101
|
Walters KA, Gilchrist RB, Ledger WL, Teede HJ, Handelsman DJ, Campbell RE. New Perspectives on the Pathogenesis of PCOS: Neuroendocrine Origins. Trends Endocrinol Metab 2018; 29:841-852. [PMID: 30195991 DOI: 10.1016/j.tem.2018.08.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/25/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition in reproductive-aged women. It is characterized by reproductive, endocrine, metabolic, and psychological features. The cause of PCOS is unknown, thus there is no cure and its management remains suboptimal because it relies on the ad hoc empirical management of symptoms only. We review here the strong support for PCOS having a neuroendocrine origin. In particular, we focus on the role of aberrant hypothalamic-pituitary function and associated hyperandrogenism, and their role as major drivers of the mechanisms underpinning the development of PCOS. This important information now provides a target site and a potential mechanism for the future development of novel, targeted, and mechanism-based effective therapies for the treatment of PCOS.
Collapse
Affiliation(s)
- Kirsty A Walters
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia; https://research.unsw.edu.au/people/dr-kirsty-walters.
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation, Monash Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| | - Rebecca E Campbell
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
102
|
Yang MJ, Lang HY, Miao X, Liu HQ, Zhang YJ, Wang YF, Chen YB, Liu JY, Zeng LH, Guo GZ. Effects of paternal electromagnetic pulse exposure on the reproductive endocrine function of male offspring: a pilot study. Toxicol Res (Camb) 2018; 7:1120-1127. [PMID: 30510681 PMCID: PMC6220719 DOI: 10.1039/c8tx00096d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Many studies indicate that parental exposure to an electromagnetic field (EMF) can cause long-term toxicity to the health of the offspring. While concerns have been focused on maternal influence, much less is known regarding the effects of paternal factors. Electromagnetic pulse (EMP) is a special and widely used type of EMF. The present study was designed to investigate the effects of paternal EMP exposure on the reproductive endocrine function of the male rat offspring. Male Sprague Dawley rats were randomly exposed to EMP at 200 kV m-1 for 0, 100 or 400 pulses before mating. The adult male offspring were sacrificed and the structural changes of testes, levels of serum steroid hormones, sperm characteristics, reproductive behaviors, content of the reproductive endocrine-related neurotransmitter GABA and expression of the GABAA receptor were analyzed. The results showed that paternal exposure induced a decrease of testosterone (T), sperm quantity and acrosin activity in the male offspring (p < 0.05). It did not show significant changes in the structure of testes, sperm deformity frequency and reproductive behaviors compared with the sham-exposed group. The content of GABA and the protein and mRNA expression of the hypothalamic GABAA receptor protein increased in the EMP exposure group (p < 0.05). In conclusion, our study shows that under these experimental conditions EMP had a certain degree of influence on the reproductive endocrine function of the male rat offspring, and the hypothalamic GABAA receptor may be involved in the reproductive toxicity of the male offspring.
Collapse
Affiliation(s)
- Ming-Juan Yang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
- Center for Infectious Disease Control , Institute of Disease Control and Prevention , PLA , Beijing , China
| | - Hai-Yang Lang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Xia Miao
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Hai-Qiang Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yan-Jun Zhang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Ya-Feng Wang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yong-Bin Chen
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Jun-Ye Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Li-Hua Zeng
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Guo-Zhen Guo
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| |
Collapse
|
103
|
Constantin S, Wray S. Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels. eNeuro 2018; 5:ENEURO.0161-18.2018. [PMID: 30627649 PMCID: PMC6325553 DOI: 10.1523/eneuro.0161-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
The pulsatile release of gonadotropin-releasing hormone (GnRH) is a key feature of the hypothalamic-pituitary-gonadal axis. Kisspeptin neurons in the arcuate nucleus (ARC) trigger GnRH neuronal activity, but how GnRH neurons return to baseline electrical activity is unknown. Nociceptin/orphanin-FQ (OFQ) is an inhibitory neuromodulator. ARC proopiomelanocortin (POMC) neurons, known to receive inputs from ARC kisspeptin neurons, contact GnRH neurons and coexpress OFQ in the rat. In the present study, the effect of OFQ(1-13) on GnRH neurons was determined in the mouse. We identified transcripts for the OFQ receptor [opioid receptor like 1 (ORL1)] in GnRH neurons, and, using two-model systems (explants and slices), we found that OFQ exerted a potent inhibition on GnRH neurons, with or without excitatory inputs. We confirmed that the inhibition was mediated by ORL1 via Gi/o-protein coupling. The inhibition, occurring independently of levels of intracellular cyclic adenosine monophosphate, was sensitive to inwardly rectifying potassium channels. The only specific blocker of Gi/o-protein-coupled inwardly rectifying potassium (GIRK) channels, tertiapin-Q (TPNQ), was ineffective in the inhibition of OFQ. Two GIRK activators, one sharing the binding site of TPNQ and one active only on GIRK1-containing GIRK channels, failed to trigger an inhibition. In contrast, protein kinase C phosphorylation activation, known to inhibit GIRK2-mediated currents, prevented the OFQ inhibition. These results indicate a specific combination of GIRK subunits, GIRK2/3 in GnRH neurons. In vivo, double-labeled OFQ/POMC fibers were found in the vicinity of GnRH neurons, and OFQ fibers apposed GnRH neurons. Together, this study brings to light a potent neuromodulator of GnRH neurons.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| |
Collapse
|
104
|
Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Garcia Rudaz C, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm Res Paediatr 2018; 88:371-395. [PMID: 29156452 DOI: 10.1159/000479371] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
This paper represents an international collaboration of paediatric endocrine and other societies (listed in the Appendix) under the International Consortium of Paediatric Endocrinology (ICPE) aiming to improve worldwide care of adolescent girls with polycystic ovary syndrome (PCOS)1. The manuscript examines pathophysiology and guidelines for the diagnosis and management of PCOS during adolescence. The complex pathophysiology of PCOS involves the interaction of genetic and epigenetic changes, primary ovarian abnormalities, neuroendocrine alterations, and endocrine and metabolic modifiers such as anti-Müllerian hormone, hyperinsulinemia, insulin resistance, adiposity, and adiponectin levels. Appropriate diagnosis of adolescent PCOS should include adequate and careful evaluation of symptoms, such as hirsutism, severe acne, and menstrual irregularities 2 years beyond menarche, and elevated androgen levels. Polycystic ovarian morphology on ultrasound without hyperandrogenism or menstrual irregularities should not be used to diagnose adolescent PCOS. Hyperinsulinemia, insulin resistance, and obesity may be present in adolescents with PCOS, but are not considered to be diagnostic criteria. Treatment of adolescent PCOS should include lifestyle intervention, local therapies, and medications. Insulin sensitizers like metformin and oral contraceptive pills provide short-term benefits on PCOS symptoms. There are limited data on anti-androgens and combined therapies showing additive/synergistic actions for adolescents. Reproductive aspects and transition should be taken into account when managing adolescents.
Collapse
Affiliation(s)
- Lourdes Ibáñez
- Endocrinology, Hospital Sant Joan de Deu, Esplugues, Barcelona, Spain.,CIBERDEM, ISCIII, Madrid, Spain
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Selma Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | - R Jeffrey Chang
- Department of Reproductive Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Ethel Codner
- Institute of Maternal and Child Research, University of Chile, School of Medicine, Santiago, Chile
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | - Alessandra Gambineri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Garcia Rudaz
- Division of Women, Youth and Children, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathleen M Hoeger
- Department of OBGYN, University of Rochester Medical Center, Rochester, New York, USA
| | - Abel López-Bermejo
- Pediatric Endocrinology, Hospital de Girona Dr. Josep Trueta, Girona, Spain
| | - Ken Ong
- MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexia S Peña
- The University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Thomas Reinehr
- University of Witten/Herdecke, Vestische Kinder- und Jugendklinik, Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Datteln, Germany
| | - Nicola Santoro
- Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachel Tao
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Bulent O Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Haya Alkhayyat
- Medical University of Bahrain, BDF Hospital, Riffa, Bahrein
| | - Asma Deeb
- Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | - Dipesalema Joel
- Department of Paediatrics and Adolescent Health, University of Botswana Teaching Hospital, Gaborone, Botswana
| | - Reiko Horikawa
- Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Francis de Zegher
- Department Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - Peter A Lee
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
105
|
Raftogianni A, Roth LC, García-González D, Bus T, Kühne C, Monyer H, Spergel DJ, Deussing JM, Grinevich V. Deciphering the Contributions of CRH Receptors in the Brain and Pituitary to Stress-Induced Inhibition of the Reproductive Axis. Front Mol Neurosci 2018; 11:305. [PMID: 30214395 PMCID: PMC6125327 DOI: 10.3389/fnmol.2018.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023] Open
Abstract
Based on pharmacological studies, corticotropin-releasing hormone (CRH) and its receptors play a leading role in the inhibition of the hypothalamic–pituitary–gonadal (HPG) axis during acute stress. To further study the effects of CRH receptor signaling on the HPG axis, we generated and/or employed male mice lacking CRH receptor type 1 (CRHR1) or type 2 (CRHR2) in gonadotropin-releasing hormone neurons, GABAergic neurons, or in all central neurons and glia. The deletion of CRHRs revealed a preserved decrease of plasma luteinizing hormone (LH) in response to either psychophysical or immunological stress. However, under basal conditions, central infusion of CRH into mice lacking CRHR1 in all central neurons and glia, or application of CRH to pituitary cultures from mice lacking CRHR2, failed to suppress LH release, unlike in controls. Our results, taken together with those of the earlier pharmacological studies, suggest that inhibition of the male HPG axis during acute stress is mediated by other factors along with CRH, and that CRH suppresses the HPG axis at the central and pituitary levels via CRHR1 and CRHR2, respectively.
