101
|
Abstract
A healthy nutritional state is required for all aspects of reproduction and is signaled by the adipokine leptin. Leptin acts in a relatively narrow concentration range: too much or too little will compromise fertility. The leptin signal timing is important to prepubertal development in both sexes. In the brain, leptin acts on ventral premammillary neurons which signal kisspeptin (Kiss1) neurons to stimulate gonadotropin releasing hormone (GnRH) neurons. Suppression of Kiss1 neurons occurs when agouti-related peptide neurons are activated by reduced leptin, because leptin normally suppresses these orexigenic neurons. In the pituitary, leptin stimulates production of GnRH receptors (GnRHRs) and follicle-stimulating hormone at midcycle, by activating pathways that derepress actions of the messenger ribonucleic acid translational regulatory protein Musashi. In females, rising estrogen stimulates a rise in serum leptin, which peaks at midcycle, synchronizing with nocturnal luteinizing hormone pulses. The normal range of serum leptin levels (10-20 ng/mL) along with gonadotropins and growth factors promote ovarian granulosa and theca cell functions and oocyte maturation. In males, the prepubertal rise in leptin promotes testicular development. However, a decline in leptin levels in prepubertal boys reflects inhibition of leptin secretion by rising androgens. In adult males, leptin levels are 10% to 50% of those in females, and high leptin inhibits testicular function. The obesity epidemic has elucidated leptin resistance pathways, with too much leptin in either sex leading to infertility. Under conditions of balanced nutrition, however, the secretion of leptin is timed and regulated within a narrow level range that optimizes its trophic effects.
Collapse
Affiliation(s)
- Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Correspondence: Gwen V. Childs, PhD, University of Arkansas for Medical Sciences, Little Rock, AR, USA. E-mail:
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
102
|
Mankiewicz JL, Deck CA, Taylor JD, Douros JD, Borski RJ. Epinephrine and glucose regulation of leptin synthesis and secretion in a teleost fish, the tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2021; 302:113669. [PMID: 33242479 DOI: 10.1016/j.ygcen.2020.113669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Acute stress is regulated through the sympathetic adrenergic axis where catecholamines mobilize energy stores including carbohydrates as a principal element of the endocrine stress response. Leptin is a cytokine critical for regulating energy expenditure in vertebrates and is stimulated by various stressors in fish such as fasting, hyperosmotic challenge, and hypoxia. However, little is known about the regulatory interactions between leptin and the endocrine stress axis in fishes and other ectothermic vertebrates. We evaluated the actions of epinephrine and glucose in regulating leptin A (LepA) in vivo and in vitro in tilapia. Using hepatocyte incubations and a homologous LepA ELISA, we show that LepA synthesis and secretion decline as ambient glucose levels increase (10-25 mM). By contrast, bolus glucose administration in tilapia increases lepa mRNA levels 14-fold at 6 h, suggesting systemic factors regulated by glucose may counteract the direct inhibitory effects of glucose on hepatic lepa mRNA observed in vitro. Epinephrine stimulated glucose and LepA secretion from hepatocytes in a dose-dependent fashion within 15 min but had little effect on lepa mRNA levels. An in vivo injection of epinephrine into tilapia stimulated a rapid rise in blood glucose which was followed by a 4-fold increase in hepatic lepa mRNA levels at 2.5 and 6 h. Plasma LepA was also elevated by 6 h relative to controls. Recombinant tilapia LepA administration in vivo did not have any significant effect on plasma epinephrine levels. The results of this study demonstrate LepA is negatively regulated by rises in extracellular glucose at the level of the hepatocyte but stimulated by hyperglycemia in vivo. Further, epinephrine increases LepA. This, along with previous work demonstrating a hyperglycemic and glycogenolytic effect of LepA in tilapia, suggests that epinephrine may stimulate leptin secretion to augment and fine tune glucose mobilization and homeostasis as part of the integrated, adaptive stress response.
Collapse
Affiliation(s)
- Jamie L Mankiewicz
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Courtney A Deck
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Jordan D Taylor
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Jonathan D Douros
- Duke University, Molecular Physiology Institute, Durham, NC 27701, USA
| | - Russell J Borski
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
103
|
Long Z, Fan J, Wu G, Liu X, Wu H, Liu J, Chen Y, Su S, Cheng X, Xu Z, Su H, Cao M, Zhang C, Hai C, Wang X. Gestational bisphenol A exposure induces fatty liver development in male offspring mice through the inhibition of HNF1b and upregulation of PPARγ. Cell Biol Toxicol 2021; 37:65-84. [PMID: 32623698 PMCID: PMC7851022 DOI: 10.1007/s10565-020-09535-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/30/2020] [Indexed: 02/08/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) associated with non-alcoholic fatty liver disease (NAFLD). The effects of gestational BPA exposure on hepatic lipid accumulation in offspring are not fully understood. Here, we investigate the sex-dependent effects of gestational BPA exposure on hepatic lipid and glucose metabolism in the offspring of mice to reveal the mechanisms underlying gestational BPA exposure-associated NAFLD. Pregnant mice were administered gavage with or without 1 μg kg-1 day-1 BPA at embryonic day 7.5 (E7.5)-E16.5. Hepatic glucose and lipid metabolism were evaluated in these models. Both male and female offspring mice exhibited hepatic fatty liver after BPA treatment. Lipid accumulation and dysfunction of glucose metabolism were observed in male offspring. We revealed abnormal expression of lipid regulators in the liver and that inhibition of peroxisome proliferator-activated receptor γ (PPARγ) repressed hepatic lipid accumulation induced by gestational BPA exposure. We also found a sex-dependent decrease of hepatocyte nuclear factor 1b (HNF1b) expression in male offspring. The transcriptional repression of PPARγ by HNF1b was confirmed in L02 cells. Downregulation of HNF1b, upregulation of PPARγ, and subsequent upregulation of hepatic lipid accumulation were essential for NAFLD development in male offspring gestationally exposed to BPA as well as BPA-exposed adult male mice. Dysregulation of the HNF1b/PPARγ pathway may be involved in gestational BPA exposure-induced NAFLD in male offspring. These data provide new insights into the mechanism of gestational BPA exposure-associated sex-dependent glucose and lipid metabolic dysfunction. Graphical abstract Schematic of the mechanism of gestational BPA exposure-induced glucose and lipid metabolic dysfunction.
Collapse
Affiliation(s)
- Zi Long
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Junshu Fan
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Guangyuan Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Xiyu Liu
- Department of Biomedical Engineering, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Yao Chen
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Shuhao Su
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Xiaodong Cheng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Zhongrui Xu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Hongfei Su
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Meng Cao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Chunping Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China.
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University (Fourth Military Medical University), Changle West Road 169, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
104
|
Hamilton K, Harvey J. Leptin regulation of hippocampal synaptic function in health and disease. VITAMINS AND HORMONES 2021; 115:105-127. [PMID: 33706945 DOI: 10.1016/bs.vh.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is widely accepted that the metabolic hormone leptin regulates food intake and body weight via activation of hypothalamic leptin receptors. However, as leptin receptors are also highly expressed in other brain regions, such as the hippocampus, alterations in leptin responsiveness also impacts on key functions of the hippocampus, like learning and memory. Within the hippocampus, high levels of leptin receptors are expressed at excitatory synapses, and in accordance with a synaptic localization, leptin potently regulates synaptic transmission at both Schaffer collateral (SC) and temporoammonic (TA) inputs to CA1 pyramidal neurons. Increasing evidence from cellular and behavioral studies examining leptin action at CA1 synapses support the notion that leptin is a potential cognitive enhancer. However, the capacity of leptin to regulate synaptic efficacy at SC-CA1 and TA-CA1 synapses declines in an age-dependent manner. Moreover, clinical evidence that supports a link between circulating leptin levels and the risk of the age-related neurodegenerative disorder, Alzheimer's disease (AD) is accumulating. Consequently, it has been proposed that the leptin system is a potential therapeutic target in AD, and that boosting the hippocampal actions of leptin may be beneficial in the treatment of AD. Here we review recent progress in our understanding of the neuronal and hippocampal synaptic functions that are regulated by leptin and how alterations in the leptin system influence age-related CNS-related disorders like AD.
Collapse
Affiliation(s)
- Kirsty Hamilton
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
105
|
Lower amygdala fatty acid amide hydrolase in violent offenders with antisocial personality disorder: an [ 11C]CURB positron emission tomography study. Transl Psychiatry 2021; 11:57. [PMID: 33462180 PMCID: PMC7814116 DOI: 10.1038/s41398-020-01144-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/14/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
Antisocial personality disorder (ASPD) imposes a high societal burden given the repetitive reactive aggression that affected individuals perpetrate. Since the brain endocannabinoid system (ECS) has been implicated in ASPD and aggressive behavior, we utilized [11C]CURB positron emission tomography to investigate fatty acid amide hydrolase (FAAH), an enzyme of the ECS that degrades anandamide, in 16 individuals with ASPD and 16 control participants. We hypothesized that FAAH density would be lower in the amygdala for several reasons. First, decreased FAAH expression is associated with increased cannabinoid receptor 1 stimulation, which may be responsible for amygdala hyper-reactivity in reactive aggression. Second, the amygdala is the seat of the neural circuit mediating reactive aggression. Third, other PET studies of externalizing populations show reduced brain FAAH density. Conversely, we hypothesized that FAAH expression would be greater in the orbitofrontal cortex. Consistent with our hypothesis, we found that amygdala FAAH density was lower in the amygdala of ASPD (p = 0.013). Cerebellar and striatal FAAH expression were inversely related with impulsivity (cerebellum: r = -0.60, p = 0.017; dorsal caudate: r = -0.58, p = 0.023; dorsal putamen: r = -0.55, p = 0.034), while cerebellar FAAH density was also negatively associated with assaultive aggression (r = -0.54, p = 0.035). ASPD presents high levels of disruptive behavior with few, if any, efficacious treatment options. Novel therapeutics that increase FAAH brain levels in a region-specific manner could hold promise for attenuating certain symptom clusters of ASPD, although our results require replication.
