 2017; 17:917-930. [PMID: 27997080 DOI: 10.1111/ajt.14175] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/25/2023]
Abstract
CD4+ CD25high FOXP3+ regulatory T cells (Tregs) are involved in graft-specific tolerance after solid organ transplantation. However, adoptive transfer of polyspecific Tregs alone is insufficient to prevent graft rejection even in rodent models, indicating that graft-specific Tregs are required. We developed a highly specific chimeric antigen receptor that recognizes the HLA molecule A*02 (referred to as A2-CAR). Transduction into natural regulatory T cells (nTregs) changes the specificity of the nTregs without alteration of their regulatory phenotype and epigenetic stability. Activation of nTregs via the A2-CAR induced proliferation and enhanced the suppressor function of modified nTregs. Compared with nTregs, A2-CAR Tregs exhibited superior control of strong allospecific immune responses in vitro and in humanized mouse models. A2-CAR Tregs completely prevented rejection of allogeneic target cells and tissues in immune reconstituted humanized mice in the absence of any immunosuppression. Therefore, these modified cells have great potential for incorporation into clinical trials of Treg-supported weaning after allogeneic transplantation.
Collapse
Affiliation(s)
- F Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center, Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - K Zimmermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - M Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - A Knoefel
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - E Schulde
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - R Geffers
- RG of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - J Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M Galla
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - M Morgan
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - A Jokuszies
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - M P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - E Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center, Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
119
|
Verbeke CS, Gordo S, Schubert DA, Lewin SA, Desai RM, Dobbins J, Wucherpfennig KW, Mooney DJ. Multicomponent Injectable Hydrogels for Antigen-Specific Tolerogenic Immune Modulation. Adv Healthc Mater 2017; 6:10.1002/adhm.201600773. [PMID: 28116870 PMCID: PMC5518671 DOI: 10.1002/adhm.201600773] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore-forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide-co-glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle-based delivery leads to antigen-specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel-based peptide delivery, transient expansion of endogenous antigen-specific T cells is observed in the draining lymph nodes. Antigen-specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen-specific CD4+ T cells in the gels are Tregs. Antigen-specific T cells are also enriched in the pancreatic islets, and administration of peptide-loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen-specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
Collapse
Affiliation(s)
- Catia S Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Susana Gordo
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Sarah A Lewin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rajiv M Desai
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | | | | | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
120
|
Waisman A, Lukas D, Clausen BE, Yogev N. Dendritic cells as gatekeepers of tolerance. Semin Immunopathol 2017; 39:153-163. [PMID: 27456849 DOI: 10.1007/s00281-016-0583-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DC) are unique hematopoietic cells, linking innate and adaptive immune responses. In particular, they are considered as the most potent antigen presenting cells, governing both T cell immunity and tolerance. In view of their exceptional ability to present antigen and to interact with T cells, DC play distinct roles in shaping T cell development, differentiation and function. The outcome of the DC-T cell interaction is determined by the state of DC maturation, the type of DC subset, the cytokine microenvironment and the tissue location. Both regulatory T cells (Tregs) and DC are indispensable for maintaining central and peripheral tolerance. Over the past decade, accumulating data indicate that DC critically contribute to Treg differentiation and homeostasis.
Collapse
Affiliation(s)
- Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Dominika Lukas
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Microbiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
121
|
Rossi B, Constantin G. Live Imaging of Immune Responses in Experimental Models of Multiple Sclerosis. Front Immunol 2016; 7:506. [PMID: 27917173 PMCID: PMC5116921 DOI: 10.3389/fimmu.2016.00506] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the central nervous system (CNS) characterized by multifocal perivascular infiltrates that predominantly comprise lymphocytes and macrophages. During EAE, autoreactive T cells first become active in the secondary lymphoid organs upon contact with antigen-presenting cells (APCs), and then gain access to CNS parenchyma, through a compromised blood–brain barrier, subsequently inducing inflammation and demyelination. Two-photon laser scanning microscopy (TPLSM) is an ideal tool for intravital imaging because of its low phototoxicity, deep tissue penetration, and high resolution. In the last decade, TPLSM has been used to visualize the behavior of T cells and their contact with APCs in the lymph nodes (LNs) and target tissues in several models of autoimmune diseases. The leptomeninges and cerebrospinal fluid represent particularly important points for T cell entry into the CNS and reactivation following contact with local APCs during the preclinical phase of EAE. In this review, we highlight recent findings concerning the pathogenesis of EAE and MS, emphasizing the use of TPLSM to characterize T cell activation in the LNs and CNS, as well as the mechanisms of tolerance induction. Furthermore, we discuss how advanced imaging unveils disease mechanisms and helps to identify novel therapeutic strategies to treat CNS autoimmunity and inflammation.
Collapse
Affiliation(s)
- Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| |
Collapse
|
122
|
Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: Summary and perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
123
|
Abstract
Genetic and cellular studies of type 1 diabetes in patients and in the nonobese diabetic mouse model of type 1 diabetes point to an imbalance between effector T cells and regulatory T cells (Tregs) as a driver of the disease. The imbalance may arise as a consequence of genetically encoded defects in thymic deletion of islet antigen-specific T cells, induction of islet antigen-specific thymic Tregs, unfavorable tissue environment for peripheral Treg induction, and failure of islet antigen-specific Tregs to survive in the inflamed islets secondary to insufficient IL-2 signals. These understandings are the foundation for rationalized design of new therapeutic interventions to restore the balance by selectively targeting effector T cells and boosting Tregs.
