101
|
Wendland BE, Atkinson L, Steiner M, Fleming AS, Pencharz P, Moss E, Gaudreau H, Silveira PP, Arenovich T, Matthews SG, Meaney MJ, Levitan RD. Low maternal sensitivity at 6 months of age predicts higher BMI in 48 month old girls but not boys. Appetite 2014; 82:97-102. [DOI: 10.1016/j.appet.2014.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 11/16/2022]
|
102
|
Rossetti C, Halfon O, Boutrel B. Controversies about a common etiology for eating and mood disorders. Front Psychol 2014; 5:1205. [PMID: 25386150 PMCID: PMC4209809 DOI: 10.3389/fpsyg.2014.01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and depression represent a growing health concern worldwide. For many years, basic science and medicine have considered obesity as a metabolic illness, while depression was classified a psychiatric disorder. Despite accumulating evidence suggesting that obesity and depression may share commonalities, the causal link between eating and mood disorders remains to be fully understood. This etiology is highly complex, consisting of multiple environmental and genetic risk factors that interact with each other. In this review, we sought to summarize the preclinical and clinical evidence supporting a common etiology for eating and mood disorders, with a particular emphasis on signaling pathways involved in the maintenance of energy balance and mood stability, among which orexigenic and anorexigenic neuropeptides, metabolic factors, stress responsive hormones, cytokines, and neurotrophic factors.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| |
Collapse
|
103
|
Hunschede S, El Khoury D, Antoine-Jonville S, Smith C, Thomas S, Anderson GH. Acute changes in substrate oxidation do not affect short-term food intake in healthy boys and men. Appl Physiol Nutr Metab 2014; 40:168-77. [PMID: 25603432 DOI: 10.1139/apnm-2014-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The acute relationship between substrate oxidation as measured by respiratory exchange ratio (RER) and food intake (FI) has not been defined. The purpose of the study was to determine acute relationships between RER, modified by exercise and a glucose load, and FI and net energy balance (NEB) in physically active normal-weight boys and men. In a crossover design, 15 boys (aged 9-12 years) and 15 men (aged 20-30 years) were randomly assigned to 4 conditions: (i) water and rest, (ii) glucose-drink and rest, (iii) water and exercise, and (iv) glucose-drink and exercise. Indirect calorimetry was used to determine RER, energy expenditure, and carbohydrate and fat oxidation. Subjective appetite and blood glucose were also measured. RER was higher after glucose (0.91 ± 0.01) compared with water (0.87 ± 0.01) (p < 0.0001), and after exercise (0.91 ± 0.01) compared with rest (0.88 ± 0.01) (p = 0.0043) in men (0.91 ± 0.01) compared with boys (0.88 ± 0.01) (p = 0.0002). FI (kcal·m(-2)) did not differ between boys and men. Glucose (582 ± 24 kcal·m(-2)) reduced FI compared with water (689 ± 25 kcal·m(-2)) (p < 0.0001), and further decreased FI when combined with exercise (554 ± 34 kcal·m(-2)) (p = 0.0303). NEB was reduced with exercise (573 ± 25 kcal·m(-2)) compared with the sedentary condition (686 ± 24 kcal·m(-2)) (p < 0.0001), but was higher after the glucose drink (654 ± 27 kcal·m(-2)) compared with water (605 ± 25 kcal·m(-2)) (p = 0.0267). No correlations were found between RER and FI or NEB in boys and men, except in the control condition of resting with water. In conclusion, the short-term modification of substrate oxidation by glucose and/or exercise in normal weight and active boys and men did not affect FI and NEB.
Collapse
Affiliation(s)
- Sascha Hunschede
- a Department for Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
104
|
Simon JJ, Skunde M, Hamze Sinno M, Brockmeyer T, Herpertz SC, Bendszus M, Herzog W, Friederich HC. Impaired Cross-Talk between Mesolimbic Food Reward Processing and Metabolic Signaling Predicts Body Mass Index. Front Behav Neurosci 2014; 8:359. [PMID: 25368558 PMCID: PMC4201102 DOI: 10.3389/fnbeh.2014.00359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/27/2014] [Indexed: 12/20/2022] Open
Abstract
The anticipation of the pleasure derived from food intake drives the motivation to eat, and hence facilitate overconsumption of food, which ultimately results in obesity. Brain imaging studies provide evidence that mesolimbic brain regions underlie both general as well as food-related anticipatory reward processing. In light of this knowledge, the present study examined the neural responsiveness of the ventral striatum (VS) in participants with a broad BMI spectrum. The study differentiated between general (i.e., monetary) and food-related anticipatory reward processing. We recruited a sample of volunteers with greatly varying body weights, ranging from a low BMI (below 20 kg/m(2)) over a normal (20-25 kg/m(2)) and overweight (25-30 kg/m(2)) BMI, to class I (30-35 kg/m(2)) and class II (35-40 kg/m(2)) obesity. A total of 24 participants underwent functional magnetic resonance imaging while performing both a food and monetary incentive delay task, which allows to measure neural activation during the anticipation of rewards. After the presentation of a cue indicating the amount of food or money to be won, participants had to react correctly in order to earn "snack points" or "money coins," which could then be exchanged for real food or money, respectively, at the end of the experiment. During the anticipation of both types of rewards, participants displayed activity in the VS, a region that plays a pivotal role in the anticipation of rewards. Additionally, we observed that specifically anticipatory food reward processing predicted the individual BMI (current and maximum lifetime). This relation was found to be mediated by impaired hormonal satiety signaling, i.e., increased leptin levels and insulin resistance. These findings suggest that heightened food reward motivation contributes to obesity through impaired metabolic signaling.
Collapse
Affiliation(s)
- Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg , Heidelberg , Germany
| | - Mandy Skunde
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg , Heidelberg , Germany
| | - Maria Hamze Sinno
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg , Heidelberg , Germany
| | - Timo Brockmeyer
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg , Heidelberg , Germany
| | - Sabine C Herpertz
- Department of General Adult Psychiatry, Centre for Psychosocial Medicine, University Hospital Heidelberg , Heidelberg , Germany
| | - Martin Bendszus
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg , Heidelberg , Germany
| | - Wolfgang Herzog
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg , Heidelberg , Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg , Heidelberg , Germany
| |
Collapse
|
105
|
Davis C, Loxton NJ. A psycho-genetic study of hedonic responsiveness in relation to "food addiction". Nutrients 2014; 6:4338-53. [PMID: 25325253 PMCID: PMC4210920 DOI: 10.3390/nu6104338] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/28/2022] Open
Abstract
While food addiction has no formally-recognized definition, it is typically operationalized according to the diagnostic principles established by the Yale Food Addiction Scale-an inventory based on the symptom criteria for substance dependence in the DSM-IV. Currently, there is little biologically-based research investigating the risk factors for food addiction. What does exist has focused almost exclusively on dopaminergic reward pathways in the brain. While brain opioid signaling has also been strongly implicated in the control of food intake, there is no research examining this neural circuitry in the association with food addiction. The purpose of the study was therefore to test a model predicting that a stronger activation potential of opioid circuitry-as indicated by the functional A118G marker of the mu-opioid receptor gene-would serve as an indirect risk factor for food addiction via a heightened hedonic responsiveness to palatable food. Results confirmed these relationships. In addition, our findings that the food-addiction group had significantly higher levels of hedonic responsiveness to food suggests that this bio-behavioral trait may foster a proneness to overeating, to episodes of binge eating, and ultimately to a compulsive and addictive pattern of food intake.
