101
|
Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, Singer W, Wibral M, Uhlhaas PJ. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings. Schizophr Bull 2015; 41:1105-14. [PMID: 25987642 PMCID: PMC4535642 DOI: 10.1093/schbul/sbv051] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits.
Collapse
Affiliation(s)
- Davide Rivolta
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany;,Ernst Strüngmann Institute for Neuroscience (ESI) in cooperation with Max Planck Society (ESI), Frankfurt am Main, Germany;,School of Psychology, University of East London (UEL), London, UK
| | - Tonio Heidegger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Bertram Scheller
- Clinic for Anesthesia, Intensive Care Medicine and Pain Therapy, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| | - Andreas Sauer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany;,Ernst Strüngmann Institute for Neuroscience (ESI) in cooperation with Max Planck Society (ESI), Frankfurt am Main, Germany
| | | | - Katharina Birkner
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany;,Ernst Strüngmann Institute for Neuroscience (ESI) in cooperation with Max Planck Society (ESI), Frankfurt am Main, Germany
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany;,Ernst Strüngmann Institute for Neuroscience (ESI) in cooperation with Max Planck Society (ESI), Frankfurt am Main, Germany;,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | | | - Peter J. Uhlhaas
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany;,Ernst Strüngmann Institute for Neuroscience (ESI) in cooperation with Max Planck Society (ESI), Frankfurt am Main, Germany;,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK,*To whom correspondence should be addressed; Institute of Neuroscience and Psychology, University of Glasgow, Hillead Street 58, Glasgow, G12 8QB, UK; tel: 44-141-330-8730, fax: 44-141-330-8730, e-mail:
| |
Collapse
|
102
|
Leishman E, O’Donnell BF, Millward JB, Vohs JL, Rass O, Krishnan GP, Bolbecker AR, Morzorati SL. Phencyclidine Disrupts the Auditory Steady State Response in Rats. PLoS One 2015; 10:e0134979. [PMID: 26258486 PMCID: PMC4530939 DOI: 10.1371/journal.pone.0134979] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/12/2015] [Indexed: 12/20/2022] Open
Abstract
The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
- * E-mail:
| | - James B. Millward
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jenifer L. Vohs
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Olga Rass
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
| | - Giri P. Krishnan
- University of California Riverside, Riverside, CA, United States of America
| | - Amanda R. Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Sandra L. Morzorati
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
103
|
Edgar JC, Khan SY, Blaskey L, Chow VY, Rey M, Gaetz W, Cannon KM, Monroe JF, Cornew L, Qasmieh S, Liu S, Welsh JP, Levy SE, Roberts TPL. Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. J Autism Dev Disord 2015; 45:395-405. [PMID: 23963591 DOI: 10.1007/s10803-013-1904-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous studies have observed evoked response latency as well as gamma band superior temporal gyrus (STG) auditory abnormalities in individuals with autism spectrum disorders (ASD). A limitation of these studies is that associations between these two abnormalities, as well as the full extent of oscillatory phenomena in ASD in terms of frequency and time, have not been examined. Subjects were presented pure tones at 200, 300, 500, and 1,000 Hz while magnetoencephalography assessed activity in STG auditory areas in a sample of 105 children with ASD and 36 typically developing controls (TD). Findings revealed a profile such that auditory STG processes in ASD were characterized by pre-stimulus abnormalities across multiple frequencies, then early high-frequency abnormalities followed by low-frequency abnormalities. Increased pre-stimulus activity was a 'core' abnormality, with pre-stimulus activity predicting post-stimulus neural abnormalities, group membership, and clinical symptoms (CELF-4 Core Language Index). Deficits in synaptic integration in the auditory cortex are associated with oscillatory abnormalities in ASD as well as patient symptoms. Increased pre-stimulus activity in ASD likely demonstrates a fundamental signal-to-noise deficit in individuals with ASD, with elevations in oscillatory activity suggesting an inability to maintain an appropriate 'neural tone' and an inability to rapidly return to a resting state prior to the next stimulus.
Collapse
Affiliation(s)
- J Christopher Edgar
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia, Wood Bldg, Suite 2115, 34th St. and Civic Center Blvd, Philadelphia, PA, 19104, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Tomimatsu Y, Hibino R, Ohta H. Brown Norway rats, a putative schizophrenia model, show increased electroencephalographic activity at rest and decreased event-related potential amplitude, power, and coherence in the auditory sensory gating paradigm. Schizophr Res 2015; 166:171-7. [PMID: 26004687 DOI: 10.1016/j.schres.2015.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/11/2015] [Accepted: 05/01/2015] [Indexed: 01/16/2023]
Abstract
In recent schizophrenia clinical research, electroencephalographic (EEG) oscillatory activities induced by a sensory stimulus or behavioral tasks have gained considerable interest as functional and pathophysiological biomarkers. The Brown Norway (BN) rat is a putative schizophrenia model that shows naturally low sensorimotor gating and deficits in cognitive performance, although other phenotypes have not been studied. The present study aimed to investigate the neurophysiological features of BN rats, particularly EEG/event-related potential (ERP). EEG activity was recorded at rest and during the auditory sensory gating paradigm under an awake, freely moving condition. Frequency and ERP analysis were performed along with time-frequency analysis of evoked power and intertrial coherence. Compared with Wistar-Kyoto rats, a well-documented control line, BN rats showed increased EEG power at rest, particularly in the theta and gamma ranges. In ERP analysis, BN rats showed reduced N40-P20 amplitude but normal sensory gating. The rats also showed reduced evoked power and intertrial coherence against auditory stimuli. These results suggest that BN rats show features of EEG/ERP measures clinically relevant to schizophrenia and may provide additional opportunities for translational research.
Collapse
Affiliation(s)
- Yoshiro Tomimatsu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Ryosuke Hibino
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Hiroyuki Ohta
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| |
Collapse
|
105
|
Abstract
IMPORTANCE A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. OBJECTIVE To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. DESIGN, SETTING, AND PARTICIPANTS We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. MAIN OUTCOMES AND MEASURES Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. RESULTS The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30-100 Hz) gamma power was increased in patients with SZ compared with controls during steady-state stimulation (6.579 [3.783] vs 3.984 [1.843]; F1,46 = 9.128 [P = .004]; d = 0.87) but not during rest (0.006 [0.003] vs 0.005 [0.002]; F1,34 = 1.067 [P = .309]; d = 0.35). Induced gamma power in the left hemisphere of the patients with SZ during the 40-Hz stimulation was positively correlated with auditory hallucination symptoms (tangential, ρ = 0.587 [P = .031]; radial, ρ = 0.593 [P = .024]) and negatively correlated with the ASSR phase-locking factor (baseline: ρ = -0.572 [P = .024]; ASSR: ρ = -0.568 [P = .032]). CONCLUSIONS AND RELEVANCE Spontaneous gamma activity is increased during auditory steady-state stimulation in SZ, reflecting a disruption in the normal balance of excitation and inhibition. This phenomenon interacts with evoked oscillations, possibly contributing to the gamma ASSR deficit found in SZ. The similarity of increased spontaneous gamma power in SZ to the findings of increased spontaneous gamma power in animal models of NMDAR hypofunction suggests that spontaneous gamma power could serve as a biomarker for the integrity of NMDARs on parvalbumin-expressing inhibitory interneurons in humans and in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yoji Hirano
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, Boston, Massachusetts2Department of Psychiatry, Harvard Medical School, Boston, Massachusetts3Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyus
| | - Naoya Oribe
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, Boston, Massachusetts2Department of Psychiatry, Harvard Medical School, Boston, Massachusetts3Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyus
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Paul G. Nestor
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, Boston, Massachusetts4Department of Psychology, University of Massachusetts, Boston
| | - Kevin M. Spencer
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, Boston, Massachusetts2Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
106
|
Pittman-Polletta BR, Kocsis B, Vijayan S, Whittington MA, Kopell NJ. Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 2015; 77:1020-30. [PMID: 25850619 PMCID: PMC4444389 DOI: 10.1016/j.biopsych.2015.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
In recent years, schizophrenia research has focused on inhibitory interneuron dysfunction at the level of neurobiology and on cognitive impairments at the psychological level. Reviewing both experimental and computational findings, we show how the temporal structure of the activity of neuronal populations, exemplified by brain rhythms, can begin to bridge these levels of complexity. Oscillations in neuronal activity tie the pathophysiology of schizophrenia to alterations in local processing and large-scale coordination, and these alterations in turn can lead to the cognitive and perceptual disturbances observed in schizophrenia.