Collapse
Affiliation(s)
- Allyson Spence
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA
| | - Qizhi Tang
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA.
| |
Collapse
|
124
|
Merayo-Chalico J, Rajme-López S, Barrera-Vargas A, Alcocer-Varela J, Díaz-Zamudio M, Gómez-Martín D. Lymphopenia and autoimmunity: A double-edged sword. Hum Immunol 2016; 77:921-929. [DOI: 10.1016/j.humimm.2016.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023]
|
125
|
Pan Z, Horton CG, Lawrence C, Farris AD. Plasmacytoid dendritic cells and type 1 interferon promote peripheral expansion of forkhead box protein 3(+) regulatory T cells specific for the ubiquitous RNA-binding nuclear antigen La/Sjögren's syndrome (SS)-B. Clin Exp Immunol 2016; 186:18-29. [PMID: 27227559 PMCID: PMC5011359 DOI: 10.1111/cei.12817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2016] [Indexed: 02/06/2023] Open
Abstract
RNA-binding nuclear antigens are a major class of self-antigen to which immune tolerance is lost in rheumatic diseases. Serological tolerance to one such antigen, La/Sjögren's syndrome (SS)-B (La), is controlled by CD4(+) T cells. This study investigated peripheral tolerance to human La (hLa) by tracking the fate of hLa-specific CD4(+) T cells expressing the transgenic (Tg) 3B5.8 T cell receptor (TCR) after adoptive transfer into lymphocyte-replete recipient mice expressing hLa as a neo-self-antigen. After initial antigen-specific cell division, hLa-specific donor CD4(+) T cells expressed forkhead box protein 3 (FoxP3). Donor cells retrieved from hLa Tg recipients displayed impaired proliferation and secreted interleukin (IL)-10 in vitro in response to antigenic stimulation. Transfer of highly purified FoxP3-negative donor cells demonstrated that accumulation of hLa-specific regulatory T cells (Treg ) was due primarily to expansion of small numbers of donor Treg . Depletion of recipient plasmacytoid dendritic cells (pDC), but not B cells, severely hampered the accumulation of FoxP3(+) donor Treg in hLa Tg recipients. Recipient pDC expressed tolerogenic markers and higher levels of co-stimulatory and co-inhibitory molecules than B cells. Adoptive transfer of hLa peptide-loaded pDC into mice lacking expression of hLa recapitulated the accumulation of hLa-specific Treg . Blockade of the type 1 interferon (IFN) receptor in hLa Tg recipients of hLa-specific T cells impaired FoxP3(+) donor T cell accumulation. Therefore, peripheral expansion of Treg specific for an RNA-binding nuclear antigen is mediated by antigen-presenting pDC in a type 1 IFN-dependent manner. These results reveal a regulatory function of pDC in controlling autoreactivity to RNA-binding nuclear antigens.
Collapse
Affiliation(s)
- Z.‐J. Pan
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
| | - C. G. Horton
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma City
- Department of Biological SciencesSouthwestern Oklahoma State UniversityWeatherfordOKUSA
| | - C. Lawrence
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
| | - A. D. Farris
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma City
| |
Collapse
|
126
|
Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proc Natl Acad Sci U S A 2016; 113:E6192-E6198. [PMID: 27681619 DOI: 10.1073/pnas.1611723113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The T-cell receptor (TCR) is required for maturation and function of regulatory T cells (Tregs), but the ligand specificities of Tregs outside the context of transgenic TCRs are largely unknown. Using peptide-MHC tetramers, we isolated rare specific Foxp3+ cells directly ex vivo from adult peripheral blood and defined their frequency and phenotype. We find that a proportion of circulating Tregs recognize foreign antigens and the frequency of these cells are similar to that of self-reactive Tregs in the absence of cognate infection. In contrast, the frequencies of Tregs that recognize some common microbial antigens are significantly reduced in the blood of most adults. Exposure to peripheral antigens likely has a major influence on the balance between Tregs and conventional T-cell subsets because a larger proportion of flu-specific T cells has a regulatory cell phenotype in the cord blood. Consistent with this finding, we show that lymphocytic choriomeningitis virus infection can directly modulate the ratio of virus-specific effectors and Tregs in mice. The resulting change in the balance within an antigen-specific T-cell population further correlates with the magnitude of effector response and the chronicity of infection. Taken together, our data highlight the importance of antigen specificity in the functional dynamics of the T-cell repertoire. Each specific population of CD4+ T cells in human peripheral blood contains a subset of Tregs at birth, but the balance between regulatory and effector subsets changes in response to peripheral antigen exposure and this could impact the robustness of antipathogen immunity.
Collapse
|
127
|
Safa K, Chandran S, Wojciechowski D. Pharmacologic targeting of regulatory T cells for solid organ transplantation: current and future prospects. Drugs 2016; 75:1843-52. [PMID: 26493288 DOI: 10.1007/s40265-015-0487-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last three decades have witnessed significant advances in the development of immunosuppressive medications used in kidney transplantation leading to a remarkable gain in short-term graft function and outcomes. Despite these major breakthroughs, improvements in long-term outcomes lag behind due to a stalemate between drug-related nephrotoxicity and chronic rejection typically due to donor-specific antibodies. Regulatory T cells (Tregs) have been shown to modulate the alloimmune response and can exert suppressive activity preventing allograft rejection in kidney transplantation. Currently available immunosuppressive agents impact Tregs in the alloimmune milieu with some of these interactions being deleterious to the allograft while others may be beneficial. Variable effects are seen with common antibody induction agents such that basiliximab, an IL-2 receptor blocker, decreases Tregs while lymphocyte depleting agents such as antithymocyte globulin increase Tregs. Calcineurin inhibitors, a mainstay of maintenance immunosuppression since the mid-1980s, seem to suppress Tregs while mammalian targets of rapamycin (less commonly used in maintenance regimens) expand Tregs. The purpose of this review is to provide an overview of Treg biology in transplantation, identify in more detail the interactions between commonly used immunosuppressive agents and Tregs in kidney transplantation and lastly describe future directions in the use of Tregs themselves as therapy for tolerance induction.