Collapse
Affiliation(s)
- Caroline Davis
- School of Kinesiology & Health Sciences, 343 Bethune College, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Natalie J Loxton
- School of Applied Psychology, Griffith University, 176 Messines Ridge Road Mt Gravatt, Queensland 4122, Australia.
| |
Collapse
|
106
|
Consuming calories and creating cavities: beverages NZ children associate with sport. Appetite 2014; 81:209-17. [DOI: 10.1016/j.appet.2014.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 11/17/2022]
|
107
|
Abstract
Food is a potent natural reward and food intake is a complex process. Reward and gratification associated with food consumption leads to dopamine (DA) production, which in turn activates reward and pleasure centers in the brain. An individual will repeatedly eat a particular food to experience this positive feeling of gratification. This type of repetitive behavior of food intake leads to the activation of brain reward pathways that eventually overrides other signals of satiety and hunger. Thus, a gratification habit through a favorable food leads to overeating and morbid obesity. Overeating and obesity stems from many biological factors engaging both central and peripheral systems in a bi-directional manner involving mood and emotions. Emotional eating and altered mood can also lead to altered food choice and intake leading to overeating and obesity. Research findings from human and animal studies support a two-way link between three concepts, mood, food, and obesity. The focus of this article is to provide an overview of complex nature of food intake where various biological factors link mood, food intake, and brain signaling that engages both peripheral and central nervous system signaling pathways in a bi-directional manner in obesity.
Collapse
Affiliation(s)
- Minati Singh
- Department of Pediatrics, University of Iowa Iowa City, IA, USA ; Department of Pediatrics, HHMI, University of Iowa Iowa City, IA, USA
| |
Collapse
|
108
|
Deckersbach T, Das SK, Urban LE, Salinardi T, Batra P, Rodman AM, Arulpragasam AR, Dougherty DD, Roberts SB. Pilot randomized trial demonstrating reversal of obesity-related abnormalities in reward system responsivity to food cues with a behavioral intervention. Nutr Diabetes 2014; 4:e129. [PMID: 25177910 PMCID: PMC4183968 DOI: 10.1038/nutd.2014.26] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Obesity is associated with hyperactivation of the reward system for high-calorie (HC) versus low-calorie (LC) food cues, which encourages unhealthy food selection and overeating. However, the extent to which this hyperactivation can be reversed is uncertain, and to date there has been no demonstration of changes by behavioral intervention. SUBJECTS AND METHODS We used functional magnetic resonance imaging to measure changes in activation of the striatum for food images at baseline and 6 months in a pilot study of 13 overweight or obese adults randomized to a control group or a novel weight-loss intervention. RESULTS Compared to controls, intervention participants achieved significant weight loss (-6.3±1.0 kg versus +2.1±1.1 kg, P<0.001) and had increased activation for LC food images with a composition consistent with that recommended in the behavioral intervention at 6 months versus baseline in the right ventral putamen (P=0.04), decreased activation for HC images of typically consumed foods in the left dorsal putamen (P=0.01). There was also a large significant shift in relative activation favoring LC versus HC foods in both regions (P<0.04). CONCLUSIONS This study provides the first demonstration of a positive shift in activation of the reward system toward healthy versus unhealthy food cues in a behavioral intervention, suggesting new avenues to enhance behavioral treatments of obesity.
Collapse
Affiliation(s)
- T Deckersbach
- Division of Neurotherapeutics, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - S K Das
- Energy Metabolism and Obesity Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - L E Urban
- Energy Metabolism and Obesity Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - T Salinardi
- Energy Metabolism and Obesity Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - P Batra
- Energy Metabolism and Obesity Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - A M Rodman
- Division of Neurotherapeutics, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - A R Arulpragasam
- Division of Neurotherapeutics, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - D D Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - S B Roberts
- Energy Metabolism and Obesity Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
109
|
Williams DL. Neural integration of satiation and food reward: role of GLP-1 and orexin pathways. Physiol Behav 2014; 136:194-9. [PMID: 24650552 PMCID: PMC4167985 DOI: 10.1016/j.physbeh.2014.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
Abstract
Central nervous system control of food intake involves detecting, integrating and responding to diverse internal and external signals. For maintenance of energy homeostasis, the brain uses long-term signals of metabolic status and short-term signals related to the nutrient content of individual meals. Feeding is also clearly influenced by hedonic, reward-related factors: palatability, motivation, and learned associations and cues that predict the availability of food. Different neural circuits have been proposed to mediate these homeostatic and hedonic aspects of eating. This review describes research on neural pathways that appear to be involved in both, integrating gastrointestinal satiation signaling with food reward. First, the glucagon-like peptide 1 projections from the nucleus of the solitary tract to the nucleus accumbens and ventral tegmental area are discussed as a mechanism through which meal-related gut signals may influence palatability, motivation for food, and meal size. Second, the orexin projection from lateral hypothalamus to the nucleus of the solitary tract and area postrema is discussed as a mechanism through which cues that predict rewarding food may act to increase motivation for food and also to suppress satiation. Additional potential integrative sites and pathways are also briefly discussed. Based on these findings, it is suggested that the brain circuitry involved in energy homeostasis and the circuitry mediating food reward are, in fact, overlapping and far less distinct than previously considered.
Collapse
Affiliation(s)
- Diana L Williams
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
110
|
Abstract
Under normal conditions, food intake and energy expenditure are balanced by a homeostatic system that maintains stability of body fat content over time. However, this homeostatic system can be overridden by the activation of 'emergency response circuits' that mediate feeding responses to emergent or stressful stimuli. Inhibition of these circuits is therefore permissive for normal energy homeostasis to occur, and their chronic activation can cause profound, even life-threatening, changes in body fat mass. This Review highlights how the interplay between homeostatic and emergency feeding circuits influences the biologically defended level of body weight under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Gregory J Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Thomas H Meek
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Michael W Schwartz
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
111
|
Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ. Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 2014; 265:132-41. [DOI: 10.1016/j.bbr.2014.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/17/2014] [Accepted: 02/18/2014] [Indexed: 01/16/2023]
|
112
|
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem 2014; 24:1663-77. [PMID: 24041374 DOI: 10.1016/j.jnutbio.2013.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Frank A Duca
- INRA, UMR 1319 Micalis, F-78352 Jouy-en-Josas, France; AgroParis Tech, UMR 1319, F-78352 Jouy-en-Josas, France; University Pierre and Marie Curie, 75006 Paris, France
| | | | | |
Collapse
|
113
|
Ziauddeen H, Subramaniam N, Cambridge VC, Medic N, Farooqi IS, Fletcher PC. Studying food reward and motivation in humans. J Vis Exp 2014. [PMID: 24686284 PMCID: PMC4153444 DOI: 10.3791/51281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Collapse
Affiliation(s)
- Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge; Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge; Cambridgeshire & Peterborough NHS Foundation Trust, University of Cambridge;
| | | | | | - Nenad Medic
- Department of Psychiatry, University of Cambridge; Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge
| | - Ismaa Sadaf Farooqi
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge; Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge; Cambridgeshire & Peterborough NHS Foundation Trust, University of Cambridge
| |
Collapse
|
114
|
Davis C, Carter JC. If Certain Foods are Addictive, How Might this Change the Treatment of Compulsive Overeating and Obesity? CURRENT ADDICTION REPORTS 2014. [DOI: 10.1007/s40429-014-0013-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
115
|
Teufel M, Stephan K, Kowalski A, Käsberger S, Enck P, Zipfel S, Giel KE. Impact of biofeedback on self-efficacy and stress reduction in obesity: a randomized controlled pilot study. Appl Psychophysiol Biofeedback 2014; 38:177-84. [PMID: 23760668 DOI: 10.1007/s10484-013-9223-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biofeedback application is an evidence-based technique to induce relaxation. A primary mechanism of action is the improvement of self-efficacy, which is needed to facilitate the translation of health behavioral intentions into action. Obesity is often associated with low self-efficacy and dysfunctional eating patterns, including comfort eating as an inexpedient relaxation technique. This is the first study investigating the effects of biofeedback on self-efficacy and relaxation in obesity. In the present experiment, 31 women, mean body mass index 35.5 kg/m², were randomized to a food-specific biofeedback paradigm, a non-specific relaxation biofeedback paradigm, or a waiting list control. Eight sessions of biofeedback of the electrodermal activity were performed while presenting either a challenging food stimulus or a non-specific landscape stimulus. Self-efficacy, stress, ability to relax, eating behavior, and electrodermal activity were assessed before, directly after, and 3 months after the intervention. The food-specific biofeedback predominantly showed effects on food-related self-efficacy and perceived stress. The non-specific relaxation biofeedback showed effects on the ability to relax. Self-reported improvements were confirmed by corresponding decrease in the electrodermal reaction to food stimuli. Biofeedback treatment is effective in improving self-efficacy in individuals with obesity and might therefore be a valuable additional intervention in obesity treatment.
