101
|
Pig and Mouse Models of Hyperlipidemia and Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:379-411. [PMID: 35237978 DOI: 10.1007/978-1-0716-1924-7_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Resident cells of the artery wall and cells of the immune system participate in atherogenesis. This process is influenced by plasma lipoproteins, genetics, and the hemodynamics of the blood flow in the artery. A variety of animal models have been used to study the pathophysiology and mechanisms that contribute to atherosclerotic lesion formation. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis and lipoprotein profile. In this chapter we will discuss pig and mouse models of experimental atherosclerosis. The similarity of pig lipoprotein metabolism and the pathophysiology of the lesions in these animals with that of humans is a major advantage. While a few genetically engineered pig models have been generated, the ease of genetic manipulation in mice and the relatively short time frame for the development of atherosclerosis has made them the most extensively used model. Newer approaches to induce hypercholesterolemia in mice have been developed that do not require germline modifications. These approaches will facilitate studies on atherogenic mechanisms.
Collapse
|
102
|
Bjørklund MM, Bernal JA, Bentzon JF. Atherosclerosis Induced by Adeno-Associated Virus Encoding Gain-of-Function PCSK9. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:461-473. [PMID: 35237981 DOI: 10.1007/978-1-0716-1924-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induction of atherosclerosis in mice with one or more genetic alterations (e.g., conditional deletion of a gene of interest) has traditionally required crossbreeding with Apoe or Ldlr deficient mice to achieve sufficient hypercholesterolemia. However, this procedure is time consuming and generates a surplus of mice with genotypes that are irrelevant for experiments. Several alternative methods exist that obviate the need to work in mice with germline-encoded hypercholesterolemia. In this chapter, we detail an efficient and increasingly used method to induce hypercholesterolemia in mice through adeno-associated virus-mediated transfer of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene.
Collapse
Affiliation(s)
- Martin Mæng Bjørklund
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
103
|
De Giorgi M, Jarrett KE, de Aguiar Vallim TQ, Lagor WR. In Vivo Gene Editing in Lipid and Atherosclerosis Research. Methods Mol Biol 2022; 2419:673-713. [PMID: 35237996 DOI: 10.1007/978-1-0716-1924-7_42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor (Ldlr) and apolipoprotein E (Apoe) germline knockout (KO) models have provided fundamental insights in lipid and atherosclerosis research for decades. However, testing new candidate genes in these models requires extensive breeding, which is highly time and resource consuming. In this chapter, we provide methods for rapidly modeling hypercholesterolemia and atherosclerosis as well as testing new genes in adult mice through somatic gene editing. Adeno-associated viral (AAV) vectors are exploited to deliver the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing system (AAV-CRISPR) to the liver. This tool enables rapid and efficient editing of lipid- and atherosclerosis-related genes in the liver.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey E Jarrett
- Department of Medicine, Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Cardiology, University of California Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
104
|
Gomes D, Wang S, Goodspeed L, Turk KE, Wietecha T, Liu Y, Bornfeldt KE, O'Brien KD, Chait A, den Hartigh LJ. Comparison between genetic and pharmaceutical disruption of Ldlr expression for the development of atherosclerosis. J Lipid Res 2022; 63:100174. [PMID: 35101425 PMCID: PMC8953673 DOI: 10.1016/j.jlr.2022.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
Antisense oligonucleotides (ASOs) against Ldl receptor (Ldlr-ASO) represent a promising strategy to promote hypercholesterolemic atherosclerosis in animal models without the need for complex breeding strategies. Here, we sought to characterize and contrast atherosclerosis in mice given Ldlr-ASO with those bearing genetic Ldlr deficiency. To promote atherosclerosis, male and female C57Bl6/J mice were either given weekly injections of Ldlr-ASO (5 mg/kg once per week) or genetically deficient in Ldlr (Ldlr-/-). Mice consumed either standard rodent chow or a diet high in saturated fat and sucrose with 0.15% added cholesterol for 16 weeks. While both models of Ldlr deficiency promoted hypercholesterolemia, Ldlr-/- mice exhibited nearly 2-fold higher cholesterol levels than Ldlr-ASO mice, reflected by increased VLDL and LDL levels. Consistent with this, the en face atherosclerotic lesion area was 3-fold and 3.6-fold greater in male and female mice with genetic Ldlr deficiency, respectively, as compared with the modest atherosclerosis observed following Ldlr-ASO treatment. Aortic sinus lesion sizes, fibrosis, smooth muscle actin, and necrotic core areas were also larger in Ldlr-/- mice, suggesting a more advanced phenotype. Despite a more modest effect on hypercholesterolemia, Ldlr-ASO induced greater hepatic inflammatory gene expression, macrophage accumulation, and histological lobular inflammation than was observed in Ldlr-/- mice. We conclude Ldlr-ASO is a promising tool for the generation of complex rodent models with which to study atherosclerosis but does not promote comparable levels of hypercholesterolemia or atherosclerosis as Ldlr-/- mice and increases hepatic inflammation. Thus, genetic Ldlr deficiency may be a superior model, depending on the proposed use.
Collapse
Affiliation(s)
- Diego Gomes
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Leela Goodspeed
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Katherine E Turk
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Tomasz Wietecha
- Diabetes Institute, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yongjun Liu
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kevin D O'Brien
- Diabetes Institute, University of Washington, Seattle, WA, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
105
|
Wang JK, Li Y, Zhao XL, Liu YB, Tan J, Xing YY, Adi D, Wang YT, Fu ZY, Ma YT, Liu SM, Liu Y, Wang Y, Shi XJ, Lu XY, Song BL, Luo J. Ablation of Plasma Prekallikrein Decreases LDL Cholesterol by Stabilizing LDL Receptor and Protects against Atherosclerosis. Circulation 2022; 145:675-687. [PMID: 35189703 DOI: 10.1161/circulationaha.121.056491] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: High blood cholesterol accelerates the progression of atherosclerosis that is an asymptomatic process lasting for decades. Rupture of atherosclerotic plaques induces thrombosis that results in myocardial infarction or stroke. Lowering cholesterol levels is beneficial for preventing atherosclerotic cardiovascular disease (ASCVD). Methods: Low-density lipoprotein (LDL) receptor (LDLR) was used as the bait to identify its binding proteins in the plasma, and the coagulation factor prekallikrein (PK, encoded by the KLKB1 gene) was revealed. The correlation between serum PK protein content and lipid levels in young Chinese Han was then analyzed. To investigate the effects of PK ablation on LDLR and lipid levels in vivo, we genetically deleted Klkb1 in hamsters and heterozygous Ldlr knockout mice, as well as knocked Klkb1 down using adeno-associated virus-mediated shRNA in rats. The additive effect of PK and PCSK9 inhibition was evaluated as well. We also applied the anti-PK neutralizing antibody that blocked PK and LDLR interaction to mice. Mice lacking both PK and Apolipoprotein e (Klkb1-/-Apoe-/-) were generated to assess the role of PK in atherosclerosis. Results: PK directly bound LDLR and induced its lysosomal degradation. The serum PK concentrations positively correlated with LDL cholesterol levels in 198 young Chinese Han adults. Genetic depletion of Klkb1 increased hepatic LDLR and decreased circulating cholesterol in multiple rodent models. Inhibition of PCSK9 with Evolocumab further decreased plasma LDL cholesterol levels in Klkb1-deficient hamsters. The anti-PK neutralizing antibody could similarly lower plasma lipids through upregulating hepatic LDLR. Ablation of Klkb1 slowed down the progression of atherosclerosis in mice on Apoe-deficient background. Conclusions: PK regulates circulating cholesterol levels through binding to LDLR and inducing its lysosomal degradation. Ablation of PK stabilizes LDLR, decreases LDL cholesterol and prevents atherosclerotic plaque development. This study suggests that PK is a promising therapeutic target to treat ASCVD.
Collapse
Affiliation(s)
- Jin-Kai Wang
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yang Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Lu Zhao
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yuan-Bin Liu
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jing Tan
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yu-Ying Xing
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Liu
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yan Wang
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiong-Jie Shi
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiao-Yi Lu
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jie Luo
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
106
|
Mironov AA, Beznoussenko GV. Opinion: On the Way towards the New Paradigm of Atherosclerosis. Int J Mol Sci 2022; 23:2152. [PMID: 35216269 PMCID: PMC8879789 DOI: 10.3390/ijms23042152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a multicausal disease characterized by the formation of cholesterol-containing plaque in the pronounced intima nearest to the heart's elastic-type arteries that have high levels of blood circulation. Plaques are formed due to arterial pressure-induced damage to the endothelium in areas of turbulent blood flow. It is found in the majority of the Western population, including young people. This denies the monogenic mechanism of atherogenesis. In 1988, Orekhov et al. and Kawai et al. discovered that the presence of atherogenic (modified, including oxidized ones) LDLs is necessary for atherogenesis. On the basis of our discovery, suggesting that the overloading of enterocytes with lipids could lead to the formation of modified LDLs, we proposed a new hypothesis explaining the main factors of atherogenesis. Indeed, when endothelial cells are damaged and then pass through the G2 phase of their cell cycle they secrete proteins into their basement membrane. This leads to thickening of the basement membrane and increases its affinity to LDL especially for modified ones. When the enterocyte transcytosis pathway is overloaded with fat, very large chylomicrons are formed, which have few sialic acids, circulate in the blood for a long time, undergo oxidation, and can induce the production of autoantibodies. It is the sialic acids that shield the short forks of the polysaccharide chains to which autoantibodies are produced. Here, these data are evaluated from the point of view of our new model.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy;
| | | |
Collapse
|
107
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
108
|
Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022; 23:ijms23020786. [PMID: 35054972 PMCID: PMC8775991 DOI: 10.3390/ijms23020786] [Citation(s) in RCA: 642] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic syndrome (MetS) forms a cluster of metabolic dysregulations including insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension. The pathogenesis of MetS encompasses multiple genetic and acquired entities that fall under the umbrella of insulin resistance and chronic low-grade inflammation. If left untreated, MetS is significantly associated with an increased risk of developing diabetes and cardiovascular diseases (CVDs). Given that CVDs constitute by far the leading cause of morbidity and mortality worldwide, it has become essential to investigate the role played by MetS in this context to reduce the heavy burden of the disease. As such, and while MetS relatively constitutes a novel clinical entity, the extent of research about the disease has been exponentially growing in the past few decades. However, many aspects of this clinical entity are still not completely understood, and many questions remain unanswered to date. In this review, we provide a historical background and highlight the epidemiology of MetS. We also discuss the current and latest knowledge about the histopathology and pathophysiology of the disease. Finally, we summarize the most recent updates about the management and the prevention of this clinical syndrome.