Collapse
Affiliation(s)
- Androniki Raftogianni
- Schaller Group on Neuropeptides, German Cancer Research Center, Heidelberg - Central Institute of Mental Health, Mannheim, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Lena C Roth
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Diego García-González
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg, University of Heidelberg - German Cancer Research Center, Heidelberg, Germany
| | - Thorsten Bus
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany.,Max Planck Research Group at the Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Kühne
- Molecular Neurogenetics Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg, University of Heidelberg - German Cancer Research Center, Heidelberg, Germany
| | - Daniel J Spergel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Jan M Deussing
- Molecular Neurogenetics Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Valery Grinevich
- Schaller Group on Neuropeptides, German Cancer Research Center, Heidelberg - Central Institute of Mental Health, Mannheim, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
106
|
Recanati MA, Du H, Kramer KJ, Hüttemann M, Welch RA. Antisense techniques provide robust decrease in GnRH receptor expression with minimal cytotoxicity in GT1-7 cells. Syst Biol Reprod Med 2018; 64:389-398. [PMID: 30136857 DOI: 10.1080/19396368.2018.1499153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The episodic pattern of gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus is driven by an integrated network of cells termed the GnRH pulse generator. Cultured and immortalized GnRH neurons also produce a pulsatile pattern of GnRH secretions when grown in the absence of other cell types, suggesting the presence of an intrinsic oscillator mediating GnRH secretion. The mechanisms underlying such pulsatility comprise one of the most tantalizing problems in contemporary neuroendocrinology. In order to study the mechanism by which GnRH is produced in a pulsatile fashion, the autocrine effect of GnRH on GnRH-producing neurons must be eliminated. This may be performed by downregulating the expression of the GnRH receptor. Treatment with three 21-mer exogenous phosphorothioates and transient transfections with an inducible plasmid containing an antisense construct to the GnRH receptor gene decreased GnRH receptor expression further. This resulted in less cytotoxicity compared to inhibition of RNA or protein synthesis with actinomycin D, α-amanitin, puromycin, and cycloheximide. This study shows methods and optimized conditions established for the generation of a stable GT1-7 cell line containing an inducible construct allowing the downregulation of GnRH receptor expression. ABBREVIATIONS ANOVA: analysis of the variance; DMEM: Dulbecco's modified Eagle's medium; GnRH: gonadotropin-releasing hormone; RXR: retinoid X receptor.
Collapse
Affiliation(s)
| | - Hongling Du
- a Department of Obstetrics and Gynecology , Wayne State University , Detroit , MI , USA
| | | | - Maik Hüttemann
- c Center for Molecular Medicine and Genetics , Wayne State University , Detroit , MI , USA
| | - Robert A Welch
- a Department of Obstetrics and Gynecology , Wayne State University , Detroit , MI , USA
| |
Collapse
|
107
|
Estradiol Increases Glutamate and GABA Neurotransmission into GnRH Neurons via Retrograde NO-Signaling in Proestrous Mice during the Positive Estradiol Feedback Period. eNeuro 2018; 5:eN-NWR-0057-18. [PMID: 30079374 PMCID: PMC6073979 DOI: 10.1523/eneuro.0057-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17β-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon. The mPSC frequency at proestrus afternoon also increased, whereas it decreased at metestrus afternoon and had no effect at proestrus morning. Inhibition of the estrogen receptor β (ERβ), intracellular blockade of the Src kinase and phosphatidylinositol 3 kinase (PI3K) and scavenge of nitric oxide (NO) inside GnRH neurons prevented the facilitatory estradiol effect indicating involvement of the ERβ/Src/PI3K/Akt/nNOS pathway in this fast, direct stimulatory effect. Immunohistochemistry localized soluble guanylate cyclase, the main NO receptor, in both glutamatergic and GABAergic terminals innervating GnRH neurons. Accordingly, estradiol facilitated neurotransmissions to GnRH neurons via both GABAA-R and glutamate/AMPA/kainate-R. These results indicate that estradiol acts directly on GnRH neurons via the ERβ/Akt/nNOS pathway at proestrus afternoon generating NO that retrogradely accelerates GABA and glutamate release from the presynaptic terminals contacting GnRH neurons. The newly explored mechanism might contribute to the regulation of the GnRH surge, a fundamental prerequisite of the ovulation.
Collapse
|
108
|
Saedi S, Khoradmehr A, Mohammad Reza JS, Tamadon A. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat 2018; 92:71-82. [PMID: 30008384 DOI: 10.1016/j.jchemneu.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
109
|
Abstract
Puberty involves a series of morphological, physiological and behavioural changes during the last part of the juvenile period that culminates in the attainment of fertility. The activation of the pituitary-gonadal axis by increased hypothalamic secretion of gonadotrophin-releasing hormone (GnRH) is an essential step in the process. The current hypothesis postulates that a loss of transsynaptic inhibition and a rise in excitatory inputs are responsible for the activation of GnRH release. Similarly, a shift in the balance in the expression of puberty activating and puberty inhibitory genes exists during the pubertal transition. In addition, recent evidence suggests that the epigenetic machinery controls this genetic balance, giving rise to the tantalising possibility that epigenetics serves as a relay of environmental signals known for many years to modulate pubertal development. Here, we review the contribution of epigenetics as a regulatory mechanism in the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- C A Toro
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - C F Aylwin
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - A Lomniczi
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
110
|
Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation. J Neurosci 2018; 38:6310-6322. [PMID: 29899026 DOI: 10.1523/jneurosci.0658-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
A population of kisspeptin-GABA coexpressing neurons located in the rostral periventricular area of the third ventricle (RP3V) is believed to activate gonadotropin-releasing hormone (GnRH) neurons to generate the luteinizing hormone (LH) surge triggering ovulation. Selective optogenetic activation of RP3V kisspeptin (RP3VKISS) neurons in female mice for >30 s and ≥10 Hz in either a continuous or bursting mode was found to reliably generate a delayed and long-lasting activation of GnRH neuron firing in brain slices. Optogenetic activation of RP3VKISS neurons in vivo at 10 Hz generated substantial increments in LH secretion of similar amplitude to the endogenous LH surge. Studies using GABAA receptor antagonists and optogenetic activation of RP3V GABA (RP3VGABA) neurons in vitro revealed that low-frequency (2 Hz) stimulation generated immediate and transient GABAA receptor-mediated increases in GnRH neuron firing, whereas higher frequencies (10 Hz) recruited the long-lasting activation observed following RP3VKISS neuron stimulation. In vivo, 2 Hz activation of RP3VGABA neurons did not alter LH secretion, whereas 10 Hz stimulation evoked a sustained large increase in LH identical to RP3VKISS neuron activation. Optogenetic activation of RP3VKISS neurons in which kisspeptin had been deleted did not alter LH secretion. These studies demonstrate the presence of parallel transmission streams from RP3V neurons to GnRH neurons that are frequency dependent and temporally distinct. This comprises a rapid and transient GABAA receptor-mediated activation and a slower onset kisspeptin-mediated stimulation of long duration. At the time of the LH surge, GABA release appears to be functionally redundant with the neuropeptide kisspeptin being the dominant cotransmitter influencing GnRH neuron output.SIGNIFICANCE STATEMENT Miscommunication between the brain and ovaries is thought to represent a major cause of infertility in humans. Studies in rodents suggest that a population of neurons located in the rostral periventricular area of the third ventricle (RP3V) are critical for activating the gonadotropin-releasing hormone (GnRH) neurons that trigger ovulation. The present study provides evidence that an RP3V neuron population coexpressing kisspeptin and GABA provides a functionally important excitatory input to GnRH neurons at the time of ovulation. This neural input releases GABA and/or kisspeptin in the classical frequency dependent and temporally distinct nature of amino acid-neuropeptide cotransmission. Unusually, however, the neuropeptide stream is found to be functionally dominant in activating GnRH neurons at the time of ovulation.
Collapse
|
111
|
Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med 2018; 24:834-846. [PMID: 29760445 PMCID: PMC6098696 DOI: 10.1038/s41591-018-0035-5] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and corresponds with a high degree of comorbidities and economic burden. How PCOS is passed on from one generation to the next is not clear, but it may be a developmental condition. Most women with PCOS exhibit higher levels of circulating luteinizing hormone, suggestive of heightened gonadotropin-releasing hormone (GnRH) release, and Anti-Müllerian Hormone (AMH) as compared to healthy women. Excess AMH in utero may affect the development of the female fetus. However, as AMH levels drop during pregnancy in women with normal fertility it was unclear if their levels were also elevated in pregnant women with PCOS. Here, we measured AMH in a cohort of pregnant women with PCOS and control women and found that AMH is significantly more elevated in the former group versus the latter. To determine if the elevation of AMH during pregnancy in women with PCOS is a bystander effect or a driver of the condition in the offspring, we modelled our clinical findings by treating pregnant mice with AMH and followed the neuroendocrine phenotype of their female progeny postnatally. This treatment resulted in maternal neuroendocrine-driven testosterone excess and diminished placental metabolism of testosterone to estradiol, resulting in a masculinization of the exposed female fetus and a PCOS-like reproductive and neuroendocrine phenotype in adulthood. We found that the affected females had persistently hyperactivated GnRH neurons and that GnRH antagonist treatment in the adult female offspring restored their neuroendocrine phenotype to a normal state. These findings highlight a critical role for excess prenatal AMH exposure and subsequent aberrant GnRH receptor signaling in the neuroendocrine dysfunctions of PCOS, while offering a new potential therapeutic avenue to treat the condition during adulthood.