Collapse
|
106
|
Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: An Updated Overview of Their Functions. Front Endocrinol (Lausanne) 2021; 12:713961. [PMID: 34276571 PMCID: PMC8283259 DOI: 10.3389/fendo.2021.713961] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally. Recognition of the role of NMU in the control of energy homeostasis of the body has greatly increased interest in this neuromedin. In 2005 a second, structurally related peptide, neuromedin S (NMS) was identified. The expression of NMS is more restricted, it is predominantly found in the central nervous system. In recent years, further peptides related to NMU and NMS have been identified. These are neuromedin U precursor related peptide (NURP) and neuromedin S precursor related peptide (NSRP), which also exert biological effects without acting via NMUR1, or NMUR2. This observation suggests the presence of another, as yet unrecognized receptor. Another unresolved issue within the NMU/NMS system is the differences in the effects of various NMU isoforms on diverse cell lines. It seems that development of highly specific NMUR1 and NMUR2 receptor antagonists would allow for a more detailed understanding of the mechanisms of action of NMU/NMS and related peptides in the body. They could form the basis for attempts to use such compounds in the treatment of disorders, for example, metabolic disorders, circadian rhythm, stress, etc.
Collapse
|
107
|
Kang KW, Ok M, Lee SK. Leptin as a Key between Obesity and Cardiovascular Disease. J Obes Metab Syndr 2020; 29:248-259. [PMID: 33342767 PMCID: PMC7789022 DOI: 10.7570/jomes20120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity increases the risk of cardiovascular disease through various influencing factors. Leptin, which is predominantly secreted by adipose tissue, regulates satiety homeostasis and energy balance, and influences cardiovascular functions directly and indirectly. Leptin appears to play a role in heart protection in leptin-deficient and leptin-receptor-deficient rodent model experiments. Hyperleptinemia or leptin resistance in human obesity influences the vascular endothelium, cardiovascular structure and functions, inflammation, and sympathetic activity, which may lead to cardiovascular disease. Leptin is involved in many processes, including signal transduction, vascular endothelial function, and cardiac structural remodeling. However, the dual (positive and negative) regulator effect of leptin and its receptor on cardiovascular disease has not been completely understood. The protective role of leptin signaling in cardiovascular disease could be a promising target for cardiovascular disease prevention in obese patients.
Collapse
Affiliation(s)
- Ki-Woon Kang
- Division of Cardiology, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Minho Ok
- Department of Cardiovascular Pharmacology, Mokpo National University, Mokpo, Korea
| | - Seong-Kyu Lee
- Division of Endocrinology, Department of Internal Medicine, Daejeon, Korea.,Department of Biochemistry-Molecular Biology, Eulji University School of Medicine, Daejeon, Korea
| |
Collapse
|
108
|
Seth M, Biswas R, Ganguly S, Chakrabarti N, Chaudhuri AG. Leptin and obesity. Physiol Int 2020; 107:455-468. [PMID: 33355539 DOI: 10.1556/2060.2020.00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/06/2020] [Indexed: 11/19/2022]
Abstract
An imbalance between calorie intake and energy expenditure produces obesity. It has been a major problem in societies of the developing and developed world. In obesity an excessive amount of fat accumulates in adipose tissue cells as well as in other vital organs like liver, muscles, and pancreas. The adipocytes contain ob genes and express leptin, a 16 kDa protein. In the present communication, we reviewed the molecular basis of the etiopathophysiology of leptin in obesity. Special emphasis has been given to the use of leptin as a drug target for obesity treatment, the role of diet in the modulation of leptin secretion, and reduction of obesity at diminished level of blood leptin induced by physical exercise.
Collapse
Affiliation(s)
- M Seth
- 1Department of Physiology, Hiralal Mazumdar Memorial College for Women, Kolkata 700035, West Bengal, India
| | - R Biswas
- 2Department of Physiology, Himachal Dental College, Sunder Nagar, Himachal Pradesh 175002, India
| | - S Ganguly
- 3Department of Physiology, Vidyasagar College, Kolkata 700006, West Bengal, India
| | - N Chakrabarti
- 4Department of Physiology, University of Calcutta, Kolkata 700009, West Bengal, India
| | - A G Chaudhuri
- 3Department of Physiology, Vidyasagar College, Kolkata 700006, West Bengal, India
| |
Collapse
|
109
|
A Plasma Proteomic Signature of Skeletal Muscle Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21249540. [PMID: 33333910 PMCID: PMC7765442 DOI: 10.3390/ijms21249540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022] Open
Abstract
Although mitochondrial dysfunction has been implicated in aging, physical function decline, and several age-related diseases, an accessible and affordable measure of mitochondrial health is still lacking. In this study we identified the proteomic signature of muscular mitochondrial oxidative capacity in plasma. In 165 adults, we analyzed the association between concentrations of plasma proteins, measured using the SOMAscan assay, and skeletal muscle maximal oxidative phosphorylation capacity assessed as post-exercise phosphocreatine recovery time constant (τPCr) by phosphorous magnetic resonance spectroscopy. Out of 1301 proteins analyzed, we identified 87 proteins significantly associated with τPCr, adjusting for age, sex, and phosphocreatine depletion. Sixty proteins were positively correlated with better oxidative capacity, while 27 proteins were correlated with poorer capacity. Specific clusters of plasma proteins were enriched in the following pathways: homeostasis of energy metabolism, proteostasis, response to oxidative stress, and inflammation. The generalizability of these findings would benefit from replication in an independent cohort and in longitudinal analyses.
Collapse
|
110
|
Zou Y, Hu L, Zou W, Li H. Association of Low Leptin with Poor 3-Month Prognosis in Ischemic Stroke Patients with Type 2 Diabetes. Clin Interv Aging 2020; 15:2353-2361. [PMID: 33328729 PMCID: PMC7734075 DOI: 10.2147/cia.s279535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
Background Leptin, an adipokine, has effects on the cardiovascular system with both protective and harmful role. This study aimed to assess the relationship between leptin and 3-month prognosis in ischemic stroke patients with type 2 diabetes. Patients and Methods As a prospective single-center observational study, we collected consecutive first-ever acute ischemia stroke with type 2 diabetes mellitus from February 2019 to February 2020. Serum samples were obtained at admission, and leptin serum levels were tested by the ELISA method. Logistic regression models were used to assess leptin's prognostic value to predict the functional outcome and mortality within three months. Results Finally, two hundred and eleven patients were included, and the mean leptin serum level was 16.8 (SD. 6.9) ng/mL. At admission, 53.6% of those included patients (N=113) were defined as severe stroke (NIH Stroke Scale [NIHSS]>5). In multivariable models adjusted for other factors, leptin levels<11.6ng/mL (lowest quartile, Q1) related to severe stroke and the risk increased 175% (odds ratios [OR] =2.75; 95% confidence interval [CI]=2.13-3.38; P=0.002). Serum leptin levels on admission in patients with poor outcomes and nonsurvivors were significantly reduced (P<0.001 and P<0.001). Leptin levels <11.6ng/mL (lowest quartile, Q1) related to a higher risk of poor functional impairment (OR=5.13; 95% CI =3.25-6.86; P<0.001) and mortality (OR=3.19; 95% CI =2.03-4.25; P<0.001). Conclusion The data shows that leptin serum level is a useful prognostic biomarker in ischemic stroke patients with type 2 diabetes, and this relationship is negative.
Collapse
Affiliation(s)
- Yi Zou
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ling Hu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wenjun Zou
- General Surgery, Nanchang Third Hospital, Nanchang, People's Republic of China
| | - Honglin Li
- Department of Biochemistry, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
111
|
Biddinger JE, Lazarenko RM, Scott MM, Simerly R. Leptin suppresses development of GLP-1 inputs to the paraventricular nucleus of the hypothalamus. eLife 2020; 9:59857. [PMID: 33206596 PMCID: PMC7673779 DOI: 10.7554/elife.59857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleus of the solitary tract (NTS) is critical for the central integration of signals from visceral organs and contains preproglucagon (PPG) neurons, which express leptin receptors in the mouse and send direct projections to the paraventricular nucleus of the hypothalamus (PVH). Here, we visualized projections of PPG neurons in leptin-deficient Lepob/ob mice and found that projections from PPG neurons are elevated compared with controls, and PPG projections were normalized by targeted rescue of leptin receptors in LepRbTB/TB mice, which lack functional neuronal leptin receptors. Moreover, Lepob/ob and LepRbTB/TB mice displayed increased levels of neuronal activation in the PVH following vagal stimulation, and whole-cell patch recordings of GLP-1 receptor-expressing PVH neurons revealed enhanced excitatory neurotransmission, suggesting that leptin acts cell autonomously to suppress representation of excitatory afferents from PPG neurons, thereby diminishing the impact of visceral sensory information on GLP-1 receptor-expressing neurons in the PVH.
Collapse
Affiliation(s)
- Jessica E Biddinger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Roman M Lazarenko
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Michael M Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, United States
| | - Richard Simerly
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| |
Collapse
|
112
|
Dumon C, Belaidouni Y, Diabira D, Appleyard SM, Wayman GA, Gaiarsa JL. Leptin down-regulates KCC2 activity and controls chloride homeostasis in the neonatal rat hippocampus. Mol Brain 2020; 13:151. [PMID: 33183317 PMCID: PMC7661183 DOI: 10.1186/s13041-020-00689-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
The canonical physiological role of leptin is to regulate hunger and satiety acting on specific hypothalamic nuclei. Beyond this key metabolic function; leptin also regulates many aspects of development and functioning of neuronal hippocampal networks throughout life. Here we show that leptin controls chloride homeostasis in the developing rat hippocampus in vitro. The effect of leptin relies on the down-regulation of the potassium/chloride extruder KCC2 activity and is present during a restricted period of postnatal development. This study confirms and extends the role of leptin in the ontogenesis of functional GABAergic inhibition and helps understanding how abnormal levels of leptin may contribute to neurological disorders.
