101
|
Gargouri B, Yousif NM, Bouchard M, Fetoui H, Fiebich BL. Inflammatory and cytotoxic effects of bifenthrin in primary microglia and organotypic hippocampal slice cultures. J Neuroinflammation 2018; 15:159. [PMID: 29793499 PMCID: PMC5968622 DOI: 10.1186/s12974-018-1198-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pyrethroids, such as bifenthrin (BF), are among the most widely used class of insecticides that pose serious risks to human and wildlife health. Pyrethroids are proposed to affect astrocytic functions and to cause neuron injury in the central nervous system (CNS). Microglia are key cells involved in innate immune responses in the CNS, and microglia activation has been linked to inflammation and neurotoxicity. However, little information is known about the effects of BF-induced toxicity in primary microglial cells as well as in organotypic hippocampal slice cultures (OHSCs). METHODS Oxidative stress and inflammatory responses induced by BF were evaluated in primary microglial cells and OHSCs incubated with different concentrations of BF (1-20 μM) for 4 and 24 h. mRNA and protein synthesis of cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), nuclear erythroid-2 like factor-2 (Nrf-2), and microsomal prostaglandin synthase-1 (mPGES-1) was also studied by qPCR and Western blot. Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Neurotoxicity in OHSCs was analyzed by propidium iodide (PI) staining and confocal microscopy. RESULTS Exposure of microglial cells to BF for 24 h resulted in a dose-dependent reduction in the number of viable cells. At sub-cytotoxic concentrations, BF increased reactive oxygen species (ROS), TNF-alpha synthesis, and prostaglandin E2 (PGE2) production, at both 4- and 24-h time points, respectively. Furthermore, BF incubation decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and increased lipid peroxidation, protein oxidation, and H2O2 formation. In addition, BF significantly induced protein synthesis and mRNA expression of oxidative and inflammatory mediators after 4 and 24 h, including Nrf-2, COX-2, mPGES-1, and nuclear factor kappaB (NF-kappaB). A 24-h exposure of OHSCs to BF also increased neuronal death compared to untreated controls. Furthermore, depletion of microglia from OHSCs potently enhanced neuronal death induced by BF. CONCLUSIONS Overall, BF exhibited cytotoxic effects in primary microglial cells, accompanied by the induction of various inflammatory and oxidative stress markers including the Nrf-2/COX-2/mPGES-1/NF-kappaB pathways. Moreover, the study provided evidence that BF induced neuronal death in OHSCs and suggests that microglia exert a protective function against BF toxicity.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Nizar M. Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, Main Station, Montreal, P.O. Box 6128, Montreal, Quebec H3C 3J7 Canada
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
102
|
Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels. J Neurosci 2018; 38:5415-5428. [PMID: 29769266 DOI: 10.1523/jneurosci.1653-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2017] [Revised: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntington's disease (HD) showed increased levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Kidins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and might play a crucial role in the pathogenesis of HD.SIGNIFICANCE STATEMENT BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntington's disease (HD), causing an impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients. Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD.
Collapse
|
103
|
Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, Erreni M, Markicevic M, Starvaggi-Cucuzza C, Otero K, Piccio L, Cignarella F, Perrucci F, Tamborini M, Genua M, Rajendran L, Menna E, Vetrano S, Fahnestock M, Paolicelli RC, Matteoli M. The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity 2018; 48:979-991.e8. [PMID: 29752066 DOI: 10.1016/j.immuni.2018.04.016] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2017] [Revised: 01/19/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2-/- mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Fabia Filipello
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele - Milan, Italy
| | - Raffaella Morini
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Irene Corradini
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy; IN-CNR, 20129 Milano, Italy
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alice Canzi
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele - Milan, Italy
| | - Bernadeta Michalski
- Department of Psychiatry & Behavioural Neurosciences, HSC-4N80, McMaster University, Hamilton, ON, Canada
| | - Marco Erreni
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Chiara Starvaggi-Cucuzza
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Karel Otero
- Department of Neuroimmunology, Acute Neurology and Pain, Biogen Inc., 115 Broadway, Cambridge, MA, USA
| | - Laura Piccio
- Department of Neurology, Washington University, St. Louis, MO, USA
| | | | - Fabio Perrucci
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Matteo Tamborini
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Marco Genua
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland
| | - Elisabetta Menna
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy; IN-CNR, 20129 Milano, Italy
| | - Stefania Vetrano
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele - Milan, Italy
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioural Neurosciences, HSC-4N80, McMaster University, Hamilton, ON, Canada
| | - Rosa Chiara Paolicelli
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano - Milan, Italy; IN-CNR, 20129 Milano, Italy.