Collapse
|
112
|
Silva MS, Prescott M, Campbell RE. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS. JCI Insight 2018; 3:99405. [PMID: 29618656 DOI: 10.1172/jci.insight.99405] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP-transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype.
Collapse
|
113
|
Burger LL, Vanacker C, Phumsatitpong C, Wagenmaker ER, Wang L, Olson DP, Moenter SM. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice. Endocrinology 2018; 159. [PMID: 29522155 PMCID: PMC6287592 DOI: 10.1210/en.2018-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Charlotte Vanacker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | | | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor,
Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor,
Michigan
- Correspondence: Laura L. Burger, PhD, University of Michigan, 7725 Med Sci II, 1137 E. Catherine
Street, Ann Arbor, Michigan 48109-5622. E-mail:
| |
Collapse
|
114
|
Prepubertal Development of GABAergic Transmission to Gonadotropin-Releasing Hormone (GnRH) Neurons and Postsynaptic Response Are Altered by Prenatal Androgenization. J Neurosci 2018; 38:2283-2293. [PMID: 29374136 DOI: 10.1523/jneurosci.2304-17.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/29/2017] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction through pulsatile GnRH release. Women with polycystic ovary syndrome (PCOS) have persistently elevated luteinizing hormone release frequency, reflecting GnRH release; this exacerbates hyperandrogenemia and disrupted reproductive cycles that are characteristic of this disorder. Clinical evidence suggests that neuroendocrine features of PCOS may manifest peripubertally. Adult mice prenatally exposed to androgens (PNA) mimic several reproductive features of PCOS. GnRH neurons from these mice have increased firing activity and receive increased GABAergic transmission, which is excitatory. When changes emerge during development is unknown. To study the typical postnatal development of GABAergic transmission and the effects of PNA treatment and sex, whole-cell voltage-clamp recordings were made of GABAergic postsynaptic currents (PSCs) in GnRH neurons in brain slices from prepubertal through adult control and PNA female and male mice. GABAergic transmission was present by 1 week of age in females and males and increased in frequency, reaching adult levels at 3 and 4 weeks, respectively. GABAergic PSC frequency was elevated in 3-week-old PNA versus control females. PSC frequency in both controls and PNA mice was activity independent, suggesting that PNA induces changes in synapse organization. PNA also alters the functional response of GnRH neurons to GABA. GABA induced firing in fewer neurons from 3-week-old PNA than control females; membrane potential depolarization induced by GABA was also reduced in cells from PNA mice at this age. PNA thus induces changes during development in the presynaptic organization of the GABAergic network afferent to GnRH neurons as well as the postsynaptic GnRH neuron response, both of which may contribute to adult reproductive dysfunction.SIGNIFICANCE STATEMENT The central neuronal network that regulates reproduction is overactive in polycystic ovary syndrome (PCOS), a leading cause of infertility. Recent evidence of neuroendocrine dysfunction in midpubertal girls suggests that the pathophysiological mechanisms underlying PCOS may arise before pubertal maturation. Prenatal exposure to androgens (PNA) in mice mimics several neuroendocrine features of PCOS. GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons is important for reproduction and is increased in adult PNA mice. The typical development of this network and when changes with PNA and sex arise relative to puberty are unknown. These studies provide evidence that PNA alters prepubertal development of the GABAergic network afferent to GnRH neurons, including both the presynaptic organization and postsynaptic response. These changes may contribute to reproductive dysfunction in adults.
Collapse
|
115
|
Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol 2018; 48:37-49. [PMID: 28754629 DOI: 10.1016/j.yfrne.2017.07.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
Albeit essential for perpetuation of species, reproduction is an energy-demanding function that can be adjusted to body metabolic status. Reproductive maturation and function can be suppressed in conditions of energy deficit, but can be altered also in situations of persistent energy excess, e.g., morbid obesity. This metabolic-reproductive integration, of considerable pathophysiological relevance to explain different forms of perturbed puberty and sub/infertility, is implemented by the concerted action of numerous central and peripheral regulators, which impinge at different levels of the hypothalamic-pituitary-gonadal (HPG) axis, permitting a tight fit between nutritional/energy status and gonadal function. We summarize here the major physiological mechanisms whereby nutritional and metabolic cues modulate the maturation and function of the HPG axis. We will focus on recent progress on the major central neuropeptide pathways, including kisspeptins, neurokinin B and the products of POMC and NPY neurons, which convey metabolic information to GnRH neurons, as major hierarchical hub of our reproductive brain.
Collapse
Affiliation(s)
- M Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, INSERM, U1172, Lille, France
| | - J Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
116
|
Abbott DH, Vepraskas SH, Horton TH, Terasawa E, Levine JE. Accelerated Episodic Luteinizing Hormone Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca Mulatta) Exposed to Testosterone during Early-to-Mid Gestation. Neuroendocrinology 2018; 107:133-146. [PMID: 29949806 PMCID: PMC7363207 DOI: 10.1159/000490570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Ovarian theca cell hyperandrogenism in women with polycystic ovary syndrome (PCOS) is compounded by androgen receptor-mediated impairment of estradiol and progesterone negative feedback regulation of episodic luteinizing hormone (LH) release. The resultant LH hypersecretion, likely the product of accelerated episodic release of gonadotropin-releasing hormone (GnRH) from the median eminence of the hypothalamus, hyperstimulates ovarian theca cell steroidogenesis, enabling testosterone (T) and androstenedione excess. Prenatally androgenized (PA) female monkeys exposed to fetal male levels of T during early-to-mid gestation, when adult, demonstrate PCOS-like traits, including high T and LH levels. This study tests the hypothesis that progesterone resistance-associated acceleration in episodic LH release contributes to PA monkey LH excess. METHODS A total of 4 PA and 3 regularly cycling, healthy control adult female rhesus monkeys of comparable age and body mass index underwent (1) a 10 h, frequent intravenous sampling assessment for LH episodic release, immediately followed by (2) IV infusion of exogenous GnRH to quantify continuing pituitary LH responsiveness, and subsequently (3) an SC injection of a progesterone receptor antagonist, mifepristone, to examine LH responses to blockade of progesterone-mediated action. RESULTS Compared to controls, the relatively hyperandrogenic PA females exhibited ~100% increase (p = 0.037) in LH pulse frequency, positive correlation of LH pulse amplitude (p = 0.017) with androstenedione, ~100% greater increase (p = 0.034) in acute (0-10 min) LH responses to exogenous GnRH, and an absence (p = 0.008) of modest LH elevation following acute progesterone receptor blockade suggestive of diminished progesterone negative feedback. CONCLUSION Such dysregulation of LH release in PCOS-like monkeys implicates impaired feedback control of episodic release of hypothalamic GnRH reminiscent of PCOS neuroendocrinopathy.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Sarah H Vepraskas
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin, USA
| | - Teresa H Horton
- Department of Neurobiology and Physiology, Institute for Neuroscience, Center for Reproductive Science, Northwestern University, Evanston, Illinois, USA
| | - Ei Terasawa
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
117
|
Moenter SM. GnRH Neurons on LSD: A Year of Rejecting Hypotheses That May Have Made Karl Popper Proud. Endocrinology 2018; 159:199-205. [PMID: 29126294 PMCID: PMC5761601 DOI: 10.1210/en.2017-03040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are critical to many aspects of fertility regulation, from producing episodic release critical to both sexes, to providing a central signal to induce the ovulatory cascade in females. This year saw progress through the rejection, and occasional support, of hypotheses in understanding how GnRH neurons contribute to these processes. This brief review provides one laboratory's view of new insights into possible roles for these cells in development, adult reproductive function, and what may go wrong with GnRH neurons in some cases of infertility.
Collapse
MESH Headings
- Animals
- Biomedical Research/methods
- Biomedical Research/trends
- Endocrinology/methods
- Endocrinology/trends
- Female
- Gonadotropin-Releasing Hormone/metabolism
- Humans
- Infertility, Female/etiology
- Infertility, Female/pathology
- Infertility, Female/physiopathology
- Infertility, Female/psychology
- Infertility, Male/etiology
- Infertility, Male/pathology
- Infertility, Male/physiopathology
- Infertility, Male/psychology
- Male
- Models, Neurological
- Neurons/cytology
- Neurons/metabolism
- Neurons/pathology
- Neurons/physiology
- Reproducibility of Results
- Reproduction
- Sexual Maturation
- Stress, Physiological
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Suzanne M. Moenter
- Departments of Molecular and Integrative Physiology, Internal Medicine, and Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
118
|
Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. eNeuro 2017; 4:eN-FTR-0259-17. [PMID: 29109970 PMCID: PMC5672547 DOI: 10.1523/eneuro.0259-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/22/2017] [Indexed: 11/21/2022] Open
Abstract
Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABAA and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABAA-mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.