Collapse
Affiliation(s)
- Kassem Safa
- Division of Nephrology and Transplant Center, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA
| | - Sindhu Chandran
- Division of Nephrology, Department of Medicine, University of California San Francisco Medical center, San Francisco, CA, USA
| | - David Wojciechowski
- Division of Nephrology and Transplant Center, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA.
| |
Collapse
|
128
|
Bar-Or A, Steinman L, Behne JM, Benitez-Ribas D, Chin PS, Clare-Salzler M, Healey D, Kim JI, Kranz DM, Lutterotti A, Martin R, Schippling S, Villoslada P, Wei CH, Weiner HL, Zamvil SS, Smith TJ, Yeaman MR. Restoring immune tolerance in neuromyelitis optica: Part II. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e277. [PMID: 27648464 PMCID: PMC5015540 DOI: 10.1212/nxi.0000000000000277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMO/SD) and its clinical variants have at their core the loss of immune tolerance to aquaporin-4 and perhaps other autoantigens. The characteristic phenotype is disruption of astrocyte function and demyelination of spinal cord, optic nerves, and particular brain regions. In this second of a 2-part article, we present further perspectives regarding the pathogenesis of NMO/SD and how this disease might be amenable to emerging technologies aimed at restoring immune tolerance to disease-implicated self-antigens. NMO/SD appears to be particularly well-suited for these strategies since aquaporin-4 has already been identified as the dominant autoantigen. The recent technical advances in reintroducing immune tolerance in experimental models of disease as well as in humans should encourage quantum leaps in this area that may prove productive for novel therapy. In this part of the article series, the potential for regulatory T and B cells is brought into focus, as are new approaches to oral tolerization. Finally, a roadmap is provided to help identify potential issues in clinical development and guide applications in tolerization therapy to solving NMO/SD through the use of emerging technologies. Each of these perspectives is intended to shine new light on potential cures for NMO/SD and other autoimmune diseases, while sparing normal host defense mechanisms.
Collapse
Affiliation(s)
- Amit Bar-Or
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Larry Steinman
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Jacinta M Behne
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Daniel Benitez-Ribas
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Peter S Chin
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Michael Clare-Salzler
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Donald Healey
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - James I Kim
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - David M Kranz
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Andreas Lutterotti
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Roland Martin
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Sven Schippling
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Pablo Villoslada
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Cheng-Hong Wei
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Howard L Weiner
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Scott S Zamvil
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Terry J Smith
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Michael R Yeaman
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| |
Collapse
|
129
|
Alsuliman A, Appel SH, Beers DR, Basar R, Shaim H, Kaur I, Zulovich J, Yvon E, Muftuoglu M, Imahashi N, Kondo K, Liu E, Shpall EJ, Rezvani K. A robust, good manufacturing practice-compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic lateral sclerosis for adoptive cell therapy. Cytotherapy 2016; 18:1312-24. [PMID: 27497700 DOI: 10.1016/j.jcyt.2016.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/21/2016] [Accepted: 06/16/2016] [Indexed: 01/01/2023]
Abstract
Regulatory T cells (Tregs) play a fundamental role in the maintenance of self-tolerance and immune homeostasis. Defects in Treg function and/or frequencies have been reported in multiple disease models. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Compelling evidence supports a neuroprotective role for Tregs in this disease. Indeed, rapid progression in ALS patients is associated with decreased FoxP3 expression and Treg frequencies. Thus, we propose that strategies to restore Treg number and function may slow disease progression in ALS. In this study, we developed a robust, Good Manufacturing Practice (GMP)-compliant procedure to enrich and expand Tregs from ALS patients. Tregs isolated from these patients were phenotypically similar to those from healthy individuals but were impaired in their ability to suppress T-cell effector function. In vitro expansion of Tregs for 4 weeks in the presence of GMP-grade anti-CD3/CD28 beads, interleukin (IL)-2 and rapamcyin resulted in a 25- to 200-fold increase in their number and restored their immunoregulatory activity. Collectively, our data facilitate and support the implementation of clinical trials of adoptive therapy with ex vivo expanded and highly suppressive Tregs in patients with ALS.