Collapse
Affiliation(s)
- Camille Dumon
- Aix-Marseille Univ UMR 1249, INSERM (Institut National de La Santé et de La Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de La Méditerranée), Parc Scientifique de Luminy, Marseille, France
- Neurochlore Parc Scientifique et Technologique de Luminy, Bâtiment Beret Delaage, Zone Luminy Entreprises Biotech, Marseille, France
| | - Yasmine Belaidouni
- Aix-Marseille Univ UMR 1249, INSERM (Institut National de La Santé et de La Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de La Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Diabe Diabira
- Aix-Marseille Univ UMR 1249, INSERM (Institut National de La Santé et de La Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de La Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Gary A Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Jean-Luc Gaiarsa
- Aix-Marseille Univ UMR 1249, INSERM (Institut National de La Santé et de La Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de La Méditerranée), Parc Scientifique de Luminy, Marseille, France.
| |
Collapse
|
113
|
Garofoli F, Mazzucchelli I, Angelini M, Klersy C, Tinelli C, Carletti GV, Calcaterra V, Gardella B, Tzialla C. The dynamical interplay of perinatal leptin with birthweight and 3-month weight, in full-term, preterm, IUGR mother-infant dyads. J Matern Fetal Neonatal Med 2020; 35:3729-3735. [PMID: 33161792 DOI: 10.1080/14767058.2020.1839750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the dynamical interplay between perinatal leptin concentrations and neonatal weight evolution until 3 months of age. METHODS In a prospective observational study, maternal, cord blood and neonatal plasma leptin concentrations were correlated to birthweight and 3-month weight in 26 full-term, 20 preterm, and 17 intrauterine growth restriction (IUGR) mother-neonate couples. RESULTS The median of maternal, cord blood, neonatal leptin concentrations were significantly different among the three groups (p = 0.010; <0.001; =0.041 correspondingly). In the respect of the full-term group, higher concentrations were reported in preterm and IUGR mothers and lower concentrations in cord blood and neonatal plasma. The post-hoc comparisons showed that maternal concentrations were significantly higher in the IUGR group (p = 0.005 vs full-term), cord blood concentrations resulted always significantly lower (preterm, IUGR vs full-term p < 0.001) and neonatal concentrations were significantly lower in the preterm group (p = 0.018 vs full-term). Neonatal birthweight and 3-month weight were always significantly different among groups (p < 0.001), even if preterm and IUGR still had lower weight than full-term, the percent increasing of weight between birth and 3-month demonstrated that preterm and IUGR infants have grown significantly faster, (preterm, IUGR vs full-term p < 0.001). The univariable analysis showed a maternal leptin association with offspring' birthweight (R = -38%, p = 0.006) and with 3-month weight (R = -43%, p = 0.002). Accounting for confounders, these associations lost significance. Cord blood leptin concentrations positively correlated with birthweight and with 3-month weight (both, p < 0.001). The latter correlation, when adjusting for birthweight became negative (R = -43% p < 0.001). CONCLUSION Our results showed that maternal leptin levels lost their influence on neonatal weight when considering confounders. At 3-month, once birthweight adjusted, the percent increasing of weight was statistically larger in preterm and IUGR than the full-term group and the correlation between cord blood leptin and weight turned negative, from positive at birth. These data may be a clue for further investigation on the relationship between perinatal leptin concentrations and catch-up growth.
Collapse
Affiliation(s)
- Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| | - Iolanda Mazzucchelli
- Department of Internal Medicine and Therapeutics, Unit of Rheumatology, Università di Pavia, Pavia, Italia
| | - Micol Angelini
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| | - Catherine Klersy
- Biometry and Clinical Epidemiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| | - Carmine Tinelli
- Biometry and Clinical Epidemiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| | | | - Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italia.,Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| | - Barbara Gardella
- Department of Obstetrics and Gynaecology, Università di Pavia, Fondazione IRCCS Policlinico, Pavia, Italia
| | - Chryssoula Tzialla
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| |
Collapse
|
114
|
Belsham DD, Dalvi PS. Insulin signalling in hypothalamic neurones. J Neuroendocrinol 2020; 33:e12919. [PMID: 33227171 DOI: 10.1111/jne.12919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Subsequent to the discovery of insulin by Banting and Best in the Department of Physiology at the University of Toronto 100 years ago, the field of insulin signalling and action has grown at a remarkable pace. Yet, the recognition that insulin action in the brain is critical for whole body homeostasis has only recently been appreciated. The hypothalamus is a key region in the brain that responds to circulating insulin by engaging a complex signalling cascade resulting in the ultimate release of neuropeptides that control hunger and feeding. Disruption of this important feedback system can lead to a phenomenon called cellular insulin resistance, where the neurones cease to sense insulin. The factors contributing to insulin resistance, as well as the resulting detrimental effects, include the induction of neuroinflammation, endoplasmic reticulum stress and alterations in the architecture of the blood-brain barrier that allow transport of insulin into the brain. These manifestations usually change energy balance, causing weight gain, often resulting in obesity and its deadly comorbidities, including type 2 diabetes mellitus, cardiovascular disease and metabolic syndrome. Nonetheless, there is still hope because the signal transduction pathways can be targeted at a number of levels by neurone-specific therapeutics. With the advent of unique cell models for investigating the mechanisms involved in these processes, the discovery of novel targets is increasingly possible. Although we are still looking for a cure for diabetes, Banting and Best would be impressed at how far their discovery has advanced and the contemporary knowledge that has been accumulated based on insulin action.
Collapse
Affiliation(s)
- Denise D Belsham
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Prasad S Dalvi
- Biology Department, Morosky College of Health Professions and Sciences, Gannon University, Erie, PA, USA
| |
Collapse
|
115
|
Lutgens E, Atzler D, Döring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur Heart J 2020; 40:3937-3946. [PMID: 31121017 DOI: 10.1093/eurheartj/ehz283] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
The outcomes of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial have unequivocally proven that inflammation is a key driver of atherosclerosis and that targeting inflammation, in this case by using an anti-interleukin-1β antibody, improves cardiovascular disease (CVD) outcomes. This is especially true for CVD patients with a pro-inflammatory constitution. Although CANTOS has epitomized the importance of targeting inflammation in atherosclerosis, treatment with canakinumab did not improve CVD mortality, and caused an increase in infections. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways and exhibit limited immune-suppressive side effects, as pursued in our collaborative research centre, are required to optimize immunotherapy for CVD. In this review, we will highlight the potential of novel immunotherapeutic targets that are currently considered to become a future treatment for CVD.
Collapse
Affiliation(s)
- Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Goethestraße 33, Munich 80336, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitsingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
116
|
Han H, Zhou W. Leptin and Its Derivatives: A Potential Target for Autoimmune Diseases. Curr Drug Targets 2020; 20:1563-1571. [PMID: 31362672 DOI: 10.2174/1389450120666190729120557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022]
Abstract
Leptin is an adipocyte-derived hormone product of the obese (ob) gene. Leptin plays an important regulatory role as an immunomodulatory factor in the maintenance and homeostasis of immune functions. Indeed, the role of leptin as an immunomodulator in inflammatory and immune responses has attracted increasing attention in recent years. Leptin mostly affects responses through the immunomodulation of monocytes, dendritic cells, neutrophils, NK cells, and dendritic cells in addition to modulating T and B cell development and functions. Leptin is also an important inflammatory regulator, wherein higher expression influences the secretion rates of IL-6, C-reactive proteins, and TNF-α. Moreover, leptin is highly involved in processes related to human metabolism, inflammatory reactions, cellular development, and diseases, including hematopoiesis. Owing to its diverse immunerelated functions, leptin has been explored as a potential target for therapeutic development in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, No.146 North Huanghe St. Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, No.146 North Huanghe St. Huanggu Dis. Shenyang City, Liaoning Pro 110034, China
| |
Collapse
|
117
|
Sarkar S, Bhattacharya S, Alam MJ, Yadav R, Banerjee SK. Hypoxia aggravates non-alcoholic fatty liver disease in presence of high fat choline deficient diet: A pilot study. Life Sci 2020; 260:118404. [PMID: 32920003 DOI: 10.1016/j.lfs.2020.118404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
AIM NAFLD is a chronic and progressive disease for which there are no FDA-approved drugs available in the market. Drug discovery is a time-consuming procedure and requires screening of hundreds of small molecules to find new chemical entities (NECs) for a particular disease. Current preclinical NAFLD animal models take a longer time, which enhances the duration and expenses of the screening procedure. Hence to shorten the duration, we have proposed a preclinical animal model for rapid induction of non-alcoholic steatohepatitis (NASH), an advanced stage of NAFLD in rats. METHODOLOGY The animals were divided into three groups; control, high fat choline deficient (HFCD) and high fat choline deficient diet with sodium nitrite (40 mg/kg b.w. i.p. per day) (HFCD + NaNO2) respectively. Four weeks later physical and serum biochemical parameters were assessed, intraperitoneal glucose tolerance test was performed, and histopathology and gene expression were analysed. KEY FINDINGS Hypoxic stress aggravates the lipid accumulation, ballooning, lobular inflammation and fibrosis in hepatic tissue in presence of HFCD diet. SIGNIFICANCE This novel rodent model could be a useful NAFLD model to screen small molecules rapidly for treatment of NASH.