Collapse
|
119
|
Dulka EA, Moenter SM. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure. Endocrinology 2017; 158:3943-3953. [PMID: 28938422 PMCID: PMC5695838 DOI: 10.1210/en.2017-00768] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype.
Collapse
Affiliation(s)
- Eden A. Dulka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
120
|
Kanasaki H, Tumurbaatar T, Oride A, Hara T, Okada H, Kyo S. Gamma-aminobutyric acid A receptor agonist, muscimol, increases KiSS-1 gene expression in hypothalamic cell models. Reprod Med Biol 2017; 16:386-391. [PMID: 29259493 PMCID: PMC5715903 DOI: 10.1002/rmb2.12061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/20/2017] [Indexed: 01/03/2023] Open
Abstract
Purpose Accumulating evidence indicates that hypothalamic kisspeptin plays a pivotal role in the regulation of the hypothalamic-pituitary-gonadal (HPG) axis. In this study, the direct action of the gamma-aminobutyric acid (GABA)A receptor agonist on kisspeptin-expressing neuronal cells was examined. Methods A hypothalamic cell model of rat hypothalamic cell line R8 (rHypoE8) cells and primary cultures of neuronal cells from fetal rat brains were stimulated with a potent and selective GABAA receptor agonist, muscimol, to determine the expression of the KiSS-1 gene. Results Stimulation of the rHypoE8 cells with muscimol significantly increased the level of KiSS-1 messenger (m)RNA expression. The ability of muscimol to increase the level of KiSS-1 mRNA also was observed in the primary cultures of the neuronal cells from the fetal rat brains. The muscimol-induced increase in KiSS-1 mRNA expression was completely inhibited in the presence of the GABAA receptor antagonist. Although muscimol increased the expression of KiSS-1, the natural compound, GABA, failed to induce the expression of KiSS-1 in the rHypoE8 cells. Muscimol did not modulate gonadotropin-releasing hormone expression in either the rHypoE8 cells or the primary cultures of the fetal rat brains. Conclusions This study's observations suggest that the activation of the GABAA receptor modulates the HPG axis by increasing kisspeptin expression in the hypothalamic neurons.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | | | - Aki Oride
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| |
Collapse
|
121
|
Vanacker C, Moya MR, DeFazio RA, Johnson ML, Moenter SM. Long-Term Recordings of Arcuate Nucleus Kisspeptin Neurons Reveal Patterned Activity That Is Modulated by Gonadal Steroids in Male Mice. Endocrinology 2017; 158:3553-3564. [PMID: 28938398 PMCID: PMC5659697 DOI: 10.1210/en.2017-00382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
Pulsatile release of gonadotropin-releasing hormone (GnRH) is key to fertility. Pulse frequency is modulated by gonadal steroids and likely arises subsequent to coordination of GnRH neuron firing activity. The source of rhythm generation and the site of steroid feedback remain critical unanswered questions. Arcuate neurons that synthesize kisspeptin, neurokinin B, and dynorphin (KNDy) may be involved in both of these processes. We tested the hypotheses that action potential firing in KNDy neurons is episodic and that gonadal steroids regulate this pattern. Targeted extracellular recordings were made of green fluorescent protein-identified KNDy neurons in brain slices from adult male mice that were intact, castrated, or castrated and treated with estradiol or dihydrotestosterone (DHT). KNDy neurons exhibited marked peaks and nadirs in action potential firing activity during recordings lasting 1 to 3.5 hours. Peaks, identified by Cluster analysis, occurred more frequently in castrated than intact mice, and either estradiol or DHT in vivo or blocking neurokinin type 3 receptor in vitro restored peak frequency to intact levels. The frequency of peaks in firing rate and estradiol regulation of this frequency is similar to that observed for GnRH neurons, whereas DHT suppressed firing in KNDy but not GnRH neurons. We further examined the patterning of action potentials to identify bursts that may be associated with increased neuromodulator release. Burst frequency and duration are increased in castrated compared with intact and steroid-treated mice. The observation that KNDy neurons fire in an episodic manner that is regulated by steroid feedback is consistent with a role for these neurons in GnRH pulse generation and regulation.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Manuel Ricu Moya
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - R. Anthony DeFazio
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael L. Johnson
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
122
|
Hasebe M, Oka Y. High-Frequency Firing Activity of GnRH1 Neurons in Female Medaka Induces the Release of GnRH1 Peptide From Their Nerve Terminals in the Pituitary. Endocrinology 2017; 158:2603-2617. [PMID: 28575187 DOI: 10.1210/en.2017-00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons play an important role in promoting secretion of pituitary luteinizing hormone (LH) and ovulation by releasing GnRH peptide. The release of GnRH peptide is generally assumed to be mainly modulated according to the firing activity of GnRH neurons. However, the relationship between the firing activity and the release of GnRH peptide has been elusive. We analyzed the relationship using two lines of transgenic medaka (gnrh1:enhanced green fluorescent protein and lhb:inverse-pericam) for the combined electrophysiological and Ca2+ imaging analyses. We show that a high-frequency firing activity induced by an excitatory neurotransmitter, glutamate, strongly increases [Ca2+]i in the cell bodies of GnRH1 neurons, which should lead to stimulation of GnRH release. We examined whether this high-frequency firing actually leads to the release of endogenous GnRH1 peptide from the nerve terminals projecting to the pituitary LH cells using a whole brain-pituitary preparation of a fish generated by crossing the two types of transgenic fish. Ca2+ imaging analyses showed that local glutamate activation of GnRH1 cell bodies, but not their nerve terminals in the pituitary, induced a substantial Ca2+ response in LH cells that was abolished in the presence of a GnRH receptor antagonist, Analog M. These results suggest that such an evoked high-frequency firing activity of GnRH1 cell body stimulates the release of endogenous GnRH1 peptide from the axon terminals to the pituitary LH cells. Thus, the findings of the present study have clearly demonstrated the relationship between the firing activity of hypothalamic GnRH neurons and the release of GnRH peptide.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
123
|
Moore AM, Campbell RE. Polycystic ovary syndrome: Understanding the role of the brain. Front Neuroendocrinol 2017; 46:1-14. [PMID: 28551304 DOI: 10.1016/j.yfrne.2017.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 01/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder and the leading cause of anovulatory infertility. Characterised by hyperandrogenism, menstrual dysfunction and polycystic ovaries, PCOS is a broad-spectrum disorder unlikely to stem from a single common origin. Although commonly considered an ovarian disease, the brain is now a prime suspect in both the ontogeny and pathology of PCOS. We discuss here the neuroendocrine impairments present in PCOS that implicate involvement of the brain and review evidence gained from pre-clinical models of the syndrome about the specific brain circuitry involved. In particular, we focus on the impact that developmental androgen excess and adult hyperandrogenemia have in programming and regulating brain circuits important in the central regulation of fertility. The studies discussed here provide compelling support for the importance of the brain in PCOS ontogeny and pathophysiology and highlight the need for a better understanding of the underlying mechanisms involved.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
124
|
Kawwass JF, Sanders KM, Loucks TL, Rohan LC, Berga SL. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome. Hum Reprod 2017; 32:1450-1456. [PMID: 28453773 PMCID: PMC6251519 DOI: 10.1093/humrep/dex086] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 10/13/2023] Open
Abstract
STUDY QUESTION Do cerebrospinal fluid (CSF) concentrations of gamma-aminobutyric acid (GABA), testosterone (T) and estradiol (E2) differ in women with polycystic ovary syndrome (PCOS) as compared to eumenorrheic, ovulatory women (EW)? SUMMARY ANSWER Women with PCOS displayed higher CSF levels of GABA and E2, and possibly T, than EW. WHAT IS KNOWN ALREADY The chronic anovulation characteristic of PCOS has been attributed to increased central GnRH drive and resulting gonadotropin aberrations. Androgens are thought to regulate GABA, which in turn regulates the neural cascade that modulates GnRH drive. STUDY DESIGN, SIZE, DURATION This cross-sectional observational study included 15 EW and 12 non-obese women with PCOS who consented to a lumbar puncture in addition to 24 h of serum blood collection at 15-min intervals. PARTICIPANTS/MATERIALS, SETTING, METHODS In total, 27 women were studied at a the General Clinical Research Center (GCRC) at the University of Pittsburgh. Serum analytes included T, E2 and androstenedione. CSF analytes included GABA, glutamate, glucose, T and E2. MAIN RESULTS AND THE ROLE OF CHANCE Women with PCOS had higher CSF GABA as compared to EW (9.04 versus 7.04 μmol/L, P < 0.05). CSF glucose and glutamate concentrations were similar between the two groups. CSF T was 52% higher (P = 0.1) and CSF E2 was 30% higher (P < 0.01) in women with PCOS compared to EW. Circulating T was 122% higher (P < 0.01) and circulating E2 was 75% higher (P < 0.01) in women with PCOS than in EW. LIMITATIONS REASONS FOR CAUTION The study is limited by its small sample size and the technical limitations of measuring CSF analytes that are pulsatile and have short half-lives. WIDER IMPLICATIONS OF THE FINDINGS Women with PCOS displayed significantly higher circulating levels of T and E2, significantly higher CSF levels of E2, and higher levels of CSF testosterone, although the latter was not statistically significant. A better understanding of the central milieu informs our understanding of the mechanisms mediating increased the GnRH drive in PCOS and lends a new perspective for understanding the presentation, pathogenesis and potential health consequences of PCOS, including gender identity issues. STUDY FUNDING/COMPETING INTEREST(S) No conflicts of interest. The study was funded by NIH grants to SLB (RO1-MH50748, U54-HD08610) and NIH RR-00056 to the General Clinical Research Center of the University of Pittsburgh. TRIAL REGISTRATION NUMBER NCT01674426.
