101
|
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227:107879. [PMID: 33915177 DOI: 10.1016/j.pharmthera.2021.107879] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
102
|
Arnardottir H, Thul S, Pawelzik SC, Karadimou G, Artiach G, Gallina AL, Mysdotter V, Carracedo M, Tarnawski L, Caravaca AS, Baumgartner R, Ketelhuth DF, Olofsson PS, Paulsson-Berne G, Hansson GK, Bäck M. The resolvin D1 receptor GPR32 transduces inflammation-resolution and atheroprotection. J Clin Invest 2021; 131:142883. [PMID: 34699386 DOI: 10.1172/jci142883] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation is a hallmark of atherosclerosis and results from an imbalance between pro-inflammatory and pro-resolving signaling. The human GPR32 receptor, together with the ALX/FPR2 receptor, transduces biological actions of several pro-resolving mediators that stimulate resolution of inflammation. However, since no murine homologs of the human GPR32 exist, comprehensive in vivo studies are lacking. Using human atherosclerotic lesions from carotid endarterectomies and creating a transgenic mouse model expressing human GPR32 on a Fpr2×apolipoprotein E double KO background (hGPR32myc×Fpr2-/-×Apoe-/-), we investigated the role of GPR32 in atherosclerosis and self-limiting acute inflammation. GPR32 mRNA was reduced in human atherosclerotic lesions and correlated with the immune cell markers ARG1, NOS2 and FOXP3. Atherosclerotic lesions, necrotic core and aortic inflammation were reduced in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice as compared to Fpr2-/-×Apoe-/- non-transgenic littermates. In a zymosan induced peritonitis model, the hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice had reduced inflammation at 4h and enhanced pro-resolving macrophage responses at 24h compared to non-transgenic littermates. The GPR32 agonist aspirin-triggered resolvin D1 (AT-RvD1) regulated leukocyte responses, including enhancing macrophage phagocytosis and intracellular signaling in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice but not in the Fpr2-/-×Apoe-/- non-transgenic littermates. Altogether these results provide the first evidence that GPR32 regulates resolution of inflammation and is atheroprotective in vivo.
Collapse
Affiliation(s)
| | - Silke Thul
- Department of Medicone, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Gonzalo Artiach
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Miguel Carracedo
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Tarnawski
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - April S Caravaca
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Peder S Olofsson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Göran K Hansson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
103
|
Zaninelli TH, Fattori V, Verri WA. Harnessing Inflammation Resolution in Arthritis: Current Understanding of Specialized Pro-resolving Lipid Mediators' Contribution to Arthritis Physiopathology and Future Perspectives. Front Physiol 2021; 12:729134. [PMID: 34539449 PMCID: PMC8440959 DOI: 10.3389/fphys.2021.729134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
The concept behind the resolution of inflammation has changed in the past decades from a passive to an active process, which reflects in novel avenues to understand and control inflammation-driven diseases. The time-dependent and active process of resolution phase is orchestrated by the endogenous biosynthesis of specialized pro-resolving lipid mediators (SPMs). Inflammation and its resolution are two forces in rheumatic diseases that affect millions of people worldwide with pain as the most common experienced symptom. The pathophysiological role of SPMs in arthritis has been demonstrated in pre-clinical and clinical studies (no clinical trials yet), which highlight their active orchestration of disease control. The endogenous roles of SPMs also give rise to the opportunity of envisaging these molecules as novel candidates to improve the life quality of rhematic diseases patients. Herein, we discuss the current understanding of SPMs endogenous roles in arthritis as pro-resolutive, protective, and immunoresolvent lipids.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
104
|
Han YH, Lee K, Saha A, Han J, Choi H, Noh M, Lee YH, Lee MO. Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders. Biomol Ther (Seoul) 2021; 29:455-464. [PMID: 34162770 PMCID: PMC8411019 DOI: 10.4062/biomolther.2021.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.
Collapse
Affiliation(s)
- Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeongjin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Abhirup Saha
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haena Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
105
|
Leuti A, Fava M, Pellegrini N, Maccarrone M. Role of Specialized Pro-Resolving Mediators in Neuropathic Pain. Front Pharmacol 2021; 12:717993. [PMID: 34456731 PMCID: PMC8385637 DOI: 10.3389/fphar.2021.717993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation and neuroinflammation are critical mechanisms in the generation of neuropathic pain that is experienced in several chronic diseases. The aberrant inflammation that triggers this pathophysiologic process can be tracked down to an exacerbated immune response, which establishes a vicious cycle and continuously recruits inflammatory cells by inducing chronic tissue damage. Recently, impairment of the cellular and molecular machinery orchestrated by specialized pro-resolving mediators (SPMs)-i.e., endogenous lipids termed resolvins, protectins, maresins, and lipoxins that confine the inflammatory cascades in space and time during the "resolution of inflammation"-has emerged as a crucial event in the derangement of the inflammatory homeostasis and the onset of chronic inflammation and pain. Indeed, a deviant inflammatory response that is not adequately controlled by the resolution network leads to the overproduction of pro-inflammatory eicosanoids that, opposite to SPMs, lead to neuropathic pain. Interestingly, in the last two decades convincing evidence has demonstrated that SPMs antagonize the in vivo activity of pro-inflammatory eicosanoids and, overall, exert potent anti-hyperalgesic effects in a number of pain-associated paradigms of disease, such as arthritis and chemotherapy-induced peripheral neuropathy, as well as in many experimental models of pain like mechanical allodynia, chemical pain, heat hypersensitivity and phase 1 and 2 inflammatory pain. Of note, accumulated evidence supports a synergy between SPMs and other signalling pathways, such as those mediated by transient receptor potential (TRP) channels and those triggered by opioid receptors, suggesting that the cascade of events where inflammation and pain perception take part might be ways more intricated than originally expected. Here, we aim at presenting a state-of-the-art view of SPMs, their metabolism and signalling, in the context of cellular and molecular pathways associated to neuropathic pain.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marina Fava
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy.,Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Niccolò Pellegrini
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
106
|
Elder CT, Filiberto AC, Su G, Ladd Z, Leroy V, Pruitt EY, Lu G, Jiang Z, Sharma AK, Upchurch GR. Maresin 1 activates LGR6 signaling to inhibit smooth muscle cell activation and attenuate murine abdominal aortic aneurysm formation. FASEB J 2021; 35:e21780. [PMID: 34320253 PMCID: PMC9170188 DOI: 10.1096/fj.202100484r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
The specialized pro-resolving lipid mediator maresin 1 (MaR1) is involved in the resolution phase of tissue inflammation. It was hypothesized that exogenous administration of MaR1 would attenuate abdominal aortic aneurysm (AAA) growth in a cytokine-dependent manner via LGR6 receptor signaling and macrophage-dependent efferocytosis of smooth muscle cells (SMCs). AAAs were induced in C57BL/6 wild-type (WT) mice and smooth muscle cell specific TGF-β2 receptor knockout (SMC-TGFβr2-/- ) mice using a topical elastase AAA model. MaR1 treatment significantly attenuated AAA growth as well as increased aortic SMC α-actin and TGF-β2 expressions in WT mice, but not SMC-TGFβr2-/- mice, compared to vehicle-treated mice. In vivo inhibition of LGR6 receptors obliterated MaR1-dependent protection in AAA formation and SMC α-actin expression. Furthermore, MaR1 upregulated macrophage-dependent efferocytosis of apoptotic SMCs in murine aortic tissue during AAA formation. In vitro studies demonstrate that MaR1-LGR6 interaction upregulates TGF-β2 expression and decreases MMP2 activity during crosstalk of macrophage-apoptotic SMCs. In summary, these results demonstrate that MaR1 activates LGR6 receptors to upregulate macrophage-dependent efferocytosis, increases TGF-β expression, preserves aortic wall remodeling and attenuate AAA formation. Therefore, this study demonstrates the potential of MaR1-LGR6-mediated mitigation of vascular remodeling through increased efferocytosis of apoptotic SMCs via TGF-β2 to attenuate AAA formation.