Collapse
Affiliation(s)
- Abdullah Alsuliman
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA; Stem Cell & Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Stanley H Appel
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - David R Beers
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Rafet Basar
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Hila Shaim
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Indresh Kaur
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane Zulovich
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Eric Yvon
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Muharrem Muftuoglu
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Nobuhiko Imahashi
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Kayo Kondo
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Enli Liu
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth J Shpall
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Katayoun Rezvani
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
130
|
Maywald M, Rink L. Zinc supplementation induces CD4+CD25+Foxp3+ antigen-specific regulatory T cells and suppresses IFN-γ production by upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. Eur J Nutr 2016; 56:1859-1869. [DOI: 10.1007/s00394-016-1228-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
|
131
|
Vujicic M, Nikolic I, Kontogianni VG, Saksida T, Charisiadis P, Vasic B, Stosic-Grujicic S, Gerothanassis IP, Tzakos AG, Stojanovic I. Ethyl Acetate Extract of Origanum vulgare L. ssp. hirtum Prevents Streptozotocin-Induced Diabetes in C57BL/6 Mice. J Food Sci 2016; 81:H1846-53. [PMID: 27219840 DOI: 10.1111/1750-3841.13333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops as a consequence of pancreatic β-cell death induced by proinflammatory mediators. Because Origanum vulgare L. ssp. hirtum (Greek oregano) contains antiinflammatory molecules, we hypothesized that it might be beneficial for the treatment of T1D. An ethyl acetate extract of oregano (EAO) was prepared from the leaves by a polar extraction method. Phytochemical composition was determined by liquid chromatography-UV diode array coupled to ion-trap mass spectrometry with electrospray ionization interface (LC/DAD/ESI-MS(n) ). In vitro immunomodulatory effect of EAO was estimated by measuring proliferation (MTT) or cytokine secretion (ELISA) from immune cells. Diabetes was induced by multiple low doses of streptozotocin (MLDS) in male C57BL/6 mice and EAO was administered intraperitoneally for 10 d. Determination of cellular composition (flow cytometry) and cytokine production (ELISA) was performed on 12th d after diabetes induction. EAO suppressed the function of both macrophages and lymphocytes in vitro. In vivo, EAO treatment significantly preserved pancreatic islets and reduced diabetes incidence in MLDS-challenged mice. Besides down-modulatory effect on macrophages, EAO reduced the number of total CD4(+) and activated CD4(+) CD25(+) T cells. Furthermore, EAO affected the number of T helper 1 (Th1) and T helper 17 (Th17) cells through downregulation of their key transcription factors T-bet and RORγT. Because EAO treatment protects mice from development of hyperglycemia by reducing proinflammatory macrophage/Th1/Th17 response, this plant extract could represent a basis for future diabetes therapy.
Collapse
Affiliation(s)
- Milica Vujicic
- Dept. of Immunology, Inst. for Biological Research "Sinisa Stankovic,", Univ. of Belgrade, 11060, Belgrade, Serbia
| | - Ivana Nikolic
- Dept. of Immunology, Inst. for Biological Research "Sinisa Stankovic,", Univ. of Belgrade, 11060, Belgrade, Serbia
| | - Vassiliki G Kontogianni
- Dept. of Chemistry, Section of Organic Chemistry and Biochemistry, Univ. of Ioannina, GR-45110, Ioannina, Greece
| | - Tamara Saksida
- Dept. of Immunology, Inst. for Biological Research "Sinisa Stankovic,", Univ. of Belgrade, 11060, Belgrade, Serbia
| | - Pantelis Charisiadis
- Dept. of Chemistry, Section of Organic Chemistry and Biochemistry, Univ. of Ioannina, GR-45110, Ioannina, Greece
| | - Bobana Vasic
- Dept. of Immunology, Inst. for Biological Research "Sinisa Stankovic,", Univ. of Belgrade, 11060, Belgrade, Serbia
| | - Stanislava Stosic-Grujicic
- Dept. of Immunology, Inst. for Biological Research "Sinisa Stankovic,", Univ. of Belgrade, 11060, Belgrade, Serbia
| | - Ioannis P Gerothanassis
- Dept. of Chemistry, Section of Organic Chemistry and Biochemistry, Univ. of Ioannina, GR-45110, Ioannina, Greece
| | - Andreas G Tzakos
- Dept. of Chemistry, Section of Organic Chemistry and Biochemistry, Univ. of Ioannina, GR-45110, Ioannina, Greece
| | - Ivana Stojanovic
- Dept. of Immunology, Inst. for Biological Research "Sinisa Stankovic,", Univ. of Belgrade, 11060, Belgrade, Serbia
| |
Collapse
|
132
|
MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, Broady R, Levings MK. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 2016; 126:1413-24. [PMID: 26999600 DOI: 10.1172/jci82771] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
Adoptive immunotherapy with regulatory T cells (Tregs) is a promising treatment for allograft rejection and graft-versus-host disease (GVHD). Emerging data indicate that, compared with polyclonal Tregs, disease-relevant antigen-specific Tregs may have numerous advantages, such as a need for fewer cells and reduced risk of nonspecific immune suppression. Current methods to generate alloantigen-specific Tregs rely on expansion with allogeneic antigen-presenting cells, which requires access to donor and recipient cells and multiple MHC mismatches. The successful use of chimeric antigen receptors (CARs) for the generation of antigen-specific effector T cells suggests that a similar approach could be used to generate alloantigen-specific Tregs. Here, we have described the creation of an HLA-A2-specific CAR (A2-CAR) and its application in the generation of alloantigen-specific human Tregs. In vitro, A2-CAR-expressing Tregs maintained their expected phenotype and suppressive function before, during, and after A2-CAR-mediated stimulation. In mouse models, human A2-CAR-expressing Tregs were superior to Tregs expressing an irrelevant CAR at preventing xenogeneic GVHD caused by HLA-A2+ T cells. Together, our results demonstrate that use of CAR technology to generate potent, functional, and stable alloantigen-specific human Tregs markedly enhances their therapeutic potential in transplantation and sets the stage for using this approach for making antigen-specific Tregs for therapy of multiple diseases.