Collapse
Affiliation(s)
- Jennifer F. Kawwass
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA
| | - Kristen M. Sanders
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Tammy L. Loucks
- Division of Research, Department of Gynecology and Obstetrics, Emory University, Atlanta, GA
| | - Lisa Cencia Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sarah L. Berga
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
| |
Collapse
|
125
|
Song Y, Tao B, Chen J, Jia S, Zhu Z, Trudeau VL, Hu W. GABAergic Neurons and Their Modulatory Effects on GnRH3 in Zebrafish. Endocrinology 2017; 158:874-886. [PMID: 28324056 DOI: 10.1210/en.2016-1776] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/17/2017] [Indexed: 01/11/2023]
Abstract
γ-Aminobutyric acid (GABA) is a major amino acid neurotransmitter in the vertebrate brain. To provide detailed information on the distribution of the GABA in zebrafish (Danio rerio), neurons were labeled with mCherry driven by the glutamic acid decarboxylase 67 (gad67) promoter. In the transgenic line Tg(gad67:mCherry), mCherry-positive gad67 cell bodies were predominantly localized to the olfactory bulb, pallial zones, subpallium zones, parvocellular preoptic nucleus, periventricular gray zone of optic tectum, torus semicircularis, posterior tuberculum, medial longitudinal fascicle, caudal zone of periventricular hypothalamus, and oculomotor nucleus. mCherry-positive fibers were widely distributed in the olfactory bulbs, subpallium, thalamus, ventral hypothalamic zone, tectum opticum, mesencephalon, and rhombencephalon. mCherry-positive neurons were also observed in the retina and the spinal cord. The anatomical relationships between GABAergic and gonadotrophin-releasing hormone 3 (GnRH3) neurons were investigated by crossing Tg(gad67:mCherry) fish with the previously established Tg(gnrh3:EGFP) transgenic line. GnRH3 cell bodies and fibers were contacted by GABAergic fibers directly in the ventral telencephalon and anterior tuberal nucleus. A subpopulation of GnRH3 neurons in the ventral telencephalic area was also labeled with mCherry, so some GnRH3 neurons are also GABAergic. GABAB receptor agonist (baclofen) and antagonist (CGP55845) treatments indicated that GABAB receptor signaling inhibited gnrh3 expression in larval fish but was stimulatory in adult fish. The expression of pituitary lhβ and fshβ was stimulated by intraperitoneal injection of baclofen in adult fish. We conclude that GABA via GABAB receptors regulates GnRH3 neurons in a developmentally dependent manner in zebrafish.
Collapse
Affiliation(s)
- Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaoting Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
126
|
Chaudhari NK, Nampoothiri LP. Neurotransmitter alteration in a testosterone propionate-induced polycystic ovarian syndrome rat model. Horm Mol Biol Clin Investig 2017; 29:71-77. [PMID: 27802175 DOI: 10.1515/hmbci-2016-0035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS), one of the leading causes of infertility seen in women, is characterized by anovulation and hyperandrogenism, resulting in ovarian dysfunction. In addition, associations of several metabolic complications like insulin resistance, obesity, dyslipidemia and psychological co-morbidities are well known in PCOS. One of the major factors influencing mood and the emotional state of mind is neurotransmitters. Also, these neurotransmitters are very crucial for GnRH release. Hence, the current study investigates the status of neurotransmitters in PCOS. MATERIALS AND METHODS A PCOS rat model was developed using testosterone. Twenty-one-day-old rats were subcutaneously injected with 10 mg/kg body weight of testosterone propionate (TP) for 35 days. The animals were validated for PCOS characteristics by monitoring estrus cyclicity, serum testosterone and estradiol levels and by histological examination of ovarian sections. Neurotransmitter estimation was carried out using fluorometric and spectrophotometric methods. RESULTS TP-treated animals demonstrated increased serum testosterone levels with unaltered estradiol content, disturbed estrus cyclicity and many peripheral cysts in the ovary compared to control rats mimicking human PCOS. Norepinephrine (NE), dopamine, serotonin, γ-amino butyric acid (GABA) and epinephrine levels were significantly low in TP-induced PCOS rats compared to control ones, whereas the activity of acetylcholinesterase in the PCOS brain was markedly elevated. CONCLUSION Neurotransmitter alteration could be one of the reasons for disturbed gonadotropin-releasing hormone (GnRH) release, consequently directing the ovarian dysfunction in PCOS. Also, decrease in neurotransmitters, mainly NE, serotonin and dopamine (DA) attributes to mood disorders like depression and anxiety in PCOS.
Collapse
|
127
|
Abstract
Mammalian reproductive function depends upon a neuroendocrine circuit that evokes the pulsatile release of gonadotropin hormones (luteinizing hormone and follicle-stimulating hormone) from the pituitary. This reproductive circuit is sensitive to metabolic perturbations. When challenged with starvation, insufficient energy reserves attenuate gonadotropin release, leading to infertility. The reproductive neuroendocrine circuit is well established, composed of two populations of kisspeptin-expressing neurons (located in the anteroventral periventricular hypothalamus, Kiss1AVPV, and arcuate hypothalamus, Kiss1ARH), which drive the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons. The reproductive axis is primarily regulated by gonadal steroid and circadian cues, but the starvation-sensitive input that inhibits this circuit during negative energy balance remains controversial. Agouti-related peptide (AgRP)-expressing neurons are activated during starvation and have been implicated in leptin-associated infertility. To test whether these neurons relay information to the reproductive circuit, we used AgRP-neuron ablation and optogenetics to explore connectivity in acute slice preparations. Stimulation of AgRP fibers revealed direct, inhibitory synaptic connections with Kiss1ARH and Kiss1AVPV neurons. In agreement with this finding, Kiss1ARH neurons received less presynaptic inhibition in the absence of AgRP neurons (neonatal toxin-induced ablation). To determine whether enhancing the activity of AgRP neurons is sufficient to attenuate fertility in vivo, we artificially activated them over a sustained period and monitored fertility. Chemogenetic activation with clozapine N-oxide resulted in delayed estrous cycles and decreased fertility. These findings are consistent with the idea that, during metabolic deficiency, AgRP signaling contributes to infertility by inhibiting Kiss1 neurons.
Collapse
|
128
|
Evans MC, Anderson GM. Neuroendocrine integration of nutritional signals on reproduction. J Mol Endocrinol 2017; 58:R107-R128. [PMID: 28057770 DOI: 10.1530/jme-16-0212] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
129
|
Vastagh C, Rodolosse A, Solymosi N, Liposits Z. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice. Front Cell Neurosci 2016; 10:230. [PMID: 27774052 PMCID: PMC5054603 DOI: 10.3389/fncel.2016.00230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2), glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6), cholinergic (Chrnb2, Chrm4) and dopaminergic (Drd3, Drd4), adrenergic (Adra1b, Adra2a, Adra2c), adenosinergic (Adora2a, Adora2b), glycinergic (Glra), purinergic (P2rx7), and serotonergic (Htr1b) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins (Gnai1, Gnai2, Gnas), adenylate-cyclases (Adcy3, Adcy5), protein kinase A (Prkaca, Prkacb) protein kinase C (Prkca) and certain transporters (Slc1a4, Slc17a6, Slc6a17) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB Barcelona)Barcelona, Spain
| | - Norbert Solymosi
- Department of Animal Hygiene, Herd-Health and Veterinary Ethology, University of Veterinary MedicineBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
130
|
Farkas I, Vastagh C, Farkas E, Bálint F, Skrapits K, Hrabovszky E, Fekete C, Liposits Z. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways. Front Cell Neurosci 2016; 10:214. [PMID: 27672360 PMCID: PMC5018486 DOI: 10.3389/fncel.2016.00214] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM-5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N(5)-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid pathway indicating an anandamide-TRPV1-sensitive control of 2-arachidonoylglycerol (2-AG) production. Furthermore, GLP-1 immunoreactive (IR) axons innervated GnRH neurons in the hypothalamus suggesting that GLP-1 of both peripheral and neuronal sources can modulate GnRH neurons. RT-qPCR study confirmed the expression of GLP-1R and neuronal NO synthase (nNOS) mRNAs in GnRH-GFP neurons. Immuno-electron microscopic analysis revealed the presence of nNOS protein in GnRH neurons. These results indicate that GLP-1 exerts direct facilitatory actions via GLP-1R on GnRH neurons and modulates NO and 2-AG retrograde signaling mechanisms that control the presynaptic excitatory GABAergic inputs to GnRH neurons.