Collapse
Affiliation(s)
- Benjamin R. Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA,Corresponding author. Please send correspondence to: 111 Cummington Mall, Boston MA 02215. Phone: 617-353-2560. Fax: 617-353-8100., (Benjamin R. Pittman-Polletta)
| | - Bernat Kocsis
- Cognitive Rhythms Collaborative, Boston, MA,Department of Psychiatry, Beth Israel Medical Center, Harvard Medical School, Boston MA
| | - Sujith Vijayan
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| | - Miles A. Whittington
- Cognitive Rhythms Collaborative, Boston, MA,Department of Neuroscience, Hull York Medical School, York University, UK
| | - Nancy J. Kopell
- Cognitive Rhythms Collaborative, Boston, MA,Department of Mathematics & Statistics, Boston University, Boston MA
| |
Collapse
|
107
|
Rosen AM, Spellman T, Gordon JA. Electrophysiological endophenotypes in rodent models of schizophrenia and psychosis. Biol Psychiatry 2015; 77:1041-9. [PMID: 25910423 PMCID: PMC4444383 DOI: 10.1016/j.biopsych.2015.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/03/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia is caused by a diverse array of risk factors and results in a similarly diverse set of symptoms. Electrophysiological endophenotypes lie between risks and symptoms and have the potential to link the two. Electrophysiological studies in rodent models, described here, demonstrate that widely differing risk factors result in a similar set of core electrophysiological endophenotypes, suggesting the possibility of a shared neurobiological substrate.
Collapse
Affiliation(s)
- Andrew M. Rosen
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Timothy Spellman
- Department of Physiology, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Joshua A. Gordon
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032,Division of Integrative Neuroscience New York State Psychiatric Institute New York NY 10032,Correspondence to: Joshua A. Gordon 1051 Riverside Drive Unit 87 Kolb Annex Room 140 New York, NY 10032 Ph. 646 774-7116 Fax. 646 774-7101
| |
Collapse
|
108
|
Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann N Y Acad Sci 2015; 1344:12-26. [DOI: 10.1111/nyas.12745] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Robert E. Featherstone
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Mary F. McMullen
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Katelyn R. Ward
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jakyung Bang
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jane Xiao
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Steven J. Siegel
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
109
|
Sivarao DV. The 40-Hz auditory steady-state response: a selective biomarker for cortical NMDA function. Ann N Y Acad Sci 2015; 1344:27-36. [DOI: 10.1111/nyas.12739] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
110
|
Pyramidal cell selective ablation of N-methyl-D-aspartate receptor 1 causes increase in cellular and network excitability. Biol Psychiatry 2015; 77:556-68. [PMID: 25156700 PMCID: PMC4297754 DOI: 10.1016/j.biopsych.2014.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/05/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuronal activity at gamma frequency is impaired in schizophrenia (SZ) and is considered critical for cognitive performance. Such impairments are thought to be due to reduced N-methyl-D-aspartate receptor (NMDAR)-mediated inhibition from parvalbumin interneurons, rather than a direct role of impaired NMDAR signaling on pyramidal neurons. However, recent studies suggest a direct role of pyramidal neurons in regulating gamma oscillations. In particular, a computational model has been proposed in which phasic currents from pyramidal cells could drive synchronized feedback inhibition from interneurons. As such, impairments in pyramidal neuron activity could lead to abnormal gamma oscillations. However, this computational model has not been tested experimentally and the molecular mechanisms underlying pyramidal neuron dysfunction in SZ remain unclear. METHODS In the present study, we tested the hypothesis that SZ-related phenotypes could arise from reduced NMDAR signaling in pyramidal neurons using forebrain pyramidal neuron specific NMDA receptor 1 knockout mice. RESULTS The mice displayed increased baseline gamma power, as well as sociocognitive impairments. These phenotypes were associated with increased pyramidal cell excitability due to changes in inherent membrane properties. Interestingly, mutant mice showed decreased expression of GIRK2 channels, which has been linked to increased neuronal excitability. CONCLUSIONS Our data demonstrate for the first time that NMDAR hypofunction in pyramidal cells is sufficient to cause electrophysiological, molecular, neuropathological, and behavioral changes related to SZ.
Collapse
|
111
|
Koch M, Schmiedt-Fehr C, Mathes B. Neuropharmacology of altered brain oscillations in schizophrenia. Int J Psychophysiol 2015; 103:62-8. [PMID: 25681533 DOI: 10.1016/j.ijpsycho.2015.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Impairments in spatial and temporal integration of brain network activity are a core feature of schizophrenia. Neural network oscillatory activity is considered to be fundamentally important in coordinating neural activity throughout the brain. Hence, exploration of brain oscillations has become an indispensible tool to study the neural basis of mental illnesses. However, most of the studies in schizophrenia include medicated patients. This implicates the question to what extent are changes in the electrophysiological parameters genuine illness effects, genuine drug effects or a mixture of both. We here provide a short overview of the neuropharmacology of brain oscillations with respect to schizophrenia. The core assumption of the so-called "pharmaco-EEG" approach is that drug effects on mental and cognitive functions are reflected in changes in quantitative EEG parameters. Hence, clinical efficacy of drugs might be predicted on the basis of the neuropharmacology of electrophysiological measures, such as brain oscillations. Vice versa, knowledge of drug effects on brain oscillations can be of essence in understanding schizophrenia. However, the current literature lacks systematic findings, because of at least two problems. First, the pharmacology of most antipsychotic drugs is complex including interactions with several transmitter receptors. Second, the neuropathology of schizophrenia still has no pathognomonic signature. Even though it is presently not possible to clearly dissociate drug- and illness effects in neural oscillations, this review emphasizes future studies to foster the understanding of this relationship in schizophrenia and other neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Koch
- Brain Research Institute, Dept. of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Christina Schmiedt-Fehr
- Institute of Psychology and Cognition Research, University of Bremen, Grazerstr. 4, 28359 Bremen, Germany
| | - Birgit Mathes
- Institute of Psychology and Cognition Research, University of Bremen, Grazerstr. 4, 28359 Bremen, Germany
| |
Collapse
|
112
|
Sullivan EM, Timi P, Hong LE, O'Donnell P. Reverse translation of clinical electrophysiological biomarkers in behaving rodents under acute and chronic NMDA receptor antagonism. Neuropsychopharmacology 2015; 40:719-27. [PMID: 25176166 PMCID: PMC4289960 DOI: 10.1038/npp.2014.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/23/2023]
Abstract
Electroencephalogram (EEG) stands out as a highly translational tool for psychiatric research, yet rodent and human EEG are not typically obtained in the same way. In this study we developed a tool to record skull EEG in awake-behaving rats in a similar manner to how human EEG are obtained and then used this technique to test whether acute NMDA receptor antagonism alters rodent EEG signals in a similar manner as in humans. Acute MK-801 treatment elevated gamma power and reduced beta band power, which closely mirrored EEG data from healthy volunteers receiving acute ketamine. To explore the mechanisms behind these oscillatory changes, we examined the effects of GABA-A receptor blockade, finding that picrotoxin (PTX) recapitulated the decrease in sound-evoked beta oscillations observed with acute MK-801, but did not produce changes in gamma band power. Chronic treatment with either PTX or MK-801 did not affect frequency-specific oscillatory activity when tested 24 h after the last drug injection, but decreased total broadband oscillatory power. Overall, this study validated a novel platform for recording rodent EEG and demonstrated similar oscillatory changes after acute NMDA receptor antagonism in both humans and rodents, suggesting that skull EEG may be a powerful tool for further translational studies.
Collapse
Affiliation(s)
- Elyse M Sullivan
- Department of Anatomy and Neurobiology, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Timi
- Department of Anatomy and Neurobiology, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricio O'Donnell
- Department of Anatomy and Neurobiology, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Neuroscience Research Unit, Pfizer, 610 Main Street, Cambridge, MA 02139, USA, Tel: +1 161 7395 0838, Fax: +1 84 54744276, E-mail:
| |
Collapse
|
113
|
Effects of NMDA receptor antagonists and antipsychotics on high frequency oscillations recorded in the nucleus accumbens of freely moving mice. Psychopharmacology (Berl) 2015; 232:4525-35. [PMID: 26446869 PMCID: PMC4646921 DOI: 10.1007/s00213-015-4073-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
Abstract
RATIONALE Abnormal oscillatory activity associated with N-methyl-D-aspartate (NMDA) receptor hypofunction is widely considered to contribute to the symptoms of schizophrenia. OBJECTIVE This study aims to characterise the changes produced by NMDA receptor antagonists and antipsychotics on accumbal high-frequency oscillations (HFO; 130-180 Hz) in mice. METHODS Local field potentials were recorded from the nucleus accumbens of freely moving mice. RESULTS Systemic injection of ketamine and MK801 both dose-dependently increased the power of HFO and produced small increases in HFO frequency. The atypical antipsychotic drug, clozapine, produced a robust dose-dependent reduction in the frequency of MK801-enhanced HFO, whilst haloperidol, a typical antipsychotic drug, had little effect. Stimulation of NMDA receptors (directly or through the glycine site) as well as activation of 5-HT1A receptors, reduced the frequency of MK801-enhanced HFO, but other receptors known to be targets for clozapine, namely 5-HT2A, 5-HT7 and histamine H3 receptors had no effect. CONCLUSIONS NMDA receptor antagonists and antipsychotics produce broadly similar fundamental effects on HFO, as reported previously for rats, but we did observe several notable differences. In mice, HFO at baseline were weak or not detectable unlike rats. Post-injection of NMDA receptor antagonists HFO was also weaker but significantly faster. Additionally, we found that atypical antipsychotic drugs may reduce the frequency of HFO by interacting with NMDA and/or 5-HT1A receptors.