Collapse
Affiliation(s)
- Craig T Elder
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | | | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Eric Y Pruitt
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Zhihua Jiang
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
107
|
Koenis DS, Beegun I, Jouvene CC, Aguirre GA, Souza PR, Gonzalez-Nunez M, Ly L, Pistorius K, Kocher HM, Ricketts W, Thomas G, Perretti M, Alusi G, Pfeffer P, Dalli J. Disrupted Resolution Mechanisms Favor Altered Phagocyte Responses in COVID-19. Circ Res 2021; 129:e54-e71. [PMID: 34238021 PMCID: PMC8336787 DOI: 10.1161/circresaha.121.319142] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Resolution mechanisms are central in both the maintenance of homeostasis and the return to catabasis following tissue injury and infections. Among the proresolving mediators, the essential fatty acid-derived specialized proresolving lipid mediators (SPM) govern immune responses to limit disease severity. Notably, little is known about the relationship between the expression and activity of SPM pathways, circulating phagocyte function and disease severity in patients infected with the novel severe acute respiratory syndrome coronavirus 2 leading to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Duco Steven Koenis
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Issa Beegun
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Charlotte Camille Jouvene
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gabriel Amador Aguirre
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Patricia Regina Souza
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Maria Gonzalez-Nunez
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Lucy Ly
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Kimberly Pistorius
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - William Ricketts
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Gavin Thomas
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Mauro Perretti
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| | - Ghassan Alusi
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul Pfeffer
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Jesmond Dalli
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| |
Collapse
|
108
|
Lavy M, Gauttier V, Poirier N, Barillé-Nion S, Blanquart C. Specialized Pro-Resolving Mediators Mitigate Cancer-Related Inflammation: Role of Tumor-Associated Macrophages and Therapeutic Opportunities. Front Immunol 2021; 12:702785. [PMID: 34276698 PMCID: PMC8278519 DOI: 10.3389/fimmu.2021.702785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental physiological response orchestrated by innate immune cells to restore tissue homeostasis. Specialized pro-resolving mediators (SPMs) are involved in active resolution of inflammation but when inflammation is incomplete, chronic inflammation creates a favorable environment that fuels carcinogenesis and cancer progression. Conventional cancer therapy also strengthens cancer-related inflammation by inducing massive tumor cell death that activate surrounding immune-infiltrating cells such as tumor-associated macrophages (TAMs). Macrophages are key actors of both inflammation and its active resolution due to their plastic phenotype. In line with this high plasticity, macrophages can be hijacked by cancer cells to support tumor progression and immune escape, or therapy resistance. Impaired resolution of cancer-associated inflammation supported by TAMs may thus reinforces tumor progression. From this perspective, recent evidence suggests that stimulating macrophage's pro-resolving functions using SPMs can promote inflammation resolution in cancer and improve anticancer treatments. Thus, TAMs' re-education toward an antitumor phenotype by using SPMs opens a new line of attack in cancer treatment. Here, we review SPMs' anticancer capacities with special attention regarding their effects on TAMs. We further discuss how this new therapeutic approach could be envisioned in cancer therapy.
Collapse
|
109
|
Emre C, Do KV, Jun B, Hjorth E, Alcalde SG, Kautzmann MAI, Gordon WC, Nilsson P, Bazan NG, Schultzberg M. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:116. [PMID: 34187579 PMCID: PMC8244172 DOI: 10.1186/s40478-021-01216-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sustained brain chronic inflammation in Alzheimer’s disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates β-amyloid (Aβ) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aβ pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.
Collapse
|
110
|
de Gaetano M, Tighe C, Gahan K, Zanetti A, Chen J, Newson J, Cacace A, Marai M, Gaffney A, Brennan E, Kantharidis P, Cooper ME, Leroy X, Perretti M, Gilroy D, Godson C, Guiry PJ. Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin A 4 Mimetics (QNX-sLXms). J Med Chem 2021; 64:9193-9216. [PMID: 34138563 PMCID: PMC8279484 DOI: 10.1021/acs.jmedchem.1c00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Failure to resolve
inflammation underlies many prevalent pathologies.
Recent insights have identified lipid mediators, typified by lipoxins
(LXs), as drivers of inflammation resolution, suggesting potential
therapeutic benefit. We report the asymmetric preparation of novel
quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms).
Eight novel compounds were screened for their impact on inflammatory
responses. Structure–activity relationship (SAR) studies showed
that (R)-6 (also referred to as AT-02-CT)
was the most efficacious and potent anti-inflammatory compound of
those tested. (R)-6 significantly attenuated
lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced
NF-κB activity in monocytes and vascular smooth muscle cells.
The molecular target of (R)-6 was investigated.
(R)-6 activated the endogenous LX receptor
formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties
of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent
with in vitro observations, (R)-6 attenuated inflammatory responses. These results support
the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.
Collapse
Affiliation(s)
- Monica de Gaetano
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Catherine Tighe
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Kevin Gahan
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Andrea Zanetti
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, U.K
| | - Justine Newson
- Centre for Clinical Pharmacology, University College London, London WC1E 6JF, U.K
| | - Antonino Cacace
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Mariam Marai
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Andrew Gaffney
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Eoin Brennan
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Xavier Leroy
- Domain Therapeutics SA, 67400 Strasbourg, Illkirch, France
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, U.K
| | - Derek Gilroy
- Centre for Clinical Pharmacology, University College London, London WC1E 6JF, U.K
| | - Catherine Godson
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| |
Collapse
|
111
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal Supply of Both Arachidonic and Docosahexaenoic Acids Is Required for Optimal Neurodevelopment. Nutrients 2021; 13:2061. [PMID: 34208549 PMCID: PMC8234848 DOI: 10.3390/nu13062061] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
During the last trimester of gestation and for the first 18 months after birth, both docosahexaenoic acid,22:6n-3 (DHA) and arachidonic acid,20:4n-6 (ARA) are preferentially deposited within the cerebral cortex at a rapid rate. Although the structural and functional roles of DHA in brain development are well investigated, similar roles of ARA are not well documented. The mode of action of these two fatty acids and their derivatives at different structural-functional roles and their levels in the gene expression and signaling pathways of the brain have been continuously emanating. In addition to DHA, the importance of ARA has been much discussed in recent years for fetal and postnatal brain development and the maternal supply of ARA and DHA. These fatty acids are also involved in various brain developmental processes; however, their mechanistic cross talks are not clearly known yet. This review describes the importance of ARA, in addition to DHA, in supporting the optimal brain development and growth and functional roles in the brain.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India;
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
112
|
Decker C, Sadhu S, Fredman G. Pro-Resolving Ligands Orchestrate Phagocytosis. Front Immunol 2021; 12:660865. [PMID: 34177900 PMCID: PMC8222715 DOI: 10.3389/fimmu.2021.660865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The resolution of inflammation is a tissue protective program that is governed by several factors including specialized pro-resolving mediators (SPMs), proteins, gasses and nucleotides. Pro-resolving mediators activate counterregulatory programs to quell inflammation and promote tissue repair in a manner that does not compromise host defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of inflammation because of their ability to remove debris, microbes and dead cells through processes including phagocytosis and efferocytosis. Emerging evidence suggests that failed resolution of inflammation and defective phagocytosis or efferocytosis underpins several prevalent human diseases. Therefore, understanding factors and mechanisms associated with enhancing these processes is a critical need. SPMs enhance phagocytosis and efferocytosis and this review will highlight mechanisms associated with their actions.
Collapse
Affiliation(s)
- Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
113
|
Duan J, Song Y, Zhang X, Wang C. Effect of ω-3 Polyunsaturated Fatty Acids-Derived Bioactive Lipids on Metabolic Disorders. Front Physiol 2021; 12:646491. [PMID: 34113260 PMCID: PMC8185290 DOI: 10.3389/fphys.2021.646491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Arachidonic acid (ARA) is an important ω-6 polyunsaturated fatty acid (PUFA), and docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and n-3 docosapentaenoic acid (n-3 DPA) are three well-known ω-3 PUFAs. These fatty acids can be metabolized into a number of bioactive lipids. Eicosanoids derived from ARA have drawn great attention because of their important and complex biofunctions. Although EPA, DHA and n-3 DPA have also shown powerful biofunctions, we have fewer studies of metabolites derived from them than those from ARA. Recently, growing research has focused on the bioaction of ω-3 PUFA-derived metabolites, which indicates their great potential for treating metabolic disorders. Most of the functional studies of these bioactive lipids focused on their anti-inflammatory effects. However, several studies elucidated their direct effects on pancreatic β cells, hepatocytes, adipocytes, skeletal muscle cells, and endothelial cells. These researches revealed the importance of studying the functions of metabolites derived from ω-3 polyunsaturated fatty acids other than themselves. The current review summarizes research into the effects of ω-3 PUFA-derived oxylipins on metabolic disorders, including diabetes, non-alcoholic fatty liver disease, adipose tissue dysfunction, and atherosclerosis.