Collapse
Affiliation(s)
- Soumalya Sarkar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Sankarsan Bhattacharya
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Md Jahangir Alam
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sanjay K Banerjee
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India.
| |
Collapse
|
118
|
Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 2020; 62:101095. [PMID: 32535272 DOI: 10.1016/j.arr.2020.101095] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes are the most common metabolic disorders, which are strongly related to Alzheimer's disease (AD) in aging. Diabetes and obesity can lead to the accumulation of amyloid plaques, neurofibrillary tangles (NFTs), and other symptoms of AD through several pathways, including insulin resistance, hyperglycemia, hyperinsulinemia, chronic inflammation, oxidative stress, adipokines dysregulation, and vascular impairment. Currently, the use of polyphenols has been expanded in animal models and in-vitro studies because of their comparatively negligible adverse effects. Among them, quercetin (QT) is one of the most abundant polyphenolic flavonoids, which is present in fruits and vegetables and displays many biological, health-promoting effects in a wide range of diseases. The low bioavailability and poor solubility of QT have also led researchers to make various QT-involved nanoparticles (NPs) to overcome these limitations. In this paper, we review significant molecular mechanisms induced by diabetes and obesity that increase AD pathogenesis. Then, we summarize in vitro, in vivo, and clinical evidence regarding the anti-Alzheimer, anti-diabetic and anti-obesity effects of QT. Finally, QT in pure and combination form using NPs has been suggested as a promising therapeutic agent for future studies.
Collapse
|
119
|
Defour M, Michielsen CCJR, O'Donovan SD, Afman LA, Kersten S. Transcriptomic signature of fasting in human adipose tissue. Physiol Genomics 2020; 52:451-467. [PMID: 32866087 DOI: 10.1152/physiolgenomics.00083.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Little is known about gene regulation by fasting in human adipose tissue. Accordingly, the objective of this study was to investigate the effects of fasting on adipose tissue gene expression in humans. To that end, subcutaneous adipose tissue biopsies were collected from 11 volunteers 2 and 26 h after consumption of a standardized meal. For comparison, epididymal adipose tissue was collected from C57Bl/6J mice in the ab libitum-fed state and after a 16 h fast. The timing of sampling adipose tissue roughly corresponds with the near depletion of liver glycogen. Transcriptome analysis was carried out using Affymetrix microarrays. We found that, 1) fasting downregulated numerous metabolic pathways in human adipose tissue, including triglyceride and fatty acid synthesis, glycolysis and glycogen synthesis, TCA cycle, oxidative phosphorylation, mitochondrial translation, and insulin signaling; 2) fasting downregulated genes involved in proteasomal degradation in human adipose tissue; 3) fasting had much less pronounced effects on the adipose tissue transcriptome in humans than mice; 4) although major overlap in fasting-induced gene regulation was observed between human and mouse adipose tissue, many genes were differentially regulated in the two species, including genes involved in insulin signaling (PRKAG2, PFKFB3), PPAR signaling (PPARG, ACSL1, HMGCS2, SLC22A5, ACOT1), glycogen metabolism (PCK1, PYGB), and lipid droplets (PLIN1, PNPLA2, CIDEA, CIDEC). In conclusion, although numerous genes and pathways are regulated similarly by fasting in human and mouse adipose tissue, many genes show very distinct responses to fasting in humans and mice. Our data provide a useful resource to study adipose tissue function during fasting.
Collapse
Affiliation(s)
- Merel Defour
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Charlotte C J R Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Shauna D O'Donovan
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
120
|
Short-term metreleptin treatment of patients with anorexia nervosa: rapid on-set of beneficial cognitive, emotional, and behavioral effects. Transl Psychiatry 2020; 10:303. [PMID: 32855384 PMCID: PMC7453199 DOI: 10.1038/s41398-020-00977-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
To examine the hypothesis that normalization of low circulating leptin levels in patients with anorexia nervosa ameliorates hyperactivity, three seriously ill females with hyperactivity were treated off-label with metreleptin (recombinant human leptin) for up to 14 days. Drive for activity, repetitive thoughts of food, inner restlessness, and weight phobia decreased in two patients. Surprisingly, depression improved rapidly in all patients. No serious adverse events occurred. Due to obvious limitations of uncontrolled case series, placebo-controlled clinical trials are mandatory to confirm the observed rapid onset of beneficial effects. Our findings suggest an important role of hypoleptinemia in the mental and behavioral phenotype of anorexia nervosa.
Collapse
|
121
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
122
|
Jutant EM, Tu L, Humbert M, Guignabert C, Huertas A. The Thousand Faces of Leptin in the Lung. Chest 2020; 159:239-248. [PMID: 32795478 DOI: 10.1016/j.chest.2020.07.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Leptin is a pleotropic hormone known to regulate a wide range of systemic functions, from satiety to inflammation. Increasing evidence has shown that leptin and its receptor (ObR) are not only expressed in adipose tissue but also in several organs, including the lungs. Leptin levels were first believed to be elevated only in the lungs of obese patients, and leptin was suspected to be responsible for obesity-related lung complications. Aside from obesity, leptin displays many faces in the respiratory system, independently of body weight, as this cytokine-like hormone plays important physiological roles, from the embryogenic state to maturation of the lungs and the control of ventilation. The leptin-signaling pathway is also involved in immune modulation and cell proliferation, and its dysregulation can lead to the onset of lung diseases. This review article addresses the thousand faces of leptin and its signaling in the lungs under physiological conditions and in disease.
Collapse
Affiliation(s)
- Etienne-Marie Jutant
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, "Pulmonary Hypertension: Pathophysiology and Novel Therapies," Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
123
|
Rylander M, Taylor G, Bennett S, Pierce C, Keniston A, Mehler PS. Evaluation of cognitive function in patients with severe anorexia nervosa before and after medical stabilization. J Eat Disord 2020; 8:35. [PMID: 32760588 PMCID: PMC7393847 DOI: 10.1186/s40337-020-00312-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The purpose of this study was to quantify cognitive deficits in severe anorexia nervosa (AN) before and after medical stabilization. METHODS This was a prospective study of 40 females between the ages of 18 and 50 admitted to a medical stabilization unit with severe AN (%IBW < 70). The primary outcome of the study was change in test scores on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and after medical stabilization. RESULTS There were no statistically significant differences in baseline RBANS scores between AN patients overall and controls (p = 0.0940). There was a statistically significant change in RBANS from baseline 94.1 + 12.7 to medical stabilization 97.1 + 10.6 (p = 0.0173), although notably both mean values fell within the average range. There were no significant differences in baseline RBANS scores between controls and AN-BP patients (p = 0.3320) but significant differences were found between controls and AN-R patients (p = 0.0434). CONCLUSIONS No baseline deficits in cognition were found in this sample of women with severe AN.
Collapse
Affiliation(s)
- Melanie Rylander
- Departments of Internal Medicine and Psychiatry, Denver Health Medical Center, University of Colorado School of Medicine, 777 Bannock St, Denver, CO 80204 USA
| | - Gillian Taylor
- Department of Psychiatry, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO 80204 USA
| | - Susan Bennett
- Department of Psychiatry, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO 80204 USA
| | - Christopher Pierce
- Department of Psychiatry, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO 80204 USA
| | - Angela Keniston
- Department of Internal Medicine, University of Colorado School of Medicine, Denver, CO 80204 USA
| | - Philip S. Mehler
- ACUTE Center for Eating Disorders, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO 80204 USA
| |
Collapse
|
124
|
Kong Z, Sun S, Shi Q, Zhang H, Tong TK, Nie J. Short-Term Ketogenic Diet Improves Abdominal Obesity in Overweight/Obese Chinese Young Females. Front Physiol 2020; 11:856. [PMID: 32848830 PMCID: PMC7399204 DOI: 10.3389/fphys.2020.00856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to examine the effects of a short-term ketogenic diet (KD) on body composition and cardiorespiratory fitness (CRF) in overweight/obese Chinese females. Twenty young females [age: 21.0 ± 3.7 years, weight: 65.5 ± 7.7 kg, body mass index (BMI): 24.9 ± 2.7 kg⋅m–2] consumed 4 weeks of a normal diet (ND) as a baseline and then switched to a low-carbohydrate, high-fat, and adequate protein KD for another 4 weeks. With the same daily caloric intake, the proportions of energy intake derived from carbohydrates, proteins, and fats were changed from 44.0 ± 7.6%, 15.4 ± 3.3%, 39.6 ± 5.8% in ND to 9.2 ± 4.8%, 21.9 ± 3.4%, and 69.0 ± 5.4% in KD. The results showed that, without impairing the CRF level, the 4-week KD intervention significantly reduced body weight (−2.9 kg), BMI (−1.1 kg⋅m–2), waist circumference (−4.0 cm), hip circumference (−2.5 cm), and body fat percentage (−2.0%). Moreover, fasting leptin level was lowered significantly, and serum levels of inflammatory markers (i.e., TNF-α and MCP-1) were unchanged following KD. These findings suggest that KD can be used as a rapid and effective approach to lose weight and reduce abdominal adiposity in overweight/obese Chinese females without exacerbating their CRF.