Collapse
|
114
|
Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity: Implications for schizophrenia prodromal population. Neurobiol Dis 2015; 73:289-95. [DOI: 10.1016/j.nbd.2014.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/06/2014] [Accepted: 10/12/2014] [Indexed: 11/17/2022] Open
|
115
|
Moran RJ, Jones MW, Blockeel AJ, Adams RA, Stephan KE, Friston KJ. Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology 2015; 40:268-77. [PMID: 25053181 PMCID: PMC4443953 DOI: 10.1038/npp.2014.184] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/30/2014] [Accepted: 05/29/2014] [Indexed: 11/09/2022]
Abstract
Systemic doses of the psychotomimetic ketamine alter the spectral characteristics of hippocampal and prefrontal cortical network activity. Using dynamic causal modeling (DCM) of cross-spectral densities, we quantify the putative synaptic mechanisms underlying ketamine effects in terms of changes in directed, effective connectivity between dorsal hippocampus and medial prefrontal (dCA1-mPFC) cortex of freely moving rats. We parameterize dose-dependent changes in spectral signatures of dCA1-mPFC local field potential recordings, using neural mass models of glutamatergic and GABAergic circuits. Optimizing DCMs of theta and gamma frequency range responses, model comparisons suggest that both enhanced gamma and depressed theta power result from a reduction in top-down connectivity from mPFC to the hippocampus, mediated by postsynaptic NMDA receptors (NMDARs). This is accompanied by an alteration in the bottom-up pathway from dCA1 to mPFC, which exhibits a distinct asymmetry: here, feed-forward drive at AMPA receptors increases in the presence of decreased NMDAR-mediated inputs. Setting these findings in the context of predictive coding suggests that NMDAR antagonism by ketamine in recurrent hierarchical networks may result in the failure of top-down connections from higher cortical regions to signal predictions to lower regions in the hierarchy, which consequently fail to respond consistently to errors. Given that NMDAR dysfunction has a central role in pathophysiological theories of schizophrenia and that theta and gamma rhythm abnormalities are evident in schizophrenic patients, the approach followed here may furnish a framework for the study of aberrant hierarchical message passing (of prediction errors) in schizophrenia-and the false perceptual inferences that ensue.
Collapse
Affiliation(s)
- Rosalyn J Moran
- Virginia Tech Carilion Research Institute and Bradley Department of Electrical and Computer Engineering, Roanoke, VA, USA,Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK,Virginia Tech Carilion Research Institute and Bradley Department of Electrical and Computer Engineering, 2 Riverside Circle, Roanoke, VA 24016, USA, Tel: +1 540 556 9299, Fax: +1 540 985 3373, E-mail:
| | - Matthew W Jones
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, UK
| | - Anthony J Blockeel
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, UK
| | - Rick A Adams
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Klaas E Stephan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK,Translational Neuromodelling Unit, Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland,Laboratory for Social and Neural Systems Research (SNS), University of Zurich, Zurich, Switzerland
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| |
Collapse
|
116
|
Sridharan D, Knudsen EI. Gamma oscillations in the midbrain spatial attention network: linking circuits to function. Curr Opin Neurobiol 2014; 31:189-98. [PMID: 25485519 DOI: 10.1016/j.conb.2014.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/15/2022]
Abstract
Gamma-band (25-140Hz) oscillations are ubiquitous in mammalian forebrain structures involved in sensory processing, attention, learning and memory. The optic tectum (OT) is the central structure in a midbrain network that participates critically in controlling spatial attention. In this review, we summarize recent advances in characterizing a neural circuit in this midbrain network that generates large amplitude, space-specific, gamma oscillations in the avian OT, both in vivo and in vitro. We describe key physiological and pharmacological mechanisms that produce and regulate the structure of these oscillations. The extensive similarities between midbrain gamma oscillations in birds and those in the neocortex and hippocampus of mammals, offer important insights into the functional significance of a midbrain gamma oscillatory code.
Collapse
Affiliation(s)
- Devarajan Sridharan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Eric I Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
117
|
Chronic administration of antipsychotics attenuates ongoing and ketamine-induced increases in cortical γ oscillations. Int J Neuropsychopharmacol 2014; 17:1895-904. [PMID: 24964190 DOI: 10.1017/s1461145714000959] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Noncompetitive N-methyl-d-aspartate receptor (NMDAr) antagonists can elicit many of the symptoms observed in schizophrenia in healthy humans, and induce a behavioural phenotype in animals relevant to psychosis. These compounds also elevate the power and synchrony of gamma (γ) frequency (30-80 Hz) neural oscillations. Acute doses of antipsychotic medications have been shown to reduce ongoing γ power and to inhibit NMDAr antagonist-mediated psychosis-like behaviour in rodents. This study aimed to investigate how a chronic antipsychotic dosing regimen affects ongoing cortical γ oscillations, and the electrophysiological and behavioural responses induced by the NMDAr antagonist ketamine. Male Wistar rats were chronically treated with haloperidol (0.25 mg/kg/d), clozapine (5 mg/kg/d), LY379268 (0.3 mg/kg/d) or vehicle for 28 d, delivered by subcutaneous (s.c.) osmotic pumps. Weekly electrocorticogram (ECoG) recordings were acquired. On day 26, ketamine (5 mg/kg, s.c.) was administered, and ECoG and locomotor activity were simultaneously measured. These results were compared with data generated previously following acute treatment with these antipsychotics. Sustained and significant decreases in ongoing γ power were observed during chronic administration of haloperidol (64%) or clozapine (43%), but not of LY379268 (2% increase), compared with vehicle. Acute ketamine injection concurrently increased γ power and locomotor activity in vehicle-treated rats, and these effects were attenuated in rats chronically treated with all three antipsychotics. The ability of haloperidol or clozapine to inhibit ketamine-induced elevation in γ power was not observed following acute administration of these drugs. These results indicate that modulation of γ power may be a useful biomarker of chronic antipsychotic efficacy.
Collapse
|
118
|
Spellman TJ, Gordon JA. Synchrony in schizophrenia: a window into circuit-level pathophysiology. Curr Opin Neurobiol 2014; 30:17-23. [PMID: 25215626 DOI: 10.1016/j.conb.2014.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/22/2014] [Indexed: 02/02/2023]
Abstract
As a complex neuropsychiatric disease with both hereditary and environmental components, schizophrenia must be understood across multiple biological scales, from genes through cells and circuits to behaviors. The key to evaluating candidate explanatory models, therefore, is to establish causal links between disease-related phenomena observed across these scales. To this end, there has been a resurgence of interest in the circuit-level pathophysiology of schizophrenia, which has the potential to link molecular and cellular data from risk factor and post-mortem studies with the behavioral phenomena that plague patients. The demonstration that patients with schizophrenia frequently have deficits in neuronal synchrony, including deficits in local oscillations and long-range functional connectivity, offers a promising opportunity to forge such links across scales.
Collapse
Affiliation(s)
- Timothy J Spellman
- Department of Physiology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, United States
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, United States; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States.
| |
Collapse
|
119
|
A canonical circuit for generating phase-amplitude coupling. PLoS One 2014; 9:e102591. [PMID: 25136855 PMCID: PMC4138025 DOI: 10.1371/journal.pone.0102591] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 06/20/2014] [Indexed: 11/30/2022] Open
Abstract
‘Phase amplitude coupling’ (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity – also referred to as ‘cross-frequency coupling’ or ‘nested rhythms’ – has been shown to occur in a number of brain regions and at behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity, importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data.
Collapse
|
120
|
Parvalbumin cell ablation of NMDA-R1 causes increased resting network excitability with associated social and self-care deficits. Neuropsychopharmacology 2014; 39:1603-13. [PMID: 24525709 PMCID: PMC4023157 DOI: 10.1038/npp.2014.7] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 02/04/2023]
Abstract
NMDA-receptor (NMDAR) hypofunction is strongly implicated in the pathophysiology of schizophrenia. Several convergent lines of evidence suggest that net excitation propagated by impaired NMDAR signaling on GABAergic interneurons may be of particular interest in mediating several aspects of schizophrenia. However, it is unclear which behavioral domains are governed by a net increase of excitation and whether modulating downstream GABAergic signaling can reverse neural and thus behavioral deficits. The current study determines the selective contributions of NMDAR dysfunction on PV-containing interneurons to electrophysiological, cognitive, and negative-symptom-related behavioral phenotypes of schizophrenia using mice with a PVcre-NR1flox-driven ablation of NR1 on PV-containing interneurons. In addition, we assessed the efficacy of one agent that directly modulates GABAergic signaling (baclofen) and one agent that indirectly modifies NMDAR-mediated signaling through antagonism of mGluR5 receptors (2-methyl-6-(phenylethynyl) pyridine (MPEP)). The data indicate that loss of NMDAR function on PV interneurons impairs self-care and sociability while increasing N1 latency and baseline gamma power, and reducing induction and maintenance of long-term potentiation. Baclofen normalized baseline gamma power without corresponding effects on behavior. MPEP further increased N1 latency and reduced social behavior in PVcre/NR1+/+ mice. These two indices were negatively correlated before and following MPEP such that as N1 latency increases, sociability decreases. This finding suggests a predictive role for N1 latency with respect to social function. Although previous data suggest that MPEP may be beneficial for core features of autism spectrum disorders, current data suggest that such effects require intact function of NMDAR on PV interneurons.