| |
Collapse
|
104
|
Cisbani G, Le Behot A, Plante MM, Préfontaine P, Lecordier M, Rivest S. Role of the chemokine receptors CCR2 and CX3CR1 in an experimental model of thrombotic stroke. Brain Behav Immun 2018; 70:280-292. [PMID: 29545116 DOI: 10.1016/j.bbi.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/19/2017] [Revised: 01/21/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022] Open
Abstract
Stroke is the second cause of mortality worldwide and occurs following the interruption of cerebral blood circulation by cerebral vessel burst or subsequent to a local thrombus formation. Ischemic lesion triggers an important inflammatory response, characterized by massive infiltration of leukocytes, activation of glial cells and neurovascular reorganization. Chemokines and their receptors, such as CCR2 and CX3CR1, play an important role in leukocyte recruitment in the damaged area. Mice genetically depleted for the two receptors CCR2 and CX3CR1 underwent focal cerebral ischemia, based on the topical application of ferric chloride to truncate the distal middle cerebral artery. The infarct, limited only to the cortical area, remained stable in WT mice, while it is reduced overtime in the transgenic mice. Moreover, we did not observe any significant changes in the level of the inflammatory response in the infarcted areas while immune cell infiltration and neurovascularization are modulated according to genotype. Our results show that the genetic deletion of both CCR2 and CX3CR1 receptors has neuroprotective effects in response to a cerebral permanent ischemia. This study underlines a key role of CCR2- and CX3CR1-expressing immune cells in the neuropathology associated with ischemic injuries.
Collapse
Affiliation(s)
- Giulia Cisbani
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Audrey Le Behot
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Marie-Michèle Plante
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Paul Préfontaine
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Manon Lecordier
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada.
| |
Collapse
|
105
|
Toshimitsu M, Kamei Y, Ichinose M, Seyama T, Imada S, Iriyama T, Fujii T. Atomoxetine, a selective norepinephrine reuptake inhibitor, improves short-term histological outcomes after hypoxic-ischemic brain injury in the neonatal male rat. Int J Dev Neurosci 2018; 70:34-45. [PMID: 29608930 DOI: 10.1016/j.ijdevneu.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the recent progress of perinatal medicine, perinatal hypoxic-ischemic (HI) insult remains an important cause of brain injury in neonates, and is pathologically characterized by neuronal loss and the presence of microglia. Neurotransmitters, such as norepinephrine (NE) and glutamate, are involved in the pathogenesis of hypoxic-ischemic encephalopathy via the interaction between neurons and microglia. Although it is well known that the monoamine neurotransmitter NE acts as an anti-inflammatory agent in the brain under pathological conditions, its effects on perinatal HI insult remains elusive. Atomoxetine, a selective NE reuptake inhibitor, has been used clinically for the treatment of attention-deficit hyperactivity disorder in children. Here, we investigated whether the enhancement of endogenous NE by administration of atomoxetine could protect neonates against HI insult by using the neonatal male rat model. We also examined the involvement of microglia in this process. METHODS Unilateral HI brain injury was induced by the combination of left carotid artery dissection followed by ligation and hypoxia (8% O2, 2 h) in postnatal day 7 (P7) male rat pups. The pups were randomized into three groups: the atomoxetine treatment immediately after HI insult, the atomoxetine treatment at 3 h after HI insult, or the vehicle treatment group. The pups were euthanized on P8 and P14, and the brain regions including the cortex, striatum, hippocampus, and thalamus were evaluated by immunohistochemistry. RESULTS HI insult resulted in severe brain damage in the ipsilateral hemisphere at P14. Atomoxetine treatment immediately after HI insult significantly increased NE levels in the ipsilateral hemisphere at 1 h after HI insult and reduced the neuronal damage via the increased phosphorylation of cAMP response element-binding protein (pCREB) in all brain regions examined. In addition, the number of microglia was maintained