Collapse
|
133
|
Creusot RJ, Battaglia M, Roncarolo MG, Fathman CG. Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells 2016; 34:809-19. [PMID: 26840009 PMCID: PMC5021120 DOI: 10.1002/stem.2290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
The evolution of Type 1 diabetes (T1D) therapy has been marked by consecutive shifts, from insulin replacement to immunosuppressive drugs and targeted biologics (following the understanding that T1D is an autoimmune disease), and to more disease‐specific or patient‐oriented approaches such as antigen‐specific and cell‐based therapies, with a goal to provide efficacy, safety, and long‐term protection. At the same time, another important paradigm shift from treatment of new onset T1D patients to prevention in high‐risk individuals has taken place, based on the hypothesis that therapeutic approaches deemed sufficiently safe may show better efficacy if applied early enough to maintain endogenous β cell function, a concept supported by many preclinical studies. This new strategy has been made possible by capitalizing on a variety of biomarkers that can more reliably estimate the risk and rate of progression of the disease. More advanced (“omic”‐based) biomarkers that also shed light on the underlying contributors of disease for each individual will be helpful to guide the choice of the most appropriate therapies, or combinations thereof. In this review, we present current efforts to stratify patients according to biomarkers and current alternatives to conventional drug‐based therapies for T1D, with a special emphasis on cell‐based therapies, their status in the clinic and potential for treatment and/or prevention. Stem Cells2016;34:809–819
Collapse
Affiliation(s)
- Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, USA
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | - C Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
134
|
Rahman MJ, Rahir G, Dong MB, Zhao Y, Rodrigues KB, Hotta-Iwamura C, Chen Y, Guerrero A, Tarbell KV. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1. THE JOURNAL OF IMMUNOLOGY 2016; 196:2031-40. [PMID: 26826238 DOI: 10.4049/jimmunol.1501239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.
Collapse
Affiliation(s)
- M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Gwendoline Rahir
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Matthew B Dong
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kameron B Rodrigues
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ye Chen
- Bioinformatics and Systems Biology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Guerrero
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
135
|
Hotta-Iwamura C, Tarbell KV. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. J Leukoc Biol 2016; 100:65-80. [PMID: 26792821 DOI: 10.1189/jlb.3mr1115-500r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results from the defective induction or maintenance of T cell tolerance against islet β cell self-antigens. Under steady-state conditions, dendritic cells with tolerogenic properties are critical for peripheral immune tolerance. Tolerogenic dendritic cells can induce T cell anergy and deletion and, in some contexts, induce or expand regulatory T cells. Dendritic cells contribute to both immunomodulatory effects and triggering of pathogenesis in type 1 diabetes. This immune equilibrium is affected by both genetic and environmental factors that contribute to the development of type 1 diabetes. Genome-wide association studies and disease association studies have identified >50 polymorphic loci that lend susceptibility or resistance to insulin-dependent diabetes mellitus. In parallel, diabetes susceptibility regions known as insulin-dependent diabetes loci have been identified in the nonobese diabetic mouse, a model for human type 1 diabetes, providing a better understanding of potential immunomodulatory factors in type 1 diabetes risk. Most genetic candidates have annotated immune cell functions, but the focus has been on changes to T and B cells. However, it is likely that some of the genomic susceptibility in type 1 diabetes directly interrupts the tolerogenic potential of dendritic cells in the pathogenic context of ongoing autoimmunity. Here, we will review how gene polymorphisms associated with autoimmune diabetes may influence dendritic cell development and maturation processes that could lead to alterations in the tolerogenic function of dendritic cells. These insights into potential tolerogenic and pathogenic roles for dendritic cells have practical implications for the clinical manipulation of dendritic cells toward tolerance to prevent and treat type 1 diabetes.
Collapse
Affiliation(s)
- Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
136
|
Spence A, Klementowicz JE, Bluestone JA, Tang Q. Targeting Treg signaling for the treatment of autoimmune diseases. Curr Opin Immunol 2015; 37:11-20. [PMID: 26432763 PMCID: PMC4679451 DOI: 10.1016/j.coi.2015.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Regulatory T (Treg) cells are crucial players in the prevention of autoimmunity. Treg lineage commitment and functional stability are influenced by selected extracellular signals from the local environment, shaped by distinctive intracellular signaling network, and secured by their unique epigenetic profile. Recent advances in our understanding of the complex processes of Treg lineage differentiation, maintenance, and function has paved the way for developing strategies to manipulate these important cells for therapeutic benefit in many diseases. In this review, we will summarize recent advances in our understanding of Treg biology as well as Treg-targeted therapies in the context of autoimmune disease.
Collapse
Affiliation(s)
- Allyson Spence
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanna E Klementowicz
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
137
|
Zhang D, Tu E, Kasagi S, Zanvit P, Chen Q, Chen W. Manipulating regulatory T cells: a promising strategy to treat autoimmunity. Immunotherapy 2015; 7:1201-11. [PMID: 26568117 DOI: 10.2217/imt.15.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD4(+)CD25(+)Foxp3(+)regulatory T cells (Treg cells) are extremely important in maintaining immune tolerance. Manipulation of Treg cells, especially autoantigen-specific Treg cells is a promising approach for treatments of autoimmune disease since Treg cells may provide the advantage of antigen specificity without overall immune suppression. However, the clinical application of Treg cells has long been limited due to low numbers of Treg cells and the difficulty in identifying their antigen specificity. In this review, we summarize studies that demonstrate regression of autoimmune diseases using Treg cells as therapeutics. We also discuss approaches to generate polyclonal and autoantigen-specific Treg cells in vitro and in vivo. We also discuss our recent study that describes a novel approach of generating autoantigen-specific Treg cells in vivo and restoring immune tolerance by two steps apoptosis-antigen therapy.
Collapse
Affiliation(s)
- Dunfang Zhang
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Eric Tu
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Shimpei Kasagi
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Peter Zanvit
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - WanJun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
138
|
O’Connor RA, Anderton SM. Inflammation-associated genes: risks and benefits to Foxp3+ regulatory T-cell function. Immunology 2015; 146:194-205. [PMID: 26190495 PMCID: PMC4582961 DOI: 10.1111/imm.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.