Collapse
|
109
|
Yang X, Zhao Z, Fan Q, Li H, Zhao L, Liu C, Liang X. Cholesterol metabolism is decreased in patients with diminished ovarian reserve. Reprod Biomed Online 2022; 44:185-192. [PMID: 34801402 DOI: 10.1016/j.rbmo.2021.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION Does cholesterol metabolism differ in patients with diminished ovarian reserve (DOR) compared to patients with normal ovarian reserve (NOR)? DESIGN The current research included 72 women with NOR and 86 women with DOR. Data on the cholesterol metabolism in granulosa cells of these women were analysed. RESULTS On the day of human chorionic gonadotrophin injection, serum oestradiol and progesterone in the DOR group were significantly lower than in the control group (P < 0.001). There were no significant differences in serum concentrations of total cholesterol, triglyceride, high-density lipoprotein and low-density lipoprotein between the NOR and DOR groups. The cholesterol-regulated gene SCAP in granulosa cells from women with DOR was down-regulated (P = 0.024). Cholesterol synthesis and transport genes (e.g. IDI1, FDFT1, CYP51A1, SRB1 and STARD1) were also significantly decreased (P = 0.026, P = 0.044, P = 0.049, P = 0.004 and P < 0.001, respectively). In granulosa cells of patients with DOR, cholesterol-related substances such as coprostanone, 11A-acetoxyprogesterone and 17α-hydroxyprogesterone were significantly reduced (P = 0.0008, P = 0.0269, P = 0.0337, respectively). CYP19A1, a key steroidogenesis gene, was significantly reduced (P = 0.009). 17α-hydroxyprogesterone and oestradiol decreased (P = 0.004 and P = 0.039, respectively). CONCLUSION Decreased cholesterol metabolism affecting steroid hormone synthesis in granulosa cells might be a possible mechanism for DOR.
Collapse
Affiliation(s)
- Xiulan Yang
- Liangzhou Hospital of Traditional Chinese and Western Medicine, Liangzhou, China
| | - Zhongying Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology, Lanzhou Gansu Province, China
| | - Lihui Zhao
- Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology, Lanzhou Gansu Province, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology, Lanzhou Gansu Province, China.
| |
Collapse
|
110
|
Tanaka T, Sasaki N, Rikitake Y. Recent Advances on the Role and Therapeutic Potential of Regulatory T Cells in Atherosclerosis. J Clin Med 2021; 10:5907. [PMID: 34945203 PMCID: PMC8707380 DOI: 10.3390/jcm10245907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerotic diseases, including ischemic heart disease and stroke, are a main cause of mortality worldwide. Chronic vascular inflammation via immune dysregulation is critically involved in the pathogenesis of atherosclerosis. Accumulating evidence suggests that regulatory T cells (Tregs), responsible for maintaining immunological tolerance and suppressing excessive immune responses, play an important role in preventing the development and progression of atherosclerosis through the regulation of pathogenic immunoinflammatory responses. Several strategies to prevent and treat atherosclerosis through the promotion of regulatory immune responses have been developed, and could be clinically applied for the treatment of atherosclerotic cardiovascular disease. In this review, we summarize recent advances in our understanding of the protective role of Tregs in atherosclerosis and discuss attractive approaches to treat atherosclerotic disease by augmenting regulatory immune responses.
Collapse
Affiliation(s)
- Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 658-8558, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
| |
Collapse
|
111
|
Luo Y, Guo Y, Wang H, Yu M, Hong K, Li D, Li R, Wen B, Hu D, Chang L, Zhang J, Yang B, Sun D, Schwendeman AS, Eugene Chen Y. Phospholipid nanoparticles: Therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. EBioMedicine 2021; 74:103725. [PMID: 34879325 PMCID: PMC8654800 DOI: 10.1016/j.ebiom.2021.103725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023] Open
Abstract
Background Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Cholesterol crystals (CCs) induce inflammation in atherosclerosis and are associated with unstable plaques and poor prognosis, but no drug can remove CCs in the clinic currently. Methods We generated a phospholipid-based and high-density lipoprotein (HDL)-like nanoparticle, miNano, and determined CC-dissolving capacity, cholesterol efflux property, and anti-inflammation effects of miNano in vitro. Both normal C57BL/6J and Apoe-deficient mice were used to explore the accumulation of miNano in atherosclerotic plaques. The efficacy and safety of miNano administration to treat atherosclerosis were evaluated in the Ldlr-deficient atherosclerosis model. The CC-dissolving capacity of miNano was also detected using human atherosclerotic plaques ex vivo. Findings We found that miNano bound to and dissolved CCs efficiently in vitro, and miNano accumulated in atherosclerotic plaques, co-localized with CCs and macrophages in vivo. Administration of miNano inhibited atherosclerosis and improved plaque stability by reducing CCs and macrophages in Ldlr-deficient mice with favorable safety profiles. In macrophages, miNano prevented foam cell formation by enhancing cholesterol efflux and suppressed inflammatory responses via inhibiting TLR4-NF-κB pathway. Finally, in an ex vivo experiment, miNano effectively dissolved CCs in human aortic atherosclerotic plaques. Interpretation Together, our work finds that phospholipid-based and HDL-like nanoparticle, miNano, has the potential to treat atherosclerosis by targeting CCs and stabilizing plaques. Funding This work was supported by the National Institutes of Health HL134569, HL109916, HL136231, and HL137214 to Y.E.C, HL138139 to J.Z., R21NS111191 to A.S., by the American Heart Association 15SDG24470155, Grant Awards (U068144 from Bio-interfaces and G024404 from M-BRISC) at the University of Michigan to Y.G., by the American Heart Association 19PRE34400017 and Rackham Helen Wu award to M.Y., NIH T32 GM07767 to K. H., Barbour Fellowship to D.L.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Huilun Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen Hong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruiting Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Die Hu
- Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna S Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
112
|
Iwaki T, Arakawa T, Sandoval-Cooper MJ, Smith DL, Donahue D, Ploplis VA, Umemura K, Castellino FJ. Plasminogen Deficiency Significantly Reduces Vascular Wall Disease in a Murine Model of Type IIa Hypercholesterolemia. Biomedicines 2021; 9:biomedicines9121832. [PMID: 34944648 PMCID: PMC8698429 DOI: 10.3390/biomedicines9121832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
The fibrinolytic system has been implicated in the genesis and progression of atherosclerosis. It has been reported that a plasminogen (Pg) deficiency (Plg−/−) exacerbates the progression of atherosclerosis in Apoe−/− mice. However, the manner in which Plg functions in a low-density lipoprotein-cholesterol (LDL-C)-driven model has not been evaluated. To characterize the effect of Pg in an LDL-C-driven model, mice with a triple deficiency of the LDL-receptor (LDLr), along with the active component (apobec1) of the apolipoprotein B editosome complex, and Pg (L−/−/A−/−/Plg−/−), were generated. Atherosclerotic plaque formation was severely retarded in the absence of Pg. In vitro studies demonstrated that LDL uptake by macrophages was enhanced by plasmin (Pm), whereas circulating levels of LDL were enhanced, relative to L−/−/A−/− mice, and VLDL synthesis was suppressed. These results indicated that clearance of lipoproteins in the absence of LDLr may be regulated by Pg/Pm. Conclusions: The results from this study indicate that Pg exacerbates atherosclerosis in an LDL-C model of atherosclerosis and also plays a role in lipoprotein modification and clearance. Therefore, controlling the Pg system on macrophages to prevent foam cell formation would be a novel therapeutic approach.
Collapse
Affiliation(s)
- Takayuki Iwaki
- The W. M. Keck Center for Transgene Research, The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.S.-C.); (D.L.S.); (D.D.); (V.A.P.); (F.J.C.)
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (T.A.); (K.U.)
- Correspondence: ; Tel.: +81-53-435-2271
| | - Tomohiro Arakawa
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (T.A.); (K.U.)
| | - Mayra J. Sandoval-Cooper
- The W. M. Keck Center for Transgene Research, The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.S.-C.); (D.L.S.); (D.D.); (V.A.P.); (F.J.C.)
| | - Denise L. Smith
- The W. M. Keck Center for Transgene Research, The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.S.-C.); (D.L.S.); (D.D.); (V.A.P.); (F.J.C.)
| | - Deborah Donahue
- The W. M. Keck Center for Transgene Research, The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.S.-C.); (D.L.S.); (D.D.); (V.A.P.); (F.J.C.)
| | - Victoria A. Ploplis
- The W. M. Keck Center for Transgene Research, The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.S.-C.); (D.L.S.); (D.D.); (V.A.P.); (F.J.C.)