Collapse
Affiliation(s)
- Martin Teufel
- Department of Internal Medicine, Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Osianderstrasse 5, 72076, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
116
|
Weltens N, Zhao D, Van Oudenhove L. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol Motil 2014; 26:303-15. [PMID: 24548257 DOI: 10.1111/nmo.12309] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/30/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Food in general, and fatty foods in particular, have obtained intrinsic reward value throughout evolution. This reward value results from an interaction between exteroceptive signals from different sensory modalities, interoceptive hunger/satiety signals from the gastrointestinal tract to the brain, as well as ongoing affective and cognitive processes. Further evidence linking food to emotions stems from folk psychology ('comfort foods') and epidemiological studies demonstrating high comorbidity rates between disorders of food intake, including obesity, and mood disorders such as depression. PURPOSE This review paper aims to give an overview of current knowledge on the neurophysiological mechanisms underlying the link between (fatty) foods, their reward value, and emotional responses to (anticipation of) their intake in humans. Firstly, the influence of exteroceptive sensory signals, including visual, olfactory ('anticipatory food reward'), and gustatory ('consummatory food reward'), on the encoding of reward value in the (ventral) striatum and of subjective pleasantness in the cingulate and orbitofrontal cortex will be discussed. Differences in these pathways and mechanisms between lean and obese subjects will be highlighted. Secondly, recent studies elucidating the mechanisms of purely interoceptive fatty acid-induced signaling from the gastrointestinal tract to the brain, including the role of gut peptides, will be presented. These studies have demonstrated that such subliminal interoceptive stimuli may impact on hedonic circuits in the brain, and thereby influence the subjective and neural responses to negative emotion induction. This suggests that the effect of foods on mood may even occur independently from their exteroceptive sensory properties.
Collapse
Affiliation(s)
- N Weltens
- Translational Research Centre for Gastrointestinal Disorders (TARGID), Department of Clinical & Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
117
|
Asevedo E, Rizzo LB, Gadelha A, Mansur RB, Ota VK, Berberian AA, Scarpato BS, Teixeira AL, Bressan RA, Brietzke E. Peripheral interleukin-2 level is associated with negative symptoms and cognitive performance in schizophrenia. Physiol Behav 2014; 129:194-8. [PMID: 24576679 DOI: 10.1016/j.physbeh.2014.02.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/07/2013] [Accepted: 02/12/2014] [Indexed: 01/13/2023]
Abstract
Although several studies have pointed to a possible role of interleukin 2 (IL-2) in schizophrenia (SZ), association between IL-2 and the different groups of symptoms has not been explored. The objective of this study was to investigate a possible correlation of peripheral IL-2 levels with symptoms and cognitive performance in patients with SZ. In addition, we compared the plasma levels of IL-2 between patients with SZ and healthy controls. Twenty-nine chronically medicated outpatients with SZ according to DSM-IV were compared with twenty-six healthy controls. The patients were evaluated with the Positive and Negative Syndrome Scale (PANSS), the Calgary Depression Scale for Schizophrenia (CDSS), the Clinical Global Impression (CGI) and the Global Assessment of Functioning (GAF). All the participants had blood collected into EDTA tubes by venipuncture between 9:00 and 10:00AM. Plasma concentrations of IL-2 were determined by cytometric bead array. A computerized neuropsychological battery assessed verbal learning, verbal fluency, working memory, set shifting, executive function, inhibition and intelligence. Patients with SZ had lower levels of IL-2 than healthy controls (p<0.001). In the SZ group, IL-2 levels were positively correlated with scores in the digit span test (rho=0.416, P=0.025) and intelligence (rho=0.464, P=0.011). We also found a negative correlation between IL-2 and total score in the negative subscale of PANSS (rho=-0.447, p=0.015). Our findings suggest that IL-2 may be involved in the mechanisms related to cognitive deterioration and negative symptomatology in schizophrenia.
Collapse
Affiliation(s)
- Elson Asevedo
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Lucas B Rizzo
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Ary Gadelha
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Rodrigo B Mansur
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Vanessa K Ota
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Arthur A Berberian
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Bruno S Scarpato
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Antônio L Teixeira
- Translational Psychoneuroimmunology Group, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP 31270-901, Brazil.
| | - Rodrigo A Bressan
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| |
Collapse
|
118
|
Song Z, Levin BE, Stevens W, Sladek CD. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors. Am J Physiol Regul Integr Comp Physiol 2014; 306:R447-56. [PMID: 24477542 DOI: 10.1152/ajpregu.00520.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca(2+)]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P < 0.002). Oxytocin release was increased by glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating K ATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P < 0.003; VP: P < 0.05). These results suggest that insulin activation of PI3K increases glucokinase-mediated ATP production inducing closure of K ATP channels, opening of voltage-sensitive calcium channels, and stimulation of oxytocin and vasopressin release. The findings are consistent with SON oxytocin and vasopressin neurons functioning as glucose and "metabolic" sensors to participate in appetite regulation.
Collapse
Affiliation(s)
- Zhilin Song
- Department of Physiology, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | |
Collapse
|
119
|
|
120
|
Potential role of repetitive transcranial magnetic stimulation in obesity. Eat Weight Disord 2014; 19:403-7. [PMID: 24323296 DOI: 10.1007/s40519-013-0088-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique with mild side effects. Some forms of obesity may arise from eating disorders and recent data suggest that rTMS treatment could have beneficial effects in eating disorders. PURPOSE The purpose of this comprehensive review is to hypothesize that rTMS may play a role in obesity. MATERIALS AND METHODS Articles were selected based on a search on medline using the terms "rTMS", "food craving", "eating disorders", "addiction", and "obesity". They were published between 1995 and 2013. RESULTS Repetitive transcranial magnetic stimulation has been evaluated in the treatment of bulimia nervosa. It appears that it exerts its effect via the reduction of the level of craving for food. Obesity is being recognized as one of the endpoints of food addiction and craving. Besides, rTMS and transcranial direct current stimulation are brain stimulation techniques being used in the treatment of psychoactive substance addiction. CONCLUSIONS Repetitive transcranial magnetic stimulation, through the reduction of food craving may be a potential treatment for a subset of individuals suffering from obesity. Further studies with a higher number of subjects are still needed to confirm the effects of rTMS on obesity.
Collapse
|
121
|
Bast ES, Berry EM. Laugh Away the Fat? Therapeutic Humor in the Control of Stress-induced Emotional Eating. Rambam Maimonides Med J 2014; 5:e0007. [PMID: 24498514 PMCID: PMC3904482 DOI: 10.5041/rmmj.10141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review explores the potential overlap between the fields of nutrition and therapeutic humor, together with the role of humor as a possible tool for aiding those in whom emotions, particularly negative ones, trigger eating as a means to improve mood. We review emotional eating, obesity, and the hypothesized mechanisms of emotional eating. We then review the field of therapeutic humor and its ability to de-stress individuals, possibly through endorphin and opioid systems, both of which are also involved in eating behavior. Finally, we present a novel hypothesis that people may be trained to use humor as a "food substitute" at best, or to blunt hunger stimuli, to achieve similar advantages, without the side effect of weight gain.