under atomoxetine treatment compared with that of the vehicle treatment group. To determine the involvement of microglia in the process of neuronal loss by HI insult, we further examined the influence of hypoxia on rat primary cultured microglia by the quantitative real-time polymerase chain reaction. Hypoxia did not cause the upregulation of interleukin-1beta (IL-1β) mRNA expression, but decreased the microglial intrinsic nitric oxide synthase (iNOS)/arginase1 mRNA expression ratio. NE treatment further decreased the microglial iNOS/arginase1 mRNA expression ratio. In contrast, no significant neuroprotective effect was observed at P14 when atomoxetine was administered at 3 h after HI insult. CONCLUSIONS These findings suggested that the enhancement of intrinsic neurotransmitter NE signaling by a selective NE reuptake inhibitor, atomoxetine, reduced the perinatal HI insult brain injury. In addition, atomoxetine treatment was associated with changes of TUNEL, pCREB, and BDNF expression levels, and microglial numbers, morphology, and responses.
Collapse
Affiliation(s)
- Masatake Toshimitsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan; Department of Obstetrics and Gynecology, Saitama Medical University Hospital, Saitama 350-0495, Japan.
| | - Mari Ichinose
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Seyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Shinya Imada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
106
|
Hiragi T, Ikegaya Y, Koyama R. Microglia after Seizures and in Epilepsy. Cells 2018; 7:cells7040026. [PMID: 29597334 PMCID: PMC5946103 DOI: 10.3390/cells7040026] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
Abstract
Microglia are the resident immune cells in the brain that constitute the brain’s innate immune system. Recent studies have revealed various functions of microglia in the development and maintenance of the central nervous system (CNS) in both health and disease. However, the role of microglia in epilepsy remains largely undiscovered, partly because of the complex phenotypes of activated microglia. Activated microglia likely exert different effects on brain function depending on the phase of epileptogenesis. In this review, we mainly focus on the animal models of temporal lobe epilepsy (TLE) and discuss the proepileptic and antiepileptic roles of activated microglia in the epileptic brain. Specifically, we focus on the roles of microglia in the production of inflammatory cytokines, regulation of neurogenesis, and surveillance of the surrounding environment in epilepsy.
Collapse
Affiliation(s)
- Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
107
|
Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, Schwab Y, Gross CT. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 2018; 9:1228. [PMID: 29581545 PMCID: PMC5964317 DOI: 10.1038/s41467-018-03566-5] [Citation(s) in RCA: 541] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2017] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Microglia are highly motile glial cells that are proposed to mediate synaptic pruning during neuronal circuit formation. Disruption of signaling between microglia and neurons leads to an excess of immature synaptic connections, thought to be the result of impaired phagocytosis of synapses by microglia. However, until now the direct phagocytosis of synapses by microglia has not been reported and fundamental questions remain about the precise synaptic structures and phagocytic mechanisms involved. Here we used light sheet fluorescence microscopy to follow microglia–synapse interactions in developing organotypic hippocampal cultures, complemented by a 3D ultrastructural characterization using correlative light and electron microscopy (CLEM). Our findings define a set of dynamic microglia–synapse interactions, including the selective partial phagocytosis, or trogocytosis (trogo-: nibble), of presynaptic structures and the induction of postsynaptic spine head filopodia by microglia. These findings allow us to propose a mechanism for the facilitatory role of microglia in synaptic circuit remodeling and maturation. Direct visualization of microglia-mediated synapse pruning has been lacking. This study shows direct evidence of microglia-synapse interaction where microglia do not necessarily ‘eat’ post-synaptic structure but ‘nibble’ on pre-synaptic terminals, much akin to trogocytosis by lymphocytes.