Collapse
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, China
| | - Qingde Shi
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Haifeng Zhang
- College of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Tomas K Tong
- Department of Physical Education, Hong Kong Baptist University, Hong Kong, China
| | - Jinlei Nie
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| |
Collapse
|
125
|
Liu TY, Yu HR, Tsai CC, Huang LT, Chen CC, Sheen JM, Tiao MM, Tain YL, Lin IC, Lai YJ, Lin YJ, Hsu TY. Resveratrol intake during pregnancy and lactation re-programs adiposity and ameliorates leptin resistance in male progeny induced by maternal high-fat/high sucrose plus postnatal high-fat/high sucrose diets via fat metabolism regulation. Lipids Health Dis 2020; 19:174. [PMID: 32711539 PMCID: PMC7382831 DOI: 10.1186/s12944-020-01349-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background Maternal obesity is an emerging problem in the modern world. Growing evidence suggests that intrauterine high-fat (HF) exposure may predispose progeny to subsequent metabolic challenges. Progeny born to mothers who ate an HF diet also tends to eat an HF diet when growing and aggravate metabolic issues. Thus, the generational transmission of obesity is cyclical. Developing a strategy to prevent the occurrence of metabolic syndrome related to prenatal and/or postnatal HF diet is important. In this study, the reprogramming effects of maternal resveratrol treatment for the progeny with maternal HF/postnatal HF diets were investigated. Methods Sprague-Dawley dams were fed either a control or a high-fat/high sucrose diet (HFHS) from mating to lactation. After weaning, the progeny was fed chow or an HF diet. Four experimental groups were yielded: CC (maternal/postnatal control diet), HC (maternal HF/postnatal control diet), CH (maternal control/postnatal HFHS diet), and HH (maternal/postnatal HFHS diet). A fifth group (HRH) received a maternal HFHS diet plus maternal resveratrol treatment and a postnatal chow diet to study the effects of maternal resveratrol therapy. Results Maternal resveratrol treatment lessened the weight and adiposity of progeny that were programmed by combined prenatal and postnatal HFHS diets. Maternal resveratrol therapy ameliorated the decreased abundance of the sirtuin 1 (SIRT1) enzyme in retroperitoneal tissue and the altered leptin/soluble leptin receptor ratio of progeny. Maternal resveratrol therapy also decreased lipogenesis and increased lipolysis for progeny. Conclusions Maternal resveratrol intervention can prevent adiposity programmed by maternal and postnatal HFHS diets by inducing lipid metabolic modulation. This study offers a novel reprogramming role for the effect of maternal resveratrol supplements against obesity.
Collapse
Affiliation(s)
- Ta-Yu Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jium-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niao-Sung District, Kaohsiung, Taiwan.
| |
Collapse
|
126
|
Modulation of Leptin and Leptin Receptor Expression in Mice Acutely Infected with Neospora caninum. Pathogens 2020; 9:pathogens9070587. [PMID: 32709166 PMCID: PMC7399848 DOI: 10.3390/pathogens9070587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Neospora caninum is an apicomplexan parasite that in cattle assumes particular importance, as it is responsible for abortions reported worldwide. Leptin is an adipokine mainly secreted by adipocytes, which beside its role in maintaining metabolic homeostasis also has important effects in both innate and adaptive immunity. In previous work, we showed that mice chronically infected with N. caninum had elevated serum leptin levels. Here, we sought to assess whether acute infection with N. caninum infection influenced the production of this adipokine as well as leptin receptor mRNA levels. Our results show that acute infection with N. caninum led to decreased leptin serum levels and mRNA expression in adipose tissue. A decrease in leptin receptor transcript variant 1 mRNA (long isoform) and leptin receptor transcript variant 3 mRNA (one of the short isoforms) expression was also observed. An increase in the number of cells staining positive for leptin in the liver of infected mice was observed, although this increase was less marked in Interleukin (IL)-12/IL-23 p40-deficient mice. Overall, our results show that N. caninum infection also influences leptin production during acute infection.
Collapse
|
127
|
Kobayashi M, Uta S, Otsubo M, Deguchi Y, Tagawa R, Mizunoe Y, Nakagawa Y, Shimano H, Higami Y. Srebp-1c/Fgf21/Pgc-1α Axis Regulated by Leptin Signaling in Adipocytes-Possible Mechanism of Caloric Restriction-Associated Metabolic Remodeling of White Adipose Tissue. Nutrients 2020; 12:nu12072054. [PMID: 32664386 PMCID: PMC7400870 DOI: 10.3390/nu12072054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Caloric restriction (CR) improves whole body metabolism, suppresses age-related pathophysiology, and extends lifespan in rodents. Metabolic remodeling, including fatty acid (FA) biosynthesis and mitochondrial biogenesis, in white adipose tissue (WAT) plays an important role in the beneficial effects of CR. We have proposed that CR-induced mitochondrial biogenesis in WAT is mediated by peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is transcriptionally regulated by sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA biosynthesis. We have also proposed that the CR-associated upregulation of SREBP-1 and PGC-1α might result from the attenuation of leptin signaling and the upregulation of fibroblast growth factor 21 (FGF21) in WAT. However, the detailed molecular mechanisms remain unclear. Here, we interrogate the regulatory mechanisms involving leptin signaling, SREBP-1c, FGF21, and PGC-1α using Srebp-1c knockout (KO) mice, mouse embryonic fibroblasts, and 3T3-L1 adipocytes, by altering the expression of SREBP-1c or FGF21. We show that a reduction in leptin signaling induces the expression of proteins involved in FA biosynthesis and mitochondrial biogenesis via SREBP-1c in adipocytes. The upregulation of SREBP-1c activates PGC-1α transcription via FGF21, but it is unlikely that the FGF21-associated upregulation of PGC-1α expression is a predominant contributor to mitochondrial biogenesis in adipocytes.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Seira Uta
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Minami Otsubo
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; (Y.M.); (H.S.)
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; (Y.M.); (H.S.)
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-1004, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
- Correspondence: ; Tel./Fax: +81-4-7121-3676
| |
Collapse
|
128
|
Berger SM, Griffin JS, Dent SC. Phenotypes and pathways: Working toward an integrated skeletal biology in biological anthropology. Am J Hum Biol 2020; 33:e23450. [PMID: 32511865 DOI: 10.1002/ajhb.23450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 05/17/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Steph M Berger
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacob S Griffin
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sophia C Dent
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
129
|
Precision Nutrition and Childhood Obesity: A Scoping Review. Metabolites 2020; 10:metabo10060235. [PMID: 32521722 PMCID: PMC7345802 DOI: 10.3390/metabo10060235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Environmental exposures such as nutrition during life stages with high developmental plasticity—in particular, the in utero period, infancy, childhood, and puberty—may have long-lasting influences on risk of chronic diseases, including obesity-related conditions that manifest as early as childhood. Yet, specific mechanisms underlying these relationships remain unclear. Here, we consider the study of ‘omics mechanisms, including nutrigenomics, epigenetics/epigenomics, and metabolomics, within a life course epidemiological framework to accomplish three objectives. First, we carried out a scoping review of population-based literature with a focus on studies that include ‘omics analyses during three sensitive periods during early life: in utero, infancy, and childhood. We elected to conduct a scoping review because the application of multi-‘omics and/or precision nutrition in childhood obesity prevention and treatment is relatively recent, and identifying knowledge gaps can expedite future research. Second, concomitant with the literature review, we discuss the relevance and plausibility of biological mechanisms that may underlie early origins of childhood obesity identified by studies to date. Finally, we identify current research limitations and future opportunities for application of multi-‘omics in precision nutrition/health practice.
Collapse
|
130
|
Harbi NS, Jawad AH, Alsalman FK. Evaluation of Adipokines Concentration in Iraqi Patients with Major and Minor Beta Thalassemia. Rep Biochem Mol Biol 2020; 9:209-215. [PMID: 33178871 DOI: 10.29252/rbmb.9.2.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Beta thalassemia (β-thalassemia) is a type of inherited blood disorder characterized by the impaired production of beta globin chains. β-Thalassemia can be categorized into three subtypes according to symptom severity: β-thalassemia minor, β-thalassemia intermedia, and β-thalassemia major. Adipose tissue functions as an endocrine gland by synthesizing and secreting an array of bioactive peptides including leptin, adiponectin, and resistin. Methods We recruited 30 participants who were transfusion dependent β-thalassemia patients (major) and 30 participants who were non-transfusion dependent β-thalassemia patients (minor). The control group consisted of 20 healthy individuals. Analysis of the demographic profile, hematological profile, biochemical parameters, and serum adipokine concentrations (leptin, adiponectin and resistin) were performed for all participants. Results Our results showed that leptin serum levels were significantly lower in the β-thalassemia major group compared with the β-thalassemia minor group or healthy individuals, while serum levels of adiponectin were significantly higher in β-thalassemic patients compared with healthy controls. Serum levels of resistin were significantly higher in β-thalassemic patients compared with the healthy control group. A significant negative correlation was noted between adiponectin and BMI in β-thalassemic patients, whereas leptin was observed to have a significant positive correlation with BMI in the control group. Leptin was observed to have a significant negative correlation with adiponectin and ferritin in the β-thalassemia major group. Conclusion The changes we observed in adipokine levels may play a role in the development of the complications related to β-Thalassemia and disease severity.
Collapse
Affiliation(s)
- Nazar Sattar Harbi
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad
| | - Alaa Hussein Jawad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad
| | | |
Collapse
|
131
|
Abstract
The successful use of leptin for the treatment of individuals with lipodystrophy and leptin deficiency is well established. However, pharmacological approaches of leptin therapy for the treatment of diet-induced obesity have been ineffective. There is ample room for a better understanding of the much famed "leptin resistance" phenomenon. Our recent data in this area prompt us to call for a conceptual shift. This shift entails a model in which a reduction of bioactive leptin levels in the context of obesity triggers a high degree of leptin sensitization and improved leptin action, both centrally and peripherally. Put another way, hyperleptinemia per se causes leptin resistance and associated metabolic disorders. In this perspective, we briefly discuss the underlying conceptual steps that led us to explore partial leptin reduction as a viable therapeutic avenue. We hope this discussion will contribute to potential future applications of partial leptin reduction therapy for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
132
|
The relationship of body condition and chewing time with body weight, the level of plasma cocaine and amphetamine regulated transcript, leptin and energy metabolites in cows until reaching the lactation peak. ACTA VET BRNO 2020. [DOI: 10.2754/avb202089010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined the relationship of body condition and chewing time (CT) with body weight (BW), the level of cocaine-and amphetamine-regulated transcript (CART), leptin and energy metabolites in cows until reaching the lactation peak. The results showed the greatest loss of BW between days 11 and 45 of lactation and a decrease in the body condition score (BCS) until day 75. Chewing time showed an increase from day 45 with the highest values after lactation peak. The CART and leptin concentrations demonstrate a reduction of both indices (P < 0.05) between days 11 and 75. The function of leptin as a factor positively correlating with BW and BCS was found. In the heaviest individuals and those with higher BCS, the blood leptin levels were higher. The results of beta-hydroxybutyrate (BHBA) indicate that cows with the lowest BCS had the most intensive energy transformation. This led to a higher BHBA concentration compared to the cows with high BCS (P < 0.05). The obtained results show that CART was most strongly negatively associated with CT (P < 0.05). For leptin, the tendency was the opposite and the correlation with CT was not significant. The results suggest that CT may be stronger regulated by CART, which has anorectic properties, than by appetite inhibiting leptin. Significant decrease of body condition during lactation is a great problem for dairy farmers. The explanation of the issue of the participation of CART and leptin in the regulation of body’s energy homeostasis may therefore be of importance for milk production.