Collapse
Affiliation(s)
- Elizabeth S. Bast
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States and
| | - Elliot M. Berry
- Department of Human Nutrition & Metabolism, Braun School of Public Health, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
122
|
Kozuka C, Yabiku K, Takayama C, Matsushita M, Shimabukuro M. Natural food science based novel approach toward prevention and treatment of obesity and type 2 diabetes: recent studies on brown rice and γ-oryzanol. Obes Res Clin Pract 2013; 7:e165-72. [PMID: 23697584 DOI: 10.1016/j.orcp.2013.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/14/2013] [Accepted: 02/25/2013] [Indexed: 02/07/2023]
Abstract
The prevalences of obesity and type 2 diabetes mellitus are dramatically increasing, and there is a strong need for more effective and safer therapies. However, some of drugs show limited efficacy and considerable adverse effects. Furthermore, artificial energy-dense foods and non-caloric foods may promote overeating and weight gain. In this context, a natural food-based approach may represent a valuable means of tackling the obesity-diabetes syndrome. Although recent studies have shown that brown rice improves glucose intolerance and prevents obesity and type 2 diabetes in humans, the underlying molecular mechanisms remain unclear. We found that one of the major components of brown rice, γ-oryzanol (Orz), plays an important role in the metabolically beneficial effects of brown rice. Orz acts as a chemical chaperone and decreases high fat diet (HFD)-induced endoplasmic reticulum (ER) stress in the hypothalamus, thereby leading to a significant shift in preference from fatty to healthy foods. Orz also decreases HFD-induced ER stress in pancreatic β-cells and improves β-cell function. Notably, Orz directly acts on pancreatic islets and enhances glucose-stimulated insulin secretion (GSIS). This evidence highlights food preference as a promising therapeutic target in obesity-diabetes syndrome and suggests that brown rice and Orz may have potential for the treatment of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Chisayo Kozuka
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | |
Collapse
|
123
|
Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mol Psychiatry 2013; 18:1294-301. [PMID: 23070073 DOI: 10.1038/mp.2012.145] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 01/10/2023]
Abstract
Obesity is a global problem with often strong neurobiological underpinnings. The cannabinoid 1 receptor (CB1R) was put forward as a promising drug target for antiobesity medication. However, the first marketed CB1R antagonist/inverse agonist rimonabant was discontinued, as its use was occasionally associated with negative affect and suicidality. In artificial cell systems, CB1Rs can become constitutively active in the absence of ligands. Here, we show that such constitutive CB1R activity also regulates GABAergic and glutamatergic neurotransmission in the ventral tegmental area and basolateral amygdala, regions which regulate motivation and emotions. We show that CB1R inverse agonists like rimonabant suppress the constitutive CB1R activity in such regions, and cause anxiety and reduced motivation for reward. The neutral CB1R antagonist NESS0327 does not suppress constitutive activity and lacks these negative effects. Importantly, however, both rimonabant and NESS0327 equally reduce weight gain and food intake. Together, these findings suggest that neutral CB1R antagonists can treat obesity efficiently and more safely than inverse agonists.
Collapse
|
124
|
Filippi BM, Abraham MA, Yue JTY, Lam TKT. Insulin and glucagon signaling in the central nervous system. Rev Endocr Metab Disord 2013; 14:365-75. [PMID: 23959343 DOI: 10.1007/s11154-013-9258-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of the obesity and diabetes epidemic has triggered tremendous research investigating the role of the central nervous system (CNS) in the regulation of food intake, body weight gain and glucose homeostasis. This invited review focuses on the role of two pancreatic hormones--insulin and glucagon--that trigger signaling pathways in the brain to regulate energy and glucose homeostasis. Unlike in the periphery, insulin and glucagon signaling in the CNS does not seem to have opposing metabolic effects, as both hormones exert a suppressive effect on food intake and weight gain. They signal through different pathways and alter different neuronal populations suggesting a complementary action of the two hormones in regulating feeding behavior. Similar to its systemic effect, insulin signaling in the brain lowers glucose production. However, the ability of glucagon signaling in the brain to regulate glucose production remains unknown. Future studies that aim to dissect insulin and glucagon signaling in the CNS that regulate energy and glucose homeostasis could unveil novel signaling molecules to lower body weight and glucose levels in obesity and diabetes.
Collapse
|
125
|
Pratt WE, Ford RT. Systemic treatment with D-fenfluramine, but not sibutramine, blocks cue-induced reinstatement of food-seeking behavior in the rat. Neurosci Lett 2013; 556:232-7. [PMID: 24157852 DOI: 10.1016/j.neulet.2013.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022]
Abstract
Individuals struggling with obesity often have difficulty maintaining dietary regimens. One source of dietary relapse is the reinstatement of previous feeding behaviors following the presentation of cues indicating the availability of palatable but highly caloric food reward. The drugs fenfluramine and sibutramine have previously been prescribed because they enhance satiety mechanisms and decrease meal size. However, it is unclear whether these anorectic agents are also effective in blocking the cue-induced reinstatement of food-seeking behaviors. In these three experiments, we compared the effects of systemic treatment of d-fenfluramine (3mg/kg; N=10) and sibutramine (3mg/kg; N=11) with that of the D1 antagonist SCH 23390 (6μg/kg; N=11) at a dose that has previously been shown to attenuate cue-induced reinstatement. d-Fenfluramine treatment blocked the cue's ability to reinstate lever pressing as compared to the saline injection day. In contrast, sibutramine had no effect on cue-induced reinstatement; all animals reinstated their lever pressing during the first reinstatement test, and this was unaffected by sibutramine treatment. SCH 23390 treatment did not significantly reduce cue-induced reinstatement in this set of experiments. The results suggest that the motivational effects of d-fenfluramine is not limited to the promotion of satiety once a meal has been initiated, and demonstrate that some anorectic treatments may inhibit the effectiveness of conditioned cues to elicit relapse of food-seeking behavior.
Collapse
Affiliation(s)
- Wayne E Pratt
- Department of Psychology, Wake Forest University, United States.