Collapse
Affiliation(s)
- Laetitia Weinhard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Giulia di Bartolomei
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Urte Neniskyte
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy.,Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Sauletekio al. 7, Vilnius, 10257, Lithuania
| | - Melanie Exiga
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Auguste Vadisiute
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy.,Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Sauletekio al. 7, Vilnius, 10257, Lithuania
| | - Angelo Raggioli
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, ZEISS Group, Carl-Zeiss-Strasse 22, 73447, Oberkochen, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Cornelius T Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
108
|
Amtul Z, Yang J, Nikolova S, Lee TY, Bartha R, Cechetto DF. The Dynamics of Impaired Blood-Brain Barrier Restoration in a Rat Model of Co-morbid Injury. Mol Neurobiol 2018; 55:8071-8083. [PMID: 29508280 DOI: 10.1007/s12035-018-0904-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Defect in brain microperfusion is increasingly recognized as an antecedent event to Alzheimer's disease (AD) and ischemia. Nevertheless, studies on the role of impaired microperfusion as a pathological trigger to neuroinflammation, Aβ deposition as well as blood-brain barrier (BBB) disruption, and the etiological link between AD and ischemia are lacking. In this study, we employ in vivo sequential magnetic resonance imaging (MRI) and computed tomography (CT) imaging in a co-morbid rat model of β-amyloid toxicity (Aβ) and ischemia (ET1) with subsequent histopathology of striatal lesion core and penumbra at 1, 7, and 28 days post injury. Within 24 h, cerebral injury resulted in increased BBB permeability due to the dissolution of β-dystroglycan (β-DG) and basement membrane laminin by active matrix metalloproteinase9 (MMP9). As a result, net flow of circulating IgG down a hydrostatic gradient into the parenchyma led to vasogenic edema and impaired perfusion, thus increasing the apparent hyperintensity in true fast imaging with steady-state free precession (true FISP) imaging and acute hypoperfusion in CT. This was followed by a slow recruitment of reactive astroglia to the affected brain and depolarization of aquaporin4 (AQP4) expression resulting in cytotoxic edema-in an attempt to resolve vasogenic edema. On d28, functional BBB was restored in ET1 rats as observed by astrocytic MMP9 release, β-DG stabilization, and new vessel formation. This was confirmed by reduced hyperintensity on true FISP imaging and normalized cerebral blood flow in CT. While, Aβ toxicity alone was not detrimental enough, Aβ+ET1 rats showed delayed differential expression of MMP9, late recruitment of astroglial cells, protracted loss of AQP4 depolarization, and thus delayed BBB restoration and cerebral perfusion.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Jun Yang
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Simona Nikolova
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Ting-Yim Lee
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
109
|
Vallarola A, Sironi F, Tortarolo M, Gatto N, De Gioia R, Pasetto L, De Paola M, Mariani A, Ghosh S, Watson R, Kalmes A, Bonetto V, Bendotti C. RNS60 exerts therapeutic effects in the SOD1 ALS mouse model through protective glia and peripheral nerve rescue. J Neuroinflammation 2018; 15:65. [PMID: 29495962 PMCID: PMC5833072 DOI: 10.1186/s12974-018-1101-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects the motor neuromuscular system leading to complete paralysis and premature death. The multifactorial nature of ALS that involves both cell-autonomous and non-cell-autonomous processes contributes to the lack of effective therapies, usually targeted to a single pathogenic mechanism. RNS60, an experimental drug containing oxygenated nanobubbles generated by modified Taylor-Couette-Poiseuille flow with elevated oxygen pressure, has shown anti-inflammatory and neuroprotective properties in different experimental paradigms. Since RNS60 interferes with multiple cellular mechanisms known to be involved in ALS pathology, we evaluated its effect in in vitro and in vivo models of ALS. METHODS Co-cultures of primary microglia/spinal neurons exposed to LPS and astrocytes/spinal neurons from SOD1G93A mice were used to examine the effect of RNS60 or normal saline (NS) on the selective motor neuron degeneration. Transgenic SOD1G93A mice were treated with RNS60 or NS (300 μl/mouse intraperitoneally every other day) starting at the disease onset and examined