Collapse
|
121
|
Cabral HO, Vinck M, Fouquet C, Pennartz CMA, Rondi-Reig L, Battaglia FP. Oscillatory dynamics and place field maps reflect hippocampal ensemble processing of sequence and place memory under NMDA receptor control. Neuron 2014; 81:402-15. [PMID: 24462101 DOI: 10.1016/j.neuron.2013.11.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
Place coding in the hippocampus requires flexible combination of sensory inputs (e.g., environmental and self-motion information) with memory of past events. We show that mouse CA1 hippocampal spatial representations may either be anchored to external landmarks (place memory) or reflect memorized sequences of cell assemblies depending on the behavioral strategy spontaneously selected. These computational modalities correspond to different CA1 dynamical states, as expressed by theta and low- and high-frequency gamma oscillations, when switching from place to sequence memory-based processing. These changes are consistent with a shift from entorhinal to CA3 input dominance on CA1. In mice with a deletion of forebrain NMDA receptors, the ability of place cells to maintain a map based on sequence memory is selectively impaired and oscillatory dynamics are correspondingly altered, suggesting that oscillations contribute to selecting behaviorally appropriate computations in the hippocampus and that NMDA receptors are crucial for this function.
Collapse
Affiliation(s)
- Henrique O Cabral
- SILS - Center for Neuroscience, Universiteit van Amsterdam, 1090GE Amsterdam, the Netherlands; Cognitive Sciences Center Amsterdam, Research Priority Program "Brain and Cognition," 1018WS Amsterdam, the Netherlands; NERF, 3001 Leuven, Belgium; Donders Institute for Brain Cognition and Behavior, Radboud Universiteit Nijmegen, 6500GL Nijmegen, the Netherlands.
| | - Martin Vinck
- SILS - Center for Neuroscience, Universiteit van Amsterdam, 1090GE Amsterdam, the Netherlands; Cognitive Sciences Center Amsterdam, Research Priority Program "Brain and Cognition," 1018WS Amsterdam, the Netherlands
| | - Celine Fouquet
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 8246, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France; INSERM, UMR-S 1130, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France; CNRS, UMR 8246, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France
| | - Cyriel M A Pennartz
- SILS - Center for Neuroscience, Universiteit van Amsterdam, 1090GE Amsterdam, the Netherlands; Cognitive Sciences Center Amsterdam, Research Priority Program "Brain and Cognition," 1018WS Amsterdam, the Netherlands
| | - Laure Rondi-Reig
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 8246, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France; INSERM, UMR-S 1130, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France; CNRS, UMR 8246, Neuroscience Paris Seine, Navigation Memory and Aging Team, F-75005 Paris, France
| | - Francesco P Battaglia
- SILS - Center for Neuroscience, Universiteit van Amsterdam, 1090GE Amsterdam, the Netherlands; Cognitive Sciences Center Amsterdam, Research Priority Program "Brain and Cognition," 1018WS Amsterdam, the Netherlands; NERF, 3001 Leuven, Belgium; Donders Institute for Brain Cognition and Behavior, Radboud Universiteit Nijmegen, 6500GL Nijmegen, the Netherlands; VIB, 3000 Leuven, Belgium.
| |
Collapse
|
122
|
Lytton WW, Neymotin SA, Kerr CC. Multiscale modeling for clinical translation in neuropsychiatric disease. ACTA ACUST UNITED AC 2014; 1. [PMID: 26925364 PMCID: PMC4766859 DOI: 10.1186/2194-3990-1-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiscale modeling of neuropsychiatric illness bridges scales of clinical importance: from the highest scales (presentation of behavioral signs and symptoms), through intermediate scales (clinical testing and surgical intervention), down to the molecular scale of pharmacotherapy. Modeling of brain disease is difficult compared to modeling of other organs, because dysfunction manifests at scales where measurements are rudimentary due both to inadequate access (memory and cognition) and to complexity (behavior). Nonetheless, we can begin to explore these aspects through the use of information-theoretic measures as stand-ins for meaning at the top scales. We here describe efforts across five disorders: Parkinson’s, Alzheimer’s, stroke, schizophrenia, and epilepsy. We look at the use of therapeutic brain stimulation to replace lost neural signals, a loss that produces diaschisis, defined as activity changes in other brain areas due to missing inputs. These changes may in some cases be compensatory, hence beneficial, but in many cases a primary pathology, whether itself static or dynamic, sets in motion a series of dynamic consequences that produce further pathology. The simulations presented here suggest how diaschisis can be reversed by using a neuroprosthetic signal. Despite having none of the information content of the lost physiological signal, the simplified neuroprosthetic signal can restore a diaschitic area to near-normal patterns of activity. Computer simulation thus begins to explain the remarkable success of stimulation technologies - deep brain stimulation, transcranial magnetic stimulation, ultrasound stimulation, transcranial direct current stimulation - across an extremely broad range of pathologies. Multiscale modeling can help us to optimize and integrate these neuroprosthetic therapies by taking into consideration effects of different stimulation protocols, combinations of stimulation with neuropharmacological therapy, and interplay of these therapeutic modalities with particular patterns of disease focality, dynamics, and prior therapies.
Collapse
Affiliation(s)
- William W Lytton
- Department of Physiology & Pharmacology and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA; Department of Neurology, Kings County Hospital, Brooklyn, NY 11203, USA
| | - Samuel A Neymotin
- Department of Physiology & Pharmacology and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Cliff C Kerr
- Department of Physiology & Pharmacology and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
123
|
Caixeta FV, Cornélio AM, Scheffer-Teixeira R, Ribeiro S, Tort ABL. Ketamine alters oscillatory coupling in the hippocampus. Sci Rep 2014; 3:2348. [PMID: 23907109 PMCID: PMC3731648 DOI: 10.1038/srep02348] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/18/2013] [Indexed: 11/10/2022] Open
Abstract
Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.
Collapse
Affiliation(s)
- Fábio V Caixeta
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | | | | | | | | |
Collapse
|
124
|
Molina LA, Skelin I, Gruber AJ. Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex. PLoS One 2014; 9:e85842. [PMID: 24465743 PMCID: PMC3895008 DOI: 10.1371/journal.pone.0085842] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.
Collapse
Affiliation(s)
- Leonardo A. Molina
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ivan Skelin
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Aaron J. Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
125
|
Featherstone R, Nagy L, Hahn C, Siegel S. Juvenile exposure to ketamine causes delayed emergence of EEG abnormalities during adulthood in mice. Drug Alcohol Depend 2014; 134:123-127. [PMID: 24210161 PMCID: PMC4009692 DOI: 10.1016/j.drugalcdep.2013.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Increased susceptibility to cognitive impairment or psychosis in adulthood is associated with adolescent drug abuse. Studies in adults have identified impairments in attention and memory, and changes in EEG, as common consequences of ketamine abuse. In contrast, the effects of ketamine on the juvenile brain have not been extensively tested. This is a significant omission, since abuse of ketamine is often observed within this age group. OBJECTIVES Juvenile mice (4-6 weeks of age) were administered ketamine (20mg/kg) for 14 days. EEG was assessed in response to auditory stimulation both at one week following ketamine exposure at 7 weeks of age (juvenile) and again at 12 weeks of age (adult). EEG was analyzed for baseline activity, event-related power and event-related potentials (ERPs). RESULTS While no effects of ketamine exposure were observed during the juvenile period, significant reductions in amplitude of the P20 ERP component and event-related gamma power were seen following ketamine when re-tested as adults. In contrast, reductions in event-related theta were seen in ketamine-exposed mice at both time points. CONCLUSIONS Age related deficits in electrophysiological components such as P20 or event-related gamma may be due to an interruption of normal neural maturation. Reduction of NMDAR signaling during adolescence leads to delayed-onset disruption of gamma oscillations and the P20 component of the ERP. Further, delayed onset of impairment following adolescent ketamine abuse suggests that methods could be developed to detect and treat the early effects of drug exposure prior to the onset of disability.