Collapse
Affiliation(s)
- Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Erzsébet Farkas
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Flóra Bálint
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Katalin Skrapits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical CenterBoston, MA, USA
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
131
|
Abstract
The gonadotropin-releasing hormone (GnRH) neuronal network generates pulse and surge modes of gonadotropin secretion critical for puberty and fertility. The arcuate nucleus kisspeptin neurons that innervate the projections of GnRH neurons in and around their neurosecretory zone are key components of the pulse generator in all mammals. By contrast, kisspeptin neurons located in the preoptic area project to GnRH neuron cell bodies and proximal dendrites and are involved in surge generation in female rodents (and possibly other species). The hypothalamic-pituitary-gonadal axis develops embryonically but, apart from short periods of activation immediately after birth, remains suppressed through a combination of gonadal and non-gonadal mechanisms. At puberty onset, the pulse generator reactivates, probably owing to progressive stimulatory influences on GnRH neurons from glial and neurotransmitter signalling, and the re-emergence of stimulatory arcuate kisspeptin input. In females, the development of pulsatile gonadotropin secretion enables final maturation of the surge generator that ultimately triggers the first ovulation. Representation of the GnRH neuronal network as a series of interlocking functional modules could help conceptualization of its functioning in different species. Insights into pulse and surge generation are expected to aid development of therapeutic strategies ameliorating pubertal disorders and infertility in the clinic.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| |
Collapse
|
132
|
Moore AM, Campbell RE. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons. J Steroid Biochem Mol Biol 2016; 160:106-17. [PMID: 26455490 DOI: 10.1016/j.jsbmb.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS.
Collapse
Affiliation(s)
- Aleisha M Moore
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
133
|
Camille Melón L, Maguire J. GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function. J Steroid Biochem Mol Biol 2016; 160:196-203. [PMID: 26690789 PMCID: PMC4861672 DOI: 10.1016/j.jsbmb.2015.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes are regulated by GABAergic signaling at the level of corticotropin-releasing hormone (CRH) and gonadotropin-releasing hormone (GnRH) neurons, respectively. Under basal conditions, activity of CRH and GnRH neurons are controlled in part by both phasic and tonic GABAergic inhibition, mediated by synaptic and extrasynaptic GABAA receptors (GABAARs), respectively. For CRH neurons, this tonic GABAergic inhibition is mediated by extrasynaptic, δ subunit-containing GABAARs. Similarly, a THIP-sensitive tonic GABAergic current has been shown to regulate GnRH neurons, suggesting a role for δ subunit-containing GABAARs; however, this remains to be explicitly demonstrated. GABAARs incorporating the δ subunit confer neurosteroid sensitivity, suggesting a potential role for neurosteroid modulation in the regulation of the HPA and HPG axes. Thus, stress-derived neurosteroids may contribute to the impact of stress on reproductive function. Interestingly, excitatory actions of GABA have been demonstrated in both CRH neurons at the apex of control of the HPA axis and in GnRH neurons which mediate the HPG axis, adding to the complexity for the role of GABAergic signaling in the regulation of these systems. Here we review the effects that stress has on GnRH neurons and HPG axis function alongside evidence supporting GABAARs as a major interface between the stress and reproductive axes.
Collapse
Affiliation(s)
- Laverne Camille Melón
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA 02111, United States
| | - Jamie Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA 02111, United States.
| |
Collapse
|
134
|
Mitra A, Guèvremont G, Timofeeva E. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats. PLoS One 2016; 11:e0156563. [PMID: 27243579 PMCID: PMC4887034 DOI: 10.1371/journal.pone.0156563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/18/2016] [Indexed: 11/18/2022] Open
Abstract
The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry.
Collapse
Affiliation(s)
- Arojit Mitra
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec (QC), G1V 0A6, Canada
| | - Geneviève Guèvremont
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec (QC), G1V 0A6, Canada
| | - Elena Timofeeva
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec (QC), G1V 0A6, Canada
| |
Collapse
|
135
|
Bálint F, Liposits Z, Farkas I. Estrogen Receptor Beta and 2-arachidonoylglycerol Mediate the Suppressive Effects of Estradiol on Frequency of Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons of Metestrous Mice: An Acute Slice Electrophysiological Study. Front Cell Neurosci 2016; 10:77. [PMID: 27065803 PMCID: PMC4809870 DOI: 10.3389/fncel.2016.00077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 11/25/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are controlled by 17β-estradiol (E2) contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM) on GnRH neurons in acute brain slices obtained from metestrous GnRH-green fluorescent protein (GFP) mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachidonoylglycerol (2-AG) signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs) in GnRH neurons (49.62 ± 7.6%) which effect was abolished by application of the estrogen receptor (ER) α/β blocker Faslodex (1 μM). Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1) inverse agonist AM251 (1 μM) and intracellularly applied endocannabinoid synthesis blocker THL (10 μM) significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of tetrodotoxin (TTX) indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM) also significantly decreased the frequency of miniature postsynaptic currents (mPSCs) in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 μM) indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM) or the membrane-associated G protein-coupled estrogen receptor (GPR30) agonist G1 (10 pM) had no significant effect on the frequency of mPSCs in these neurons. AM251 and tetrahydrolipstatin (THL) significantly abolished the effect of E2 whereas AM251 eliminated the action of DPN on the mPSCs. These data suggest the involvement of the retrograde endocannabinoid mechanism in the rapid direct effect of E2. These results collectively indicate that estrogen receptor beta and 2-AG/CB1 signaling mechanisms are coupled and play an important role in the mediation of the negative estradiol feedback on GnRH neurons in acute slice preparation obtained from intact, metestrous mice.
Collapse
Affiliation(s)
- Flóra Bálint
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
136
|
Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice. J Neurosci 2016; 35:14533-43. [PMID: 26511244 DOI: 10.1523/jneurosci.1776-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse.
Collapse
|
137
|
Ruka KA, Burger LL, Moenter SM. Both Estrogen and Androgen Modify the Response to Activation of Neurokinin-3 and κ-Opioid Receptors in Arcuate Kisspeptin Neurons From Male Mice. Endocrinology 2016; 157:752-63. [PMID: 26562263 PMCID: PMC4733114 DOI: 10.1210/en.2015-1688] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gonadal steroids regulate the pattern of GnRH secretion. Arcuate kisspeptin (kisspeptin, neurokinin B, and dynorphin [KNDy]) neurons may convey steroid feedback to GnRH neurons. KNDy neurons increase action potential firing upon the activation of neurokinin B receptors (neurokinin-3 receptor [NK3R]) and decrease firing upon the activation of dynorphin receptors (κ-opioid receptor [KOR]). In KNDy neurons from intact vs castrated male mice, NK3R-mediated stimulation is attenuated and KOR-mediated inhibition enhanced, suggesting gonadal secretions are involved. Estradiol suppresses spontaneous GnRH neuron firing in male mice, but the mediators of the effects on firing in KNDy neurons are unknown. We hypothesized the same gonadal steroids affecting GnRH firing pattern would regulate KNDy neuron response to NK3R and KOR agonists. To test this possibility, extracellular recordings were made from KNDy neurons in brain slices from intact, untreated castrated or castrated adult male mice treated in vivo with steroid receptor agonists. As observed previously, the stimulation of KNDy neurons by the NK3R agonist senktide was attenuated in intact vs castrated mice and suppression by dynorphin was enhanced. In contrast to observations of steroid effects on the GnRH neuron firing pattern, both estradiol and DHT suppressed senktide-induced KNDy neuron firing and enhanced the inhibition caused by dynorphin. An estrogen receptor-α agonist but not an estrogen receptor-β agonist mimicked the effects of estradiol on NK3R activation. These observations suggest the steroid modulation of responses to activation of NK3R and KOR as mechanisms for negative feedback in KNDy neurons and support the contribution of these neurons to steroid-sensitive elements of a GnRH pulse generator.