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (T.A.); (K.U.)
| | - Francis J. Castellino
- The W. M. Keck Center for Transgene Research, The Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.S.-C.); (D.L.S.); (D.D.); (V.A.P.); (F.J.C.)
| |
Collapse
|
113
|
Zhang W, Xu L, Zhu L, Liu Y, Yang S, Zhao M. Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Front Physiol 2021; 12:746749. [PMID: 34925055 PMCID: PMC8678573 DOI: 10.3389/fphys.2021.746749] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid droplets (LDs) are commonly found in various biological cells and are organelles related to cell metabolism. LDs, the number and size of which are heterogeneous across cell type, are primarily composed of polar lipids and proteins on the surface with neutral lipids in the core. Neutral lipids stored in LDs can be degraded by lipolysis and lipophagocytosis, which are regulated by various proteins. The process of LD formation can be summarized in four steps. In addition to energy production, LDs play an extremely pivotal role in a variety of physiological and pathological processes, such as endoplasmic reticulum stress, lipid toxicity, storage of fat-soluble vitamins, regulation of oxidative stress, and reprogramming of cell metabolism. Interestingly, LDs, the hub of integration between metabolism and the immune system, are involved in antitumor immunity, anti-infective immunity (viruses, bacteria, parasites, etc.) and some metabolic immune diseases. Herein, we summarize the role of LDs in several major immune cells as elucidated in recent years, including T cells, dendritic cells, macrophages, mast cells, and neutrophils. Additionally, we analyze the role of the interaction between LDs and immune cells in two typical metabolic immune diseases: atherosclerosis and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya Hospital, Central South University, Changsha, China
| | - Linyong Xu
- School of Life Sciences, Central South University, Changsha, China
| | - Ling Zhu
- School of Life Sciences, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Siwei Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
114
|
Casado ME, Huerta L, Marcos-Díaz A, Ortiz AI, Kraemer FB, Lasunción MA, Busto R, Martín-Hidalgo A. Hormone-sensitive lipase deficiency affects the expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in cellular cholesterol uptake and efflux and disturbs fertility in mouse testis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159043. [PMID: 34461308 DOI: 10.1016/j.bbalip.2021.159043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Hormone-sensitive lipase (HSL) hydrolyse acylglycerols, cholesteryl and retinyl esters. HSL is a key lipase in mice testis, as HSL deficiency results in male sterility. The present work study the effects of the deficiency and lack of HSL on the localization and expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in uptake and efflux of cholesterol in mice testis, to determine the impact of HSL gene dosage on testis morphology, lipid homeostasis and fertility. The results of this work show that the lack of HSL in mice alters testis morphology and spermatogenesis, decreasing sperm counts, sperm motility and increasing the amount of Leydig cells and lipid droplets. They also show that there are differences in the localization of HSL, SR-BI, LDLr and ABCA1 in HSL+/+, HSL+/- and HSL-/- mice. The deficiency or lack of HSL has effects on protein and mRNA expression of genes involved in lipid metabolisms in mouse testis. HSL-/- testis have augmented expression of SR-BI, LDLr, ABCA1 and LXRβ, a critical sterol sensor that regulate multiple genes involved in lipid metabolism; whereas LDLr expression decreased in HSL+/- mice. Plin2, Abca1 and Ldlr mRNA levels increased; and LXRα (Nr1h3) and LXRβ (Nr1h2) decreased in testis from HSL-/- compared with HSL+/+; with no differences in Scarb1. Together these data suggest that HSL deficiency or lack in mice testis induces lipid homeostasis alterations that affect the cellular localization and expression of key receptors/transporter involved in cellular cholesterol uptake and efflux (SR-BI, LDRr, ABCA1); alters normal cellular function and impact fertility.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Lydia Huerta
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Marcos-Díaz
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Isabel Ortiz
- Unidad de Cirugía Experimental y Animalario, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
| | - Fredric B Kraemer
- Division of Endocrinology, Stanford University, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Miguel Angel Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain.
| |
Collapse
|
115
|
Ghoshal S, Banerjee S, Zhang J, Niehoff ML, Farr SA, Butler AA. Adropin transgenesis improves recognition memory in diet-induced obese LDLR-deficient C57BL/6J mice. Peptides 2021; 146:170678. [PMID: 34695512 PMCID: PMC8649943 DOI: 10.1016/j.peptides.2021.170678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Obesity-related metabolic dysregulation causes mild cognitive impairment and increased risk for dementia. We used an LDLR-deficient C57BL/6J mouse model (LDLRKO) to investigate whether adropin, a neuropeptide linked to neurodegenerative diseases, improves cognitive function in situations of metabolic dysregulation. Adropin transgenic mice (AdrTG) were crossed with LDLRKO; male and female progeny were fed a high fat diet for 3-months. Male chow-fed wild type (WT) mice were used as controls. Diet-induced obesity and LDLR-deficiency caused severe dyslipidemia, irrespective of sex. The AdrTG prevented reduced adropin protein levels in LDLRKO cortex. In males, metabolic dysregulation and AdrTG genotype significantly and bi-directionally affected performance in the novel object recognition (NOR) test, a declarative hippocampal memory task (discrimination index mean ± SE for WT, 0.02 ± 0.088; LDLRKO, -0.115 ± 0.077; AdrTG;LDLRKO, 0.265 ± 0.078; genotype effect, p = 0.009; LDLRKO vs. AdrTG;LDLRKO, P < 0.05). A 2-way ANOVA (fixed variables: sex, AdrTG genotype) indicated a highly significant effect of AdrTG (P = 0.003). The impact of the diet-genotype interaction on the male mouse brain was investigated using RNA-seq. Gene-ontology analysis of transcripts showing fold-changes of>1.3 or <-1.3 (P < 0.05) indicated metabolic dysregulation affected gene networks involved in intercellular/neuronal signaling, immune processes, angiogenesis, and extracellular matrix organization. The AdrTG selectively attenuated the impact of metabolic dysregulation on intercellular/neuronal signaling pathways. Intercellular/neuronal signaling pathways were also the predominant processes overrepresented when directly comparing AdrTG;LDLRKO with LDRKO. In summary, adropin overexpression improves cognitive function in severe metabolic dysregulation through pathways related to cell-cell communication and neuronal processes, and independently of preventing inflammatory responses.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Department of Biological Science and Geology, QCC-CUNY, Bayside, NY, USA
| | - Subhashis Banerjee
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jinsong Zhang
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine and Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, St. Louis, MO, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Saint Louis University School of Medicine and Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Andrew A Butler
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
116
|
Gurzeler E, Ruotsalainen AK, Laine A, Valkama T, Kettunen S, Laakso M, Ylä-Herttuala S. SUR1-E1506K mutation impairs glucose tolerance and promotes vulnerable atherosclerotic plaque phenotype in hypercholesterolemic mice. PLoS One 2021; 16:e0258408. [PMID: 34767557 PMCID: PMC8589160 DOI: 10.1371/journal.pone.0258408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Diabetes is a major risk factor of atherosclerosis and its complications. The loss-of-function mutation E1506K in the sulfonylurea receptor 1 (SUR1-E1506K) induces hyperinsulinemia in infancy, leading to impaired glucose tolerance and increased risk of type 2 diabetes. In this study, we investigate the effect of SUR1-E1506K mutation on atherogenesis in hypercholesterolemic LDLR-/- mice. METHODS SUR1-E1506K mutated mice were cross-bred with LDLR-/- mice (SUR1Δ/LDLR-/-), 6 months old mice were fed a western-diet (WD) for 6 months to induce advanced atherosclerotic plaques. At the age of 12 months, atherosclerosis and plaque morphology were analyzed and mRNA gene expression were measured from aortic sections and macrophages. Glucose metabolism was characterized before and after WD. Results were compared to age-matched LDLR-/- mice. RESULTS Advanced atherosclerotic plaques did not differ in size between the two strains. However, in SUR1Δ/LDLR-/- mice, plaque necrotic area was increased and smooth muscle cell number was reduced, resulting in higher plaque vulnerability index in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice. SUR1Δ/LDLR-/- mice exhibited impaired glucose tolerance and elevated fasting glucose after WD. The positive staining area of IL-1β and NLRP3 inflammasome were increased in aortic sections in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice, and IL-18 plasma level was elevated in SUR1Δ/LDLR-/- mice. Finally, the mRNA expression of IL-1β and IL-18 were increased in SUR1Δ/LDLR-/- bone marrow derived macrophages in comparison to LDLR-/- macrophages in response to LPS. CONCLUSIONS SUR1-E1506K mutation impairs glucose tolerance and increases arterial inflammation, which promotes a vulnerable atherosclerotic plaque phenotype in LDLR-/- mice.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Aortic Diseases/blood
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Atherosclerosis/blood
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Blood Glucose/metabolism
- Cells, Cultured
- Diet, Western/adverse effects
- Disease Models, Animal
- Gene Expression
- Glucose Intolerance/genetics
- Hypercholesterolemia/blood
- Hypercholesterolemia/etiology
- Hypercholesterolemia/genetics
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Necrosis
- Phenotype
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- RNA, Messenger/genetics
- Receptors, LDL/genetics
- Sulfonylurea Receptors/genetics
Collapse
Affiliation(s)
- Erika Gurzeler
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Anssi Laine
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Teemu Valkama
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| |
Collapse
|
117
|
Kawanishi K, Coker JK, Grunddal KV, Dhar C, Hsiao J, Zengler K, Varki N, Varki A, Gordts PL. Dietary Neu5Ac Intervention Protects Against Atherosclerosis Associated With Human-Like Neu5Gc Loss-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:2730-2739. [PMID: 34587757 PMCID: PMC8551057 DOI: 10.1161/atvbaha.120.315280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Objective Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Joanna K Coker
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Kaare V. Grunddal
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| | - Chirag Dhar
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
| | - Jason Hsiao
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| | - Karsten Zengler
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Pediatrics, University of California, San Diego, La Jolla
- Department of Bioengineering, University of California, San Diego, La Jolla
- Center for Microbiome Innovation, University of California, San Diego, La Jolla
| | - Nissi Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Bioengineering, University of California, San Diego, La Jolla
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla
| | - Philip L.S.M. Gordts
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| |
Collapse
|
118
|
Zhang Y, Fatima M, Hou S, Bai L, Zhao S, Liu E. Research methods for animal models of atherosclerosis (Review). Mol Med Rep 2021; 24:871. [PMID: 34713295 PMCID: PMC8569513 DOI: 10.3892/mmr.2021.12511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that threatens human health and lives by causing vascular stenosis and plaque rupture. Various animal models have been employed for elucidating the pathogenesis, drug development and treatment validation studies for atherosclerosis. To the best of our knowledge, the species used for atherosclerosis research include mice, rats, hamsters, rabbits, pigs, dogs, non-human primates and birds, among which the most commonly used ones are mice and rabbits. Notably, apolipoprotein E knockout (KO) or low-density lipoprotein receptor KO mice have been the most widely used animal models for atherosclerosis research since the late 20th century. Although the aforementioned animal models can form atherosclerotic lesions, they cannot completely simulate those in humans with respect to lesion location, lesion composition, lipoprotein composition and physiological structure. Hence, an appropriate animal model needs to be selected according to the research purpose. Additionally, it is necessary for atherosclerosis research to include quantitative analysis results of atherosclerotic lesion size and plaque composition. Laboratory animals can provide not only experimental tissues for in vivo studies but also cells needed for in vitro experiments. The present review first summarizes the common animal models and their practical applications, followed by focus on mouse and rabbit models and elucidating the methods to quantify atherosclerotic lesions. Finally, the methods of culturing endothelial cells, macrophages and smooth muscle cells were elucidated in detail and the experiments involved in atherosclerosis research were discussed.