Collapse
Affiliation(s)
- R.E. Featherstone
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - L.R. Nagy
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - C.G. Hahn
- Molecular Signaling Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - S.J. Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA,Corresponding Author: S.J. Siegel, Professor, University of Pennsylvania, Psychiatry, 125 S 31st street, rm 2202, Philadelphia, UNITED STATES, 2155730278,
| |
Collapse
|
126
|
Sivarao DV, Chen P, Yang Y, Li YW, Pieschl R, Ahlijanian MK. NR2B Antagonist CP-101,606 Abolishes Pitch-Mediated Deviance Detection in Awake Rats. Front Psychiatry 2014; 5:96. [PMID: 25140157 PMCID: PMC4122188 DOI: 10.3389/fpsyt.2014.00096] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/18/2014] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia patients exhibit a decreased ability to detect change in their auditory environment as measured by auditory event-related potentials (ERP) such as mismatch negativity. This deficit has been linked to abnormal NMDA neurotransmission since, among other observations, non-selective channel blockers of NMDA reliably diminish automatic deviance detection in human subjects as well as in animal models. Recent molecular and functional evidence links NR2B receptor subtype to aberrant NMDA transmission in schizophrenia. However, it is unknown if NR2B receptors participate in pre-attentive deviance detection. We recorded ERP from the vertex of freely behaving rats in response to frequency mismatch protocols. We saw a robust increase in N1 response to deviants compared to standard as well as control stimuli indicating true deviance detection. Moreover, the increased negativity was highly sensitive to deviant probability. Next, we tested the effect of a non-selective NMDA channel blocker (ketamine, 30 mg/kg) and a highly selective NR2B antagonist, CP-101,606 (10 or 30 mg/kg) on deviance detection. Ketamine attenuated deviance mainly by increasing the amplitude of the standard ERP. Amplitude and/or latency of several ERP components were also markedly affected. In contrast, CP-101,606 robustly and dose-dependently inhibited the deviant's N1 amplitude, and as a consequence, completely abolished deviance detection. No other ERPs or components were affected. Thus, we report first evidence that NR2B receptors robustly participate in processes of automatic deviance detection in a rodent model. Lastly, our model demonstrates a path forward to test specific pharmacological hypotheses using translational endpoints relevant to aberrant sensory processing in schizophrenia.
Collapse
Affiliation(s)
- Digavalli V Sivarao
- Exploratory Biology and Genomics, Bristol Myers Squibb Company , Wallingford, CT , USA
| | - Ping Chen
- Exploratory Biology and Genomics, Bristol Myers Squibb Company , Wallingford, CT , USA
| | - Yili Yang
- Exploratory Biology and Genomics, Bristol Myers Squibb Company , Wallingford, CT , USA
| | - Yu-Wen Li
- Exploratory Biology and Genomics, Bristol Myers Squibb Company , Wallingford, CT , USA
| | - Rick Pieschl
- Exploratory Biology and Genomics, Bristol Myers Squibb Company , Wallingford, CT , USA
| | - Michael K Ahlijanian
- Exploratory Biology and Genomics, Bristol Myers Squibb Company , Wallingford, CT , USA
| |
Collapse
|
127
|
Kaser M, Soltesz F, Lawrence P, Miller S, Dodds C, Croft R, Dudas RB, Zaman R, Fernandez-Egea E, Müller U, Dean A, Bullmore ET, Nathan PJ. Oscillatory underpinnings of mismatch negativity and their relationship with cognitive function in patients with schizophrenia. PLoS One 2013; 8:e83255. [PMID: 24358266 PMCID: PMC3866183 DOI: 10.1371/journal.pone.0083255] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
Background Impairments in mismatch negativity (MMN) generation have been consistently reported in patients with schizophrenia. However, underlying oscillatory activity of MMN deficits in schizophrenia and the relationship with cognitive impairments have not been investigated in detail. Time-frequency power and phase analyses can provide more detailed measures of brain dynamics of MMN deficits in schizophrenia. Method 21 patients with schizophrenia and 21 healthy controls were tested with a roving frequency paradigm to generate MMN. Time-frequency domain power and phase-locking (PL) analysis was performed on all trials using short-time Fourier transforms with Hanning window tapering. A comprehensive battery (CANTAB) was used to assess neurocognitive functioning. Results Mean MMN amplitude was significantly lower in patients with schizophrenia (95% CI 0.18 - 0.77). Patients showed significantly lower EEG power (95% CI -1.02 - -0.014) in the ~4-7 Hz frequency range (theta band) between 170 and 210 ms. Patients with schizophrenia showed cognitive impairment in multiple domains of CANTAB. However, MMN impairments in amplitude and power were not correlated with clinical measures, medication dose, social functioning or neurocognitive performance. Conclusion The findings from this study suggested that while MMN may be a useful marker to probe NMDA receptor mediated mechanisms and associated impairments in gain control and perceptual changes, it may not be a useful marker in association with clinical or cognitive changes. Trial-by-trial EEG power analysis can be used as a measure of brain dynamics underlying MMN deficits which also can have implications for the use of MMN as a biomarker for drug discovery.
Collapse
Affiliation(s)
- Muzaffer Kaser
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Bahcesehir University, Istanbul, Turkey
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Fruzsina Soltesz
- GlaxoSmithKline, Clinical Unit Cambridge, Medicines Discovery and Development, Cambridge, United Kingdom
| | - Phil Lawrence
- GlaxoSmithKline, Clinical Unit Cambridge, Medicines Discovery and Development, Cambridge, United Kingdom
| | - Sam Miller
- GlaxoSmithKline, Clinical Unit Cambridge, Medicines Discovery and Development, Cambridge, United Kingdom
| | - Chris Dodds
- GlaxoSmithKline, Clinical Unit Cambridge, Medicines Discovery and Development, Cambridge, United Kingdom
| | - Rodney Croft
- Department of Psychology, University of Wollongong, Wollongong, Australia
| | - Robert B. Dudas
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridge and Peterborough NHS Foundation Trust, United Kingdom
| | - Rashid Zaman
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- South Essex Partnership NHS Foundation Trust, United Kingdom
| | - Emilio Fernandez-Egea
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge and Peterborough NHS Foundation Trust, United Kingdom
| | - Ulrich Müller
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridge and Peterborough NHS Foundation Trust, United Kingdom
| | - Anna Dean
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Edward T. Bullmore
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- GlaxoSmithKline, Clinical Unit Cambridge, Medicines Discovery and Development, Cambridge, United Kingdom
- Cambridge and Peterborough NHS Foundation Trust, United Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Pradeep J. Nathan
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- School of Psychology and Psychiatry, Monash University, Melbourne, Australia
- Neuroscience Discovery Medicine, UCB Pharma, Brussels, Belgium
| |
Collapse
|
128
|
Chery R, Gurden H, Martin C. Anesthetic regimes modulate the temporal dynamics of local field potential in the mouse olfactory bulb. J Neurophysiol 2013; 111:908-17. [PMID: 24285865 DOI: 10.1152/jn.00261.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anesthetized preparations have been widely used to study odor-induced temporal dynamics in the olfactory bulb. Although numerous recent data of single-cell recording or imaging in the olfactory bulb have employed ketamine cocktails, their effects on networks activities are still poorly understood, and odor-induced oscillations of the local field potential have not been characterized under these anesthetics. Our study aimed at describing the impact of two ketamine cocktails on oscillations and comparing them to awake condition. Anesthesia was induced by injection of a cocktail of ketamine, an antagonist of the N-methyl-d-aspartate receptors, combined with one agonist of α2-adrenergic receptors, xylazine (low affinity) or medetomidine (high affinity). Spontaneous and odor-induced activities were examined in anesthetized and awake conditions, in the same mice chronically implanted with an electrode in the main olfactory bulb. The overall dynamic pattern of oscillations under the two ketamine cocktails resembles that of the awake state. Ongoing activity is characterized by gamma bursts (>60 Hz) locked on respiration and beta (15-40 Hz) power increases during odor stimulation. However, anesthesia decreases local field potential power and leads to a strong frequency shift of gamma oscillations from 60-90 Hz to 100-130 Hz. We conclude that similarities between oscillations in anesthetized and awake states make cocktails of ketamine with one α2-agonist suitable for the recordings of local field potential to study processing in the early stages of the olfactory system.
Collapse
Affiliation(s)
- Romain Chery
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR8165, Université Paris-Sud, Paris 7, Centre National de la Recherche Scientifique, Orsay, France
| | | | | |
Collapse
|
129
|
Disruption of thalamocortical activity in schizophrenia models: relevance to antipsychotic drug action. Int J Neuropsychopharmacol 2013; 16:2145-63. [PMID: 23809188 DOI: 10.1017/s1461145713000643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-competitive NMDA receptor antagonists are widely used as pharmacological models of schizophrenia due to their ability to evoke the symptoms of the illness. Likewise, serotonergic hallucinogens, acting on 5-HT(2A) receptors, induce perceptual and behavioural alterations possibly related to psychotic symptoms. The neurobiological basis of these alterations is not fully elucidated. Data obtained in recent years revealed that the NMDA receptor antagonist phencyclidine (PCP) and the serotonergic hallucinogen 1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane; DOI) produce a series of common actions in rodent prefrontal cortex (PFC) that may underlie psychotomimetic effects. Hence, both agents markedly disrupt PFC function by altering pyramidal neuron discharge (with an overall increase) and reducing the power of low frequency cortical oscillations (LFCO; < 4 Hz). In parallel, PCP increased c-fos expression in excitatory neurons of various cortical areas, the thalamus and other subcortical structures, such as the amygdala. Electrophysiological studies revealed that PCP altered similarly the function of the centromedial and mediodorsal nuclei of the thalamus, reciprocally connected with PFC, suggesting that its psychotomimetic properties are mediated by an alteration of thalamocortical activity (the effect of DOI was not examined in the thalamus). Interestingly, the observed effects were prevented or reversed by the antipsychotic drugs clozapine and haloperidol, supporting that the disruption of PFC activity is intimately related to the psychotomimetic activity of these agents. Overall, the present experimental model can be successfully used to elucidate the neurobiological basis of schizophrenia symptoms and to examine the potential antipsychotic activity of new drugs in development.