| | | |
Collapse
|
126
|
Skibicka KP. The central GLP-1: implications for food and drug reward. Front Neurosci 2013; 7:181. [PMID: 24133407 PMCID: PMC3796262 DOI: 10.3389/fnins.2013.00181] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022] Open
Abstract
Glucagon-like-peptide-1 (GLP-1) and its long acting analogs comprise a novel class of type 2 diabetes (T2D) treatment. What makes them unique among other T2D drugs is their concurrent ability to reduce food intake, a great benefit considering the frequent comorbidity of T2D and obesity. The precise neural site of action underlying this beneficial effect is vigorously researched. In accordance with the classical model of food intake control GLP-1 action on feeding has been primarily ascribed to receptor populations in the hypothalamus and the hindbrain. In contrast to this common view, relevant GLP-1 receptor populations are distributed more widely, with a prominent mesolimbic complement emerging. The physiological relevance of the mesolimbic GLP-1 is suggested by the demonstration that similar anorexic effects can be obtained by independent stimulation of the mesolimbic and hypothalamic GLP-1 receptors (GLP-1R). Results reviewed here support the idea that mesolimbic GLP-1R are sufficient to reduce hunger-driven feeding, the hedonic value of food and food-motivation. In parallel, emerging evidence suggests that the range of action of GLP-1 on reward behavior is not limited to food-derived reward but extends to cocaine, amphetamine, and alcohol reward. The new discoveries concerning GLP-1 action on the mesolimbic reward system significantly extend the potential therapeutic range of this drug target.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
127
|
Ott V, Finlayson G, Lehnert H, Heitmann B, Heinrichs M, Born J, Hallschmid M. Oxytocin reduces reward-driven food intake in humans. Diabetes 2013; 62:3418-25. [PMID: 23835346 PMCID: PMC3781467 DOI: 10.2337/db13-0663] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Experiments in animals suggest that the neuropeptide oxytocin acts as an anorexigenic signal in the central nervous control of food intake. In humans, however, research has almost exclusively focused on the involvement of oxytocin in the regulation of social behavior. We investigated the effect of intranasal oxytocin on ingestion and metabolic function in healthy men. Food intake in the fasted state was examined 45 min after neuropeptide administration, followed by the assessment of olfaction and reward-driven snack intake in the absence of hunger. Energy expenditure was registered by indirect calorimetry, and blood was repeatedly sampled to determine concentrations of blood glucose and hormones. Oxytocin markedly reduced snack consumption, restraining, in particular, the intake of chocolate cookies by 25%. Oxytocin, moreover, attenuated basal and postprandial levels of adrenocorticotropic hormone and cortisol and curbed the meal-related rise in plasma glucose. Energy expenditure and hunger-driven food intake as well as olfactory function were not affected. Our results indicate that oxytocin, beyond its role in social bonding, regulates nonhomeostatic, reward-related energy intake, hypothalamic-pituitary-adrenal axis activity, and the glucoregulatory response to food intake in humans. These effects can be assumed to converge with the psychosocial function of oxytocin and imply possible applications in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Volker Ott
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Graham Finlayson
- Institute of Psychological Sciences, University of Leeds, Leeds, U.K
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Birte Heitmann
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Markus Heinrichs
- Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Germany
- Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Jan Born
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (Paul Langerhans Institute Tübingen), Tübingen, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (Paul Langerhans Institute Tübingen), Tübingen, Germany
- Corresponding author: Manfred Hallschmid,
| |
Collapse
|
128
|
Cluny NL, Baraboi ED, Mackie K, Burdyga G, Richard D, Dockray GJ, Sharkey KA. High fat diet and body weight have different effects on cannabinoid CB(1) receptor expression in rat nodose ganglia. Auton Neurosci 2013; 179:122-30. [PMID: 24145047 DOI: 10.1016/j.autneu.2013.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/21/2023]
Abstract
Energy balance is regulated, in part, by the orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB1) receptor expression in the nodose ganglia in obesity has been reported. Whether altered body weight or a high fat diet modifies independent or additive changes in CB1 expression is unknown. We investigated the expression of CB1 and orexin 1 receptor (OX-1R) in the nodose ganglia of rats fed ad libitum or food deprived (24h), maintained on low or high fat diets (HFD), with differing body weights. Male Wistar rats were fed chow or HFD (diet-induced obese: DIO or diet-resistant: DR) or were body weight matched to the DR group but fed chow (wmDR). CB1 and OX-1R immunoreactivity were investigated and CB1 mRNA density was determined using in situ hybridization. CB1 immunoreactivity was measured in fasted rats after sulfated cholecystokinin octapeptide (CCK8s) administration. In chow rats, fasting did not modify the level of CB1 mRNA. More CB1 immunoreactive cells were measured in fed DIO, DR and wmDR rats than chow rats; levels increased after fasting in chow and wmDR rats but not in DIO or DR rats. In HFD fasted rats CCK8s did not reduce CB1 immunoreactivity. OX-1R immunoreactivity was modified by fasting only in DR rats. These data suggest that body weight contributes to the proportion of neurons expressing CB1 immunoreactivity in the nodose ganglion, while HFD blunts fasting-induced increases, and CCK-induced suppression of, CB1-immunoreactivity.
Collapse
Affiliation(s)
- N L Cluny
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Many questions must be considered with regard to consuming food, including when to eat, what to eat and how much to eat. Although eating is often thought to be a homeostatic behaviour, little evidence exists to suggest that eating is an automatic response to an acute shortage of energy. Instead, food intake can be considered as an integrated response over a prolonged period of time that maintains the levels of energy stored in adipocytes. When we eat is generally determined by habit, convenience or opportunity rather than need, and meals are preceded by a neurally-controlled coordinated secretion of numerous hormones that prime the digestive system for the anticipated caloric load. How much we eat is determined by satiation hormones that are secreted in response to ingested nutrients, and these signals are in turn modified by adiposity hormones that indicate the fat content of the body. In addition, many nonhomeostatic factors, including stress, learning, palatability and social influences, interact with other controllers of food intake. If a choice of food is available, what we eat is based on pleasure and past experience. This article reviews the hormones that mediate and influence these processes.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | |
Collapse
|
130
|
Levy A, Salamon A, Tucci M, Limebeer CL, Parker LA, Leri F. Co-sensitivity to the incentive properties of palatable food and cocaine in rats; implications for co-morbid addictions. Addict Biol 2013; 18:763-73. [PMID: 22340075 DOI: 10.1111/j.1369-1600.2011.00433.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Several lines of evidence suggest that there may be a shared vulnerability to acquire behaviors motivated by strong incentive stimuli. Non-food restricted male Sprague-Dawley rats (n = 78) underwent place conditioning with Oreos, and were subsequently tested on cocaine self-administration (SA) on fixed and progressive ratios, as well as extinction and reinstatement by cocaine primes and by consumption of Oreos. Although there was a group preference for the Oreo-paired compartment, at the individual level some rats (69%) displayed a preference and others did not. In cocaine SA, 'preference' rats achieved higher break points on a progressive ratio, and displayed greater responding during extinction and cocaine-induced reinstatement. Within the context of this study, Oreo-cocaine cross-reinstatement was not observed. In a control study, rats (n = 29) conditioned with a less palatable food (rice cakes) also displayed individual differences in place preference, but not on subsequent cocaine tests. These findings indicate that there is a relationship between incentive learning promoted by palatable foods and by cocaine. This supports the hypothesis that co-morbid food-drug addictions may result from a shared vulnerability to acquire behaviors motivated by strong incentives.
Collapse
Affiliation(s)
- AnneMarie Levy
- Department of Psychology, University of Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
131
|
An orexin hotspot in ventral pallidum amplifies hedonic 'liking' for sweetness. Neuropsychopharmacology 2013; 38:1655-64. [PMID: 23463152 PMCID: PMC3717533 DOI: 10.1038/npp.2013.62] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
Abstract
Orexin (hypocretin) is implicated in stimulating appetite as well as arousal, and in both food reward and drug reward. The ventral pallidum (VP) receives orexin projections from lateral hypothalamus neurons (LH), and orexin terminals are especially dense in the posterior half of VP, which is also the location of an opioid hedonic hotspot. The VP hotspot is a roughly cubic-millimeter site where mu opioid stimulation can amplify the hedonic impact of sweetness, expressed as an increase in 'liking' reactions to sucrose taste. The anatomical overlap in posterior VP between opioid hotspot and orexin inputs raises the possibility that the hedonic hotspot might allow orexin to amplify 'liking' too. We examined whether microinjections of orexin-A into the VP hotspot enhance the hedonic impact of sucrose, as assessed via affective taste reactivity measures of 'liking' reactions, and additionally compared effects at nearby sites in adjacent LH and extended amygdala. Taste reactivity results indicated that orexin stimulation specifically in the VP hotspot nearly doubled the magnitude of positive 'liking' reactions elicited by the taste of sucrose. Mapping results for localization of function, aided by Fos plume measures of the local spread of orexin impact, suggested that hedonic enhancement was generated by essentially the same cubic-millimeter of posterior VP previously identified as the opioid hotspot. By contrast, microinjection sites in the anterior half of VP, or in LH or extended amygdala, generally failed to produce any hedonic enhancement. We conclude that an orexin hedonic hotspot exists in posterior VP, with similar boundaries to the opioid hotspot. An orexin hedonic hotspot may permit regulatory hypothalamic circuitry to make foods more 'liked' during hunger by acting through VP. Dysfunction in a VP orexin hotspot in addiction or mood disorders might also contribute to some types of affective psychopathology.