Collapse
Affiliation(s)
- Yali Zhang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Mahreen Fatima
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Siyuan Hou
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Bai
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
119
|
Buono MF, Slenders L, Wesseling M, Hartman RJG, Monaco C, den Ruijter HM, Pasterkamp G, Mokry M. The changing landscape of the vulnerable plaque: a call for fine-tuning of preclinical models. Vascul Pharmacol 2021; 141:106924. [PMID: 34607015 DOI: 10.1016/j.vph.2021.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
For decades, the pathological definition of the vulnerable plaque led to invaluable insights into the mechanisms that underlie myocardial infarction and stroke. Beyond plaque rupture, other mechanisms, such as erosion, may elicit thrombotic events underlining the complexity and diversity of the atherosclerotic disease. Novel insights, based on single-cell transcriptomics and other "omics" methods, provide tremendous opportunities in the ongoing search for cell-specific determinants that will fine-tune the description of the thrombosis prone lesion. It coincides with an increasing awareness that knowledge on lesion characteristics, cell plasticity and clinical presentation of ischemic cardiovascular events have shifted over the past decades. This shift correlates with an observed changes of cell composition towards phenotypical stabilizing of human plaques. These stabilization features and mechanisms are directly mediated by the cells present in plaques and can be mimicked in vitro via primary plaque cells derived from human atherosclerotic tissues. In addition, the rapidly evolving of sequencing technologies identify many candidate genes and molecular mechanisms that may influence the risk of developing an atherosclerotic thrombotic event - which bring the next challenge in sharp focus: how to translate these cell-specific insights into tangible functional and translational discoveries?
Collapse
Affiliation(s)
- Michele F Buono
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marian Wesseling
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands; Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
120
|
Liu G, Lai P, Guo J, Wang Y, Xian X. Genetically-engineered hamster models: applications and perspective in dyslipidemia and atherosclerosis-related cardiovascular disease. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:92-110. [PMID: 37724074 PMCID: PMC10388752 DOI: 10.1515/mr-2021-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in both developed and developing countries, in which atherosclerosis triggered by dyslipidemia is the major pathological basis. Over the past 40 years, small rodent animals, such as mice, have been widely used for understanding of human atherosclerosis-related cardiovascular disease (ASCVD) with the advantages of low cost and ease of maintenance and manipulation. However, based on the concept of precision medicine and high demand of translational research, the applications of mouse models for human ASCVD study would be limited due to the natural differences in metabolic features between mice and humans even though they are still the most powerful tools in this research field, indicating that other species with biological similarity to humans need to be considered for studying ASCVD in future. With the development and breakthrough of novel gene editing technology, Syrian golden hamster, a small rodent animal replicating the metabolic characteristics of humans, has been genetically modified, suggesting that gene-targeted hamster models will provide new insights into the precision medicine and translational research of ASCVD. The purpose of this review was to summarize the genetically-modified hamster models with dyslipidemia to date, and their potential applications and perspective for ASCVD.
Collapse
Affiliation(s)
- George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
121
|
de Oliveira J, Engel DF, de Paula GC, Dos Santos DB, Lopes JB, Farina M, Moreira ELG, de Bem AF. High Cholesterol Diet Exacerbates Blood-Brain Barrier Disruption in LDLr-/- Mice: Impact on Cognitive Function. J Alzheimers Dis 2021; 78:97-115. [PMID: 32925052 PMCID: PMC7683087 DOI: 10.3233/jad-200541] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Evidence has revealed an association between familial hypercholesterolemia and cognitive impairment. In this regard, a connection between cognitive deficits and hippocampal blood-brain barrier (BBB) breakdown was found in low-density lipoprotein receptor knockout mice (LDLr–/–), a mouse model of familial hypercholesterolemia. Objective: Herein we investigated the impact of a hypercholesterolemic diet on cognition and BBB function in C57BL/6 wild-type and LDLr–/–mice. Methods: Animals were fed with normal or high cholesterol diets for 30 days. Thus, wild-type and LDLr–/–mice were submitted to memory paradigms. Additionally, BBB integrity was evaluated in the mice’s prefrontal cortices and hippocampi. Results: A tenfold elevation in plasma cholesterol levels of LDLr–/–mice was observed after a hypercholesterolemic diet, while in wild-type mice, the hypercholesterolemic diet exposure increased plasma cholesterol levels only moderately and did not induce cognitive impairment. LDLr–/–mice presented memory impairment regardless of the diet. We observed BBB disruption as an increased permeability to sodium fluorescein in the prefrontal cortices and hippocampi and a decrease on hippocampal claudin-5 and occludin mRNA levels in both wild-type and LDLr–/–mice treated with a hypercholesterolemic diet. The LDLr–/–mice fed with a regular diet already presented BBB dysfunction. The BBB-increased leakage in the hippocampi of LDLr–/–mice was related to high microvessel content and intense astrogliosis, which did not occur in the control mice. Conclusion: Therefore, LDLr–/–mice seem to be more susceptible to cognitive impairments and BBB damage induced by exposure to a high cholesterol diet. Finally, BBB disruption appears to be a relevant event in hypercholesterolemia-induced brain alterations.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS)M, Porto Alegre, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Daiane F Engel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Gabriela C de Paula
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Danúbia B Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Jadna B Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Eduardo L G Moreira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Andreza F de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
122
|
Low-Density Lipoprotein Receptor Suppresses the Endogenous Cholesterol Synthesis Pathway To Oppose Gammaherpesvirus Replication in Primary Macrophages. J Virol 2021; 95:e0064921. [PMID: 34105999 PMCID: PMC8354329 DOI: 10.1128/jvi.00649-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in >95% of adults worldwide and are associated with several cancers. We have shown that endogenous cholesterol synthesis supports gammaherpesvirus replication. However, the role of exogenous cholesterol exchange and signaling during infection remains poorly understood. Extracellular cholesterol is carried in the serum by several lipoproteins, including low-density lipoproteins (LDL). The LDL receptor (LDL-R) mediates the endocytosis of these cholesterol-rich LDL particles into the cell, thereby supplying the cell with cholesterol. We found that LDL-R expression attenuates gammaherpesvirus replication during the early stages of the replication cycle, as evident by increased viral gene expression in LDL-R-/- primary macrophages. This was not observed in primary fibroblasts, indicating that the antiviral effects of LDL-R are cell type specific. Increased viral gene expression in LDL-R-/- primary macrophages was due to increased activity of the endogenous cholesterol synthesis pathway. Intriguingly, despite type I interferon-driven increase in LDL-R mRNA levels in infected macrophages, protein levels of LDL-R continually decreased over the single cycle of viral replication. Thus, our study has uncovered an intriguing tug of war between the LDL-R-driven antiviral effect on cholesterol metabolism and the viral targeting of the LDL-R protein. IMPORTANCE LDL-R is a cell surface receptor that mediates the endocytosis of cholesterol-rich low-density lipoproteins, allowing cells to acquire cholesterol exogenously. Several RNA viruses usurp LDL-R function to facilitate replication; however, the role of LDL-R in DNA virus infection remains unknown. Gammaherpesviruses are double-stranded DNA viruses that are associated with several cancers. Here, we show that LDL-R attenuates gammaherpesvirus replication in primary macrophages by decreasing endogenous cholesterol synthesis activity, a pathway known to support gammaherpesvirus replication. In response, LDL-R protein levels are decreased in infected cells to mitigate the antiviral effects, revealing an intriguing tug of war between the virus and the host.
Collapse
|
123
|
Dong C, Ma A, Shang L. Animal models used in the research of nanoparticles for cardiovascular diseases. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:172. [PMID: 34393623 PMCID: PMC8353219 DOI: 10.1007/s11051-021-05289-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Tremendous progress has been made in the prevention and treatment of CVD; however, there are still lots of limitations and new technology is needed. Nanoparticles have been studied recently for CVD due to their nanoscale size and unique properties, and hold a potential to be a novel therapy for the treatment. To test the safety and effectiveness of drug-loaded nanoparticles for CVD prior to human studies, animal disease models are unavoidably needed. This review summarized the animal models used in the research of nanoparticles for CVD and provided a generic picture of current use of CVD animal models according to the different types of diseases which should be prioritized when considering the application of nanoparticles in treating CVD. This review would be useful resources not only for life science researchers and clinicians but also for those from chemistry and materials sciences background who may not have a systematic knowledge about CVD animal models.
Collapse
Affiliation(s)
- Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710054 Shaanxi China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710054 Shaanxi China
| | - Lijun Shang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710054 Shaanxi China
- Faculty of Life Science, Northwest University, Xi’an, 710032 Shaanxi China
- School of Human Sciences, London Metropolitan University, London, N7 8DB UK
| |
Collapse
|
124
|
Copper and lipid metabolism: A reciprocal relationship. Biochim Biophys Acta Gen Subj 2021; 1865:129979. [PMID: 34364973 DOI: 10.1016/j.bbagen.2021.129979] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.