Collapse
|
133
|
Iqbal J, Mascareno E, Chua S, Hussain MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020; 295:4101-4113. [PMID: 32047110 PMCID: PMC7105304 DOI: 10.1074/jbc.ra119.011881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Indexed: 11/06/2022] Open
Abstract
The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed WT mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacted with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicated that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia.
| | - Eduardo Mascareno
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Streamson Chua
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; Department of Foundations of Medicine, NYU Long Island School of Medicine and Diabetes and Obesity Research Center, NYU Winthrop Research Institute, Mineola, New York 11501; Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209.
| |
Collapse
|
134
|
Picarelli A, Borghini R, Marino M, Casale R, Di Tola M, Lubrano C, Piermattei A, Gualdi G, Bella A, Donato G, Masselli G. Visceral and subcutaneous adipose tissue as markers of local and systemic inflammation: a comparison between celiac and obese patients using MRI. Tech Coloproctol 2020; 24:553-562. [PMID: 32112244 DOI: 10.1007/s10151-020-02173-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 02/08/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Celiac disease (CD) is a systemic inflammatory disease, which primarily affects the gastrointestinal tract. It has been recently demonstrated that adipose-tissue infiltration by proinflammatory immune cells causes a chronic low-grade inflammation in obese patients. Magnetic resonance imaging (MRI) has already proved to be useful in evaluation of inflammatory states. The aim of the present study was to determine whether alterations of visceral and subcutaneous adipose tissue, identified with MRI, could serve as markers of local and systemic inflammation in patients with CD. METHODS A pilot study was conducted comparing alterations in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in CD patients vs obese patients and healthy controls. Fifty patients were enrolled and assigned to one of the following groups: Group A: 11 active CD patients; Group B: 11 CD patients in remission; Group C: 16 obese patients; Group D: 12 healthy controls. A 3-T MRI unit was used and T2-weighted TSE images of VAT and SAT were obtained in specific regions of interest. Serum cytokine concentrations (TNF-α, IL-6, adiponectin, leptin, IL-2, IFN-γ) were determined. RESULTS There was a significant difference in VAT T2 relaxation time between Group A and B (p < 0.001), A and D (p < 0.01), B and C (p < 0.001). There was a statistically significant difference in SAT T2 relaxation time between Group A and B (p < 0.001), A and C (p < 0.05), A and D (p < 0.001), B and C (p < 0.01). In addition, VAT/SAT T2 relaxation time ratio showed a statistically significant difference between Group A and C (p < 0.05) and between Group B and C (p < 0.01). Only TNF-α and IL-6 significantly correlated with both VAT and VAT/SAT ratio in active CD. CONCLUSIONS MRI showed similar increased visceral inflammatory signals in patients with active CD and obese patients. However, subcutaneous inflammatory signals were higher in active CD than in all the other groups. These data show that there is a systemic inflammatory state in active CD, whereas chronic inflammation appears confined to VAT in obesity. These data were only partially confirmed by serological cytokine profiles, which showed less specificity than MRI.
Collapse
Affiliation(s)
- A Picarelli
- Department of Translational and Precision Medicine, Gastroenterology Unit, Policlinico Umberto I, Sapienza University, Viale del Policlinico, 155, 00161, Rome, Italy
| | - R Borghini
- Department of Translational and Precision Medicine, Gastroenterology Unit, Policlinico Umberto I, Sapienza University, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - M Marino
- Department of Translational and Precision Medicine, Gastroenterology Unit, Policlinico Umberto I, Sapienza University, Viale del Policlinico, 155, 00161, Rome, Italy
| | - R Casale
- Department of Translational and Precision Medicine, Gastroenterology Unit, Policlinico Umberto I, Sapienza University, Viale del Policlinico, 155, 00161, Rome, Italy
| | - M Di Tola
- Department of Translational and Precision Medicine, Gastroenterology Unit, Policlinico Umberto I, Sapienza University, Viale del Policlinico, 155, 00161, Rome, Italy
| | - C Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - A Piermattei
- Department of Surgical Sciences, "F. Durante" Section, Sapienza University, Rome, Italy
| | - G Gualdi
- Department of Radiology, Sapienza University, Rome, Italy
| | - A Bella
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - G Donato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - G Masselli
- Department of Radiology, Sapienza University, Rome, Italy
| |
Collapse
|
135
|
Colocynth (Citrullus colocynthis) seed extracts attenuate adipogenesis by down-regulating PPARγ/ SREBP-1c and C/EBPα in 3T3-L1 cells. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
136
|
Caillet J, Mignan S, Pham-Dang N, Devoize L. Analysis of leptin concentrations in oral fluids (saliva and crevicular gingival fluid) and blood in patients with chronic periodontal disease: systematic review of literature. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2020. [DOI: 10.1051/mbcb/2019037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objective: The objective of this systematic analysis was to perform a qualitative and quantitative synthesis of the literature concerning salivary and serum leptin variations in patients with chronic periodontitis (CP) compared with healthy subjects. Saliva leptin concentration analysis could be a relevant and non-invasive biological test for the evaluation of periodontal disease in both medical and clinical trials, beyond the clinical and radiographic elements. Material and Method: Querying the PubMed and Web of Science databases identified articles that met our inclusion criteria. Quantitative analysis of the literature data was performed with the Review Manager 5.3 software. Results: The qualitative analysis included 14 articles and showed a decrease of salivary leptin (5 studies out of 5) and an increase of serum leptin (11 of 12 studies) in patients with CP compared to unaffected subjects of CP. Quantitative analysis was performed on 4 trials. For salivary leptin, we confirmed a decrease in its level in patients with CP with a standardized mean difference (SMD) of −2.27, 95% CI [−2.68, −1.86]. The difference was highly significant but we detected a very important heterogeneity in this dataset (I2 = 94%). For serum leptin, we also confirmed an increase in its rate in patients with CP with an SMD of 2.18, 95% CI [1.75, 2.61]. The difference was highly significant but the heterogeneity measured in this dataset was also too high (I2 = 95%). Conclusion: The current level of evidence was insufficient to assert an increase in serum leptin and a decrease in salivary leptin in CP patients compared to healthy controls due to a great heterogeneity of the values measured in the studies.
Collapse
|
137
|
Shahraki MR, Badini F, Shahraki E, Shahraki AR, Dashipour A. Effects of Capparis decidua Hydroalcoholic Extracts on Blood Glucose, Lipid Profile and Leptin of Wistar Male Rats with High Cholesterol Diets. NUTRITION AND FOOD SCIENCES RESEARCH 2020. [DOI: 10.29252/nfsr.7.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
138
|
Studies on characteristics and anti-diabetic and -nephritic effects of polysaccharides isolated from Paecilomyces hepiali fermentation mycelium in db/db mice. Carbohydr Polym 2019; 232:115766. [PMID: 31952583 DOI: 10.1016/j.carbpol.2019.115766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes mellitus plagues many people in China and the world, and its nephritis complication is the leading cause of death for patients. Paecilomyces hepiali contained various functional components, especially polysaccharides, which possesses well pharmacological activities. In this study, polysaccharide purified from Paecilomyces hepiali fermented mycelium entitled PHEA was obtained, and its structure was systemically characterized using fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). In C57BL/KsJ (BKS).Cg-Dock7m +/+ Leprdb/JNju mice (db/db mice), via detecting the alternations on biochemical criterions, pathological indicators and protein expressions related to nuclear factor-E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling in serum and/or tissues including muscle, liver and kidney after 8-week PHEA administration, the hypoglycemic, hypolipidemic, and anti-diabetic nephropathic activities of PHEA were confirmed. The purified P. Hepiali polysaccharide with the anti-diabetic and -nephritic properties was first reported in this study via regulating Nrf2-meadited NF-κB signaling in db/db mice.
Collapse
|
139
|
Wang Z, Komatsu T, Ohata Y, Watanabe Y, Yuan Y, Yoshii Y, Park S, Mori R, Satou M, Kondo Y, Shimokawa I, Chiba T. Effects of rikkunshito supplementation on resistance to oxidative stress and lifespan in mice. Geriatr Gerontol Int 2019; 20:238-247. [PMID: 31855319 DOI: 10.1111/ggi.13848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Abstract
AIM Caloric restriction (CR), which limits the caloric intake to 60-70% of ad libitum (AL) amounts in various experimental animals, delays aging and extends the lifespan. We previously showed that neuropeptide Y (NPY), an appetite-stimulating peptide, is essential for the anti-oxidative and life-extending effects of CR. Here, we investigated whether a Japanese traditional herbal medicine, rikkunshito (RKT), which induces NPY activation, has CR-like life-extending effects. METHODS First, we evaluated the life-extending activity of RKT by examining the effect of long-term RKT administration on wild-type and NPY knockout mice. Furthermore, we tested whether RKT enhances CR-mediated beneficial effects under AL conditions with a normal diet and under mild CR conditions with a high-fat diet. We then used 3-nitropropionic acid or doxorubicin to induce oxidative stress, and analyzed the differences in survival rate, weight loss, gene expression and cellular oxidative damage among groups. RESULTS RKT administration did not extend the lifespan of wild-type or NPY knockout mice. In the oxidative stress models, RKT treatment upregulated anti-oxidative gene expression in the liver. Furthermore, RKT administration reduced the oxidative damage in the liver compared to the CR conditions alone. However, on induction of oxidative stress by 3-nitropropionic acid or doxorubicin, RKT administration did not affect the survival rate. CONCLUSIONS These results show that RKT administration only partially mimics the effects of CR at the cellular level, but not at the organismal level to increase the lifespan of mice. Geriatr Gerontol Int 2019; ••: ••-••.