Collapse
Affiliation(s)
- Richard A O’Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| |
Collapse
|
139
|
Price JD, Hotta-Iwamura C, Zhao Y, Beauchamp NM, Tarbell KV. DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes. Diabetes 2015; 64:3521-31. [PMID: 26070317 PMCID: PMC4587633 DOI: 10.2337/db14-1880] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
During autoimmunity, the normal ability of dendritic cells (DCs) to induce T-cell tolerance is disrupted; therefore, autoimmune disease therapies based on cell types and molecular pathways that elicit tolerance in the steady state may not be effective. To determine which DC subsets induce tolerance in the context of chronic autoimmunity, we used chimeric antibodies specific for DC inhibitory receptor 2 (DCIR2) or DEC-205 to target self-antigen to CD11b(+) (cDC2) DCs and CD8(+) (cDC1) DCs, respectively, in autoimmune-prone nonobese diabetic (NOD) mice. Antigen presentation by DCIR2(+) DCs but not DEC-205(+) DCs elicited tolerogenic CD4(+) T-cell responses in NOD mice. β-Cell antigen delivered to DCIR2(+) DCs delayed diabetes induction and induced increased T-cell apoptosis without interferon-γ (IFN-γ) or sustained expansion of autoreactive CD4(+) T cells. These divergent responses were preceded by differential gene expression in T cells early after in vivo stimulation. Zbtb32 was higher in T cells stimulated with DCIR2(+) DCs, and overexpression of Zbtb32 in T cells inhibited diabetes development, T-cell expansion, and IFN-γ production. Therefore, we have identified DCIR2(+) DCs as capable of inducing antigen-specific tolerance in the face of ongoing autoimmunity and have also identified Zbtb32 as a suppressive transcription factor that controls T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Jeffrey D Price
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Nicole M Beauchamp
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
140
|
Hood JD, Zarnitsyna VI, Zhu C, Evavold BD. Regulatory and T Effector Cells Have Overlapping Low to High Ranges in TCR Affinities for Self during Demyelinating Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:4162-70. [PMID: 26385521 DOI: 10.4049/jimmunol.1501464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
Abstract
Having regulatory T cells (Tregs) with the same Ag specificity as the responding conventional T cells is thought to be important in maintaining peripheral tolerance. It has been demonstrated that during experimental autoimmune encephalomyelitis there are myelin oligodendrocyte glycoprotein (MOG)--specific Tregs that infiltrate into the CNS. However, the affinity of naturally occurring polyclonal Tregs for any self-antigen, let alone MOG, has not been analyzed in the periphery or at the site of autoimmune disease. Utilizing the highly sensitive micropipette adhesion frequency assay, which allows one to determine on a single-cell basis the affinity and frequency of polyclonal Ag-specific T cells directly ex vivo, we demonstrate that at peak disease MOG-specific Tregs were progressively enriched in the draining cervical lymph nodes and CNS as compared with spleen. These frequencies were greater than the frequencies measured by tetramer analysis, indicative of the large fraction of lower affinity T cells that comprise the MOG-specific conventional T cell (Tconv) and Treg response. Of interest, the self-reactive CD4(+) Tconvs and Tregs displayed overlapping affinities for MOG in the periphery, yet in the CNS, the site of neuroinflammation, Tconvs skew toward higher affinities. Most of the MOG-specific Tregs in the CNS possessed the methylation signature associated with thymic-derived Tregs. These findings indicate that thymic-derived Treg affinity range matches that of their Tconvs in the periphery and suggest a change in TCR affinity as a potential mechanism for autoimmune progression and escape from immune regulation.
Collapse
Affiliation(s)
- Jennifer D Hood
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | | | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322;
| |
Collapse
|
141
|
Ovcinnikovs V, Walker LSK. Regulatory T Cells in Autoimmune Diabetes: Mechanisms of Action and Translational Potential. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:245-77. [PMID: 26615100 DOI: 10.1016/bs.pmbts.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the discovery of specialized T cells with regulatory function, harnessing the power of these cells to ameliorate autoimmunity has been a major goal. Here we collate the evidence that regulatory T cells (Treg) can inhibit Type 1 diabetes in animal models and humans. We discuss the anatomical sites and molecular mechanisms of Treg suppressive function in the Type 1 diabetes setting, citing evidence that Treg can function in both the pancreatic lymph nodes and within the pancreatic lesion. Involvement of the CTLA-4 pathway, as well as TGF-β and IL-2 deprivation will be considered. Finally, we summarize current efforts to manipulate Treg therapeutically in individuals with Type 1 diabetes. The translation of this research area from bench to bedside is still in its infancy, but the remarkable therapeutic potential of successfully manipulating Treg populations is clear to see.
Collapse
Affiliation(s)
- Vitalijs Ovcinnikovs
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, London, United Kingdom.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, London, United Kingdom
| |
Collapse
|
142
|
Dong MB, Rahman MJ, Tarbell KV. Flow cytometric gating for spleen monocyte and DC subsets: differences in autoimmune NOD mice and with acute inflammation. J Immunol Methods 2015; 432:4-12. [PMID: 26344574 DOI: 10.1016/j.jim.2015.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 01/10/2023]
Abstract
The role of antigen presenting cells (APCs) in the pathogenesis of autoimmune and other inflammatory diseases is now better understood due to advances in multicolor flow cytometry, gene expression analysis of APC populations, and functional correlation of mouse to human APC populations. A simple but informative nomenclature of conventional and plasmacytoid dendritic cell subsets (cDC1, cDC2, pDC) and monocyte-derived populations incorporates these advances, but accurate subset identification is critical. Ambiguous gating schemes and alterations of cell surface markers in inflammatory condition can make comparing results between studies difficult. Both acute inflammation, such as TLR-ligand stimulation, and chronic inflammation as found in mouse models of autoimmunity can alter DC subset gating. Here, we address these issues using in vivo CpG stimulation as an example of acute inflammation and the non-obese diabetic (NOD) mouse as a model of chronic inflammation.We provide a flow cytometric antibody panel and gating scheme that differentiate 2 monocytic and 3DC subsets in the spleen both at steady state and after CpG stimulation. Using this method, we observed differences in the composition of NOD DCs that have been previously reported, and newly identified increases in the number of NOD monocyte-derived DCs. Finally, we established a protocol for DC phosphoflow to measure the phosphorylation state of intracellular proteins, and use it to confirm functional differences in the identified subsets. Therefore, we present optimized methods for distinguishing monocytic and DC populations with and without inflammation and/or autoimmunity associated with NOD mice.