Collapse
|
125
|
Jiang CL, Chen YF, Lin FJ. Apolipoprotein E deficiency activates thermogenesis of white adipose tissues in mice through enhancing β-hydroxybutyrate production from precursor cells. FASEB J 2021; 35:e21760. [PMID: 34309918 DOI: 10.1096/fj.202100298rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022]
Abstract
White adipose tissue (WAT) has the capacity to undergo a white-to-beige phenotypic switch, known as browning, in response to stimuli such as cold. However, the mechanism underlying beige adipocyte formation is largely unknown. Apolipoprotein E (ApoE) is highly induced in WAT and has been implicated in lipid metabolism. Here, we show that ApoE deficiency in mice increased oxygen consumption and thermogenesis and enhanced adipose browning pattern in inguinal WAT (iWAT), with associated characteristics such as increased Ucp1 and Pparγ expression. At the cellular level, ApoE deficient beige adipocytes had increased glucose uptake and higher mitochondrial respiration than wild-type cells. Mechanistically, we showed that ApoE deficient iWAT and primary adipose precursor cells activated the thermogenic genes program by stimulating the production of ketone body β-hydroxybutyrate (βHB), a novel adipose browning promoting factor. This was accompanied by increased expression of genes involved in ketogenesis and could be compromised by the treatment for ketogenesis inhibitors. Consistently, ApoE deficient mice show higher serum βHB level than wild-type mice in the fed state and during cold exposure. Our results further demonstrate that the increased βHB production in ApoE deficient adipose precursor cells could be attributed, at least in part, to enhanced Cd36 expression and CD36-mediated fatty acid utilization. Our findings uncover a previously uncharacterized role for ApoE in energy homeostasis via its cell-autonomous action in WAT.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ying-Fang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.,Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
126
|
Kabir I, Greif DM. SNCs meet SMCs in the atherosclerotic plaque. NATURE AGING 2021; 1:631-633. [PMID: 36540165 PMCID: PMC9762735 DOI: 10.1038/s43587-021-00096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cellular senescence and smooth muscle cells are key features of the atherosclerotic plaque; however, how senescent cells regulate smooth muscle cells is largely unknown. Herein, a new study in Nature Aging illuminates this interplay, providing insights into plaque dynamics and stability with potentially profound implications for heart attack and stroke.
Collapse
Affiliation(s)
- Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
127
|
Christophersen DV, Møller P, Thomsen MB, Lykkesfeldt J, Loft S, Wallin H, Vogel U, Jacobsen NR. Accelerated atherosclerosis caused by serum amyloid A response in lungs of ApoE -/- mice. FASEB J 2021; 35:e21307. [PMID: 33638910 DOI: 10.1096/fj.202002017r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Airway exposure to eg particulate matter is associated with cardiovascular disease including atherosclerosis. Acute phase genes, especially Serum Amyloid A3 (Saa3), are highly expressed in the lung following pulmonary exposure to particles. We aimed to investigate whether the human acute phase protein SAA (a homolog to mouse SAA3) accelerated atherosclerotic plaque progression in Apolipoprotein E knockout (ApoE-/- ) mice. Mice were intratracheally (i.t.) instilled with vehicle (phosphate buffered saline) or 2 µg human SAA once a week for 10 weeks. Plaque progression was assessed in the aorta using noninvasive ultrasound imaging of the aorta arch as well as by en face analysis. Additionally, lipid peroxidation, SAA3, and cholesterol were measured in plasma, inflammation was determined in lung, and mRNA levels of the acute phase genes Saa1 and Saa3 were measured in the liver and lung, respectively. Repeated i.t. instillation with SAA caused a significant progression in the atherosclerotic plaques in the aorta (1.5-fold). Concomitantly, SAA caused a statistically significant increase in neutrophils in bronchoalveolar lavage fluid (625-fold), in pulmonary Saa3 (196-fold), in systemic SAA3 (1.8-fold) and malondialdehyde levels (1.14-fold), indicating acute phase response (APR), inflammation and oxidative stress. Finally, pulmonary exposure to SAA significantly decreased the plasma levels of very low-density lipoproteins - low-density lipoproteins and total cholesterol, possibly due to lipids being sequestered in macrophages or foam cells in the arterial wall. Combined these results indicate the importance of the pulmonary APR and SAA3 for plaque progression.
Collapse
Affiliation(s)
- Daniel Vest Christophersen
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark.,Ambu A/S, Ballerup, Denmark.,The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Morten Baekgaard Thomsen
- Department of Biomedical Sciences, Heart and Circulatory Research Section, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Håkan Wallin
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark.,The National Research Centre for the Working Environment, Copenhagen, Denmark.,National Institute of Occupational Health, Oslo, Norway
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
128
|
Yadati T, Houben T, Bitorina A, Oligschlaeger Y, Gijbels MJ, Mohren R, Lütjohann D, Khurana P, Goyal S, Kulkarni A, Theys J, Cillero-Pastor B, Shiri-Sverdlov R. Inhibition of Extracellular Cathepsin D Reduces Hepatic Lipid Accumulation and Leads to Mild Changes in Inflammationin NASH Mice. Front Immunol 2021; 12:675535. [PMID: 34335574 PMCID: PMC8323051 DOI: 10.3389/fimmu.2021.675535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Background & Aims The lysosomal enzyme, cathepsin D (CTSD) has been implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH), a disease characterised by hepatic steatosis and inflammation. We have previously demonstrated that specific inhibition of the extracellular CTSD leads to improved metabolic features in Sprague-Dawley rats with steatosis. However, the individual roles of extracellular and intracellular CTSD in NASH are not yet known. In the current study, we evaluated the underlying mechanisms of extracellular and intracellular CTSD fractions in NASH-related metabolic inflammation using specific small-molecule inhibitors. Methods Low-density lipoprotein receptor knock out (Ldlr-/-) mice were fed a high-fat, high cholesterol (HFC) diet for ten weeks to induce NASH. Further, to investigate the effects of CTSD inhibition, mice were injected either with an intracellular (GA-12) or extracellular (CTD-002) CTSD inhibitor or vehicle control at doses of 50 mg/kg body weight subcutaneously once in two days for ten weeks. Results Ldlr-/- mice treated with extracellular CTSD inhibitor showed reduced hepatic lipid accumulation and an associated increase in faecal bile acid levels as compared to intracellular CTSD inhibitor-treated mice. Furthermore, in contrast to intracellular CTSD inhibition, extracellular CTSD inhibition switched the systemic immune status of the mice to an anti-inflammatory profile. In line, label-free mass spectrometry-based proteomics revealed that extra- and intracellular CTSD fractions modulate proteins belonging to distinct metabolic pathways. Conclusion We have provided clinically translatable evidence that extracellular CTSD inhibition shows some beneficial metabolic and systemic inflammatory effects which are distinct from intracellular CTSD inhibition. Considering that intracellular CTSD inhibition is involved in essential physiological processes, specific inhibitors capable of blocking extracellular CTSD activity, can be promising and safe NASH drugs.
Collapse
Affiliation(s)
- Tulasi Yadati
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Albert Bitorina
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Marion J Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ronny Mohren
- Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | | | | | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
129
|
Feng QM, Liu MM, Cheng YX, Wu XG. Comparative proteomics elucidates the dynamics of ovarian development in the Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100878. [PMID: 34333232 DOI: 10.1016/j.cbd.2021.100878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Ovarian development is a complex physiological process for crustacean reproduction that is divided into the oogonium proliferation stage, endogenous vitellogenic stage, exogenous vitellogenic stage, and oocyte maturation stage. Proteomics analysis offers a feasible approach to reveal the proteins involved in the complex physiological processes of any organism. Therefore, this study performed a comparative proteomics analysis of the ovary and hepatopancreas at three key ovarian stages, including stages I (oogonium proliferation), II (endogenous vitellogenesis) and IV (exogenous vitellogenesis), of the Chinese mitten crab Eriocheir sinensis using a label-free quantitative approach. The results showed that a total of 2,224 proteins were identified, and some key proteins related to ovarian development and nutrition metabolism were differentially expressed. The 26 key proteins were mainly involved in the ubiquitin/proteasome pathway (UPP), cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway during oogenesis. Fifteen differentially abundant proteins (DAPs) were found to participate in vitellogenesis and oocyte development, such as vitelline membrane outer layer protein 1 homolog, vitellogenin, vitellogenin receptor, heat shock 70 kDa protein cognate 3 and farnesyl pyrophosphate synthase. Forty-seven DAPs related to nutrition metabolism were identified, including the protein digestion, fatty acid metabolism, prostaglandin metabolism, lipid digestion and transportation, i.e. short-chain specific acyl-CoA dehydrogenase, acyl-CoA desaturase, fatty acid-binding protein, long-chain fatty acid CoA ligase 4, and hematopoietic prostaglandin D synthase. These results not only indicate proteins involved in ovarian development and nutrient deposition but also enhance the understanding of the regulatory pathways and physiological processes of crustacean ovarian development.
Collapse
Affiliation(s)
- Qiang-Mei Feng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Mei-Mei Liu
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yong-Xu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xu-Gan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
130
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
131
|
Liu Y, Zienkiewicz J, Boyd KL, Smith TE, Xu ZQ, Hawiger J. Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Sci Rep 2021; 11:11907. [PMID: 34099795 PMCID: PMC8184916 DOI: 10.1038/s41598-021-91395-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
Hyperlipidemia, the hallmark of Metabolic Syndrome that afflicts millions of people worldwide, exacerbates life-threatening infections. We present a new evidence for the mechanism of hyperlipidemic hypersensitivity to microbial inflammation caused by pathogen-derived inducer, LPS. We demonstrate that hyperlipidemic animals succumbed to a non-lethal dose of LPS whereas normolipidemic controls survived. Strikingly, survival of hyperlipidemic animals was restored when the nuclear import of stress-responsive transcription factors (SRTFs), Sterol Regulatory Element-Binding Proteins (SREBPs), and Carbohydrate-Responsive Element-Binding Proteins (ChREBPs) was impeded by targeting the nuclear transport checkpoint with cell-penetrating, biselective nuclear transport modifier (NTM) peptide. Furthermore, the burst of proinflammatory cytokines and chemokines, microvascular endothelial injury in the liver, lungs, heart, and kidneys, and trafficking of inflammatory cells were also suppressed. To dissect the role of nuclear transport signaling pathways we designed and developed importin-selective NTM peptides. Selective targeting of the importin α5, ferrying SRTFs and ChREBPs, protected 70-100% hyperlipidemic animals. Targeting importin β1, that transports SREBPs, was only effective after 3-week treatment that lowered blood triglycerides, cholesterol, glucose, and averted fatty liver. Thus, the mechanism of hyperlipidemic hypersensitivity to lethal microbial inflammation depends on metabolic and proinflammatory transcription factors mobilization, which can be counteracted by targeting the nuclear transport checkpoint.