Collapse
Affiliation(s)
- Zi Wang
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Toshimitsu Komatsu
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshihisa Ohata
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Yukari Watanabe
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Yiwen Yuan
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Yuki Yoshii
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Seongjoon Park
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Motoyasu Satou
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Yoshitaka Kondo
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
140
|
Zecharia D, Rauch M, Sharabi-Nov A, Tamir S, Gutman R. Postnatal administration of leptin antagonist mitigates susceptibility to obesity under high-fat diet in male αMUPA mice. Am J Physiol Endocrinol Metab 2019; 317:E783-E793. [PMID: 31454257 DOI: 10.1152/ajpendo.00099.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perturbations in postnatal leptin signaling have been associated with altered susceptibility to diet-induced obesity (DIO) under high-fat-diet (HFD), albeit with contradicting evidence. Previous studies have shown that alpha murine urokinase-type plasminogen activator (αMUPA) mice have a higher and longer postnatal leptin surge compared with their wild types (WTs) as well as lower body weight and food intake under regular diet (RD). Here we explored αMUPA's propensity for DIO and the effect of attenuating postnatal leptin signaling with leptin antagonist (LA) on energy homeostasis under both RD and HFD. Four-day-old αMUPA pups were treated on alternate days until postnatal day 18 with either vehicle or LA (10 or 20 mg·day-1·kg-1) and weaned into RD or HFD. Compared with RD-fed αMUPA males, HFD-fed αMUPA males showed higher energy intake, even when corrected for body weight difference, and became hyperinsulinemic and obese. Additionally, HFD-fed αMUPA males gained body weight at a higher rate than their WTs mainly because of strain differences in energy expenditure. LA administration did not affect strain differences under RD but attenuated αMUPA's hyperinsulinemia and DIO under HFD, most likely by mediating energy expenditure. Together with our previous findings, these results suggest that αMUPA's leptin surge underlies its higher susceptibility to obesity under HFD, highlighting the role of leptin-related developmental processes in inducing obesity in a postweaning obesogenic environment, at least in αMUPA males. This study therefore supports the use of αMUPA mice for elucidating developmental mechanisms of obesity and the efficacy of early-life manipulations via leptin surge axis in attenuating DIO.
Collapse
Affiliation(s)
- Danielle Zecharia
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
- Department of Biotechnology, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Maayan Rauch
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
| | - Adi Sharabi-Nov
- Research Wing, Ziv Medical Center, Zefat, Israel
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
141
|
Hasegawa R, Iwase I, Takagi T, Kondo M, Matsui M, Kawashima C. Insulin resistance: Relationship between indices during late gestation in dairy cows and effects on newborn metabolism. Anim Sci J 2019; 90:1544-1555. [PMID: 31646708 DOI: 10.1111/asj.13300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022]
Abstract
To investigate the relationship between insulin resistance indices ["Revised quantitative insulin sensitivity check index" (RQUICKI; RQ), "Revised quantitative insulin sensitivity check index - β-hydroxybutyrate" (RQUICKIBHB ; RQBHB ), and "Homeostasis model assessment-insulin resistance" (HOMA-IR; HR)], and metabolic parameters in dams during late gestation, and their newborn calves. Blood was sampled twice weekly during the experimental period in 30 dry Holstein cows. In calves, blood sampling and body weight measurements were performed immediately after birth, and in 1-week-old male calves, liver and muscle biopsy samples were obtained for determining metabolic factor mRNA levels. RQ and RQBHB were negatively correlated with insulin, nonesterified fatty acid, BHB, and albumin and were positively correlated with leptin levels in blood during late gestation (p < .05). RQ, rather than RQBHB , reflected metabolism of dams, while stronger positive correlations were present between HR and blood insulin concentrations than other parameters, and calves of dams with high HR had low body weight, and high liver and muscle expression of growth hormone and insulin receptor mRNA (p < .05). RQ and HR of dams during late gestation could serve as indicators of dam metabolism and predictors of metabolism in newborn calves respectively.
Collapse
Affiliation(s)
- Rui Hasegawa
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Izumi Iwase
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomohiro Takagi
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Moeri Kondo
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Motozumi Matsui
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Chiho Kawashima
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
142
|
Adipokines and Endothelium Dysfunction Markers in Pregnant Women with Gestational Hypertension. Int J Hypertens 2019; 2019:7541846. [PMID: 31737362 PMCID: PMC6815564 DOI: 10.1155/2019/7541846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/07/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Objective The aim of the study was to evaluate the levels of adipokines such as adiponectin and leptin as well as soluble intercellular adhesion molecule-1 (sICAM-1) and endogenous NOS inhibitor-asymmetric dimethylarginine (ADMA), as the endothelium dysfunction markers in pregnant women with gestational hypertension (GH). Patients and Methods Adiponectin, leptin, sICAM-1, and ADMA concentrations were measured in a group of 34 patients with GH and in 32 healthy pregnant women between the 24th and 34th week of gestation with ELISA tests. Results The patients with GH compared with healthy ones were characterized by significantly higher BMI (28.09 ± 7.90 vs. 22.34 ± 4.21 kg/m2, p=0.016) and higher concentrations of leptin (45.89 ± 35.91 vs. 24.09 ± 24.40 ng/mL, p=0.006). sICAM-1 levels were also higher in the GH group but without the statistical significance (264.51 ± 50.99 vs. 232.56 ± 43.3 ng/ml, p=0.057). There were no significant differences between groups in adiponectin (8.79 ± 8.67 vs. 7.90 ± 3.71 μg/mL, p=0.46, NS) and ADMA (0.57 ± 0.26 vs. 0.60 ± 0.24 μmol/L, p=0.68, NS) levels. The significant correlation between leptin levels and BMI value was observed only in patients with GH (R = 0.56, p=0.02). Conclusions The higher levels of leptin in pregnant women with gestational hypertension may be suggestive of the role of leptin in GH development. As the patients in the GH group had higher BMI, hyperleptinemia may link obesity with gestational hypertension. The significance of leptin as the predictive marker of GH development could be implied. It could be postulated that the higher levels of sICAM-1 in the GH patients, although not statistically significant, could reflect some impairment of the endothelium function occurring in GH regardless of BMI. The comparable adiponectin levels in GH and healthy pregnant patients and the lack of its correlation with BMI may indicate the occurrence of a protective mechanism in pregnancy maintaining its concentration and preserving from the consequences of the decrease in its levels in overweight and obese patients. Since ADMA levels were similar in GH and healthy pregnant women, ADMA seems not to be involved in GH pathogenesis, suggesting that NO synthesis is not impaired in this pregnancy complication. As the data on the gestational hypertension pathogenesis and its correlations with adipokines and markers of the endothelium dysfunction are limited, further studies on this issue are warranted.
Collapse
|
143
|
Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, Caron A, Zhu Q, Sun K, Xiong W, Deng H, Sun J, Deng Y, Kim M, Lee CE, Gordillo R, Liu T, Odle AK, Childs GV, Zhang N, Kusminski CM, Elmquist JK, Williams KW, An Z, Scherer PE. Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metab 2019; 30:706-719.e6. [PMID: 31495688 PMCID: PMC6774814 DOI: 10.1016/j.cmet.2019.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
Abstract
The physiological role of leptin is thought to be a driving force to reduce food intake and increase energy expenditure. However, leptin therapies in the clinic have failed to effectively treat obesity, predominantly due to a phenomenon referred to as leptin resistance. The mechanisms linking obesity and the associated leptin resistance remain largely unclear. With various mouse models and a leptin neutralizing antibody, we demonstrated that hyperleptinemia is a driving force for metabolic disorders. A partial reduction of plasma leptin levels in the context of obesity restores hypothalamic leptin sensitivity and effectively reduces weight gain and enhances insulin sensitivity. These results highlight that a partial reduction in plasma leptin levels leads to improved leptin sensitivity, while pointing to a new avenue for therapeutic interventions in the treatment of obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyan He
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurosurgery and Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jia Sun
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurosurgery and Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Kim
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela K Odle
- Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences
| | - Gwen V Childs
- Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
144
|
Xu X, Li W, Qin L, Yang W, Yu G, Wei Q. Relationship between Helicobacter pylori infection and obesity in Chinese adults: A systematic review with meta-analysis. PLoS One 2019; 14:e0221076. [PMID: 31509542 PMCID: PMC6738918 DOI: 10.1371/journal.pone.0221076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obesity is highly prevalent worldwide. More and more studies have been conducted on the relationship between H. pylori infection and obesity or overweight. But the relationship between them is controversial in the literatures and there is no comprehensive evidence for the correlation. AIM To evaluate the prevalence of H. pylori infection in Chinese adult subjects who received routine physical examinations and the relationship between H. pylori and obesity. METHODS Literatures on H. pylori infection and obesity in Chinese population were searched in online databases. Relevant data were extracted independently by two researchers and meta-analysis was performed by using Review manager 5.3 software. RESULTS 22 articles were selected with a total sample size of 178033. The pooled prevalence of H. pylori was 42% (95%CI: 37% to 47%) and mean difference of BMI between subjects with and without H. pylori infection was 0.94 (95%CI: -0.04 to 1.91). 9 eligible studies with 27111 subjects were used to calculated pooled OR value because they contained obesity groups. The OR value showed that H. pylori-positive subjects tended to be obese at a risk of 1.20 (95% CI: 1.13 to 1.28). CONCLUSION In China, obesity has association with H. pylori infection. H. pylori infection may be one of the risk factors for obesity.