Collapse
|
132
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
133
|
Effect of chronic administration of tamoxifen and/or estradiol on feeding behavior, palatable food and metabolic parameters in ovariectomized rats. Physiol Behav 2013; 119:17-24. [DOI: 10.1016/j.physbeh.2013.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 05/08/2013] [Indexed: 01/25/2023]
|
134
|
Bayard S, Dauvilliers YA. Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy. Front Behav Neurosci 2013; 7:50. [PMID: 23734110 PMCID: PMC3661950 DOI: 10.3389/fnbeh.2013.00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/06/2013] [Indexed: 11/13/2022] Open
Abstract
Major advances in the past decade have led a better understanding of the pathophysiology of narcolepsy with cataplexy (NC) caused by the early loss of hypothalamic hypocretin neurons. Although a role for hypocretin in the regulation of sleep/wakefulness state is widely recognized, other functions, not necessarily related to arousal, have been identified. Hence, the hypocretin system enhances signaling in the mesolimbic pathways regulating reward processing, emotion and mood regulation, and addiction. Although studies on hypocretin-deficient mice have shown that hypocretin plays an essential role in reward-seeking, depression-like behavior and addiction, results in human narcolepsy remained subject to debate. Most of studies revealed that hypocretin-deficient narcolepsy patients either drug-free or medicated with psychostimulant had preferences toward risky choices in a decision-making task under ambiguity together with higher frequency of depressive symptoms and binge eating disorder compared to controls. However, human studies mostly reported the lack of association with pathological impulsivity and gambling, and substance and alcohol abuse in the context of narcolepsy-cataplexy. Prospective larger studies are required to confirm these findings in drug-free and medicated patients with narcolepsy. Inclusion of patients with other central hypersomnias without hypocretin deficiency will provide answer to the major question of the role of the hypocretin system in reward-based behaviors and emotional processing in humans.
Collapse
Affiliation(s)
- Sophie Bayard
- Department of Neurology, National Reference Network for Narcolepsy, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM U1061, University of Montpellier 1 Montpellier, France
| | | |
Collapse
|
135
|
Pisapia JM, Halpern CH, Muller UJ, Vinai P, Wolf JA, Whiting DM, Wadden TA, Baltuch GH, Caplan AL. Ethical Considerations in Deep Brain Stimulation for the Treatment of Addiction and Overeating Associated With Obesity. AJOB Neurosci 2013; 4:35-46. [PMID: 29152408 PMCID: PMC5687095 DOI: 10.1080/21507740.2013.770420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The success of deep brain stimulation (DBS) for movement disorders and the improved understanding of the neurobiologic and neuroanatomic bases of psychiatric diseases have led to proposals to expand current DBS applications. Recent preclinical and clinical work with Alzheimer's disease and obsessive-compulsive disorder, for example, supports the safety of stimulating regions in the hypothalamus and nucleus accumbens in humans. These regions are known to be involved in addiction and overeating associated with obesity. However, the use of DBS targeting these areas as a treatment modality raises common ethical considerations, which include informed consent, coercion, enhancement, threat to personhood, and manipulation of the reward center. Pilot studies for both of these conditions are currently investigational. If these studies show promise, then there is a need to address the ethical concerns related to the initiation of clinical trials including the reliability of preclinical evidence, patient selection, study design, compensation for participation and injury, cost-effectiveness, and the need for long-term follow-up. Multidisciplinary teams are necessary for the ethical execution of such studies. In addition to establishing safety and efficacy, the consideration of these ethical issues is vital to the adoption of DBS as a treatment for these conditions. We offer suggestions about the pursuit of future clinical trials of DBS for the treatment of addiction and overeating associated with obesity and provide a framework for addressing ethical concerns related to treatment.
Collapse
|
136
|
Martire SI, Holmes N, Westbrook RF, Morris MJ. Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity. PLoS One 2013; 8:e60407. [PMID: 23565243 PMCID: PMC3614998 DOI: 10.1371/journal.pone.0060407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/27/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Rats prefer energy-rich foods over chow and eat them to excess. The pattern of eating elicited by this diet is unknown. We used the behavioral satiety sequence to classify an eating bout as a meal or snack and compared the eating patterns of rats fed an energy rich cafeteria diet or chow. METHODS Eight week old male Sprague Dawley rats were exposed to lab chow or an energy-rich cafeteria diet (plus chow) for 16 weeks. After 5, 10 and 15 weeks, home-cage overnight feeding behavior was recorded. Eating followed by grooming then resting or sleeping was classified as a meal; whereas eating not followed by the full sequence was classified as a snack. Numbers of meals and snacks, their duration, and waiting times between feeding bouts were compared between the two conditions. RESULTS Cafeteria-fed rats ate more protein, fat and carbohydrate, consistently ingesting double the energy of chow-fed rats, and were significantly heavier by week 4. Cafeteria-fed rats tended to take multiple snacks between meals and ate fewer meals than chow-fed rats. They also ate more snacks at 5 weeks, were less effective at compensating for snacking by reducing meals, and the number of snacks in the majority of the cafeteria-fed rats was positively related to terminal body weights. CONCLUSIONS Exposure to a palatable diet had long-term effects on feeding patterns. Rats became overweight because they initially ate more frequently and ultimately ate more of foods with higher energy density. The early increased snacking in young cafeteria-fed rats may represent the establishment of eating habits that promote weight gain.
Collapse
Affiliation(s)
- Sarah I. Martire
- School of Psychology, University of New South Wales, New South Wales, Australia
| | - Nathan Holmes
- School of Psychology, University of New South Wales, New South Wales, Australia
| | - R. Fred Westbrook
- School of Psychology, University of New South Wales, New South Wales, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| |
Collapse
|
137
|
Martens MJI, Born JM, Lemmens SGT, Karhunen L, Heinecke A, Goebel R, Adam TC, Westerterp-Plantenga MS. Increased sensitivity to food cues in the fasted state and decreased inhibitory control in the satiated state in the overweight. Am J Clin Nutr 2013; 97:471-9. [PMID: 23364016 DOI: 10.3945/ajcn.112.044024] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Flexibility of food reward-related brain signaling (FRS) between food and nonfood stimuli may differ between overweight and normal-weight subjects and depend on a fasted or satiated state. OBJECTIVE The objective was to assess this flexibility in response to visual food and nonfood cues. DESIGN Twenty normal-weight [mean ± SEM BMI (in kg/m(2)) = 22.7 ± 0.2; mean ± SEM age = 22.4 ± 0.4 y] and 20 overweight (BMI = 28.1 ± 0.3; age = 24.0 ± 0.7 y) participants completed 2 fMRI scans. Subjects arrived in a fasted state and consumed a breakfast consisting of 20% of subject-specific energy requirements between 2 successive scans. A block paradigm and a food > nonfood contrast was used to determine FRS. RESULTS An overall stimulus × condition × subject group effect was observed in the anterior cingulate cortex (ACC) (P < 0.006, F((1,38)) = 9.12) and right putamen (P < 0.006, F((1,38)) = 9.27). In all participants, FRS decreased from the fasted to the satiated state in the cingulate (P < 0.005, t((39)) = 3.15) and right prefrontal cortex (PFC) (P < 0.006, t((39)) = 3.00). In the fasted state, they showed FRS in the PFC (P < 0.004, t((39)) = 3.17), left insula (P < 0.009, t((39)) = 2.95), right insula (P < 0.005, t((39)) = 3.12), cingulate cortex (P < 0.004, t((39)) = 3.21), and thalamus (P < 0.006, t((39)) = 2.96). In the satiated state, FRS was limited to the left insula (P < 0.005, t((39)) = 3.21), right insula (P < 0.006, t((39)) = 3.04), and cingulate cortex (P < 0.005, t((39)) = 3.15). Regarding subject group, in the fasted state, FRS in the ACC was more pronounced in overweight than in normal-weight subjects (P < 0.005, F((1,38)) = 9.71), whereas in the satiated state, FRS was less pronounced in overweight than in normal-weight subjects in the ACC (P < 0.006, F((1,38)) = 9.18) and PFC (P < 0.006, F((1,38)) = 8.86), which suggests lower inhibitory control in the overweight. CONCLUSION FRS was higher in the overweight in the satiated state; however, when sufficiently satiated, the overweight showed decreased inhibitory control signalling, which facilitates overeating. This trial was registered in the Dutch clinical trial register as NTR2174.