Collapse
Affiliation(s)
- Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yayue Song
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
114
|
David S, López-Vales R. Bioactive Lipid Mediators in the Initiation and Resolution of Inflammation after Spinal Cord Injury. Neuroscience 2021; 466:273-297. [PMID: 33951502 DOI: 10.1016/j.neuroscience.2021.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a prominent feature of the response to CNS trauma. It is also an important hallmark of various neurodegenerative diseases in which inflammation contributes to the progression of pathology. Inflammation in the CNS can contribute to secondary damage and is therefore an excellent therapeutic target for a range of neurological conditions. Inflammation in the nervous system is complex and varies in its fine details in different conditions. It involves a wide variety of secreted factors such as chemokines and cytokines, cell adhesion molecules, and different cell types that include resident cell of the CNS, as well as immune cells recruited from the peripheral circulation. Added to this complexity is the fact that some aspects of inflammation are beneficial, while other aspects can induce secondary damage in the acute, subacute and chronic phases. Understanding these aspects of the inflammatory profile is essential for developing effective therapies. Bioactive lipids constitute a large group of molecules that modulate the initiation and the resolution of inflammation. Dysregulation of these bioactive lipid pathways can lead to excessive acute inflammation, and failure to resolve this by specialized pro-resolution lipid mediators can lead to the development of chronic inflammation. The focus of this review is to discuss the effects of bioactive lipids in spinal cord trauma and their potential for therapies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.
| | - Rubén López-Vales
- Departament de Biologia Cellular, Fisiologia i Inmunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
115
|
Tiberi M, Chiurchiù V. Specialized Pro-resolving Lipid Mediators and Glial Cells: Emerging Candidates for Brain Homeostasis and Repair. Front Cell Neurosci 2021; 15:673549. [PMID: 33981203 PMCID: PMC8107215 DOI: 10.3389/fncel.2021.673549] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes and oligodendrocytes are known to play critical roles in the central nervous system development, homeostasis and response to injury. In addition to their well-defined functions in synaptic signaling, blood-brain barrier control and myelination, it is now becoming clear that both glial cells also actively produce a wide range of immune-regulatory factors and engage in an intricate communication with neurons, microglia or with infiltrated immune cells, thus taking a center stage in both inflammation and resolution processes occurring within the brain. Resolution of inflammation is operated by the superfamily of specialized pro-resolving lipid mediators (SPMs), that include lipoxins, resolvins, protectins and maresins, and that altogether activate a series of cellular and molecular events that lead to spontaneous regression of inflammatory processes and restoration of tissue homeostasis. Here, we review the manifold effects of SPMs on modulation of astrocytes and oligodendrocytes, along with the mechanisms through which they either inhibit inflammatory pathways or induce the activation of protective ones. Furthermore, the possible role of SPMs in modulating the cross-talk between microglia, astrocytes and oligodendrocytes is also summarized. This SPM-mediated mechanism uncovers novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
116
|
Shofler D, Rai V, Mansager S, Cramer K, Agrawal DK. Impact of resolvin mediators in the immunopathology of diabetes and wound healing. Expert Rev Clin Immunol 2021; 17:681-690. [PMID: 33793355 DOI: 10.1080/1744666x.2021.1912598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Wound healing in diabetes may be delayed by persistent wound infection due to deficient immune and cellular response to tissue injury. Hyperglycemia due to decreased insulin availability and increased insulin resistance affects the immune response of the body. Accumulation of inflammatory immune cells and pro-inflammatory cytokines results in chronic inflammation and an altered resolution and remodeling phase of wound healing.Areas covered: Pro-resolving mediators called 'resolvins' target the resolution phase of wound healing and are becoming an area of increased interest. Resolvins stimulate self-limited innate immune responses and enhance innate microbial killing and clearance. Resolvins resolve inflammation by decreasing neutrophil infiltration and transmigration, increasing the phagocytic activity of macrophages, decreasing adipose tissue macrophages, downregulating platelet activation, suppressing nuclear factor-kappa beta activation, promoting the apoptosis of polymorphonuclear leukocytes, and improving insulin sensitivity. This review discusses the role of resolvins in diabetic wound healing and potential therapeutic strategies. The review is based on a literature search of PubMed and the Web of Science restricted to publications between January 2001 and October 2020.Expert opinion: There is increasing support for the use of resolvins in clinical applications related to diabetes and wound healing. Further research will help clarify this potential.
Collapse
Affiliation(s)
- David Shofler
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Mansager
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Kira Cramer
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
117
|
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Front Pharmacol 2021; 12:653940. [PMID: 33967796 PMCID: PMC8097165 DOI: 10.3389/fphar.2021.653940] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that the interaction between immune and metabolic responses is essential for maintaining tissue and organ homeostasis. These interacting disorders contribute to the development of chronic diseases associated with immune-aging such as diabetes, obesity, atherosclerosis, and nonalcoholic fatty liver disease. In Diabetic wound (DW), innate immune cells respond to the Pathogen-associated molecular patterns (PAMAs) and/or Damage-associated molecular patterns (DAMPs), changes from resting to an active phenotype, and play an important role in the triggering and maintenance of inflammation. Furthermore, the abnormal activation of innate immune pathways secondary to immune-aging also plays a key role in DW healing. Here, we review studies of innate immune cellular molecular events that identify metabolic disorders in the local microenvironment of DW and provide a historical perspective. At the same time, we describe some of the recent progress, such as TLR receptor-mediated intracellular signaling pathways that lead to the activation of NF-κB and the production of various pro-inflammatory mediators, NLRP3 inflammatory via pyroptosis, induction of IL-1β and IL-18, cGAS-STING responds to mitochondrial injury and endoplasmic reticulum stress, links sensing of metabolic stress to activation of pro-inflammatory cascades. Besides, JAK-STAT is also involved in DW healing by mediating the action of various innate immune effectors. Finally, we discuss the great potential of targeting these innate immune pathways and reprogramming innate immune cell phenotypes in DW therapy.
Collapse
Affiliation(s)
- Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,National Key Clinical Construction Specialty, Luzhou, China
| | - Xiumei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Zongzhe Jiang
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yueli Pu
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Lifang Luo
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
118
|
Trilleaud C, Gauttier V, Biteau K, Girault I, Belarif L, Mary C, Pengam S, Teppaz G, Thepenier V, Danger R, Robert-Siegwald G, Néel M, Bruneau S, Glémain A, Néel A, Poupon A, Mosnier JF, Chêne G, Dubourdeau M, Blancho G, Vanhove B, Poirier N. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. SCIENCE ADVANCES 2021; 7:eabd1453. [PMID: 33811066 PMCID: PMC11057782 DOI: 10.1126/sciadv.abd1453] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Resolution of inflammation is elicited by proresolving lipids, which activate GPCRs to induce neutrophil apoptosis, reduce neutrophil tissue recruitment, and promote macrophage efferocytosis. Transcriptional analyses in up to 300 patients with Inflammatory Bowel Disease (IBD) identified potential therapeutic targets mediating chronic inflammation. We found that ChemR23, a GPCR targeted by resolvin E1, is overexpressed in inflamed colon tissues of severe IBD patients unresponsive to anti-TNFα or anti-α4β7 therapies and associated with significant mucosal neutrophil accumulation. We also identified an anti-ChemR23 agonist antibody that induces receptor signaling, promotes macrophage efferocytosis, and reduces neutrophil apoptosis at the site of inflammation. This ChemR23 mAb accelerated acute inflammation resolution and triggered resolution in ongoing chronic colitis models, with a significant decrease in tissue lesions, fibrosis and inflammation-driven tumors. Our findings suggest that failure of current IBD therapies may be associated with neutrophil infiltration and that ChemR23 is a promising therapeutic target for chronic inflammation.