Collapse
Affiliation(s)
- Kristen A Ruka
- Departments of Molecular and Integrative Physiology (K.A.R., L.L.B., S.M.M.), Internal Medicine (S.M.M.), and Obstetrics and Gynecology (S.M.M.), University of Michigan, Ann Arbor, Michigan 48109
| | - Laura L Burger
- Departments of Molecular and Integrative Physiology (K.A.R., L.L.B., S.M.M.), Internal Medicine (S.M.M.), and Obstetrics and Gynecology (S.M.M.), University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M Moenter
- Departments of Molecular and Integrative Physiology (K.A.R., L.L.B., S.M.M.), Internal Medicine (S.M.M.), and Obstetrics and Gynecology (S.M.M.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
138
|
Han SY, Bouwer GT, Seymour AJ, Korpal AK, Schwenke DO, Brown CH. Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat. Eur J Neurosci 2015; 42:2690-8. [PMID: 26342194 DOI: 10.1111/ejn.13062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/12/2015] [Accepted: 08/27/2015] [Indexed: 01/21/2023]
Abstract
Vasopressin secretion from the posterior pituitary gland is determined by action potential discharge of hypothalamic magnocellular neurosecretory cells. Vasopressin is a potent vasoconstrictor, but vasopressin levels are paradoxically elevated in some patients with established hypertension. To determine whether vasopressin neurons are excited in hypertension, extracellular single-unit recordings of vasopressin neurons from urethane-anaesthetized Cyp1a1-Ren2 rats with inducible angiotensin-dependent hypertension were made. The basal firing rate of vasopressin neurons was higher in hypertensive Cyp1a1-Ren2 rats than in non-hypertensive Cyp1a1-Ren2 rats. The increase in firing rate was specific to vasopressin neurons because oxytocin neuron firing rate was unaffected by the induction of hypertension. Intravenous injection of the α1-adrenoreceptor agonist, phenylephrine (2.5 μg/kg), transiently increased mean arterial blood pressure to cause a baroreflex-induced inhibition of heart rate and vasopressin neuron firing rate (by 52 ± 9%) in non-hypertensive rats. By contrast, intravenous phenylephrine did not inhibit vasopressin neurons in hypertensive rats, despite a similar increase in mean arterial blood pressure and inhibition of heart rate. Circulating angiotensin II can excite vasopressin neurons via activation of afferent inputs from the subfornical organ. However, the increase in vasopressin neuron firing rate and the loss of inhibition by intravenous phenylephrine were not blocked by intra-subfornical organ infusion of the angiotensin AT1 receptor antagonist, losartan. It can be concluded that increased vasopressin neuron activity at the onset of hypertension is driven, at least in part, by reduced baroreflex inhibition of vasopressin neurons and that this might exacerbate the increase in blood pressure at the onset of hypertension.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Gregory T Bouwer
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Alexander J Seymour
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Aaron K Korpal
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Daryl O Schwenke
- Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Colin H Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
139
|
Hu MH, Li XF, McCausland B, Li SY, Gresham R, Kinsey-Jones JS, Gardiner JV, Sam AH, Bloom SR, Poston L, Lightman SL, Murphy KG, O'Byrne KT. Relative Importance of the Arcuate and Anteroventral Periventricular Kisspeptin Neurons in Control of Puberty and Reproductive Function in Female Rats. Endocrinology 2015; 156:2619-31. [PMID: 25875299 PMCID: PMC4475719 DOI: 10.1210/en.2014-1655] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kisspeptin plays a critical role in pubertal timing and reproductive function. In rodents, kisspeptin perikarya within the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei are thought to be involved in LH pulse and surge generation, respectively. Using bilateral microinjections of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC or AVPV of female rats at postnatal day 10, we investigated the relative importance of these two kisspeptin populations in the control of pubertal timing, estrous cyclicity, and LH surge and pulse generation. A 37% knockdown of kisspeptin in the AVPV resulted in a significant delay in vaginal opening and first vaginal estrous, abnormal estrous cyclicity, and reduction in the occurrence of spontaneous LH surges, although these retained normal amplitude. This AVPV knockdown had no effect on LH pulse frequency, measured after ovariectomy. A 32% reduction of kisspeptin in the ARC had no effect on the onset of puberty but resulted in abnormal estrous cyclicity and decreased LH pulse frequency. Additionally, the knockdown of kisspeptin in the ARC decreased the amplitude but not the incidence of LH surges. These results might suggest that the role of AVPV kisspeptin in the control of pubertal timing is particularly sensitive to perturbation. In accordance with our previous studies, ARC kisspeptin signaling was critical for normal pulsatile LH secretion in female rats. Despite the widely reported role of AVPV kisspeptin neurons in LH surge generation, this study suggests that both AVPV and ARC populations are essential for normal LH surges and estrous cyclicity.
Collapse
Affiliation(s)
- M H Hu
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - X F Li
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - B McCausland
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - S Y Li
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - R Gresham
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - J S Kinsey-Jones
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - J V Gardiner
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - A H Sam
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - S R Bloom
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - L Poston
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - S L Lightman
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - K G Murphy
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | - K T O'Byrne
- Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| |
Collapse
|
140
|
Chloride Accumulators NKCC1 and AE2 in Mouse GnRH Neurons: Implications for GABAA Mediated Excitation. PLoS One 2015; 10:e0131076. [PMID: 26110920 PMCID: PMC4482508 DOI: 10.1371/journal.pone.0131076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/28/2015] [Indexed: 11/30/2022] Open
Abstract
A developmental “switch” in chloride transporters occurs in most neurons resulting in GABAA mediated hyperpolarization in the adult. However, several neuronal cell subtypes maintain primarily depolarizing responses to GABAA receptor activation. Among this group are gonadotropin-releasing hormone-1 (GnRH) neurons, which control puberty and reproduction. NKCC1 is the primary chloride accumulator in neurons, expressed at high levels early in development and contributes to depolarization after GABAA receptor activation. In contrast, KCC2 is the primary chloride extruder in neurons, expressed at high levels in the adult and contributes to hyperpolarization after GABAA receptor activation. Anion exchangers (AEs) are also potential modulators of responses to GABAA activation since they accumulate chloride and extrude bicarbonate. To evaluate the mechanism(s) underlying GABAA mediated depolarization, GnRH neurons were analyzed for 1) expression of chloride transporters and AEs in embryonic, pre-pubertal, and adult mice 2) responses to GABAA receptor activation in NKCC1-/- mice and 3) function of AEs in these responses. At all ages, GnRH neurons were immunopositive for NKCC1 and AE2 but not KCC2 or AE3. Using explants, calcium imaging and gramicidin perforated patch clamp techniques we found that GnRH neurons from NKCC1-/- mice retained relatively normal responses to the GABAA agonist muscimol. However, acute pharmacological inhibition of NKCC1 with bumetanide eliminated the depolarization/calcium response to muscimol in 40% of GnRH neurons from WT mice. In the remaining GnRH neurons, HCO3- mediated mechanisms accounted for the remaining calcium responses to muscimol. Collectively these data reveal mechanisms responsible for maintaining depolarizing GABAA mediated transmission in GnRH neurons.
Collapse
|
141
|
|
142
|
Larco DO, Williams M, Schmidt L, Sabel N, Lange J, Woller MJ, Wu TJ. Autoshortloop feedback regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by its metabolite, GnRH-(1-5). Endocrine 2015; 49:470-8. [PMID: 25516463 DOI: 10.1007/s12020-014-0492-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/24/2014] [Indexed: 12/28/2022]
Abstract
Given the central role of the decapeptide gonadotropin-releasing hormone (GnRH) in reproductive function, our long-term objective is to delineate the underlying mechanism regulating these reproductive processes. The outcome of GnRH secretion is in part dependent on the proteolytic metabolism of this decapeptide. In contrast to the belief that the metabolism of GnRH serves only as a degradative process that removes excess GnRH, we have shown that a metabolite of the decapeptide, GnRH-(1-5), can directly regulate GnRH gene expression and reproductive behavior. To further characterize the effect of GnRH-(1-5) on GnRH neuronal function, we determined whether GnRH-(1-5) can directly regulate GnRH secretion and pulsatility using an in vitro perifusion system. We compared the effect of GnRH-(1-5) on GnRH secretion in the immortalized GnRH neuron (GT1-7 cell line), whole rat hypothalamic explant, and enzymatically dispersed rat hypothalamic cells. Tissue preparations were perifused continuously for 9 h during which a 3-h challenge with GnRH-(1-5) was administered (4-6 h). The results show that treatment with GnRH-(1-5) increased (p < 0.05) the mean GnRH secretion and the amplitude of the pulses but not the pulse frequency. The present study supports the notion that GnRH-(1-5) is functionally capable of regulating the reproductive neuroendocrine system.
Collapse
Affiliation(s)
- Darwin O Larco
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Lee SW, Kim YB, Kim JS, Kim WB, Kim YS, Han HC, Colwell CS, Cho YW, In Kim Y. GABAergic inhibition is weakened or converted into excitation in the oxytocin and vasopressin neurons of the lactating rat. Mol Brain 2015; 8:34. [PMID: 26017151 PMCID: PMC4446001 DOI: 10.1186/s13041-015-0123-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increased secretion of oxytocin and arginine vasopressin (AVP) from hypothalamic magnocellular neurosecretory cells (MNCs) is a key physiological response to lactation. In the current study, we sought to test the hypothesis that the GABAA receptor-mediated inhibition of MNCs is altered in lactating rats. RESULTS Gramicidin-perforated recordings in the rat supraoptic nucleus (SON) slices revealed that the reversal potential of GABAA receptor-mediated response (EGABA) of MNCs was significantly depolarized in the lactating rats as compared to virgin animals. The depolarizing EGABA shift was much larger in rats in third, than first, lactation such that GABA exerted an excitatory, instead of inhibitory, effect in most of the MNCs of these multiparous rats. Immunohistochemical analyses confirmed that GABAergic excitation was found in both AVP and oxytocin neurons within the MNC population. Pharmacological experiments indicated that the up-regulation of the Cl(-) importer Na(+)-K(+)-2Cl(-) cotransporter isotype 1 and the down-regulation of the Cl(-) extruder K(+)-Cl(-) cotransporter isotype 2 were responsible for the depolarizing shift of EGABA and the resultant emergence of GABAergic excitation in the MNCs of the multiparous rats. CONCLUSION We conclude that, in primiparous rats, the GABAergic inhibition of MNCs is weakened during the period of lactation while, in multiparous females, GABA becomes excitatory in a majority of the cells. This reproductive experience-dependent alteration of GABAergic transmission may help to increase the secretion of oxytocin and AVP during the period of lactation.