Collapse
Affiliation(s)
- Yan Liu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Jozef Zienkiewicz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Taylor E Smith
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Zhi-Qi Xu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| | - Jacek Hawiger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt University Medical Center, 21st Avenue South, T-1218, MCN, Nashville, TN, 37232, USA.
| |
Collapse
|
132
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2021; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
133
|
Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from Bench to Bedside. Biomedicines 2021; 9:biomedicines9060600. [PMID: 34070542 PMCID: PMC8228531 DOI: 10.3390/biomedicines9060600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review summarizes the main achievements in basic and clinical research of atherosclerosis. Focusing on desialylation as the first and the most important reaction of proatherogenic pathological cascade, we speak of how desialylation increases the atherogenic properties of low density lipoproteins and decreases the anti-atherogenic properties of high density lipoproteins. The separate sections of this paper are devoted to immunogenicity of lipoproteins, the enzymes contributing to their desialylation and animal models of atherosclerosis. In addition, we evaluate the available experimental and diagnostic protocols that can be used to develop new therapeutic approaches for atherosclerosis.
Collapse
|
134
|
Dragoljevic D, Veiga CB, Michell DL, Shihata WA, Al-Sharea A, Head GA, Murphy AJ, Kraakman MJ, Lee MKS. A spontaneously hypertensive diet-induced atherosclerosis-prone mouse model of metabolic syndrome. Biomed Pharmacother 2021; 139:111668. [PMID: 34243630 DOI: 10.1016/j.biopha.2021.111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic Syndrome (MetS) is a complex and multifactorial condition often characterised by obesity, hypertension, hyperlipidaemia, insulin resistance, glucose intolerance and fasting hyperglycaemia. Collectively, MetS can increase the risk of atherosclerotic-cardiovascular disease, which is the leading cause of death worldwide. However, no animal model currently exists to study MetS in the context of atherosclerosis. In this study we developed a pre-clinical mouse model that recapitulates the spectrum of MetS features while developing atherosclerosis. When BPHx mice were placed on a western type diet for 16 weeks, all the classical characteristics of MetS were observed. Comprehensive metabolic analyses and atherosclerotic imaging revealed BPHx mice to be obese and hypertensive, with elevated total plasma cholesterol and triglyceride levels, that accelerated atherosclerosis. Altogether, we demonstrate that the BPHx mouse has all the major components of MetS, and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Dragana Dragoljevic
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | - Camilla Bertuzzo Veiga
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia
| | | | - Waled A Shihata
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Annas Al-Sharea
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | | | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
135
|
Divergent low-density lipoprotein receptor (LDLR) linked to low VSV G-dependent viral infectivity and unique serum lipid profile in zebra finches. Proc Natl Acad Sci U S A 2021; 118:2025167118. [PMID: 33903244 PMCID: PMC8106303 DOI: 10.1073/pnas.2025167118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) is key to cellular cholesterol uptake and is also the main receptor for the vesicular stomatitis virus glycoprotein (VSV G). Here we show that in songbirds LDLR is highly divergent and lacks domains critical for ligand binding and cellular trafficking, inconsistent with universal structure conservation and function across vertebrates. Linked to the LDLR functional domain loss, zebra finches show inefficient infectivity by lentiviruses (LVs) pseudotyped with VSV G, which can be rescued by the expression of human LDLR. Finches also show an atypical plasma lipid distribution that relies largely on high-density lipoprotein (HDL). These findings provide insights into the genetics and evolution of viral infectivity and cholesterol transport mechanisms in vertebrates.
Collapse
|
136
|
Calvier L, Xian X, Lee R, Sacharidou A, Mineo C, Shaul PW, Kounnas MZ, Tsai S, Herz J. Reelin Depletion Protects Against Atherosclerosis by Decreasing Vascular Adhesion of Leukocytes. Arterioscler Thromb Vasc Biol 2021; 41:1309-1318. [PMID: 33626909 PMCID: PMC7990715 DOI: 10.1161/atvbaha.121.316000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- CX3C Chemokine Receptor 1/genetics
- Cell Adhesion/drug effects
- Cell Adhesion Molecules, Neuronal/antagonists & inhibitors
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Coculture Techniques
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Extracellular Matrix Proteins/antagonists & inhibitors
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Female
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- LDL-Receptor Related Proteins/metabolism
- Leukocyte Rolling/drug effects
- Leukocytes/drug effects
- Leukocytes/immunology
- Leukocytes/metabolism
- Male
- Mice, Transgenic
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Oligonucleotides, Antisense/pharmacology
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Reelin Protein
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Signal Transduction
- U937 Cells
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas TX, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas TX, USA
| | - Xunde Xian
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas TX, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas TX, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Inc. San Diego CA, USA
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas TX, USA
| | | | - Shirling Tsai
- Department of Surgery, UT Southwestern Medical Center, Dallas TX, USA
- Dallas VA Medical Center, Dallas TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas TX, USA
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas TX, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas TX, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas TX, USA
| |
Collapse
|
137
|
Wang X, Fu Y, Xie Z, Cao M, Qu W, Xi X, Zhong S, Piao M, Peng X, Jia Y, Meng L, Tian J. Establishment of a Novel Mouse Model for Atherosclerotic Vulnerable Plaque. Front Cardiovasc Med 2021; 8:642751. [PMID: 33796572 PMCID: PMC8007762 DOI: 10.3389/fcvm.2021.642751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Aims: Acute coronary syndrome (ACS) is a group of clinical syndromes characterized by rupture or erosion of atherosclerotic unstable plaques. Effective intervention for vulnerable plaques (VP) is of great significance to reduce adverse cardiovascular events. Methods: Fbn1C1039G+/− mice were crossbred with LDLR−/− mice to obtain a novel model for atherosclerotic VP. After the mice were fed with a high-fat diet (HFD) for 12 or 24 weeks, pathological staining and immunohistochemistry analyses were employed to evaluate atherosclerotic lesions. Results: Compared to control mice, Fbn1C1039G+/−LDLR−/− mice developed more severe atherosclerotic lesions, and the positive area of oil red O staining in the aortic sinus was significantly increased after 12 weeks (21.7 ± 2.0 vs. 6.3 ± 2.1) and 24 weeks (32.6 ± 2.5 vs. 18.7 ± 2.6) on a HFD. Additional vulnerable plaque characteristics, including significantly larger necrotic cores (280 ± 19 vs. 105 ± 7), thinner fiber caps (14.0 ± 2.8 vs. 32.6 ± 2.7), apparent elastin fiber fragmentation and vessel dilation (3,010 ± 67 vs. 1,465 ± 49), a 2-fold increase in macrophage number (8.5 ± 1.0 vs. 5.0 ± 0.6), obviously decreased smooth muscle cell number (0.6 ± 0.1 vs. 2.1 ± 0.2) and an ~25% decrease in total collagen content (33.6 ± 0.3 vs. 44.9 ± 9.1) were observed in Fbn1C1039G+/−LDLR−/− mice compared with control mice after 24 weeks. Furthermore, spontaneous plaque rupture, neovascularization, and intraplaque hemorrhage were detected in the model mouse plaque regions but not in those of the control mice. Conclusions: Plaques in Fbn1C1039G+/−LDLR−/− mice fed a HFD show many features of human advanced atherosclerotic unstable plaques. These results suggest that the Fbn1C1039G+/−LDLR−/− mouse is a novel model for investigating the pathological and physiological mechanisms of advanced atherosclerotic unstable plaques.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yahong Fu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muhua Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Wenbo Qu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shan Zhong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Minghui Piao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Lingbo Meng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
138
|
Cheng AA, Li W, Walker TM, Silvers C, Arendt LM, Hernandez LL. Investigating the complex interplay between genotype and high-fat-diet feeding in the lactating mammary gland using the Tph1 and Ldlr knockout models. Am J Physiol Endocrinol Metab 2021; 320:E438-E452. [PMID: 33427054 PMCID: PMC7988787 DOI: 10.1152/ajpendo.00456.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Obesity is a prevailing problem across the globe. Women who are obese have difficulty initiating and sustaining lactation. However, the impact of genetics and diet on breastfeeding outcomes is understudied. Here we explore the effect of diet and genotype on lactation. We utilized the low-density lipoprotein receptor (Ldlr-KO) transgenic mouse model as an obesity and hypercholesterolemia model. Additionally, we used the tryptophan hydroxylase 1 (Tph1-KO) mouse, recently identified as a potential anti-obesogenic model, to investigate if addition of Tph1-KO could ameliorate negative effects of obesity in Ldlr-KO mice. We created a novel transgenic mouse line by combining the Ldlr and Tph1 [double knockout (DKO)] mice to study the interaction between the two genotypes. Female mice were fed a low-fat diet (LFD; 10% fat) or high-fat diet (HFD; 60% fat) from 3 wk of age through early [lactation day 3 (L3)] or peak lactation [lactation day 11 (L11)]. After 4 wk of consuming either LFD or HFD, female mice were bred. On L2 and L10, dams were milked to investigate the effect of diet and genotype on milk composition. Dams were euthanized on L3 or L11. There was no impact of diet or genotype on milk protein or triglycerides (TGs) on L2; however, by L10, Ldlr-KO and DKO dams had increased TG levels in milk. RNA-sequencing of L11 mammary glands demonstrated Ldlr-KO dams fed HFD displayed enrichment of genes involved in immune system pathways. Interestingly, the DKO may alter vesicle budding and biogenesis during lactation. We also quantified macrophages by immunostaining for F4/80+ cells at L3 and L11. Diet played a significant role on L3 (P = 0.013), but genotype played a role at L11 (P < 0.0001) on numbers of F4/80+ cells. Thus the impact of diet and genotype on lactation differs depending on stage of lactation, illustrating complexities of understanding the intersection of these parameters.NEW & NOTEWORTHY We have created a novel mouse model that is focused on understanding the intersection of diet and genotype on mammary gland function during lactation.