Collapse
Affiliation(s)
- Mieke J I Martens
- Maastricht University Medical Centre, Department of Human Biology, Maastricht, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Johnson AW. Eating beyond metabolic need: how environmental cues influence feeding behavior. Trends Neurosci 2013; 36:101-9. [DOI: 10.1016/j.tins.2013.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 01/05/2023]
|
139
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
140
|
Kozuka C, Yabiku K, Sunagawa S, Ueda R, Taira SI, Ohshiro H, Ikema T, Yamakawa K, Higa M, Tanaka H, Takayama C, Matsushita M, Oyadomari S, Shimabukuro M, Masuzaki H. Brown rice and its component, γ-oryzanol, attenuate the preference for high-fat diet by decreasing hypothalamic endoplasmic reticulum stress in mice. Diabetes 2012; 61:3084-93. [PMID: 22826028 PMCID: PMC3501875 DOI: 10.2337/db11-1767] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brown rice is known to improve glucose intolerance and prevent the onset of diabetes. However, the underlying mechanisms remain obscure. In the current study, we investigated the effect of brown rice and its major component, γ-oryzanol (Orz), on feeding behavior and fuel homeostasis in mice. When mice were allowed free access to a brown rice-containing chow diet (CD) and a high-fat diet (HFD), they significantly preferred CD to HFD. To reduce hypothalamic endoplasmic reticulum (ER) stress on an HFD, mice were administered with 4-phenylbutyric acid, a chemical chaperone, which caused them to prefer the CD. Notably, oral administration of Orz, a mixture of major bioactive components in brown rice, also improved glucose intolerance and attenuated hypothalamic ER stress in mice fed the HFD. In murine primary neuronal cells, Orz attenuated the tunicamycin-induced ER stress. In luciferase reporter assays in human embryonic kidney 293 cells, Orz suppressed the activation of ER stress-responsive cis-acting elements and unfolded protein response element, suggesting that Orz acts as a chemical chaperone in viable cells. Collectively, the current study is the first demonstration that brown rice and Orz improve glucose metabolism, reduce hypothalamic ER stress, and, consequently, attenuate the preference for dietary fat in mice fed an HFD.
Collapse
Affiliation(s)
- Chisayo Kozuka
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kouichi Yabiku
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Sumito Sunagawa
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Rei Ueda
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shin-ichiro Taira
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Tomomi Ikema
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ken Yamakawa
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Moritake Higa
- Diabetes and Life-style Related Disease Center, Tomishiro Central Hospital, Okinawa, Japan
| | | | - Chitoshi Takayama
- Departments of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Seiichi Oyadomari
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Michio Shimabukuro
- Department of Cardio-Diabetes Medicine, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Corresponding author: Hiroaki Masuzaki,
| |
Collapse
|
141
|
Abstract
The objective of this non-systematic review of the literature is to highlight some of the neural systems and pathways that are affected by the various intake-promoting aspects of the modern food environment and explore potential modes of interaction between core systems such as hypothalamus and brainstem primarily receptive to internal signals of fuel availability and forebrain areas such as the cortex, amygdala and meso-corticolimbic dopamine system, primarily processing external signals. The modern lifestyle with its drastic changes in the way we eat and move puts pressure on the homoeostatic system responsible for the regulation of body weight, which has led to an increase in overweight and obesity. The power of food cues targeting susceptible emotions and cognitive brain functions, particularly of children and adolescents, is increasingly exploited by modern neuromarketing tools. Increased intake of energy-dense foods high in fat and sugar is not only adding more energy, but may also corrupt neural functions of brain systems involved in nutrient sensing as well as in hedonic, motivational and cognitive processing. It is concluded that only long-term prospective studies in human subjects and animal models with the capacity to demonstrate sustained over-eating and development of obesity are necessary to identify the critical environmental factors as well as the underlying neural systems involved. Insights from these studies and from modern neuromarketing research should be increasingly used to promote consumption of healthy foods.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
| |
Collapse
|
142
|
Reduced anticipatory dopamine responses to food in rats exposed to high fat during early development. Int J Obes (Lond) 2012; 37:885-8. [PMID: 22964789 DOI: 10.1038/ijo.2012.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that exposure to high fat (HF) during early development alters the presynaptic regulation of mesolimbic dopamine (DA), and increases incentive motivation for HF food rewards. The goal of the present experiments was to examine the long-term consequences of early exposure to HF on anticipatory and consumatory nucleus accumbens (NAc) DA responses to HF food rewards. Mothers were maintained on a HF (30% fat) or control diet (CD; 5% fat) from gestation day 13 to postnatal day 22 when offspring from both diet groups were weaned and maintained on the CD until adulthood. In vivo NAc DA responses to food anticipation and consumption were measured in a Pavlovian conditioning paradigm using voltammetry in freely moving rats. HF-exposed offspring displayed reduced NAc DA responses to a tone previously paired with the delivery of HF food rewards. In an unconditioned protocol, consumatory NAc DA responses could be isolated, and were similar in HF and control offspring. These data demonstrate that exposure to HF through maternal diet during early development might program behavioral and functional responses associated with mesolimbic DA neurotransmission, thus leading to an increased HF feeding and obesity.
Collapse
|
143
|
Michopoulos V, Toufexis D, Wilson ME. Social stress interacts with diet history to promote emotional feeding in females. Psychoneuroendocrinology 2012; 37:1479-90. [PMID: 22377541 PMCID: PMC3597464 DOI: 10.1016/j.psyneuen.2012.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/05/2012] [Accepted: 02/02/2012] [Indexed: 01/07/2023]
Abstract
Stress-induced eating disorders cause significant health problems and are often co-morbid with mood disorders. Emotional feeding, particularly in women, may be important for the development of obesity and failed attempts to lose weight. However, prospective studies assessing the effect of chronic psychosocial stress on appetite in different dietary environments in females are lacking. The present study tested the hypothesis that chronic psychosocial stress would increase consumption of high caloric diet and this emotional feeding would persist even when a healthier diet was available. Socially housed female rhesus monkeys were studied to address whether subordination increases caloric intake when a high fat and sugar diet (HFSD) was available concurrently with a low fat, high fiber diet (LCD). Cortisol responsivity and food intake were quantified during this choice phase and when only the LCD was available. The order of diet condition was counterbalanced to assess whether a history of HFSD would affect appetite. All females preferred the HFSD but subordinates consumed significantly more calories during the choice phase. The increased calorie intake was maintained in subordinate monkeys even after withdrawal of the HFSD. Subordinate females demonstrated reduced glucocorticoid negative feedback, with post dexamethasone serum cortisol levels significantly predicting intake of the HFSD but not the LCD during the choice condition. The cortisol response to an acute stressor significantly predicted subsequent intake of a HFSD in all females. Continual exposure to the psychosocial stress of subordination in female monkeys results in excess caloric intake of foods that mimic a western dietary environment. In addition, this social stressor interacts with a history of HFSD intake to promote increased feeding even in a healthy dietary environment.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Donna Toufexis
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States,Department of Psychology, University of Vermont, Burlington, VT 05405, United States
| | - Mark E. Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
144
|
Beeler JA, Frazier CRM, Zhuang X. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front Integr Neurosci 2012; 6:49. [PMID: 22833718 PMCID: PMC3400936 DOI: 10.3389/fnint.2012.00049] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/02/2012] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the "reward deficiency hypothesis" as a perceived energy deficit. We propose that dopamine, by facilitating energy expenditure, should be protective against obesity. We suggest the apparent failure of this protective mechanism in Western societies with high prevalence of obesity arises as a consequence of sedentary lifestyles that thwart energy expenditure.