Collapse
|
130
|
Hunt MJ, Kasicki S. A systematic review of the effects of NMDA receptor antagonists on oscillatory activity recorded in vivo. J Psychopharmacol 2013; 27:972-86. [PMID: 23863924 DOI: 10.1177/0269881113495117] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Distinct frequency bands can be differentiated from neuronal ensemble recordings, such as local field potentials or electrocorticogram recordings. Recent years have witnessed a rapid acceleration of research examining how N-methyl-D-aspartate receptor (NMDAR) antagonists influence fundamental frequency bands in cortical and subcortical brain regions. Herein, we systematically review findings from in vivo studies with a focus on delta, theta, gamma and more recently identified high-frequency oscillations. We also discuss some of the current hypotheses that are considered to account for the actions of NMDAR antagonists on these frequency bands. The data emphasize a close relationship between altered oscillatory activity and NMDAR blockade, with both local and large-scale networks accounting for their effects. These findings may have fundamental implications for the psychotomimetic effects produced by NMDAR antagonists.
Collapse
Affiliation(s)
- Mark J Hunt
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
131
|
Kazmierska P, Konopacki J. Development of NMDA-induced theta rhythm in hippocampal formation slices. Brain Res Bull 2013; 98:93-101. [DOI: 10.1016/j.brainresbull.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/11/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
|
132
|
Lord LD, Expert P, Huckins JF, Turkheimer FE. Cerebral energy metabolism and the brain's functional network architecture: an integrative review. J Cereb Blood Flow Metab 2013; 33:1347-54. [PMID: 23756687 PMCID: PMC3764392 DOI: 10.1038/jcbfm.2013.94] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.
Collapse
Affiliation(s)
- Louis-David Lord
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Paul Expert
- Institute of Psychiatry, King's College London, London, UK
| | - Jeremy F Huckins
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
133
|
Featherstone RE, M Tatard-Leitman V, Suh JD, Lin R, Lucki I, Siegel SJ. Electrophysiological and behavioral responses to ketamine in mice with reduced Akt1 expression. Psychopharmacology (Berl) 2013; 227:639-49. [PMID: 23392353 PMCID: PMC3808977 DOI: 10.1007/s00213-013-2997-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE A number of studies have associated reduced Akt1 expression with vulnerability for schizophrenia. Although mice with deletion of a single copy of the Akt1 gene (Akt1(+/-)) show reduced Akt1 expression relative to wild-type (WT) animals, the extent to which these mice show schizophrenia-like phenotypic changes and/or increased susceptibility to epigenetic or non-genetic factors related to schizophrenia is unknown. OBJECTIVES Mutant mice were assessed on electroencephalographic/event-related potential (EEG/ERP) and behavioral (acoustic startle and pre-pulse inhibition) measures relevant to schizophrenia. Mice were also assessed following exposure to the NMDA receptor antagonist ketamine, a potent psychotomimetic drug, in order to assess the role of reduced Akt1 expression as a vulnerability factor for schizophrenia. Methods Akt1(+/-), Akt1(-/-), and WT mice received a series of paired-click, white noise stimuli, following ketamine (50 mg/kg) and saline injections. EEG was analyzed for ERPs and event-related power. Akt1(+/-) and WT mice were also assessed on PPI following ketamine (50 mg/kg) or saline injection. RESULTS Akt1(+/-) and Akt1(-/-) mice displayed reduced amplitude of the P20 component of the ERP to the first click of a paired-click stimulus, as well as reduced S1-S2 difference for P20 and N40 components, following ketamine. Mutant mice also showed increased reduction in gamma synchrony and theta suppression following ketamine. Akt1(+/-) mice displayed reduced pre-pulse inhibition. CONCLUSIONS Reduced genetic expression of Akt1 facilitated ketamine-induced changes of EEG and behavior in mice, suggesting that reduced Akt1 expression can serve as a vulnerability factor for schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Kocsis B, Brown RE, McCarley RW, Hajos M. Impact of ketamine on neuronal network dynamics: translational modeling of schizophrenia-relevant deficits. CNS Neurosci Ther 2013; 19:437-47. [PMID: 23611295 PMCID: PMC3663928 DOI: 10.1111/cns.12081] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022] Open
Abstract
Subanesthetic doses of the psychomimetic, ketamine, have been used for many years to elicit behavioral effects reminiscent of schizophrenia in both healthy humans and in animal models of the disease. More recently, there has been a move toward the use of simple neurophysiological measures (event-related potentials, brain oscillations) to assay the functional integrity of neuronal circuits in schizophrenia as these measures can be assessed in patients, healthy controls, intact animals, and even in brain slices. Furthermore, alterations of these measures are correlated with basic information processing deficits that are now considered central to the disease. Thus, here we review recent studies that determine the effect of ketamine on these measures and discuss to what extent they recapitulate findings in patients with schizophrenia. In particular, we examine methodological differences between human and animal studies and compare in vivo and in vitro effects of ketamine. Ketamine acts on multiple cortical and subcortical sites, as well as on receptors other than the N-methyl-d-aspartate receptor. Acute ketamine models' changes correlated with psychotic states (e.g. increased baseline gamma-band oscillations), whereas chronic ketamine causes cortical circuit changes and neurophysiological deficits (e.g. impaired event-related gamma-band oscillations) correlated with cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Bernat Kocsis
- Laboratory of Neurophysiology, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
135
|
Gandal MJ, Anderson RL, Billingslea EN, Carlson GC, Roberts TPL, Siegel SJ. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia? GENES BRAIN AND BEHAVIOR 2013; 11:740-50. [PMID: 22726567 DOI: 10.1111/j.1601-183x.2012.00816.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1(neo-/-) mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition (PPI) and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice showed behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced PPI, auditory-evoked response N1 latency delay and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDAR hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- M J Gandal
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
136
|
Wang X, Pinto-Duarte A, Sejnowski TJ, Behrens MM. How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptor antagonist model of schizophrenia. Antioxid Redox Signal 2013; 18:1444-62. [PMID: 22938164 PMCID: PMC3603498 DOI: 10.1089/ars.2012.4907] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/02/2012] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Schizophrenia is a complex neuropsychiatric disorder affecting around 1% of the population worldwide. Its mode of inheritance suggests a multigenic neurodevelopmental disorder with symptoms appearing during late adolescence/early adulthood, with its onset strongly influenced by environmental stimuli. Many neurotransmitter systems, including dopamine, glutamate, and gamma-aminobutyric acid, show alterations in affected individuals, and the behavioral and physiological characteristics of the disease can be mimicked by drugs that produce blockade of N-methyl-d-aspartate glutamate receptors (NMDARs). RECENT ADVANCES Mounting evidence suggests that drugs that block NMDARs specifically impair the inhibitory capacity of parvalbumin-expressing (PV+) fast-spiking neurons in adult and developing rodents, and alterations in these inhibitory neurons is one of the most consistent findings in the schizophrenic postmortem brain. Disruption of the inhibitory capacity of PV+ inhibitory neurons will alter the functional balance between excitation and inhibition in prefrontal cortical circuits producing impairment of working memory processes such as those observed in schizophrenia. CRITICAL ISSUES Mechanistically, the effect of NMDAR antagonists can be attributed to the activation of the Nox2-dependent reduced form of nicotinamide adenine dinucleotide phosphate oxidase pathway in cortical neurons, which is consistent with the emerging role of oxidative stress in the pathogenesis of mental disorders, specifically schizophrenia. Here we review the mechanisms by which NMDAR antagonists produce lasting impairment of the cortical PV+ neuronal system and the roles played by Nox2-dependent oxidative stress mechanisms. FUTURE DIRECTIONS The discovery of the pathways by which oxidative stress leads to unbalanced excitation and inhibition in cortical neural circuits opens a new perspective toward understanding the biological underpinnings of schizophrenia.