Collapse
Affiliation(s)
- C Trilleaud
- OSE Immunotherapeutics, Nantes, France
- Université de Nantes
| | | | - K Biteau
- OSE Immunotherapeutics, Nantes, France
| | - I Girault
- OSE Immunotherapeutics, Nantes, France
| | - L Belarif
- OSE Immunotherapeutics, Nantes, France
| | - C Mary
- OSE Immunotherapeutics, Nantes, France
| | - S Pengam
- OSE Immunotherapeutics, Nantes, France
| | - G Teppaz
- OSE Immunotherapeutics, Nantes, France
| | | | - R Danger
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- [ITUN], 44000 Nantes, France
| | | | - M Néel
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- [ITUN], 44000 Nantes, France
| | - S Bruneau
- Université de Nantes
- [ITUN], 44000 Nantes, France
| | - A Glémain
- Université de Nantes
- [ITUN], 44000 Nantes, France
| | - A Néel
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- Service de Médecine Interne, CHU de Nantes, Nantes, France
| | | | - J F Mosnier
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- Service d'Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - G Chêne
- Ambiotis, Canal Biotech 2, Toulouse, France
| | | | - G Blancho
- Université de Nantes
- [CHU Nantes], INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064
- [ITUN], 44000 Nantes, France
| | - B Vanhove
- OSE Immunotherapeutics, Nantes, France
| | - N Poirier
- OSE Immunotherapeutics, Nantes, France.
| |
Collapse
|
119
|
Li D, Wang M, Ye J, Zhang J, Xu Y, Wang Z, Zhao M, Ye D, Wan J. Maresin 1 alleviates the inflammatory response, reduces oxidative stress and protects against cardiac injury in LPS-induced mice. Life Sci 2021; 277:119467. [PMID: 33811894 DOI: 10.1016/j.lfs.2021.119467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maresin 1 (MaR1) is a pro-resolving lipid mediator that has been reported to have strong regulatory effects on oxidative stress and inflammation. This study aimed to determine the effect of MaR1 on lipopolysaccharide (LPS)-induced sepsis-related cardiac injury and explore its possible mechanisms. METHODS Mice were administered MaR1 or PBS and then treated with LPS or saline for 6 h. Then, cardiac function, cardiac injury markers, cardiac macrophage differentiation, oxidative stress and myocardial cell apoptosis in each group were measured. RESULTS MaR1 treatment significantly decreased the serum levels of lactate dehydrogenase (LDH) and kinase isoenzyme (CK-MB) and improved cardiac function in LPS-induced mice. Treatment with MaR1 also inhibited LPS-induced M1 macrophage differentiation and reduced M1 macrophage-related cytokine secretion while promoting M2 macrophage differentiation and increasing M2 macrophage-related inflammatory mediator expression. In addition, MaR1 decreased serum malondialdehyde (MDA) levels and increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), as well as cardiac expression of nuclear factor erythroid-2 related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1), in LPS-induced mice. Furthermore, fewer TUNEL-positive cells were observed in the LPS + MaR1 group than in the LPS group. CONCLUSIONS Our experimental results show that MaR1 alleviates cardiac injury and protects against cardiac dysfunction and may be beneficial in reducing sepsis-induced cardiac injury.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
120
|
Sharma JR, Yadav UCS. COVID-19 severity in obese patients: Potential mechanisms and molecular targets for clinical intervention. Obes Res Clin Pract 2021; 15:163-171. [PMID: 33509701 PMCID: PMC7816622 DOI: 10.1016/j.orcp.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
With the global spread of SARS-CoV-2, millions of people have been affected leading to the declaration of coronavirus disease 2019 (COVID-19) as a pandemic by the WHO. Several studies have linked the severity of COVID-19 cases and increased fatality in patients with obesity and other comorbid conditions such as diabetes, cardiovascular diseases, hypertension, and kidney disease. Obesity, a metabolically deranged condition, establishes a low-grade chronic inflammation in the body, which affects different organs and promotes the development of several other diseases. The ways in which SARS-CoV-2 infection aggravates the already overloaded body organs with inflammation or vice versa has perplexed the researchers. As a result, there is an intensified search for the clear-cut mechanism to understand the link of obesity with the increased severity of COVID-19 in obese patients. In this article we have discussed various mechanisms linking obesity, inflammation, and COVID-19 to enhance the understanding of the disease process and help the clinicians and scientists develop potential cellular, molecular and metabolic targets for clinical intervention and management of COVID-19 severity in obese patients.
Collapse
Affiliation(s)
- Jiten R Sharma
- Metabolic Disorders and Inflammatory Pathologies Laboratory, School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Umesh C S Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
121
|
Tang D, Fu G, Li W, Sun P, Loughran PA, Deng M, Scott MJ, Billiar TR. Maresin 1 protects the liver against ischemia/reperfusion injury via the ALXR/Akt signaling pathway. Mol Med 2021; 27:18. [PMID: 33632134 PMCID: PMC7905895 DOI: 10.1186/s10020-021-00280-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury can be a major complication following liver surgery contributing to post-operative liver dysfunction. Maresin 1 (MaR1), a pro-resolving lipid mediator, has been shown to suppress I/R injury. However, the mechanisms that account for the protective effects of MaR1 in I/R injury remain unknown. METHODS WT (C57BL/6J) mice were subjected to partial hepatic warm ischemia for 60mins followed by reperfusion. Mice were treated with MaR1 (5-20 ng/mouse), Boc2 (Lipoxin A4 receptor antagonist), LY294002 (Akt inhibitor) or corresponding controls just prior to liver I/R or at the beginning of reperfusion. Blood and liver samples were collected at 6 h post-reperfusion. Serum aminotransferase, histopathologic changes, inflammatory cytokines, and oxidative stress were analyzed to evaluate liver injury. Signaling pathways were also investigated in vitro using primary mouse hepatocyte (HC) cultures to identify underlying mechanisms for MaR1 in liver I/R injury. RESULTS MaR1 treatment significantly reduced ALT and AST levels, diminished necrotic areas, suppressed inflammatory responses, attenuated oxidative stress and decreased hepatocyte apoptosis in liver after I/R. Akt signaling was significantly increased in the MaR1-treated liver I/R group compared with controls. The protective effect of MaR1 was abrogated by pretreatment with Boc2, which together with MaR1-induced Akt activation. MaR1-mediated liver protection was reversed by inhibition of Akt. CONCLUSIONS MaR1 protects the liver against hepatic I/R injury via an ALXR/Akt signaling pathway. MaR1 may represent a novel therapeutic agent to mitigate the detrimental effects of I/R-induced liver injury.
Collapse
Affiliation(s)
- Da Tang
- Department of General Surgery, The Third Xiangya Hospital, Central South University, 410000, Changsha, People's Republic of China
| | - Guang Fu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, 410000, Changsha, People's Republic of China
| | - Wenbo Li
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, 410000, Changsha, People's Republic of China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | - Meihong Deng
- Department of Surgery, Ohio State University Medical School, OH, Columbus, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, PA, 15213, Pittsburgh, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, PA, 15213, Pittsburgh, USA.
- Pittsburgh Trauma Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
122
|
Pham TL, Bazan HEP. Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain. J Lipid Res 2021; 62:100033. [PMID: 32788291 PMCID: PMC7933495 DOI: 10.1194/jlr.tr120000954] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
The cornea is densely innervated, mainly by sensory nerves of the ophthalmic branch of the trigeminal ganglia (TG). These nerves are important to maintain corneal homeostasis, and nerve damage can lead to a decrease in wound healing, an increase in corneal ulceration and dry eye disease (DED), and neuropathic pain. Pathologies, such as diabetes, aging, viral and bacterial infection, as well as prolonged use of contact lenses and surgeries to correct vision can produce nerve damage. There are no effective therapies to alleviate DED (a multifunctional disease) and several clinical trials using ω-3 supplementation show unclear and sometimes negative results. Using animal models of corneal nerve damage, we show that treating corneas with pigment epithelium-derived factor plus DHA increases nerve regeneration, wound healing, and tear secretion. The mechanism involves the activation of a calcium-independent phospholipase A2 that releases the incorporated DHA from phospholipids and enhances the synthesis of the docosanoids, neuroprotectin D1 (NPD1) and a new resolvin stereoisomer, resolvin D6i (RvD6i). NPD1 stimulates the synthesis of brain-derived neurotrophic factor, nerve growth factor, and semaphorin 7A. RvD6i treatment of injured corneas modulates gene expression in the TG resulting in enhanced neurogenesis, decreased neuropathic pain, and increased sensitivity. Taken together, these results represent a promising therapeutic option to reestablish the homeostasis of the cornea.
Collapse
Affiliation(s)
- Thang L Pham
- Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Haydee E P Bazan
- Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA.
| |
Collapse
|
123
|
Sawada Y, Saito-Sasaki N, Nakamura M. Omega 3 Fatty Acid and Skin Diseases. Front Immunol 2021; 11:623052. [PMID: 33613558 PMCID: PMC7892455 DOI: 10.3389/fimmu.2020.623052] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Humans are exposed to various external environmental factors. Food intake is one of the most influential factors impacting daily lifestyle. Among nutrients obtained from foods, omega-3 polyunsaturated fatty acids (PUFAs) have various beneficial effects on inflammatory diseases. Furthermore, omega-3 PUFA metabolites, including resolvins, are known to demonstrate strong anti-inflammatory effects during allergic and inflammatory diseases; however, little is known regarding the actual impact of these metabolites on skin diseases. In this review, we focused on metabolites that have strong anti-inflammatory actions in various inflammatory diseases, as well as those that present antitumor actions in malignancies, in addition to the actual effect of omega-3 PUFA metabolites on various cells.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
124
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
125
|
Role of polyunsaturated fatty acids in ischemic stroke - A perspective of specialized pro-resolving mediators. Clin Nutr 2021; 40:2974-2987. [PMID: 33509668 DOI: 10.1016/j.clnu.2020.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been proposed as beneficial for cardiovascular health. However, results from both epidemiological studies and clinical trials have been inconsistent, whereas most of the animal studies showed promising benefits of PUFAs in the prevention and treatment of ischemic stroke. In recent years, it has become clear that PUFAs are metabolized into various types of bioactive derivatives, including the specialized pro-resolving mediators (SPMs). SPMs exert multiple biofunctions, such as to limit excessive inflammatory responses, regulate lipid metabolism and immune cell functions, decrease production of pro-inflammatory factors, increase anti-inflammatory mediators, as well as to promote tissue repair and homeostasis. Inflammation has been recognised as a key contributor to the pathophysiology of acute ischemic stroke. Owing to their potent pro-resolving actions, SPMs are potential for development of novel anti-stroke therapy. In this review, we will summarize current knowledge of epidemiological studies, basic research and clinical trials concerning PUFAs in stroke prevention and treatment, with special attention to SPMs as the unsung heroes behind PUFAs.