Collapse
Affiliation(s)
- Jeff A. Beeler
- Department of Neurobiology, The University of ChicagoChicago, IL, USA
| | | | - Xiaoxi Zhuang
- Department of Neurobiology, The University of ChicagoChicago, IL, USA
- Committee on Neurobiology, The University of ChicagoChicago, IL, USA
| |
Collapse
|
145
|
Sherwood A, Wosiski-Kuhn M, Nguyen T, Holland PC, Lakaye B, Adamantidis A, Johnson AW. The role of melanin-concentrating hormone in conditioned reward learning. Eur J Neurosci 2012; 36:3126-33. [PMID: 22775118 DOI: 10.1111/j.1460-9568.2012.08207.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The orexigenic neuropeptide melanin-concentrating hormone (MCH) is well positioned to play a key role in connecting brain reward and homeostatic systems due to its synthesis in hypothalamic circuitry and receptor expression throughout the cortico-striatal reward circuit. Here we examined whether targeted-deletion of the MCH receptor (MCH-1R) in gene-targeted heterozygote and knockout mice (KO), or systemic treatment with pharmacological agents designed to antagonise MCH-1R in C57BL/6J mice would disrupt two putative consequences of reward learning that rely on different neural circuitries: conditioned reinforcement (CRf) and Pavlovian-instrumental transfer (PIT). Mice were trained to discriminate between presentations of a reward-paired cue (CS+) and an unpaired CS-. Following normal acquisition of the Pavlovian discrimination in all mice, we assessed the capacity for the CS+ to act as a reinforcer for new nose-poke learning (CRf). Pharmacological disruption in control mice and genetic deletion in KO mice impaired CRf test performance, suggesting MCH-1R is necessary for initiating and maintaining behaviors that are under the control of conditioned reinforcers. To examine a dissociable form of reward learning (PIT), a naïve group of mice were trained in separate Pavlovian and instrumental lever training sessions followed by the PIT test. For all mice the CS+ was capable of augmenting ongoing lever responding relative to CS- periods. These results suggest a role for MCH in guiding behavior based on the conditioned reinforcing value of a cue, but not on its incentive motivational value.
Collapse
Affiliation(s)
- Andrew Sherwood
- Department of Psychological and Brain Sciences, Johns Hopkins University, Ames Hall, 3400 N. Charles Street, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Beeler JA, McCutcheon JE, Cao ZFH, Murakami M, Alexander E, Roitman MF, Zhuang X. Taste uncoupled from nutrition fails to sustain the reinforcing properties of food. Eur J Neurosci 2012; 36:2533-46. [PMID: 22712685 DOI: 10.1111/j.1460-9568.2012.08167.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent findings suggest the reward system encodes metabolic value independent of taste, provoking speculation that the hedonic value of taste could be derived from nutritional value as a secondary appetitive property. We therefore dissociated and compared the impact of nutrition and taste on appetitive behavior in several paradigms. Though taste alone induces preference and increased consumption, in the absence of nutritional value its reinforcing properties are greatly diminished and it does not, like sucrose, induce increased responding over time. In agreement with behavioral data, saccharin-evoked (but not sucrose-evoked) dopamine release is greatly attenuated following pre-exposure, suggesting that nutritional value is critical for dopamine-mediated reward and reinforcement. Further supporting the primacy of nutrition over taste, genetically increased dopaminergic tone enhances incentive associated with nutritional value with minimal impact on taste-based, hedonic incentive. Overall, we suggest that the sensory-hedonic incentive value associated with taste functions as a conditioned stimulus that requires nutritional value to sustainably organize appetitive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Dattilo AM, Birch L, Krebs NF, Lake A, Taveras EM, Saavedra JM. Need for early interventions in the prevention of pediatric overweight: a review and upcoming directions. J Obes 2012; 2012:123023. [PMID: 22675610 PMCID: PMC3362946 DOI: 10.1155/2012/123023] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/28/2012] [Indexed: 02/02/2023] Open
Abstract
Childhood obesity is currently one of the most prevailing and challenging public health issues among industrialized countries and of international priority. The global prevalence of obesity poses such a serious concern that the World Health Organization (WHO) has described it as a "global epidemic." Recent literature suggests that the genesis of the problem occurs in the first years of life as feeding patterns, dietary habits, and parental feeding practices are established. Obesity prevention evidence points to specific dietary factors, such as the promotion of breastfeeding and appropriate introduction of nutritious complementary foods, but also calls for attention to parental feeding practices, awareness of appropriate responses to infant hunger and satiety cues, physical activity/inactivity behaviors, infant sleep duration, and family meals. Interventions that begin at birth, targeting multiple factors related to healthy growth, have not been adequately studied. Due to the overwhelming importance and global significance of excess weight within pediatric populations, this narrative review was undertaken to summarize factors associated with overweight and obesity among infants and toddlers, with focus on potentially modifiable risk factors beginning at birth, and to address the need for early intervention prevention.
Collapse
Affiliation(s)
- Anne M. Dattilo
- Nestlé Nutrition, 12 Vreeland Road, Florham Park, NJ 07932, USA
| | - Leann Birch
- Department of Human Development and Family Studies, College of Health and Human Development, Penn State University, S-211 Henderson South Building, University Park, PA 16802, USA
| | - Nancy F. Krebs
- Department of Community and Behavioral Health, University of Colorado Denver, Research Complex 2, Room 5025, 12700 East 19th Avenue, Box C225, Aurora, CO 80045, USA
| | - Alan Lake
- Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Elsie M. Taveras
- Obesity Prevention Program, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, 133 Brookline Avenue, 6th floor, Boston, MA 02215, USA
| | - Jose M. Saavedra
- Nestlé Nutrition, 12 Vreeland Road, Florham Park, NJ 07932, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
148
|
Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1119-33. [PMID: 22442194 PMCID: PMC3362145 DOI: 10.1152/ajpregu.00038.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
149
|
Alsiö J, Olszewski PK, Levine AS, Schiöth HB. Feed-forward mechanisms: addiction-like behavioral and molecular adaptations in overeating. Front Neuroendocrinol 2012; 33:127-39. [PMID: 22305720 DOI: 10.1016/j.yfrne.2012.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/24/2011] [Accepted: 01/13/2012] [Indexed: 12/23/2022]
Abstract
Food reward, not hunger, is the main driving force behind eating in the modern obesogenic environment. Palatable foods, generally calorie-dense and rich in sugar/fat, are thus readily overconsumed despite the resulting health consequences. Important advances have been made to explain mechanisms underlying excessive consumption as an immediate response to presentation of rewarding tastants. However, our understanding of long-term neural adaptations to food reward that oftentimes persist during even a prolonged absence of palatable food and contribute to the reinstatement of compulsive overeating of high-fat high-sugar diets, is much more limited. Here we discuss the evidence from animal and human studies for neural and molecular adaptations in both homeostatic and non-homeostatic appetite regulation that may underlie the formation of a "feed-forward" system, sensitive to palatable food and propelling the individual from a basic preference for palatable diets to food craving and compulsive, addiction-like eating behavior.
Collapse
Affiliation(s)
- Johan Alsiö
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, Box 593, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
150
|
Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. Br J Nutr 2012; 108:778-93. [PMID: 22409929 DOI: 10.1017/s0007114512000529] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptides are classically known as short-term signals, primarily inducing satiation and/or satiety. However, accumulating evidence has broadened this view, and their role in long-term energy homeostasis and the development of obesity has been increasingly recognised. In the present review, the recent research involving the role of satiation signals, especially ghrelin, cholecystokinin, glucagon-like peptide 1 and peptide YY, in the development and treatment of obesity will be discussed. Their activity, interactions and release profile vary constantly with changes in dietary and energy influences, intestinal luminal environment, body weight and metabolic status. Manipulation of gut peptides and nutrient sensors in the oral and postoral compartments through diet and/or changes in gut microflora or using multi-hormone 'cocktail' therapy are among promising approaches aimed at reducing excess food consumption and body-weight gain.
Collapse
|