Collapse
Affiliation(s)
- Xin Wang
- The Salk Institute for Biological Studies, La Jolla, California
- Howard Hughes Medical Institute, La Jolla, California
| | - António Pinto-Duarte
- The Salk Institute for Biological Studies, La Jolla, California
- Howard Hughes Medical Institute, La Jolla, California
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Terrence J. Sejnowski
- The Salk Institute for Biological Studies, La Jolla, California
- Howard Hughes Medical Institute, La Jolla, California
- Division of Biology, University of California San Diego, La Jolla, California
| | | |
Collapse
|
137
|
McNally JM, McCarley RW, Brown RE. Impaired GABAergic neurotransmission in schizophrenia underlies impairments in cortical gamma band oscillations. Curr Psychiatry Rep 2013; 15:346. [PMID: 23400808 PMCID: PMC3595504 DOI: 10.1007/s11920-012-0346-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impairment of cortical circuit function is increasingly believed to be central to the pathophysiology of schizophrenia (Sz). Such impairments are suggested to result in abnormal gamma band oscillatory activity observed in Sz patients, and likely underlie the psychosis and cognitive deficits linked to this disease. Development of improved therapeutic strategies to enhance functional outcome of Sz patients is contingent upon a detailed understanding of the mechanisms behind cortical circuit development and maintenance. Convergent evidence from both Sz clinical and preclinical studies suggests impaired activity of a particular subclass of interneuron which expresses the calcium binding protein parvalbumin is central to the cortical circuit impairment observed. Here we review our current understanding of the Sz related cortical circuit dysfunction with a particular focus on the role of fast spiking parvalbumin interneurons in both normal cortical circuit activity and in NMDA receptor hypofunction models of the Sz disease state.
Collapse
|
138
|
Narayanan B, Stevens MC, Jiantonio RE, Krystal JH, Pearlson GD. Effects of memantine on event-related potential, oscillations, and complexity in individuals with and without family histories of alcoholism. J Stud Alcohol Drugs 2013; 74:245-57. [PMID: 23384372 PMCID: PMC3568163 DOI: 10.15288/jsad.2013.74.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/14/2012] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Enhanced N-methyl-D-aspartate (NMDA) receptor function associated with a positive family history of alcoholism (FHP) has been hypothesized to contribute to the heritable risk for alcoholism. The objective of this study was to evaluate the relationship of alcoholism family history, NMDA receptor function, and cortical information processing by testing acute effects of the NMDA receptor antagonist memantine on event-related potential (ERP). METHOD Twenty-two healthy FHP and 20 healthy family history-negative (FHN; no alcoholic relatives) subjects were administered placebo or 40 mg of memantine under double-blind counterbalanced conditions on two separate occasions. Electroencephalogram data were collected from eight channels with eyes open during an auditory oddball discrimination task. We evaluated P3b amplitude, total theta, alpha activity, and fractal dimension from ERP trials. RESULTS FHP and FHN subjects did not differ in P3b amplitude. A significant Group × Drug interaction was observed in theta, alpha activity, and fractal dimension at the parietal and occipital sites. FHP individuals exhibited significantly higher fractal dimension and lower theta and alpha activity after placebo relative to FHN subjects. Following memantine administration, theta activity decreased in both groups but more markedly for FHN individuals. Alpha activity decreased for FHN subjects and increased for FHP individuals, whereas the fractal dimension decreased for FHP subjects and increased for FHN subjects after memantine. CONCLUSIONS A plausible interpretation of these results is that FHP individuals may have altered NMDA receptor function compared with FHN individuals. These findings provide additional evidence of differences in the regulation of NMDA receptor function between FHP and FHN individuals.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut 06106, USA.
| | | | | | | | | |
Collapse
|
139
|
O'Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:101-12. [PMID: 24053034 DOI: 10.1016/b978-0-7020-5307-8.00006-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electrophysiological methods have demonstrated disturbances of neural synchrony and oscillations in schizophrenia which affect a broad range of sensory and cognitive processes. These disturbances may account for a loss of neural integration and effective connectivity in the disorder. The mechanisms responsible for alterations in synchrony are not well delineated, but may reflect disturbed interactions within GABAergic and glutamatergic circuits, particularly in the gamma range. Auditory steady-state responses (ASSRs) provide a non-invasive technique used to assess neural synchrony in schizophrenia and in animal models at specific response frequencies. ASSRs are electrophysiological responses entrained to the frequency and phase of a periodic auditory stimulus generated by auditory pathway and auditory cortex activity. Patients with schizophrenia show reduced ASSR power and phase locking to gamma range stimulation. We review alterations of ASSRs in schizophrenia, schizotypal personality disorder, and first-degree relatives of patients with schizophrenia. In vitro and in vivo approaches have been used to test cellular mechanisms for this pattern of findings. This translational, cross-species approach provides support for the role of N-methyl-D-aspartate and GABAergic dysregulation in the genesis of perturbed ASSRs in schizophrenia and persons at risk.
Collapse
Affiliation(s)
- Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Cornwell BR, Salvadore G, Furey M, Marquardt CA, Brutsche NE, Grillon C, Zarate CA. Synaptic potentiation is critical for rapid antidepressant response to ketamine in treatment-resistant major depression. Biol Psychiatry 2012; 72:555-61. [PMID: 22521148 PMCID: PMC3408548 DOI: 10.1016/j.biopsych.2012.03.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Clinical evidence that ketamine, a nonselective N-methyl-D-aspartate receptor (NMDAR) antagonist, has therapeutic effects within hours in people suffering from depression suggests that modulating glutamatergic neurotransmission is a fundamental step in alleviating the debilitating symptoms of mood disorders. Acutely, ketamine increases extracellular glutamate levels, neuronal excitability, and spontaneous γ oscillations, but it is unknown whether these effects are key to the mechanism of antidepressant action of ketamine. METHODS Twenty drug-free major depressive disorder patients received a single, open-label intravenous infusion of ketamine hydrochloride (.5 mg/kg). Magnetoencephalographic recordings were made approximately 3 days before and approximately 6.5 hours after the infusion, whereas patients passively received tactile stimulation to the right and left index fingers and also while they rested (eyes-closed). Antidepressant response was assessed by percentage change in Montgomery-Åsberg Depression Rating Scale scores. RESULTS Patients with robust improvements in depressive symptoms 230 min after infusion (responders) exhibited increased cortical excitability within this antidepressant response window. Specifically, we found that stimulus-evoked somatosensory cortical responses increase after infusion, relative to pretreatment responses in responders but not in treatment nonresponders. Spontaneous somatosensory cortical γ-band activity during rest did not change within the same timeframe after ketamine in either responders or nonresponders. CONCLUSIONS These findings suggest NMDAR antagonism does not lead directly to increased cortical excitability hours later and thus might not be sufficient for therapeutic effects of ketamine to take hold. Rather, increased cortical excitability as depressive symptoms improve is consistent with the hypothesis that enhanced non-NMDAR-mediated glutamatergic neurotransmission via synaptic potentiation is central to the antidepressant effect of ketamine.
Collapse
Affiliation(s)
- Brian R. Cornwell
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Giacomo Salvadore
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Maura Furey
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Craig A. Marquardt
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Nancy E. Brutsche
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
141
|
Featherstone RE, Liang Y, Saunders JA, Tatard-Leitman VM, Ehrlichman RS, Siegel SJ. Subchronic ketamine treatment leads to permanent changes in EEG, cognition and the astrocytic glutamate transporter EAAT2 in mice. Neurobiol Dis 2012; 47:338-46. [DOI: 10.1016/j.nbd.2012.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/09/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023] Open
|
142
|
Schmitt SE, Pargeon K, Frechette ES, Hirsch LJ, Dalmau J, Friedman D. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 2012; 79:1094-100. [PMID: 22933737 DOI: 10.1212/wnl.0b013e3182698cd8] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To determine continuous EEG (cEEG) patterns that may be unique to anti-NMDA receptor (NMDAR) encephalitis in a series of adult patients with this disorder. METHODS We evaluated the clinical and EEG data of 23 hospitalized adult patients with anti-NMDAR encephalitis who underwent cEEG monitoring between January 2005 and February 2011 at 2 large academic medical centers. RESULTS Twenty-three patients with anti-NMDAR encephalitis underwent a median of 7 (range 1-123) days of cEEG monitoring. The median length of hospitalization was 44 (range 2-200) days. Personality or behavioral changes (100%), movement disorders (82.6%), and seizures (78.3%) were the most common symptoms. Seven of 23 patients (30.4%) had a unique electrographic pattern, which we named "extreme delta brush" because of its resemblance to waveforms seen in premature infants. The presence of extreme delta brush was associated with a more prolonged hospitalization (mean 128.3 ± 47.5 vs 43.2 ± 39.0 days, p = 0.008) and increased days of cEEG monitoring (mean 27.6 ± 42.3 vs 6.2 ± 5.6 days, p = 0.012). The modified Rankin Scale score showed a trend toward worse scores in patients with the extreme delta brush pattern (mean 4.0 ± 0.8 vs 3.1 ± 1.1, p = 0.089). CONCLUSIONS Extreme delta brush is a novel EEG finding seen in many patients with anti-NMDAR encephalitis. The presence of this pattern is associated with a more prolonged illness. Although the specificity of this pattern is unclear, its presence should raise consideration of this syndrome.