Collapse
|
126
|
LGR6 activates the Wnt/β-catenin signaling pathway and forms a β-catenin/TCF7L2/LGR6 feedback loop in LGR6 high cervical cancer stem cells. Oncogene 2021; 40:6103-6114. [PMID: 34489551 PMCID: PMC8530990 DOI: 10.1038/s41388-021-02002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
The leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) is considered to be a stem cell marker in many normal tissues and promotes tissue development, regeneration, and repair. LGR6 is also related to the initiation and progression of some malignant tumors. However, the role of LGR6 in cervical cancer has not been reported. Here, immunohistochemistry and western blotting showed that LGR6 was significantly upregulated in cervical cancer, compared with the normal cervix. By analyzing The Cancer Genome Atlas database, LGR6 was found to be correlated with a poor prognosis of cervical cancer. Then, a small population of LGR6high cells isolated by using the fluorescence-activated cell sorting exhibited enhanced properties of cancer stem cells including self-renewal, differentiation, and tumorigenicity. Moreover, RNA sequencing revealed that LGR6 was correlated with the Wnt signaling pathway and TOP/FOP, reverse transcription-PCR, and western blotting further proved that LGR6 could activate the Wnt/β-catenin signaling pathway. Interestingly, LGR6 upregulated the expression of TCF7L2 by activating the Wnt/β-catenin pathway. Then, TCF7L2 combining with β-catenin in the nucleus enhanced LGR6 transcription by binding the promoter of LGR6, which further activated the Wnt signaling to form a positive feedback loop. Thus, our study demonstrated that LGR6 activated a novel β-catenin/TCF7L2/LGR6-positive feedback loop in LGR6high cervical cancer stem cells (CSCs), which provided a new therapeutic strategy for targeting cervical CSCs to improve the prognosis of cervical cancer patients.
Collapse
|
127
|
Lee CH. Role of specialized pro-resolving lipid mediators and their receptors in virus infection: a promising therapeutic strategy for SARS-CoV-2 cytokine storm. Arch Pharm Res 2021; 44:84-98. [PMID: 33398691 PMCID: PMC7781431 DOI: 10.1007/s12272-020-01299-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Unexpected viral infections outbreaks, significantly affect human health, leading to increased mortality and life disruption. Among them is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged as a deadly pandemic, calling for intense research efforts on its pathogenicity mechanism and development of therapeutic strategies. In the SARS-CoV-2 cytokine storm, systemic inflammation has been associated with severe illness and mortality. Recent studies have demonstrated special pro-resolving lipids mediators (SPMs) lipoxins, resolvins, maresins, and protectins as potential therapeutic options for abnormal viral-triggered inflammation. Pro-resolving lipids mediators have shown great promise for the treatment of Herpes simplex virus, respiratory syncytial virus, human immunodeficiency virus, and hepatitis C virus. Based on this, studies are being conducted on their therapeutic effects in SARS-CoV-2 infection. In this review, we discussed SPMs and reviewed evidence from recent studies on SPMs as therapeutic options for viral infections, including SARS-CoV2. Based on our analysis of the previous study, we argue that SPMs are a potential treatment for SARS-CoV-2 infection and other viral infections. We expect further research on how SPMs modulate viral-triggered inflammation through G-protein-coupled receptors (GPCRs), and chemical stability and druggability of SPMs.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul, 100-715, Republic of Korea.
| |
Collapse
|
128
|
Guimarães RC, Gonçalves TT, Leiria LO. Exploiting oxidized lipids and the lipid-binding GPCRs against cardiometabolic diseases. Br J Pharmacol 2020; 178:531-549. [PMID: 33169375 DOI: 10.1111/bph.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Lipids govern vital cellular processes and drive physiological changes in response to different pathological or environmental cues. Lipid species can be roughly divided into structural and signalling lipids. The former is essential for membrane composition, while the latter are usually oxidized lipids. These mediators provide beneficial effects against cardiometabolic diseases (CMDs), including fatty-liver diseases, atherosclerosis, thrombosis, obesity, and Type 2 diabetes. For instance, several oxylipins were recently found to improve glucose homeostasis, increase insulin secretion, and inhibit platelet aggregation, while specialized pro-resolving mediators (SPMs) are able to ameliorate CMD by shaping the immune system. These lipids act mainly by stimulating GPCRs. In this review, we provide an updated and comprehensive overview of the current state of the literature on signalling lipids in the context of CMD. We also highlight the network encompassing the lipid-modifying enzymes and the lipid-binding GPCRs, as well as their interactions in health and disease.
Collapse
Affiliation(s)
| | - Tiago T Gonçalves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luiz O Leiria
- Obesity and Comorbidities Research Center, Campinas, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
129
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
130
|
Ge YJ, Liao QW, Xu YC, Zhao Q, Wu BL, Ye RD. Anti-inflammatory signaling through G protein-coupled receptors. Acta Pharmacol Sin 2020; 41:1531-1538. [PMID: 33060777 DOI: 10.1038/s41401-020-00523-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play important roles in human physiology. GPCRs are involved in immunoregulation including regulation of the inflammatory response. Chemotaxis of phagocytes and lymphocytes is mediated to a great extent by the GPCRs for chemoattractants including myriads of chemokines. Accumulation and activation of phagocytes at the site of inflammation contribute to local inflammatory response. A handful of GPCRs have been found to transduce anti-inflammatory signals that promote resolution of inflammation. These GPCRs interact with selected metabolites of arachdonic acid, such as lipoxins, and of omega-3 essential fatty acids, such as resolvins and protectins. Despite mounting evidence for the in vivo functions of these anti-inflammatory and pro-resolving ligands paired with their respective GPCRs, the underlying signaling mechanisms have not been fully delineated. The present review summarizes what we have learned about these GPCRs, their structures and signaling pathways and the prospect of targeting these receptors for novel anti-inflammatory therapies.
Collapse
|
131
|
Yasukawa K, Okuno T, Yokomizo T. Eicosanoids in Skin Wound Healing. Int J Mol Sci 2020; 21:ijms21228435. [PMID: 33182690 PMCID: PMC7698125 DOI: 10.3390/ijms21228435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Wound healing is an important process in the human body to protect against external threats. A dysregulation at any stage of the wound healing process may result in the development of various intractable ulcers or excessive scar formation. Numerous factors such as growth factors, cytokines, and chemokines are involved in this process and play vital roles in tissue repair. Moreover, recent studies have demonstrated that lipid mediators derived from membrane fatty acids are also involved in the process of wound healing. Among these lipid mediators, we focus on eicosanoids such as prostaglandins, thromboxane, leukotrienes, and specialized pro-resolving mediators, which are produced during wound healing processes and play versatile roles in the process. This review article highlights the roles of eicosanoids on skin wound healing, especially focusing on the biosynthetic pathways and biological functions, i.e., inflammation, proliferation, migration, angiogenesis, remodeling, and scarring.
Collapse
Affiliation(s)
- Ken Yasukawa
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.Y.); (T.Y.)
- Drug Discovery Research Department, Sato Pharmaceutical Co., Ltd., Tokyo 140-0011, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.Y.); (T.Y.)