Collapse
Affiliation(s)
- Adrienne A Cheng
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| | - Wenli Li
- US Department of Agriculture-Dairy Forage, Madison, Wisconsin
| | - Teresa M Walker
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| | - Caylee Silvers
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
139
|
Brampton C, Pomozi V, Chen LH, Apana A, McCurdy S, Zoll J, Boisvert WA, Lambert G, Henrion D, Blanchard S, Kuo S, Leftheriotis G, Martin L, Le Saux O. ABCC6 deficiency promotes dyslipidemia and atherosclerosis. Sci Rep 2021; 11:3881. [PMID: 33594095 PMCID: PMC7887252 DOI: 10.1038/s41598-021-82966-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
ABCC6 deficiency promotes ectopic calcification; however, circumstantial evidence suggested that ABCC6 may also influence atherosclerosis. The present study addressed the role of ABCC6 in atherosclerosis using Ldlr-/- mice and pseudoxanthoma elasticum (PXE) patients. Mice lacking the Abcc6 and Ldlr genes were fed an atherogenic diet for 16 weeks before intimal calcification, aortic plaque formation and lipoprotein profile were evaluated. Cholesterol efflux and the expression of several inflammation, atherosclerosis and cholesterol homeostasis-related genes were also determined in murine liver and bone marrow-derived macrophages. Furthermore, we examined plasma lipoproteins, vascular calcification, carotid intima-media thickness and atherosclerosis in a cohort of PXE patients with ABCC6 mutations and compared results to dysmetabolic subjects with increased cardiovascular risk. We found that ABCC6 deficiency causes changes in lipoproteins, with decreased HDL cholesterol in both mice and humans, and induces atherosclerosis. However, we found that the absence of ABCC6 does not influence overall vascular mineralization induced with atherosclerosis. Decreased cholesterol efflux from macrophage cells and other molecular changes such as increased pro-inflammation seen in both humans and mice are likely contributors for the phenotype. However, it is likely that other cellular and/or molecular mechanisms are involved. Our study showed a novel physiological role for ABCC6, influencing plasma lipoproteins and atherosclerosis in a haploinsufficient manner, with significant penetrance.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
- Bio-Rad Laboratories, Inc., Hercules, CA, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Li-Hsieh Chen
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Ailea Apana
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - Sara McCurdy
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Department of Medicine, University of California San Diego, San Diego, USA
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA
| | - William A Boisvert
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Gilles Lambert
- University of La Réunion Medical School (France) INSERM UMR1188 DéTROI, Ste Clotilde, La Réunion, France
| | - Daniel Henrion
- MITOVASC Institute - UMR CNRS 6015 INSERM U1083, University of Angers, Angers, France
| | - Simon Blanchard
- Département d'Immunologie et d'Allergologie, University Hospital of Angers, 49000, Angers, France
- Inserm U1232, CRCINA, University of Angers, 44000, Nantes, France
| | - Sheree Kuo
- Department of Pediatrics Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI, USA
| | - Georges Leftheriotis
- Faculty of Medicine, University of Nice-Sophia Antipolis, 06107, Nice, France
- Laboratory of Physiology and Molecular Medicine (LP2M) UMR CNRS 7073, 06107, Nice, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222E, Honolulu, HI, USA.
| |
Collapse
|
140
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
141
|
Demina EP, Smutova V, Pan X, Fougerat A, Guo T, Zou C, Chakraberty R, Snarr BD, Shiao TC, Roy R, Orekhov AN, Miyagi T, Laffargue M, Sheppard DC, Cairo CW, Pshezhetsky AV. Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Low-Density Lipoproteins and Increasing Their Uptake by Macrophages. J Am Heart Assoc 2021; 10:e018756. [PMID: 33554615 PMCID: PMC7955353 DOI: 10.1161/jaha.120.018756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Victoria Smutova
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Xuefang Pan
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Anne Fougerat
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Tianlin Guo
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | - Chunxia Zou
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | | | - Brendan D Snarr
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Tze C Shiao
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | - Rene Roy
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | | | - Taeko Miyagi
- Miyagi Cancer Center Research Institute Natori Miyagi Japan
| | - Muriel Laffargue
- Institut National de la Santé et de la Recherche MédicaleUMR 1048Institute of Metabolic and Cardiovascular Diseases Toulouse France
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | | | - Alexey V Pshezhetsky
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| |
Collapse
|
142
|
He Y, Rodrigues RM, Wang X, Seo W, Ma J, Hwang S, Fu Y, Trojnár E, Mátyás C, Zhao S, Ren R, Feng D, Pacher P, Kunos G, Gao B. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. J Clin Invest 2021; 131:e141513. [PMID: 33301423 PMCID: PMC7843220 DOI: 10.1172/jci141513] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophil infiltration around lipotoxic hepatocytes is a hallmark of nonalcoholic steatohepatitis (NASH); however, how these 2 types of cells communicate remains obscure. We have previously demonstrated that neutrophil-specific microRNA-223 (miR-223) is elevated in hepatocytes to limit NASH progression in obese mice. Here, we demonstrated that this elevation of miR-223 in hepatocytes was due to preferential uptake of miR-223-enriched extracellular vesicles (EVs) derived from neutrophils as well other types of cells, albeit to a lesser extent. This selective uptake was dependent on the expression of low-density lipoprotein receptor (LDLR) on hepatocytes and apolipoprotein E (APOE) on neutrophil-derived EVs, which was enhanced by free fatty acids. Once internalized by hepatocytes, the EV-derived miR-223 acted to inhibit hepatic inflammatory and fibrogenic gene expression. In the absence of this LDLR- and APOE-dependent uptake of miR-223-enriched EVs, the progression of steatosis to NASH was accelerated. In contrast, augmentation of this transfer by treatment with an inhibitor of proprotein convertase subtilisin/kexin type 9, a drug used to lower blood cholesterol by upregulating LDLR, ameliorated NASH in mice. This specific role of LDLR and APOE in the selective control of miR-223-enriched EV transfer from neutrophils to hepatocytes may serve as a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases
| | | | | | | | - Jing Ma
- Laboratory of Liver Diseases
| | | | | | - Eszter Trojnár
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | - Csaba Mátyás
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | | | | | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases
| |
Collapse
|
143
|
Ikeda J, Scipione CA, Hyduk SJ, Althagafi MG, Atif J, Dick SA, Rajora M, Jang E, Emoto T, Murakami J, Ikeda N, Ibrahim HM, Polenz CK, Gao X, Tai K, Jongstra-Bilen J, Nakashima R, Epelman S, Robbins CS, Zheng G, Lee WL, MacParland SA, Cybulsky MI. Radiation Impacts Early Atherosclerosis by Suppressing Intimal LDL Accumulation. Circ Res 2021; 128:530-543. [PMID: 33397122 DOI: 10.1161/circresaha.119.316539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RATIONALE Bone marrow transplantation (BMT) is used frequently to study the role of hematopoietic cells in atherosclerosis, but aortic arch lesions are smaller in mice after BMT. OBJECTIVE To identify the earliest stage of atherosclerosis inhibited by BMT and elucidate potential mechanisms. METHODS AND RESULTS Ldlr-/- mice underwent total body γ-irradiation, bone marrow reconstitution, and 6-week recovery. Atherosclerosis was studied in the ascending aortic arch and compared with mice without BMT. In BMT mice, neutral lipid and myeloid cell topography were lower in lesions after feeding a cholesterol-rich diet for 3, 6, and 12 weeks. Lesion coalescence and height were suppressed dramatically in mice post-BMT, whereas lateral growth was inhibited minimally. Targeted radiation to the upper thorax alone reproduced the BMT phenotype. Classical monocyte recruitment, intimal myeloid cell proliferation, and apoptosis did not account for the post-BMT phenotype. Neutral lipid accumulation was reduced in 5-day lesions, thus we developed quantitative assays for LDL (low-density lipoprotein) accumulation and paracellular leakage using DiI-labeled human LDL and rhodamine B-labeled 70 kD dextran. LDL accumulation was dramatically higher in the intima of Ldlr-/- relative to Ldlr+/+ mice, and was inhibited by injection of HDL mimics, suggesting a regulated process. LDL, but not dextran, accumulation was lower in mice post-BMT both at baseline and in 5-day lesions. Since the transcript abundance of molecules implicated in LDL transcytosis was not significantly different in the post-BMT intima, transcriptomics from whole aortic arch intima, and at single-cell resolution, was performed to give insights into pathways modulated by BMT. CONCLUSIONS Radiation exposure inhibits LDL entry into the aortic intima at baseline and the earliest stages of atherosclerosis. Single-cell transcriptomic analysis suggests that LDL uptake by endothelial cells is diverted to lysosomal degradation and reverse cholesterol transport pathways. This reduces intimal accumulation of lipid and impacts lesion initiation and growth.