Collapse
Affiliation(s)
- Seung Won Lee
- Department of Physiology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
| | - Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
| | - Jeong Sook Kim
- Department of Physiology, Biomedical Science Institute & Medical Research Center, School of Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| | - Woong Bin Kim
- Department of Physiology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
| | - Yoon Sik Kim
- Department of Physiology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
| | - Hee Chul Han
- Department of Physiology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, 136-705, Republic of Korea.
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California-Los Angeles, Los Angeles, CA, 90024, USA.
| | - Young-Wuk Cho
- Department of Physiology, Biomedical Science Institute & Medical Research Center, School of Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, 136-705, Republic of Korea.
| |
Collapse
|
144
|
Sukhbaatar U, Mijiddorj T, Oride A, Kanasaki H. Stimulation of δ subunit-containing GABAA receptor by DS1 increases GnRH receptor expression but reduces GnRH mRNA expression in GnRH-producing GT1-7 cells. Endocrine 2015; 49:222-30. [PMID: 25355308 DOI: 10.1007/s12020-014-0464-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/23/2014] [Indexed: 12/23/2022]
Abstract
Acting via ionotropic GABAA receptors, the neurotransmitter γ-aminobutyric acid (GABA) is an important modulator of gonadotropin-releasing hormone (GnRH) neurons. In the present study, we examined the effect of DS1, a GABAA α4β3δ receptor agonist, on a strain of mouse hypothalamic immortalized GnRH neuronal cells, the GT1-7 cell line. DS1 increased the activities of serum-response element (SRE) and cAMP-response element (CRE) promoters, which reflect the activities of extracellular signal-regulated kinase and cAMP/protein kinase A (PKA) pathways, respectively. In G protein-coupled receptor 54 (GPR54)-overexpressing GT1-7 cells, both DS1 and kisspeptin-10 stimulated SRE promoter activity, and combined treatment with DS1 and kisspeptin further increased SRE promoter activity compared with DS1 or kisspeptin alone. Pituitary adenylate cyclase-activating polypeptide (PACAP) increased CRE promoter activity in PACAP type I receptor-overexpressing GT1-7 cells, with an effect similar to that of DS1 alone, and combined stimulation with PACAP and DS1 potentiated their individual effects. DS1 stimulated the transcriptional activity of GnRH receptor, and DS1 induced GnRH receptor mRNA and protein expression. PACAP-increased GnRH receptor expression was enhanced in the presence of DS1. However, DS1 significantly inhibited the basal expression of GnRH mRNA in GT1-7 cells. Our current observations suggest that DS1 exerts its stimulatory effect on the intracellular signal transduction system via GABAA α4β3δ receptors in GnRH-producing neurons. Stimulation with DS1 increased the expression of GnRH receptor but decreased the basal expression of GnRH mRNA.
Collapse
Affiliation(s)
- Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, 89-1 Enya, Izumo City, Shimane Prefecture, 693-8501, Japan
| | | | | | | |
Collapse
|
145
|
Zhang C, Bosch MA, Qiu J, Rønnekleiv OK, Kelly MJ. 17β-Estradiol increases persistent Na(+) current and excitability of AVPV/PeN Kiss1 neurons in female mice. Mol Endocrinol 2015; 29:518-27. [PMID: 25734516 DOI: 10.1210/me.2014-1392] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vitro slice studies have revealed that there are significant differences in the spontaneous firing activity between anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) and arcuate nucleus (ARC) kisspeptin (Kiss1) neurons in females. Although both populations express similar endogenous conductances, we have discovered that AVPV/PeN Kiss1 neurons express a subthreshold, persistent sodium current (INaP) that dramatically alters their firing activity. Based on whole-cell recording of Kiss1-Cre-green fluorescent protein (GFP) neurons, INaP was 4-fold greater in AVPV/PeN vs ARC Kiss1 neurons. An LH surge-producing dose of 17β-estradiol (E2) that increased Kiss1 mRNA expression in the AVPV/PeN, also augmented INaP in AVPV/PeN neurons by 2-fold. Because the activation threshold for INaP was close to the resting membrane potential (RMP) of AVPV/PeN Kiss1 neurons (-54 mV), it rendered them much more excitable and spontaneously active vs ARC Kiss1 neurons (RMP = -66 mV). Single-cell RT-PCR revealed that AVPV/PeN Kiss1 neurons expressed the requisite sodium channel α-subunit transcripts, NaV1.1, NaV1.2, and NaV1.6 and β subunits, β2 and β4. Importantly, NaV1.1α and -β2 transcripts in AVPV/PeN, but not ARC, were up-regulated 2- to 3-fold by a surge-producing dose of E2, similar to the transient calcium current channel subunit Cav3.1. The transient calcium current collaborates with INaP to generate burst firing, and selective blockade of INaP by riluzole significantly attenuated rebound burst firing and spontaneous activity. Therefore, INaP appears to play a prominent role in AVPV/PeN Kiss1 neurons to generate spontaneous, repetitive burst firing, which is required for the high-frequency-stimulated release of kisspeptin for exciting GnRH neurons and potentially generating the GnRH surge.
Collapse
Affiliation(s)
- Chunguang Zhang
- Department of Physiology and Pharmacology (C.Z., M.A.B., J.Q., O.K.R., M.J.K.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | | | | | | | | |
Collapse
|
146
|
Shaw ND, Butler JP, Nemati S, Kangarloo T, Ghassemi M, Malhotra A, Hall JE. Accumulated deep sleep is a powerful predictor of LH pulse onset in pubertal children. J Clin Endocrinol Metab 2015; 100:1062-70. [PMID: 25490277 PMCID: PMC4333042 DOI: 10.1210/jc.2014-3563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT During puberty, reactivation of the reproductive axis occurs during sleep, with LH pulses specifically tied to deep sleep. This association suggests that deep sleep may stimulate LH secretion, but there have been no interventional studies to determine the characteristics of deep sleep required for LH pulse initiation. OBJECTIVE The objective of this study was to determine the effect of deep sleep fragmentation on LH secretion in pubertal children. DESIGN AND SETTING Studies were performed in a clinical research center. SUBJECTS Fourteen healthy pubertal children (11.3-14.1 y) participated in the study. INTERVENTIONS Subjects were randomized to two overnight studies with polysomnography and frequent blood sampling, with or without deep sleep disruption via auditory stimuli. RESULTS An average of 68.1 ±10.7 (± SE) auditory stimuli were delivered to interrupt deep sleep during the disruption night, limiting deep sleep to only brief episodes (average length disrupted 1.3 ± 0.2 min vs normal 7.1 ± 0.8 min, P < .001), and increasing the number of transitions between non-rapid eye movement (NREM), REM, and wake (disrupted 274.5 ± 33.4 vs normal 131.2 ± 8.1, P = .001). There were no differences in mean LH (normal: 3.2 ± 0.4 vs disrupted: 3.2 ± 0.5 IU/L), LH pulse frequency (0.6 ± 0.06 vs 0.6 ± 0.07 pulses/h), or LH pulse amplitude (2.8 ± 0.4 vs 2.8 ± 0.4 IU/L) between the two nights. Poisson process modeling demonstrated that the accumulation of deep sleep in the 20 minutes before an LH pulse, whether consolidated or fragmented, was a significant predictor of LH pulse onset (P < .001). CONCLUSION In pubertal children, nocturnal LH augmentation and pulse patterning are resistant to deep sleep fragmentation. These data suggest that, even when fragmented, deep sleep is strongly related to activation of the GnRH pulse generator.
Collapse
Affiliation(s)
- N D Shaw
- Reproductive Endocrine Unit (N.D.S., T.K., J.E.H.), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114; Division of Endocrinology (N.D.S.), Children's Hospital Boston, Division of Sleep Medicine (N.D.S., J.E.H.), Harvard Medical School, and Division of Sleep and Circadian Disorders (J.P.B.), Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Harvard School of Engineering and Applied Sciences (S.N.), Harvard University, Cambridge, Massachusetts 02138; Electrical Engineering and Computer Science, Massachusetts Institute of Technology (M.G.), Cambridge, Massachusetts 02142; and Division of Pulmonary and Critical Care Medicine (A.M.), University of California, San Diego, La Jolla, California 92037
| | | | | | | | | | | | | |
Collapse
|
147
|
Vastagh C, Rodolosse A, Solymosi N, Farkas I, Auer H, Sárvári M, Liposits Z. Differential Gene Expression in Gonadotropin-Releasing Hormone Neurons of Male and Metestrous Female Mice. Neuroendocrinology 2015; 102:44-59. [PMID: 25925152 DOI: 10.1159/000430818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons. METHODS AND RESULTS We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1). CONCLUSION The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
149
|
Glanowska KM, Moenter SM. Differential regulation of GnRH secretion in the preoptic area (POA) and the median eminence (ME) in male mice. Endocrinology 2015; 156:231-41. [PMID: 25314270 PMCID: PMC4272400 DOI: 10.1210/en.2014-1458] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca(2+) channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region.
Collapse
Affiliation(s)
- Katarzyna M Glanowska
- Neuroscience Graduate Program (K.M.G.), University of Virginia, Charlottesville, Virginia 22908; and Departments of Molecular and Integrative Physiology (S.M.M.), Internal Medicine, and Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
150
|
Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol 2015; 36:90-107. [PMID: 25171849 PMCID: PMC6824271 DOI: 10.1016/j.yfrne.2014.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
Abstract
Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| |
Collapse
|