- Correspondence: ; Tel.: +81-3-5802-1031
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.Y.); (T.Y.)
| |
Collapse
|
132
|
Teixeira-Santos L, Albino-Teixeira A, Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol Res 2020; 162:105280. [PMID: 33161139 DOI: 10.1016/j.phrs.2020.105280] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a chronic condition that results from a lesion or disease of the nervous system, greatly impacting patients' quality of life. Current pharmacotherapy options deliver inadequate and/or insufficient responses and thus a significant unmet clinical need remains for alternative treatments in NP. Neuroinflammation, oxidative stress and their reciprocal relationship are critically involved in NP pathophysiology. In this context, new pharmacological approaches, aiming at enhancing the resolution phase of inflammation and/or restoring redox balance by targeting specific reactive oxygen species (ROS) sources, are emerging as potential therapeutic strategies for NP, with improved efficacy and safety profiles. Several reports have demonstrated that administration of exogenous specialized pro-resolving mediators (SPMs) ameliorates NP pathophysiology. Likewise, deletion or inhibition of the ROS-generating enzyme NADPH oxidase (NOX), particularly its isoforms 2 and 4, results in beneficial effects in NP models. Notably, SPMs also modulate oxidative stress and NOX also regulates neuroinflammation. By targeting neuroinflammatory and oxidative pathways, both SPMs analogues and isoform-specific NOX inhibitors are promising therapeutic strategies for NP.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| |
Collapse
|
133
|
Sáinz N, Fernández-Galilea M, Costa AGV, Prieto-Hontoria PL, Barraco GM, Moreno-Aliaga MJ. n-3 polyunsaturated fatty acids regulate chemerin in cultured adipocytes: role of GPR120 and derived lipid mediators. Food Funct 2020; 11:9057-9066. [PMID: 33021612 DOI: 10.1039/d0fo01445a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemerin is a pro-inflammatory adipokine that is increased in obesity and associated with obesity-related comorbidities. The aim of this study was to investigate the effects of omega-3 polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic acids (EPA and DHA), on basal and tumor necrosis factor-α (TNF-α)-induced chemerin production in 3T3-L1 and human subcutaneous cultured adipocytes. The potential involvement of G protein-coupled receptor 120 (GPR120), as well as the actions of DHA-derived specialized proresolving lipid mediators (SPMs), resolvin D1 and D2 (RvD1 and RvD2) and maresin 1 (MaR1), were also evaluated. DHA significantly lowered both basal and TNF-α-stimulated chemerin production in 3T3-L1 and human adipocytes. EPA did not modify basal chemerin production, while it attenuated the induction of chemerin by TNF-α. Silencing of GPR120 using siRNA blocked the ability of DHA and EPA to reduce TNF-α-induced chemerin secretion. Interestingly, treatment with the DHA-derived SPMs RvD1, RvD2 and MaR1 also reversed the stimulatory effect of TNF-α on chemerin production in human adipocytes.
Collapse
Affiliation(s)
- N Sáinz
- University of Navarra. Centre for Nutrition Research, Pamplona, Spain. and University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - M Fernández-Galilea
- University of Navarra. Centre for Nutrition Research, Pamplona, Spain. and University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A G V Costa
- University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - P L Prieto-Hontoria
- University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - G M Barraco
- University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - M J Moreno-Aliaga
- University of Navarra. Centre for Nutrition Research, Pamplona, Spain. and University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
134
|
Son SE, Park SJ, Koh JM, Im DS. Free fatty acid receptor 4 (FFA4) activation ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis by increasing regulatory T cells in mice. Acta Pharmacol Sin 2020; 41:1337-1347. [PMID: 32555509 PMCID: PMC7609340 DOI: 10.1038/s41401-020-0435-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
High dose intake of docosahexaenoic acid showed beneficial effects on atopic dermatitis in patients and was found to increase regulatory T cells in mice, but its molecular target has not been identified. Free fatty acid receptor 4 (FFA4, also known as GPR120) is a receptor sensing polyunsaturated long-chain fatty acids including docosahexaenoic acid. In the present study, we examined whether FFA4 acted as a therapeutic target of docosahexaenoic acid for treating atopic dermatitis. Experimental atopic dermatitis was induced in mice by 2,4-dinitrochlorobenzene (DNCB) sensitization on day 0, followed by repeated DNCB challenges from D7 to D48. The mice were treated with a selective agonist compound A (30 mg· kg−1· d−1, ip) from D19 to D48, and sacrificed on D49. We found that DNCB-induced atopic dermatitis-like skin lesions, i.e. hypertrophy and mast cell infiltration in skin tissues, as well as markedly elevated serum IgE levels. Administration of compound A significantly suppressed the atopic responses in ears and lymph nodes, such as hypertrophy and mast cell infiltration in the ears, enlarged sizes of lymph nodes, and elevated serum IgE and levels of cytokines IL-4, IL-13, IL-17, and IFN-γ in ear tissue. The therapeutic effects of compound A were abolished by FFA4 knockout. Similarly, increased CD4+Foxp3+ regulatory T-cell population in lymph nodes was observed in wide-type mice treated with compound A, but not seen in FFA4-deficient mice. In conclusion, we demonstrate that activation of FFA4 ameliorates atopic dermatitis by increasing CD4+Foxp3+ regulatory T cells, suggesting FFA4 as a therapeutic target for atopic dermatitis.
Collapse
|
135
|
Albuquerque-Souza E, Schulte F, Chen T, Hardt M, Hasturk H, Van Dyke TE, Holzhausen M, Kantarci A. Maresin-1 and Resolvin E1 Promote Regenerative Properties of Periodontal Ligament Stem Cells Under Inflammatory Conditions. Front Immunol 2020; 11:585530. [PMID: 33101318 PMCID: PMC7546375 DOI: 10.3389/fimmu.2020.585530] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Maresin-1 (MaR1) and Resolvin E1 (RvE1) are specialized pro-resolving lipid mediators (SPMs) that regulate inflammatory processes. We have previously demonstrated the hard and soft tissue regenerative capacity of RvE1 in an in vivo model of the periodontal disease characterized by inflammatory tissue destruction. Regeneration of periodontal tissues requires a well-orchestrated process mediated by periodontal ligament stem cells. However, limited data are available on how SPMs can regulate the regenerative properties of human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. Thus, we measured the impact of MaR1 and RvE1 in an in vitro model of hPDLSC under stimulation with IL-1β and TNF-α by evaluating pluripotency, migration, viability/cell death, periodontal ligament markers (α-smooth muscle actin, tenomodulin, and periostin), cementogenic-osteogenic differentiation, and phosphoproteomic perturbations. The data showed that the pro-inflammatory milieu suppresses pluripotency, viability, and migration of hPDLSCs; MaR1 and RvE1 both restored regenerative capacity by increasing hPDLSC viability, accelerating wound healing/migration, and up-regulating periodontal ligament markers and cementogenic-osteogenic differentiation. Protein phosphorylation perturbations were associated with the SPM-induced regenerative capacity of hPDLSCs. Together, these results demonstrate that MaR1 and RvE1 restore or improve the regenerative properties of highly specialized stem cells when inflammation is present and offer opportunities for direct pharmacologic treatment of lost tissue integrity.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- The Forsyth Institute, Cambridge, MA, United States.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Fabian Schulte
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, United States
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | | | | | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
136
|
Chiang N, Serhan CN. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem 2020; 64:443-462. [PMID: 32885825 PMCID: PMC7682745 DOI: 10.1042/ebc20200018] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Today, persistent and uncontrolled inflammation is appreciated to play a pivotal role in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other diseases of public health concern (e.g. Coronavirus Disease 2019 (COVID-19) and periodontal disease). The ideal response to initial challenge in humans is a self-limited inflammatory response leading to complete resolution. The resolution phase is now widely recognized as a biosynthetically active process, governed by a superfamily of endogenous chemical mediators that stimulate resolution of inflammatory responses, namely specialized proresolving mediators (SPMs). Because resolution is the natural ideal response, the SPMs have gained attention. SPMs are mediators that include ω-6 arachidonic acid-derived lipoxins, ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-derived resolvins, protectins and maresins, cysteinyl-SPMs, as well as n-3 docosapentaenoic acid (DPA)-derived SPMs. These novel immunoresolvents, their biosynthetic pathways and receptors have proven to promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via specific cellular and molecular mechanisms. As of 17 August, 2020, PubMed.gov reported >1170 publications for resolvins, confirming their potent protective actions from many laboratories worldwide. Since this field is rapidly expanding, we provide a short update of advances within 2-3 years from human and preclinical animal studies, together with the structural-functional elucidation of SPMs and identification of novel SPM receptors. These new discoveries indicate that SPMs, their pathways and receptors could provide a basis for new approaches for treating inflammation-associated diseases and for stimulating tissue regeneration via resolution pharmacology and precision nutrition.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| |
Collapse
|
137
|
Quiros M. Therapeutic Opportunities for Repair GPCRs during Intestinal Mucosal Wound Healing. Trends Mol Med 2020; 26:971-974. [PMID: 32958405 DOI: 10.1016/j.molmed.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are crucial for establishing the resolution phase following an intestinal inflammatory episode. Because current treatments for intestinal inflammation have a high percentage of failure and lead to immunosuppression, repair GPCRs have promising therapeutic potential because they trigger resolution pathways without compromising the immune response.