Collapse
Affiliation(s)
- Xinlan Xu
- School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, China
| | - Weide Li
- School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, China
| | - Lan Qin
- School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjiao Yang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Guowei Yu
- Medical College of Northwest University for Nationalities, Lanzhou, Gansu, China
| | - Qishan Wei
- Maternal and Child Health Hospital, Lanzhou, Gansu, China
| |
Collapse
|
145
|
Zhao W, Ammous F, Ratliff S, Liu J, Yu M, Mosley TH, Kardia SLR, Smith JA. Education and Lifestyle Factors Are Associated with DNA Methylation Clocks in Older African Americans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173141. [PMID: 31466396 PMCID: PMC6747433 DOI: 10.3390/ijerph16173141] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation (DNAm) clocks are important biomarkers of cellular aging and are associated with a variety of age-related chronic diseases and all-cause mortality. Examining the relationship between education and lifestyle risk factors for age-related diseases and multiple DNAm clocks can increase the understanding of how risk factors contribute to aging at the cellular level. This study explored the association between education or lifestyle risk factors for age-related diseases and the acceleration of four DNAm clocks, including intrinsic (IEAA) and extrinsic epigenetic age acceleration (EEAA), PhenoAge acceleration (PhenoAA), and GrimAge acceleration (GrimAA) in the African American participants of the Genetic Epidemiology Network of Arteriopathy. We performed both cross-sectional and longitudinal analyses. In cross-sectional analyses, gender, education, BMI, smoking, and alcohol consumption were all independently associated with GrimAA, whereas only some of them were associated with other clocks. The effect of smoking and education on GrimAA varied by gender. Longitudinal analyses suggest that age and BMI continued to increase GrimAA, and that age and current smoking continued to increase PhenoAA after controlling DNAm clocks at baseline. In conclusion, education and common lifestyle risk factors were associated with multiple DNAm clocks. However, the association with each risk factor varied by clock, which suggests that different clocks may capture adverse effects from different environmental stimuli.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaxuan Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Miao Yu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39126, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
146
|
Allahyari S, Chaji M, Mamuie M. Investigation changes in production, some blood hormones, and metabolites, serum and colostrum IgG of calves of Holstein cows fed with two levels of zinc supplement in transitional period. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1653301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sina Allahyari
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Morteza Chaji
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Morteza Mamuie
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| |
Collapse
|
147
|
Fujita Y, Yamashita T. The Effects of Leptin on Glial Cells in Neurological Diseases. Front Neurosci 2019; 13:828. [PMID: 31447640 PMCID: PMC6692660 DOI: 10.3389/fnins.2019.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that various endocrine modulators, including leptin and ghrelin, have neuroprotective roles in neurological diseases. Leptin is a hormone produced by adipocytes and was originally identified as a gene related to obesity in mice. The leptin receptors in the hypothalamus are the main target for the homeostatic regulation of body weight. Recent studies have demonstrated that leptin receptors are also expressed in other regions of the central nervous system (CNS), such as the hippocampus, cerebral cortex, and spinal cord. Accordingly, these studies identified the involvement of leptin in the regulation of neuronal survival and neural development. Furthermore, leptin has been shown to have neuroprotective functions in animal models of neurological diseases and demyelination. These observations also suggest that dysregulation of leptin signaling may be involved in the association between neurodegeneration and obesity. In this review, we summarize novel functions of leptin in animal models of neurodegenerative diseases. Specifically, we focus on the emerging evidence for the role of leptin in non-neuronal cells in the CNS, including astrocytes, microglia, and oligodendrocytes. Understanding leptin-mediated neuroprotective signals and molecular mechanisms underlying remyelination will be helpful to establish therapeutic strategies against neurological diseases.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
148
|
Zarrati M, Aboutaleb N, Cheshmazar E, Shoormasti RS, Razmpoosh E, Nasirinezhad F. The association of obesity and serum leptin levels with complete blood count and some serum biochemical parameters in Iranian overweight and obese individuals. Med J Islam Repub Iran 2019; 33:72. [PMID: 31696066 PMCID: PMC6825403 DOI: 10.34171/mjiri.33.72] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Obesity has been suggested to be well correlated with altered levels of complete blood count (CBC) parameters. In this study, the relationship of body mass index (BMI) and circulating leptin levels with CBC among obese and overweight adults was examined. Methods: CBC and biochemical parameters, WBC and hematological profiles, leptin levels, related factors to liver, and kidney and lipid profiles were measured among 184 obese and overweight people aged 18-60 years. Statistical analysis was performed using SPSS software. To assess the normality of data, the Kolmogorov-Smirnov test was used. Logarithmic transformation was performed for some variables with non-normal distribution. The association between 2 quantitative variables was measured using bivariate correlation (Pearson or Spearman). Pearson correlations and multiple regression analysis were performed to assess the correlation between variables. Simple and multiple regression analyses were performed to predict some variables. P- value <0.05 was considered significant. Results: Hematocrit, insulin, fasting blood sugar, uric acid, TG, LDL-C, VLDL-C, and ALT were positively correlated with BMI (p=0.041, r=0.149 for hematocrit; p≤0.001, r=0.520 for insulin; p≤0.001, r=0.363 for FBS; p≤0.001, r=0.309 for uric acid; p=0.015, r=0.189 for TG; p=0.030, r=161 for LDL-C; p=0.019, r=0.181 for VLDL-C; p≤0.001, r=0.299 for ALT), whereas urea and HDL-C were negatively correlated with BMI (p≤0.001, r=-0.368 for urea; p≤0.001, r=-0.297 for HDL-C). Moreover, LDL-C and insulin were positively correlated with leptin (P = 0.011, r = 0.194 for LDL-C, P = 0.013, r = 0.114 for insulin) and hematocrit, urea, creatinine, TG and VLDL-C were negatively correlated with leptin (p=0.040, r=-0.162 for hematocrit; p≤0.001, r=-0.305 for urea; p=0.007, r=-0.219 for creatinine; p=0.025, r=0.188 for TG; p=0.007, r=-0.218 for VLDL-C). Our analysis showed that white blood cell was positively correlated with leptin (β=17.36, p=0.048). Also, other CBC parameters had no significant correlations with BMI and leptin. Conclusion: According to the findings of this study, BMI had a negative association with urea and HDL-C, while BMI had a positive association with insulin, hematocrit, FBS, uric acid, TG, VLDL-C, LDL-C, and ALT. Furthermore, leptin had a negative association with hematocrit, creatinine, and urea, TG, VLDL-C and a positive association with LDL-C and insulin among the participants of this study.
Collapse
Affiliation(s)
- Mitra Zarrati
- Faculty of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elhameh Cheshmazar
- Faculty of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Elham Razmpoosh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farinaz Nasirinezhad
- Department of physiology, Basic Science Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
149
|
Perry RJ, Resch JM, Douglass AM, Madara JC, Rabin-Court A, Kucukdereli H, Wu C, Song JD, Lowell BB, Shulman GI. Leptin's hunger-suppressing effects are mediated by the hypothalamic-pituitary-adrenocortical axis in rodents. Proc Natl Acad Sci U S A 2019; 116:13670-13679. [PMID: 31213533 PMCID: PMC6613139 DOI: 10.1073/pnas.1901795116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leptin informs the brain about sufficiency of fuel stores. When insufficient, leptin levels fall, triggering compensatory increases in appetite. Falling leptin is first sensed by hypothalamic neurons, which then initiate adaptive responses. With regard to hunger, it is thought that leptin-sensing neurons work entirely via circuits within the central nervous system (CNS). Very unexpectedly, however, we now show this is not the case. Instead, stimulation of hunger requires an intervening endocrine step, namely activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Increased corticosterone then activates AgRP neurons to fully increase hunger. Importantly, this is true for 2 forms of low leptin-induced hunger, fasting and poorly controlled type 1 diabetes. Hypoglycemia, which also stimulates hunger by activating CNS neurons, albeit independently of leptin, similarly recruits and requires this pathway by which HPA axis activity stimulates AgRP neurons. Thus, HPA axis regulation of AgRP neurons is a previously underappreciated step in homeostatic regulation of hunger.
Collapse
Affiliation(s)
- Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jon M Resch
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Amelia M Douglass
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Aviva Rabin-Court
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Hakan Kucukdereli
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Chen Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Joongyu D Song
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
- Program in Neuroscience, Harvard Medical School, Boston, MA 02215
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520;
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
150
|
Reynolds CM, Vickers MH. The role of adipokines in developmental programming: evidence from animal models. J Endocrinol 2019. [DOI: 10.1530/joe-18-0686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in the environment during critical periods of development, including altered maternal nutrition, can increase the risk for the development of a range of metabolic, cardiovascular and reproductive disorders in offspring in adult life. Following the original epidemiological observations of David Barker that linked perturbed fetal growth to adult disease, a wide range of experimental animal models have provided empirical support for the developmental programming hypothesis. Although the mechanisms remain poorly defined, adipose tissue has been highlighted as playing a key role in the development of many disorders that manifest in later life. In particular, adipokines, including leptin and adiponectin, primarily secreted by adipose tissue, have now been shown to be important mediators of processes underpinning several phenotypic features associated with developmental programming including obesity, insulin sensitivity and reproductive disorders. Moreover, manipulation of adipokines in early life has provided for potential strategies to ameliorate or reverse the adverse sequalae that are associated with aberrant programming and provided insight into some of the mechanisms involved in the development of chronic disease across the lifecourse.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|