Collapse
Affiliation(s)
- Sarah E Schmitt
- PENN Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | |
Collapse
|
143
|
Farzan F, Barr MS, Sun Y, Fitzgerald PB, Daskalakis ZJ. Transcranial magnetic stimulation on the modulation of gamma oscillations in schizophrenia. Ann N Y Acad Sci 2012; 1265:25-35. [DOI: 10.1111/j.1749-6632.2012.06543.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
144
|
Graversen C, Olesen SS, Olesen AE, Steimle K, Farina D, Wilder-Smith OHG, Bouwense SAW, van Goor H, Drewes AM. The analgesic effect of pregabalin in patients with chronic pain is reflected by changes in pharmaco-EEG spectral indices. Br J Clin Pharmacol 2012; 73:363-72. [PMID: 21950372 DOI: 10.1111/j.1365-2125.2011.04104.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To identify electroencephalographic (EEG) biomarkers for the analgesic effect of pregabalin in patients with chronic visceral pain. METHODS This was a double-blind, placebo-controlled study in 31 patients suffering from visceral pain due to chronic pancreatitis. Patients received increasing doses of pregabalin (75mg-300mg twice a day) or matching placebo during 3 weeks of treatment. Pain scores were documented in a diary based on a visual analogue scale. In addition, brief pain inventory-short form (BPI) and quality of life questionnaires were collected prior to and after the study period. Multi-channel resting EEG was recorded before treatment onset and at the end of the study. Changes in EEG spectral indices were extracted, and individual changes were classified by a support vector machine (SVM) to discriminate the pregabalin and placebo responses. Changes in individual spectral indices and pain scores were correlated. RESULTS Pregabalin increased normalized intensity in low spectral indices, most prominent in the theta band (3.5-7.5Hz), difference of -3.18, 95% CI -3.57, -2.80; P= 0.03. No changes in spectral indices were seen for placebo. The maximum difference between pregabalin and placebo treated patients was seen in the parietal region, with a classification accuracy of 85.7% (P= 0.009). Individual changes in EEG indices were correlated with changes in pain diary (P= 0.04) and BPI pain composite scores (P= 0.02). CONCLUSIONS Changes in spectral indices caused by slowing of brain oscillations were identified as a biomarker for the central analgesic effect of pregabalin. The developed methodology may provide perspectives to assess individual responses to treatment in personalized medicine.
Collapse
Affiliation(s)
- Carina Graversen
- Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Augmented gamma band auditory steady-state responses: support for NMDA hypofunction in schizophrenia. Schizophr Res 2012; 138:1-7. [PMID: 22542616 PMCID: PMC3601795 DOI: 10.1016/j.schres.2012.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/24/2022]
Abstract
Individuals with schizophrenia (SZ) have deviations in auditory perception perhaps attributable to altered neural oscillatory response properties in thalamo-cortical and/or local cortico-cortical circuits. Previous EEG studies of auditory steady-state responses (aSSRs; a measure of sustained neuronal entrainment to repetitive stimulation) in SZ have indicated attenuated gamma range (≈40 Hz) neural entrainment. Stimuli in most such studies have been relatively brief (500-1000 ms) trains of 1 ms clicks or amplitude modulated pure tones (1000 Hz) with short, fixed interstimulus intervals (200-1000 ms). The current study used extended (1500 ms), more aurally dense broadband stimuli (500-4000 Hz noise; previously demonstrated to elicit larger aSSRs) with longer, variable interstimulus intervals (2700-3300 ms). Dense array EEG (256 sensor) was collected while 17 SZ and 16 healthy subjects passively listed to stimuli modulated at 15 different frequencies spanning beta and gamma ranges (16-44 Hz in 2 Hz steps). Results indicate that SZ have augmented aSSRs that were most extreme in the gamma range. Results also constructively replicate previous findings of attenuated low frequency auditory evoked responses (2-8 Hz) in SZ. These findings (i) highlight differential characteristics of low versus high frequency and induced versus entrained oscillatory auditory responses in both SZ and healthy stimulus processing, (ii) provide support for an NMDA-receptor hypofunction-based pharmacological model of SZ, and (iii) report a novel pattern of aSSR abnormalities suggesting that gamma band neural entrainment deviations among SZ may be more complex than previously supposed, including possibly being substantially influenced by physical stimulus properties.
Collapse
|
146
|
Auditory steady state responses in a schizophrenia rat model probed by excitatory/inhibitory receptor manipulation. Int J Psychophysiol 2012; 86:136-42. [PMID: 22504207 DOI: 10.1016/j.ijpsycho.2012.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/23/2012] [Accepted: 04/05/2012] [Indexed: 11/21/2022]
Abstract
Alterations in neural synchrony and oscillations may contribute to the pathophysiology of schizophrenia and reflect aberrations in cortical glutamatergic and GABAergic neurotransmission. We tested the effects of a GABA agonist and an NMDA antagonist on auditory steady state responses (ASSRs) in awake rats with neonatal ventral hippocampal lesions (NVHLs) as a neurodevelopmental model of schizophrenia. NVHL vs. SHAM lesioned rats were injected with saline then either ketamine (NMDA antagonist) or muscimol (GABA(A) agonist). Time-frequency analyses examined alterations in phase locking (consistency) across trials and changes in total power (magnitude). ASSRs were compared at five stimulation frequencies (10, 20, 30, 40, and 50 Hz). In SHAM rats, phase locking and power generally increased with stimulation frequency. Both ketamine and muscimol also increased phase locking and power in SHAM rats, but mostly in the 20 to 40 Hz range. NVHL and ketamine altered the frequency dependence of phase locking, while only ketamine changed power frequency dependence. Muscimol affected power, but not phase locking, in the NVHL rats. NVHL and ketamine models of schizophrenia produce similar independent effects on ASSR, potentially representing similar forms of cortical network/glutamatergic dysfunction, albeit the effects of ketamine were more robust. Muscimol produced NVHL-dependent reductions in ASSR measures, suggesting that cortical networks in this model are intolerant to post-synaptic GABAergic stimulation. These findings suggest the utility of combining lesion, pharmacological, and ASSR approaches in understanding neural mechanisms underlying disturbed synchrony in schizophrenia.
Collapse
|
147
|
Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B. Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 2012; 217:395-409. [PMID: 21979451 PMCID: PMC3288729 DOI: 10.1007/s00429-011-0351-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/17/2011] [Indexed: 12/12/2022]
Abstract
The proper organization and function of GABAergic interneuron networks is essential for many cognitive processes and abnormalities in these systems have been documented in schizophrenic patients. The memory function of the hippocampus depends on two major patterns of oscillations in the theta and gamma ranges, both requiring the intact functioning of the network of fast-firing interneurons expressing parvalbumin. We examined the ability of acute and chronic administration of NMDA receptor (NMDA-R) antagonists to recapitulate the oscillatory dysfunctions observed in schizophrenia. In freely moving rats, acute injection of MK801 or ketamine increased gamma power in both CA1 and dentate gyrus of the hippocampus. Theta peak shifted to higher frequencies whereas the average 5-10 Hz theta power decreased by 24% in CA1 and remained high in the dentate gyrus. Strong increase in CA1 gamma and decrease in theta power triggered by brainstem stimulation were found under urethane anesthesia. In contrast to acute experiments, chronic administration of ketamine caused a steady decline in both gamma and theta oscillations, 2-4 weeks after treatment. A further important difference between the two models was that the effects of acute injection were more robust than the changes after chronic treatment. Chronic administration of ketamine also leads to decrease in the number of detectable parvalbumin interneurons. Histological examination of interindividual differences indicated, however, that within the ketamine treated group a further decrease in parvalbumin neurons correlated with strengthening of oscillations. The findings are consistent with abnormalities of oscillations in human schizophrenia and further validate the NMDA-R hypofunction hypothesis.
Collapse
Affiliation(s)
- Kara Kittelberger
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
148
|
Bellesi M, Vyazovskiy VV, Tononi G, Cirelli C, Conti F. Reduction of EEG theta power and changes in motor activity in rats treated with ceftriaxone. PLoS One 2012; 7:e34139. [PMID: 22479544 PMCID: PMC3316604 DOI: 10.1371/journal.pone.0034139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/22/2012] [Indexed: 12/31/2022] Open
Abstract
The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7–9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
149
|
Dynamical changes in neurological diseases and anesthesia. Curr Opin Neurobiol 2012; 22:693-703. [PMID: 22446010 DOI: 10.1016/j.conb.2012.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/11/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
Dynamics of neuronal networks can be altered in at least two ways: by changes in connectivity, that is, the physical architecture of the network, or changes in the amplitudes and kinetics of the intrinsic and synaptic currents within and between the elements making up a network. We argue that the latter changes are often overlooked as sources of alterations in network behavior when there are also structural (connectivity) abnormalities present; indeed, they may even give rise to the structural changes observed in these states. Here we look at two clinically relevant states (Parkinson's disease and schizophrenia) and argue that non-structural changes are important in the development of abnormal dynamics within the networks known to be relevant to each disorder. We also discuss anesthesia, since it is entirely acute, thus illustrating the potent effects of changes in synaptic and intrinsic membrane currents in the absence of structural alteration. In each of these, we focus on the role of changes in GABAergic function within microcircuits, stressing literature within the last few years.
Collapse
|
150
|
Phillips K, Cotel M, McCarthy A, Edgar D, Tricklebank M, O’Neill M, Jones M, Wafford K. Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia. Neuropharmacology 2012; 62:1359-70. [DOI: 10.1016/j.neuropharm.2011.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/01/2011] [Accepted: 04/08/2011] [Indexed: 01/01/2023]
|