for disease progression as well as pathological and biochemical alterations. RESULTS RNS60 protected motor neurons in in vitro paradigms and slowed the disease progression of C57BL/6-SOD1G93A mice through a significant protection of spinal motor neurons and neuromuscular junctions. This was mediated by the (i) activation of an antioxidant response and generation of an anti-inflammatory environment in the spinal cord; (ii) activation of the PI3K-Akt pro-survival pathway in the spinal cord and sciatic nerves; (iii) reduced demyelination of the sciatic nerves; and (iv) elevation of peripheral CD4+/Foxp3+ T regulatory cell numbers. RNS60 did not show the same effects in 129Sv-SOD1G93A mice, which are unable to activate a protective immune response. CONCLUSION RNS60 demonstrated significant therapeutic efficacy in C57BL/6-SOD1G93A mice by virtue of its effects on multiple disease mechanisms in motor neurons, glial cells, and peripheral immune cells. These findings, together with the excellent clinical safety profile, make RNS60 a promising candidate for ALS therapy and support further studies to unravel its molecular mechanism of action. In addition, the differences in efficacy of RNS60 in SOD1G93A mice of different strains may be relevant for identifying potential markers to predict efficacy in clinical trials.
Collapse
Affiliation(s)
- Antonio Vallarola
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Francesca Sironi
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Massimo Tortarolo
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Noemi Gatto
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Roberta De Gioia
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Laura Pasetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Massimiliano De Paola
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | - Alessandro Mariani
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | | | | | | | - Valentina Bonetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Caterina Bendotti
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy.
| |
Collapse
|
110
|
Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun 2018; 69:386-398. [PMID: 29288802 DOI: 10.1016/j.bbi.2017.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/27/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022] Open
Abstract
Hyperammonemia is a main contributor to cognitive impairment and motor in-coordination in patients with hepatic encephalopathy. Hyperammonemia-induced neuroinflammation mediates the neurological alterations in hepatic encephalopathy. Intracerebral administration of extracellular cGMP restores some but not all types of cognitive impairment. Motor in-coordination, is mainly due to increased GABAergic tone in cerebellum. We hypothesized that extracellular cGMP would restore motor coordination in hyperammonemic rats by normalizing GABAergic tone in cerebellum and that this would be mediated by reduction of neuroinflammation. The aims of this work were to assess whether chronic intracerebral administration of cGMP to hyperammonemic rats: 1) restores motor coordination; 2) reduces neuroinflammation in cerebellum; 3) reduces extracellular GABA levels and GABAergic tone in cerebellum; and also 4) to provide some advance in the understanding on the molecular mechanisms involved. The results reported show that rats with chronic hyperammonemia show neuroinflammation in cerebellum, including microglia and astrocytes activation and increased levels of IL-1b and TNFa and increased membrane expression of the TNFa receptor. This is associated with increased glutaminase expression and extracellular glutamate, increased amount of the GABA transporter GAT-3 in activated astrocytes, increased extracellular GABA in cerebellum and motor in-coordination. Chronic intracerebral administration of extracellular cGMP to rats with chronic hyperammonemia reduces neuroinflammation, including microglia and astrocytes activation and membrane expression of the TNFa receptor. This is associated with reduced nuclear NF-κB, glutaminase expression and extracellular glutamate, reduced amount of the GABA transporter GAT-3 in activated astrocytes and reduced extracellular GABA in cerebellum and restoration of motor coordination. The data support that extracellular cGMP restores motor coordination in hyperammonemic rats by reducing microglia activation and neuroinflammation, leading to normalization of extracellular glutamate and GABA levels in cerebellum and of motor coordination.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | | | - Michele Malaguarnera
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain.