Collapse
Affiliation(s)
- Matthew B Dong
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
143
|
Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T Cells: Serious Contenders in the Promise for Immunological Tolerance in Transplantation. Front Immunol 2015; 6:438. [PMID: 26379673 PMCID: PMC4553385 DOI: 10.3389/fimmu.2015.00438] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance and curb autoimmunity following their adoptive transfer. The safety and potential therapeutic efficacy of these cells has already been reported in Phase I trials of bone-marrow transplantation and type I diabetes, the success of which has motivated the broadened application of these cells in solid-organ transplantation. Despite major advances in the clinical translation of these cells, there are still key questions to be addressed to ensure that Tregs attest their reputation as ideal candidates for tolerance induction. In this review, we will discuss the unique traits of Tregs that have attracted such fame in the arena of tolerance induction. We will outline the protocols used for their ex vivo expansion and discuss the future directions of Treg cell therapy. In this regard, we will review the concept of Treg heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions. The relevance of Treg migratory capacity will also be discussed together with methods of in vivo visualization of the infused cells. Moreover, we will highlight key advances in the identification and expansion of antigen-specific Tregs and discuss their significance for cell therapy application. We will also summarize the clinical parameters that are of importance, alongside cell manufacture, from the choice of immunosuppression regimens to the number of injections in order to direct the success of future efficacy trials of Treg cell therapy. Years of research in the field of tolerance have seen an accumulation of knowledge and expertise in the field of Treg biology. This perpetual progression has been the driving force behind the many successes to date and has put us now within touching distance of our ultimate success, immunological tolerance.
Collapse
Affiliation(s)
- Niloufar Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Cristiano Scotta
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Trishan Vaikunthanathan
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Robert I Lechler
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London , London , UK
| |
Collapse
|
144
|
Ballesteros-Tato A. Beyond regulatory T cells: the potential role for IL-2 to deplete T-follicular helper cells and treat autoimmune diseases. Immunotherapy 2015; 6:1207-20. [PMID: 25496335 DOI: 10.2217/imt.14.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Low-dose IL-2 administration suppresses unwanted immune responses in mice and humans, thus evidencing the potential of IL-2 to treat autoimmune disorders. Increased Tregs activity is one of the potential mechanisms by which low-dose IL-2 immunotherapy induces immunosuppression. In addition, recent data indicate that IL-2 may contribute to prevent unwanted self-reactive responses by preventing the developing of T-follicular helper cells, a CD4(+) T-cell subset that expands in autoimmune disease patients and promotes long-term effector B-cell responses. Here we discuss the mechanisms underlying the clinical benefits of low-dose IL-2 administration, focusing on the role of this cytokine in promoting Treg-mediated suppression and preventing self-reactive T-follicular helper cell responses.
Collapse
|
145
|
Yang EY, Kronenfeld JP, Gattás-Asfura KM, Bayer AL, Stabler CL. Engineering an "infectious" T(reg) biomimetic through chemoselective tethering of TGF-β1 to PEG brush surfaces. Biomaterials 2015. [PMID: 26197412 DOI: 10.1016/j.biomaterials.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulation of immunological responses to allografts following transplantation is of pivotal importance to improving graft outcome and duration. Of the many approaches, harnessing the dominant tolerance induced by regulatory T cells (Treg) holds tremendous promise. Recent studies have highlighted the unique potency of cell surface-bound TGF-β1 on Treg for promoting infectious tolerance, i.e. to confer suppressive capacity from one cell to another. To mimic this characteristic, TGF-β1 was chemoselectively tethered to inert and viable polymer grafting platforms using Staudinger ligation. We report the synthesis and functional characterization of these engineered TGF-β1 surfaces. Inert beads tethered with TGF-β1 were capable of efficiently converting naïve CD4(+) CD62L(hi) T cells to functional Treg. Concordantly, translation of conjugation scheme from inert surfaces to viable cells also led to efficient generation of functional Treg. Further, the capacity of these platforms to generate antigen-specific Treg was demonstrated. These findings illustrate the unique faculty of tethered TGF-β1 biomaterial platforms to function as an "infectious" Treg and provide a compelling approach for generating tolerogenic microenvironments for allograft transplantation.