Collapse
Affiliation(s)
- Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
138
|
Recchiuti A, Isopi E, Romano M, Mattoscio D. Roles of Specialized Pro-Resolving Lipid Mediators in Autophagy and Inflammation. Int J Mol Sci 2020; 21:E6637. [PMID: 32927853 PMCID: PMC7555248 DOI: 10.3390/ijms21186637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic pathway that accounts for degradation and recycling of cellular components to extend cell survival under stress conditions. In addition to this prominent role, recent evidence indicates that autophagy is crucially involved in the regulation of the inflammatory response, a tightly controlled process aimed at clearing the inflammatory stimulus and restoring tissue homeostasis. To be efficient and beneficial to the host, inflammation should be controlled by a resolution program, since uncontrolled inflammation is the underlying cause of many pathologies. Resolution of inflammation is an active process mediated by a variety of mediators, including the so-called specialized pro-resolving lipid mediators (SPMs), a family of endogenous lipid autacoids known to regulate leukocyte infiltration and activities, and counterbalance cytokine production. Recently, regulation of autophagic mechanisms by these mediators has emerged, uncovering unappreciated connections between inflammation resolution and autophagy. Here, we summarize mechanisms of autophagy and resolution, focusing on the contribution of autophagy in sustaining paradigmatic examples of chronic inflammatory disorders. Then, we discuss the evidence that SPMs can restore dysregulated autophagy, hypothesizing that resolution of inflammation could represent an innovative approach to modulate autophagy and its impact on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Domenico Mattoscio
- Center for Advanced Studies and Technology, Department of Medical, Oral and Biotechnology Sciences, University of Chieti—Pescara, 66100 Chieti, Italy; (A.R.); (E.I.); (M.R.)
| |
Collapse
|
139
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
140
|
Allen BL, Montague-Cardoso K, Simeoli R, Colas RA, Oggero S, Vilar B, McNaughton PA, Dalli J, Perretti M, Sher E, Malcangio M. Imbalance of proresolving lipid mediators in persistent allodynia dissociated from signs of clinical arthritis. Pain 2020; 161:2155-2166. [PMID: 32379221 PMCID: PMC7431142 DOI: 10.1097/j.pain.0000000000001908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Rheumatoid arthritis-associated pain is poorly managed, often persisting when joint inflammation is pharmacologically controlled. Comparably, in the mouse K/BxN serum-transfer model of inflammatory arthritis, hind paw nociceptive hypersensitivity occurs with ankle joint swelling (5 days after immunisation) persisting after swelling has resolved (25 days after immunisation). In this study, lipid mediator (LM) profiling of lumbar dorsal root ganglia (DRG), the site of sensory neuron cell bodies innervating the ankle joints, 5 days and 25 days after serum transfer demonstrated a shift in specialised proresolving LM profiles. Persistent nociception without joint swelling was associated with low concentrations of the specialised proresolving LM Maresin 1 (MaR1) and high macrophage numbers in DRG. MaR1 application to cultured DRG neurons inhibited both capsaicin-induced increase of intracellular calcium ions and release of calcitonin gene-related peptide in a dose-dependent manner. Furthermore, in peritoneal macrophages challenged with lipopolysaccharide, MaR1 reduced proinflammatory cytokine expression. Systemic MaR1 administration caused sustained reversal of nociceptive hypersensitivity and reduced inflammatory macrophage numbers in DRG. Unlike gabapentin, which was used as positive control, systemic MaR1 did not display acute antihyperalgesic action. Therefore, these data suggest that MaR1 effects observed after K/BxN serum transfer relate to modulation of macrophage recruitment, more likely than to direct actions on sensory neurons. Our study highlights that, in DRG, aberrant proresolution mechanisms play a key role in arthritis joint pain dissociated from joint swelling, opening novel approaches for rheumatoid arthritis pain treatment.
Collapse
Affiliation(s)
- Benjamin L Allen
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | | | - Raffaele Simeoli
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
- Laboratory of Metabolic Biochemistry Unit, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romain A Colas
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Silvia Oggero
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Bruno Vilar
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Peter A McNaughton
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Jesmond Dalli
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Emanuele Sher
- Neuroscience Discovery, Lilly Research Centre, Eli Lilly and Company Ltd, Surrey, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
141
|
Das UN. Can Bioactive Lipid Arachidonic Acid Prevent and Ameliorate COVID-19? MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E418. [PMID: 32825011 PMCID: PMC7560027 DOI: 10.3390/medicina56090418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
Abstract
It is proposed that the bioactive lipid, arachidonic acid (AA, 20:4 n-6), can inactivate severe acute respiratory syndrome(SARS-CoV-2), facilitate M1 and M2 macrophage generation, suppress inflammation, prevent vascular endothelial cell damage, and regulate inflammation resolution processes based on the timely formation of prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) based on the context. Thus, AA may be useful both to prevent and manage coronavrus disease-2019(COVID-19).
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; ; Tel.: +1-508-904-5376
- BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
| |
Collapse
|
142
|
Alzheimer's Disease and Specialized Pro-Resolving Lipid Mediators: Do MaR1, RvD1, and NPD1 Show Promise for Prevention and Treatment? Int J Mol Sci 2020; 21:ijms21165783. [PMID: 32806612 PMCID: PMC7460933 DOI: 10.3390/ijms21165783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease and a major contributor to progressive cognitive impairment in an aging society. As the pathophysiology of AD involves chronic neuroinflammation, the resolution of inflammation and the group of lipid mediators that actively regulate it-i.e., specialized pro-resolving lipid mediators (SPMs)-attracted attention in recent years as therapeutic targets. This review focuses on the following three specific SPMs and summarizes their relationships to AD, as they were shown to effectively address and reduce the risk of AD-related neuroinflammation: maresin 1 (MaR1), resolvin D1 (RvD1), and neuroprotectin D1 (NPD1). These three SPMs are metabolites of docosahexaenoic acid (DHA), which is contained in fish oils and is thus easily available to the public. They are expected to become incorporated into promising avenues for preventing and treating AD in the future.
Collapse
|
143
|
Dahik VD, Frisdal E, Le Goff W. Rewiring of Lipid Metabolism in Adipose Tissue Macrophages in Obesity: Impact on Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155505. [PMID: 32752107 PMCID: PMC7432680 DOI: 10.3390/ijms21155505] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and its two major comorbidities, insulin resistance and type 2 diabetes, represent worldwide health issues whose incidence is predicted to steadily rise in the coming years. Obesity is characterized by an accumulation of fat in metabolic tissues resulting in chronic inflammation. It is now largely accepted that adipose tissue inflammation underlies the etiology of these disorders. Adipose tissue macrophages (ATMs) represent the most enriched immune fraction in hypertrophic, chronically inflamed adipose tissue, and these cells play a key role in diet-induced type 2 diabetes and insulin resistance. ATMs are triggered by the continuous influx of dietary lipids, among other stimuli; however, how these lipids metabolically activate ATM depends on their nature, composition and localization. This review will discuss the fate and molecular programs elicited within obese ATMs by both exogenous and endogenous lipids, as they mediate the inflammatory response and promote or hamper the development of obesity-associated insulin resistance and type 2 diabetes.
Collapse
|
144
|
Effects of Maresin 1 (MaR1) on Colonic Inflammation and Gut Dysbiosis in Diet-Induced Obese Mice. Microorganisms 2020; 8:microorganisms8081156. [PMID: 32751593 PMCID: PMC7465372 DOI: 10.3390/microorganisms8081156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to characterize the effects of Maresin 1 (MaR1), a DHA-derived pro-resolving lipid mediator, on obesity-related colonic inflammation and gut dysbiosis in diet-induced obese (DIO) mice. In colonic mucosa of DIO mice, the MaR1 treatment decreased the expression of inflammatory genes, such as Tnf-α and Il-1β. As expected, the DIO mice exhibited significant changes in gut microbiota composition at the phylum, genus, and species levels, with a trend to a higher Firmicutes/Bacteroidetes ratio. Deferribacteres and Synergistetes also increased in the DIO animals. In contrast, these animals exhibited a significant decrease in the content of Cyanobacteria and Actinobacteria. Treatment with MaR1 was not able to reverse the dysbiosis caused by obesity on the most abundant phyla. However, the MaR1 treatment increased the content of P. xylanivorans, which have been considered to be a promising probiotic with healthy effects on gut inflammation. Finally, a positive association was found between the Deferribacteres and Il-1β expression, suggesting that the increase in Deferribacteres observed in obesity could contribute to the overexpression of inflammatory cytokines in the colonic mucosa. In conclusion, MaR1 administration ameliorates the inflammatory state in the colonic mucosa and partially compensates changes on gut microbiota caused by obesity.