| |
Collapse
|
111
|
Tasbihgou SR, Netkova M, Kalmar AF, Doorduin J, Struys MMRF, Schoemaker RG, Absalom AR. Brain changes due to hypoxia during light anaesthesia can be prevented by deepening anaesthesia; a study in rats. PLoS One 2018; 13:e0193062. [PMID: 29451906 PMCID: PMC5815614 DOI: 10.1371/journal.pone.0193062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2017] [Accepted: 02/02/2018] [Indexed: 01/13/2023] Open
Abstract
In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenuated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia. However, evidence to support this is scarce. We thus investigated the influence of light versus deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed [18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n = 9-11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls. Four days later a Novel Object Recognition (NOR) test was performed to assess mood and cognition. After another 4 days, the animals were sacrificed for later immunohistochemical analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1; Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no significant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed, associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deepening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was observed. Although reduced hippocampal neurogenesis may be considered unfavourable, higher BDNF expression, associated with microglia hyper-ramification may suggest activation of repair mechanisms. Increased neuroplasticity observed in the piriform cortex supports this, and might reflect a prolonged state of alertness rather than damage.
Collapse
Affiliation(s)
- Setayesh R. Tasbihgou
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Mina Netkova
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Alain F. Kalmar
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, the Netherlands
| | - Michel M. R. F. Struys
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
- Department of Anaesthesia, Ghent University, Gent, Belgium
| | - Regien G. Schoemaker
- Department of Molecular Neurobiology, GELIFES, University of Groningen, Groningen, the Netherlands
| | - Anthony R. Absalom
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
112
|
Hirbec H, Marmai C, Duroux-Richard I, Roubert C, Esclangon A, Croze S, Lachuer J, Peyroutou R, Rassendren F. The microglial reaction signature revealed by RNAseq from individual mice. Glia 2018; 66:971-986. [PMID: 29399880 DOI: 10.1002/glia.23295] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Microglial cells have a double life as the immune cells of the brain in times of stress but have also specific physiological functions in homeostatic conditions. In pathological contexts, microglia undergo a phenotypic switch called "reaction" that promotes the initiation and the propagation of neuro-inflammation. Reaction is complex, molecularly heterogeneous and still poorly characterized, leading to the concept that microglial reactivity might be too diverse to be molecularly defined. However, it remains unknown whether reactive microglia from different pathological contexts share a common molecular signature. Using improved flow cytometry and RNAseq approaches we studied, with higher statistical power, the remodeling of microglia transcriptome in a mouse model of sepsis. Through bioinformatic comparison of our results with published datasets, we defined the microglial reactome as a set of genes discriminating reactive from homeostatic microglia. Ultimately, we identified a subset of 86 genes deregulated in both acute and neurodegenerative conditions. Our data provide a new comprehensive resource that includes functional analysis and specific molecular markers of microglial reaction which represent new tools for its unambiguous characterization.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| | - Camille Marmai
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| | | | | | | | - Séverine Croze
- ProfileXpert, Université Claude Bernard Lyon 1, Lyon, France
| | - Joël Lachuer
- ProfileXpert, Université Claude Bernard Lyon 1, Lyon, France
| | - Ronan Peyroutou
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| | - François Rassendren
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| |
Collapse
|
113
|