Collapse
Affiliation(s)
- Jiro Ikeda
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Corey A Scipione
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Marwan G Althagafi
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Jawairia Atif
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Ajmera Family Transplant Centre, Toronto General Hospital Research Institute (J.A., S.A.M.), University Health Network, Toronto, Canada.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Sarah A Dick
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Ajmera Family Transplant Centre, Toronto General Hospital Research Institute (J.A., S.A.M.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program (S.A.D., S.E.)
| | - Maneesha Rajora
- Princess Margaret Cancer Centre (M.R., R.N., G.Z.), University Health Network, Toronto, Canada
| | - Erika Jang
- Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Keenan Research Centre, Unity Health (E.J., W.L.L.)
| | - Takuo Emoto
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Junichi Murakami
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories (J.M.), University Health Network, Toronto, Canada
| | - Noriko Ikeda
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Hisham M Ibrahim
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Chanele K Polenz
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto
| | - Xiaotang Gao
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada
| | - Kelly Tai
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Ryota Nakashima
- Princess Margaret Cancer Centre (M.R., R.N., G.Z.), University Health Network, Toronto, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Peter Munk Cardiac Centre (S.E., C.S.R., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program (S.A.D., S.E.)
| | - Clinton S Robbins
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Peter Munk Cardiac Centre (S.E., C.S.R., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Gang Zheng
- Princess Margaret Cancer Centre (M.R., R.N., G.Z.), University Health Network, Toronto, Canada
| | - Warren L Lee
- Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Medicine (W.L.L.), University of Toronto.,Keenan Research Centre, Unity Health (E.J., W.L.L.)
| | - Sonya A MacParland
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute (J.I., C.A.S., S.J.H., M.G.A., J.A., S.A.D., T.E., J.M., N.I., H.M.I., C.K.P., X.G., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University Health Network, Toronto, Canada.,Peter Munk Cardiac Centre (S.E., C.S.R., M.I.C.), University Health Network, Toronto, Canada.,Laboratory Medicine and Pathobiology (J.I., C.A.S., M.G.A., E.J., H.M.I., C.K.P., J.J.-B., S.E., C.S.R., W.L.L., S.A.M., M.I.C.), University of Toronto.,Immunology (C.A.S., J.A., S.A.D., K.T., J.J.-B., S.E., C.S.R., S.A.M., M.I.C.), University of Toronto
| |
Collapse
|
144
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
145
|
Thorsen AS, Khamis D, Kemp R, Colombé M, Lourenço FC, Morrissey E, Winton D. Heterogeneity in clone dynamics within and adjacent to intestinal tumours identified by Dre-mediated lineage tracing. Dis Model Mech 2021; 14:dmm046706. [PMID: 33093165 PMCID: PMC7823168 DOI: 10.1242/dmm.046706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Somatic models of tissue pathology commonly use induction of gene-specific mutations in mice mediated by spatiotemporal regulation of Cre recombinase. Subsequent investigation of the onset and development of disease can be limited by the inability to track changing cellular behaviours over time. Here, a lineage-tracing approach based on ligand-dependent activation of Dre recombinase that can be employed independently of Cre is described. The clonal biology of the intestinal epithelium following Cre-mediated stabilisation of β-catenin reveals that, within tumours, many new clones rapidly become extinct. Surviving clones show accelerated population of tumour glands compared to normal intestinal crypts but in a non-uniform manner, indicating that intra-tumour glands follow heterogeneous dynamics. In tumour-adjacent epithelia, clone sizes are smaller than in the background epithelia, as a whole. This suggests a zone of ∼seven crypt diameters within which clone expansion is inhibited by tumours and that may facilitate their growth.
Collapse
Affiliation(s)
- Ann-Sofie Thorsen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Doran Khamis
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Filipe C. Lourenço
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
146
|
van Geffen JP, Swieringa F, van Kuijk K, Tullemans BME, Solari FA, Peng B, Clemetson KJ, Farndale RW, Dubois LJ, Sickmann A, Zahedi RP, Ahrends R, Biessen EAL, Sluimer JC, Heemskerk JWM, Kuijpers MJE. Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Sci Rep 2020; 10:21407. [PMID: 33293576 PMCID: PMC7722935 DOI: 10.1038/s41598-020-78522-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Hyperlipidemia is a well-established risk factor for cardiovascular diseases. Millions of people worldwide display mildly elevated levels of plasma lipids and cholesterol linked to diet and life-style. While the prothrombotic risk of severe hyperlipidemia has been established, the effects of moderate hyperlipidemia are less clear. Here, we studied platelet activation and arterial thrombus formation in Apoe-/- and Ldlr-/- mice fed a normal chow diet, resulting in mildly increased plasma cholesterol. In blood from both knockout mice, collagen-dependent thrombus and fibrin formation under flow were enhanced. These effects did not increase in severe hyperlipidemic blood from aged mice and upon feeding a high-fat diet (Apoe-/- mice). Bone marrow from wild-type or Ldlr-/- mice was transplanted into irradiated Ldlr-/- recipients. Markedly, thrombus formation was enhanced in blood from chimeric mice, suggesting that the hyperlipidemic environment altered the wild-type platelets, rather than the genetic modification. The platelet proteome revealed high similarity between the three genotypes, without clear indication for a common protein-based gain-of-function. The platelet lipidome revealed an altered lipid profile in mildly hyperlipidemic mice. In conclusion, in Apoe-/- and Ldlr-/- mice, modest elevation in plasma and platelet cholesterol increased platelet responsiveness in thrombus formation and ensuing fibrin formation, resulting in a prothrombotic phenotype.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.,Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kim van Kuijk
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Bibian M E Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Bing Peng
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - René P Zahedi
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Segal Cancer Proteomics Centre, Jewish General Hospital, McGill University, Montreal, Canada
| | - Robert Ahrends
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Erik A L Biessen
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C Sluimer
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
147
|
Guo J, Mei H, Sheng Z, Meng Q, Véniant MM, Yin H. Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res 2020; 61:1764-1775. [PMID: 33008925 PMCID: PMC7707179 DOI: 10.1194/jlr.ra120001121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-κB and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiayan Guo
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Hanbing Mei
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Zhen Sheng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Qingyuan Meng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| | - Hong Yin
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
148
|
Shabir O, Moll TA, Matuszyk MM, Eyre B, Dake MD, Berwick J, Francis SE. Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mech Ageing Dev 2020; 192:111361. [PMID: 32998028 DOI: 10.1016/j.mad.2020.111361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
149
|
Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 2020; 115:73. [PMID: 33258000 PMCID: PMC7704510 DOI: 10.1007/s00395-020-00829-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerotic plaques impair vascular function and can lead to arterial obstruction and tissue ischaemia. Rupture of an atherosclerotic plaque within a coronary artery can result in an acute myocardial infarction, which is responsible for significant morbidity and mortality worldwide. Prompt reperfusion can salvage some of the ischaemic territory, but ischaemia and reperfusion (IR) still causes substantial injury and is, therefore, a therapeutic target for further infarct limitation. Numerous cardioprotective strategies have been identified that can limit IR injury in animal models, but none have yet been translated effectively to patients. This disconnect prompts an urgent re-examination of the experimental models used to study IR. Since coronary atherosclerosis is the most prevalent morbidity in this patient population, and impairs coronary vessel function, it is potentially a major confounder in cardioprotective studies. Surprisingly, most studies suggest that atherosclerosis does not have a major impact on cardioprotection in mouse models. However, a major limitation of atherosclerotic animal models is that the plaques usually manifest in the aorta and proximal great vessels, and rarely in the coronary vessels. In this review, we examine the commonly used mouse models of atherosclerosis and their effect on coronary artery function and infarct size. We conclude that none of the commonly used strains of mice are ideal for this purpose; however, more recently developed mouse models of atherosclerosis fulfil the requirement for coronary artery lesions, plaque rupture and lipoprotein patterns resembling the human profile, and may enable the identification of therapeutic interventions more applicable in the clinical setting.
Collapse
MESH Headings
- Animals
- Aortic Diseases/complications
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Coronary Artery Disease/complications
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Diet, High-Fat
- Disease Models, Animal
- Genetic Predisposition to Disease
- Mice, Knockout, ApoE
- Myocardial Infarction/etiology
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Rupture, Spontaneous
- Scavenger Receptors, Class B/deficiency
- Scavenger Receptors, Class B/genetics
- Species Specificity
Collapse
Affiliation(s)
- Pelin Golforoush
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
150
|
Enterohepatic Transcription Factor CREB3L3 Protects Atherosclerosis via SREBP Competitive Inhibition. Cell Mol Gastroenterol Hepatol 2020; 11:949-971. [PMID: 33246135 PMCID: PMC7900604 DOI: 10.1016/j.jcmgh.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS cAMP responsive element-binding protein 3 like 3 (CREB3L3) is a membrane-bound transcription factor involved in the maintenance of lipid metabolism in the liver and small intestine. CREB3L3 controls hepatic triglyceride and glucose metabolism by activating plasma fibroblast growth factor 21 (FGF21) and lipoprotein lipase. In this study, we intended to clarify its effect on atherosclerosis. METHODS CREB3L3-deficifient, liver-specific CREB3L3 knockout, intestine-specific CREB3L3 knockout, both liver- and intestine-specific CREB3L3 knockout, and liver CREB3L3 transgenic mice were crossed with LDLR-/- mice. These mice were fed with a Western diet to develop atherosclerosis. RESULTS CREB3L3 ablation in LDLR-/- mice exacerbated hyperlipidemia with accumulation of remnant APOB-containing lipoprotein. This led to the development of enhanced aortic atheroma formation, the extent of which was additive between liver- and intestine-specific deletion. Conversely, hepatic nuclear CREB3L3 overexpression markedly suppressed atherosclerosis with amelioration of hyperlipidemia. CREB3L3 directly up-regulates anti-atherogenic FGF21 and APOA4. In contrast, it antagonizes hepatic sterol regulatory element-binding protein (SREBP)-mediated lipogenic and cholesterogenic genes and regulates intestinal liver X receptor-regulated genes involved in the transport of cholesterol. CREB3L3 deficiency results in the accumulation of nuclear SREBP proteins. Because both transcriptional factors share the cleavage system for nuclear transactivation, full-length CREB3L3 and SREBPs in the endoplasmic reticulum (ER) functionally inhibit each other. CREB3L3 promotes the formation of the SREBP-insulin induced gene 1 complex to suppress SREBPs for ER-Golgi transport, resulting in ER retention and inhibition of proteolytic activation at the Golgi and vice versa. CONCLUSIONS CREB3L3 has multi-potent protective effects against atherosclerosis owing to new mechanistic interaction between CREB3L3 and SREBPs under atherogenic conditions.
Collapse
|