Collapse
|
145
|
Kim AS, Conte MS. Specialized pro-resolving lipid mediators in cardiovascular disease, diagnosis, and therapy. Adv Drug Deliv Rev 2020; 159:170-179. [PMID: 32697951 PMCID: PMC10980506 DOI: 10.1016/j.addr.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Persistent inflammation is the key aggravator in many cardiovascular diseases, including atherosclerosis, aneurysm, injury/reperfusion, thrombosis, and neointimal hyperplasia following surgical or percutaneous interventions. Resolution is an active process orchestrated by specialized pro-resolving lipid mediators (SPMs) which tamp down acute inflammatory signals, promote healing and facilitate a return to homeostasis. SPMs are endogenously derived from poly-unsaturated fatty acids, and their biologic activity is mediated via specific G-protein coupled receptor binding. The potency of SPM in regulating the inflammatory response has encouraged investigation into their therapeutic and diagnostic use in cardiovascular pathologies. Herein we describe the translational groundwork which has established the synthesis and interactions of SPM in cardiovascular and hematologic cells, the therapeutic effects of SPM in animal models of cardiovascular disease, and some early technologies that harness and attempt to optimize SPM delivery and "resolution pharmacology". Further studies are required to precisely determine the mechanisms of resolution in the cardiovascular system and to determine the clinical settings in which SPM can be utilized to optimize patient outcomes.
Collapse
Affiliation(s)
- Alexander S Kim
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA.
| |
Collapse
|
146
|
Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol Cell Physiol 2020; 319:C510-C532. [PMID: 32667864 DOI: 10.1152/ajpcell.00181.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils are polymorphonuclear leukocytes that play a central role in host defense against infection and tissue injury. They are rapidly recruited to the inflamed site and execute a variety of functions to clear invading pathogens and damaged cells. However, many of their defense mechanisms are capable of inflicting collateral tissue damage. Neutrophil-driven inflammation is a unifying mechanism underlying many common diseases. Efficient removal of neutrophils from inflammatory loci is critical for timely resolution of inflammation and return to homeostasis. Accumulating evidence challenges the classical view that neutrophils represent a homogeneous population and that halting neutrophil influx is sufficient to explain their rapid decline within inflamed loci during the resolution of protective inflammation. Hence, understanding the mechanisms that govern neutrophil functions and their removal from the inflammatory locus is critical for minimizing damage to the surrounding tissue and for return to homeostasis. In this review, we briefly address recent advances in characterizing neutrophil phenotypic and functional heterogeneity and the molecular mechanisms that determine the fate of neutrophils within inflammatory loci and the outcome of the inflammatory response. We also discuss how these mechanisms may be harnessed as potential therapeutic targets to facilitate resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Amiram Ariel
- Departmentof Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
147
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
148
|
Tao X, Lee MS, Donnelly CR, Ji RR. Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics 2020; 17:886-899. [PMID: 32696274 PMCID: PMC7609770 DOI: 10.1007/s13311-020-00892-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current crises in opioid abuse and chronic pain call for the development of nonopioid and nonpharmacological therapeutics for pain relief. Neuromodulation-based approaches, such as spinal cord stimulation, dorsal root ganglion simulation, and nerve stimulation including vagus nerve stimulation, have shown efficacy in achieving pain control in preclinical and clinical studies. However, the mechanisms by which neuromodulation alleviates pain are not fully understood. Accumulating evidence suggests that neuromodulation regulates inflammation and neuroinflammation-a localized inflammation in peripheral nerves, dorsal root ganglia/trigeminal ganglia, and spinal cord/brain-through neuro-immune interactions. Specialized proresolving mediators (SPMs) such as resolvins, protectins, maresins, and lipoxins are lipid molecules produced during the resolution phase of inflammation and exhibit multiple beneficial effects in resolving inflammation in various animal models. Recent studies suggest that SPMs inhibit inflammatory pain, postoperative pain, neuropathic pain, and cancer pain in rodent models via immune, glial, and neuronal modulations. It is noteworthy that sham surgery is sufficient to elevate resolvin levels and may serve as a model of resolution. Interestingly, it has been shown that the vagus nerve produces SPMs and vagus nerve stimulation (VNS) induces SPM production in vitro. In this review, we discuss how neuromodulation such as VNS controls pain via immunomodulation and neuro-immune interactions and highlight possible involvement of SPMs. In particular, we demonstrate that VNS via auricular electroacupuncture effectively attenuates chemotherapy-induced neuropathic pain. Furthermore, auricular stimulation is able to increase resolvin levels in mice. Thus, we propose that neuromodulation may control pain and inflammation/neuroinflammatioin via SPMs. Finally, we discuss key questions that remain unanswered in our understanding of how neuromodulation-based therapies provide short-term and long-term pain relief.
Collapse
Affiliation(s)
- Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael S Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
149
|
Ferguson B, Bokka NR, Maddipati KR, Ayilavarapu S, Weltman R, Zhu L, Chen W, Zheng WJ, Angelov N, Van Dyke TE, Lee CT. Distinct Profiles of Specialized Pro-resolving Lipid Mediators and Corresponding Receptor Gene Expression in Periodontal Inflammation. Front Immunol 2020; 11:1307. [PMID: 32670289 PMCID: PMC7330171 DOI: 10.3389/fimmu.2020.01307] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acid-derived specialized pro-resolving lipid mediators (SPMs) play an important role in modulating inflammation. The aim of the study was to compare profiles of SPMs, SPM related lipid mediators and SPM receptor gene expression in gingiva of subjects with periodontitis to healthy controls. A total of 28 subjects were included; 13 periodontally healthy and 15 periodontitis before or after non-surgical periodontal therapy. Gingival tissues were collected from two representative posterior teeth prior to and 8 weeks after scaling and root planning; only once in the healthy group. Lipid mediator-SPM metabololipidomics was performed to identify metabolites in gingiva. qRT-PCR was performed to assess relative gene expression (2−ΔΔCT) of known SPM receptors. Intergroup comparisons were made using Wilcoxon tests. Thirty-six omega-6 or omega-3 fatty acid-derived lipid mediators and seven receptor genes were identified in gingiva. Profiles of lipid mediators and receptor gene expression were significantly different between the three groups. Levels of six lipid mediators, 5-HETE, 15-HETE, 15(S)-HEPE, 4-HDHA, 7-HDHA, and 17-HDHA in periodontitis before treatment were significantly higher than in periodontitis after treatment. The expression of BLT1 in the healthy group was significantly higher than periodontitis subjects before and after treatment. The expression of GPR18 in periodontitis before treatment was significantly higher than in periodontitis after treatment while the expression of GPR32 in periodontitis before treatment was significantly lower than in periodontitis after treatment. Elevated levels of SPM biosynthetic pathway markers in periodontitis subjects before treatment indicated inflammation induced pro-resolution activity in gingiva, but receptors for these molecules were deficient in periodontitis pre-treatment suggesting that failure of resolution of inflammation contributes to excess, chronic inflammation in periodontitis.
Collapse
Affiliation(s)
- Brittney Ferguson
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Nishantha R Bokka
- Department of Pathology, Wayne State University, Detroit, MI, United States
| | | | - Srinivas Ayilavarapu
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Robin Weltman
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Lisha Zhu
- Bioinformatics and High Performance Computing Service Center, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wanqi Chen
- Bioinformatics and High Performance Computing Service Center, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - W Jim Zheng
- Bioinformatics and High Performance Computing Service Center, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, United States.,Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, United States
| | - Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
150
|
Tavares LP, Negreiros-Lima GL, Lima KM, E Silva PMR, Pinho V, Teixeira MM, Sousa LP. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res 2020; 159:105030. [PMID: 32562817 DOI: 10.1016/j.phrs.2020.105030] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular signaling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the role of cAMP at inducing important features of resolution of inflammation.
Collapse
Affiliation(s)
- Luciana P Tavares
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA..
| | - Graziele L Negreiros-Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Kátia M Lima
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| | - Patrícia M R E Silva
- Inflammation Laboratory, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Vanessa Pinho
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Department of Morphology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Mauro M Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil.
| | - Lirlândia P Sousa
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil; Post-Graduation Program in Pharmaceutical Sciences, Faculdade de Farmácia, UFMG, Belo Horizonte, Brazil.
| |
Collapse
|