Collapse
Affiliation(s)
- E Y Yang
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - J P Kronenfeld
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Medicine, University of Miami, Miami, FL, USA
| | | | - A L Bayer
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - C L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA.
| |
Collapse
|
146
|
Regulation of the development of asthmatic inflammation by in situ CD4(+)Foxp3 (+) T cells in a mouse model of late allergic asthma. Inflammation 2015; 37:1642-53. [PMID: 24854160 DOI: 10.1007/s10753-014-9892-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CD4(+)Foxp3(+)T cells (Tregs) mediate homeostatic peripheral tolerance by suppressing helper T2 cells in allergy. However, the regulation of asthmatic inflammation by local (in situ) Tregs in asthma remains unclear. BALB/c mice sensitized and challenged with ovalbumin (OVA) (asthma group) developed asthmatic inflammation with eosinophils and lymphocytes, but not mast cells. The number of Tregs in the circulation, pulmonary lymph nodes (pLNs), and thymi significantly decreased in the asthma group compared to the control group without OVA sensitization and challenge in the effector phase. The development of asthmatic inflammation is inversely related to decreased Tregs with reduced mRNA expression such as interleukin (IL)-4, transforming growth factor-β1, and IL-10, but not interferon-γ, in pLNs. Moreover, M2 macrophages increased in the local site. The present study suggests that Tregs, at least in part, may regulate the development of asthmatic inflammation by cell-cell contact and regional cytokine productions.
Collapse
|
147
|
Price JD, Tarbell KV. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases. Front Immunol 2015; 6:288. [PMID: 26124756 PMCID: PMC4466467 DOI: 10.3389/fimmu.2015.00288] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Price
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Kristin V Tarbell
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
148
|
Khor B, Gagnon JD, Goel G, Roche MI, Conway KL, Tran K, Aldrich LN, Sundberg TB, Paterson AM, Mordecai S, Dombkowski D, Schirmer M, Tan PH, Bhan AK, Roychoudhuri R, Restifo NP, O'Shea JJ, Medoff BD, Shamji AF, Schreiber SL, Sharpe AH, Shaw SY, Xavier RJ. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. eLife 2015; 4:e05920. [PMID: 25998054 PMCID: PMC4441007 DOI: 10.7554/elife.05920] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - John D Gagnon
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Marly I Roche
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, United States
| | - Kara L Conway
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Khoa Tran
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Leslie N Aldrich
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | | | - Alison M Paterson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States
| | - Scott Mordecai
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - David Dombkowski
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | | | - Pauline H Tan
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Atul K Bhan
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - Rahul Roychoudhuri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Benjamin D Medoff
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, United States
| | | | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States
| | - Stanley Y Shaw
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
149
|
Chang LY, Lin YC, Chiang JM, Mahalingam J, Su SH, Huang CT, Chen WT, Huang CH, Jeng WJ, Chen YC, Lin SM, Sheen IS, Lin CY. Blockade of TNF-α signaling benefits cancer therapy by suppressing effector regulatory T cell expansion. Oncoimmunology 2015; 4:e1040215. [PMID: 26451304 DOI: 10.1080/2162402x.2015.1040215] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 01/31/2023] Open
Abstract
Effector but not naive regulatory T cells (Treg cells) can accumulate in the peripheral blood as well as the tumor microenvironment, expand during tumor progression and be one of the main suppressors for antitumor immunity. However, the underlying mechanisms for effector Treg cell expansion in tumor are still unknown. We demonstrate that effector Treg cell-mediated suppression of antitumor CD8+ T cells is tumor-nonspecific. Furthermore, TNFR2 expression is increased in these Treg cells by Affymetrix chip analysis which was confirmed by monoclonal antibody staining in both hepatocellular carcinoma (HCC) and colorectal cancer (CRC) patients and murine models. Correspondingly, increased levels of TNF-α in both tissue and serum were also demonstrated. Interestingly, TNF-α could not only expand effector Treg cells through TNFR2 signaling, but also enhanced their suppressive activity against antitumor immunity of CD8+ T cells. Furthermore, targeting TNFR2 signaling with a TNF-α inhibitor could selectively reduce rapid resurgence of effector Treg cells after cyclophosphamide-induced lymphodepletion and markedly inhibit the growth of established tumors. Herein, we propose a novel mechanism in which TNF-α could promote tumor-associated effector Treg cell expansion and suggest a new cancer immunotherapy strategy using TNF-α inhibitors to reduce effector Treg cells expansion after cyclophosphamide-induced lymphodepletion.
Collapse
Affiliation(s)
- Li-Yuan Chang
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan
| | - Yung-Chang Lin
- College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan ; Department of Hematology/Oncology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan
| | - Jy-Ming Chiang
- College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan ; Colorectal Surgery Section; Department of Surgery; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan
| | - Jayashri Mahalingam
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan
| | - Shih-Huan Su
- College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan
| | - Ching-Tai Huang
- College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan ; Department of Infectious Disease; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan ; College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan
| | - Chien-Hao Huang
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan
| | - Wen-Juei Jeng
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan
| | - Yi-Cheng Chen
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan ; College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan
| | - Shi-Ming Lin
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan ; College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan
| | - I-Shyan Sheen
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan ; College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Division of Hepatology; Department of Gastroenterology and Hepatology; Linkou Medical Center; Chang Gung Memorial Hospital ; Kweishan, Taoyuan, Taiwan ; College of Medicine; Chang Gung University ; Kweishan, Taoyuan, Taiwan
| |
Collapse
|
150
|
Abstract
There is a clear need to develop strategies to induce tolerance without the need of chronic immunosuppression in transplant recipient and in patients with autoimmunity. Adoptive T regulatory cell (Treg) therapy offers the potential of long-lasting protection. However, based on results of clinical trials so far with ex vivo expanded autologous Tregs in type 1 diabetic (T1D) patients, it seems unlikely that single immunotherapy with Treg infusion without immunomodulation regimens that promote stable donor Treg engraftment and persistence would afford truly significant clinical benefit. Combination therapies could provide improved outcomes with consideration of the fundamental factors required for Treg generation, homeostasis, and function to promote long-term donor Treg persistence to provoke beneficial therapeutic outcomes.
Collapse
|