Saliba SW, Marcotegui AR, Fortwängler E, Ditrich J, Perazzo JC, Muñoz E, de Oliveira ACP, Fiebich BL. AM404, paracetamol metabolite, prevents prostaglandin synthesis in activated microglia by inhibiting COX activity. J Neuroinflammation 2017; 14:246. [PMID: 29237478 PMCID: PMC5729401 DOI: 10.1186/s12974-017-1014-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Background N-arachidonoylphenolamine (AM404), a paracetamol metabolite, is a potent agonist of the transient receptor potential vanilloid type 1 (TRPV1) and low-affinity ligand of the cannabinoid receptor type 1 (CB1). There is evidence that AM404 exerts its pharmacological effects in immune cells. However, the effect of AM404 on the production of inflammatory mediators of the arachidonic acid pathway in activated microglia is still not fully elucidated. Method In the present study, we investigated the effects of AM404 on the eicosanoid production induced by lipopolysaccharide (LPS) in organotypic hippocampal slices culture (OHSC) and primary microglia cultures using Western blot, immunohistochemistry, and ELISA. Results Our results show that AM404 inhibited LPS-mediated prostaglandin E2 (PGE2) production in OHSC, and LPS-stimulated PGE2 release was totally abolished in OHSC if microglial cells were removed. In primary microglia cultures, AM404 led to a significant dose-dependent decrease in the release of PGE2, independent of TRPV1 or CB1 receptors. Moreover, AM404 also inhibited the production of PGD2 and the formation of reactive oxygen species (8-iso-PGF2 alpha) with a reversible reduction of COX-1- and COX-2 activity. Also, it slightly decreased the levels of LPS-induced COX-2 protein, although no effect was observed on LPS-induced mPGES-1 protein synthesis. Conclusions This study provides new significant insights about the potential anti-inflammatory role of AM404 and new mechanisms of action of paracetamol on the modulation of prostaglandin production by activated microglia. Electronic supplementary material The online version of this article (10.1186/s12974-017-1014-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soraya Wilke Saliba
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Ariel R Marcotegui
- Laboratory of Hepatic Encephalopathy and Portal Hypertension, Center of Applied and Experimental Pathology, University of Buenos Aires, Buenos Aires, Argentina
| | - Ellen Fortwängler
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany
| | - Johannes Ditrich
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany
| | - Juan Carlos Perazzo
- Laboratory of Hepatic Encephalopathy and Portal Hypertension, Center of Applied and Experimental Pathology, University of Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Muñoz
- Departamento de Biología Celular, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | | | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
114
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|
115
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
116
|
Ding Y, Pardon MC, Agostini A, Faas H, Duan J, Ward WOC, Easton F, Auer D, Bai L. Novel Methods for Microglia Segmentation, Feature Extraction, and Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1366-1377. [PMID: 27429441 DOI: 10.1109/tcbb.2016.2591520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
Segmentation and analysis of histological images provides a valuable tool to gain insight into the biology and function of microglial cells in health and disease. Common image segmentation methods are not suitable for inhomogeneous histology image analysis and accurate classification of microglial activation states has remained a challenge. In this paper, we introduce an automated image analysis framework capable of efficiently segmenting microglial cells from histology images and analyzing their morphology. The framework makes use of variational methods and the fast-split Bregman algorithm for image denoising and segmentation, and of multifractal analysis for feature extraction to classify microglia by their activation states. Experiments show that the proposed framework is accurate and scalable to large datasets and provides a useful tool for the study of microglial biology.
Collapse
|
117
|
Mao Q, Wang D, Li Y, Kohler M, Wilson J, Parton Z, Shmaltsuyeva B, Gursel D, Rademakers R, Weintraub S, Mesulam MM, Xia H, Bigio EH. Disease and Region Specificity of Granulin Immunopositivities in Alzheimer Disease and Frontotemporal Lobar Degeneration. J Neuropathol Exp Neurol 2017; 76:957-968. [PMID: 29044416 DOI: 10.1093/jnen/nlx085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Heterozygous loss-of-function mutations in GRN, the progranulin gene, which result in progranulin (PGRN) protein haploinsufficiency, are a major cause of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). PGRN is composed of seven and a half repeats of a highly conserved granulin motif that is cleaved to produce the granulin peptides A-G and paragranulin. To better understand the role of PGRN and granulin (Grn) peptides in the pathogenesis of neurodegeneration, we evaluated PGRN/Grn in brains of patients with Alzheimer disease, FTLD-TDP type A with or without GRN mutations, and normal individuals, using a panel of monoclonal antibodies against Grn peptides A-G. In the neocortex, Grn peptide-specific immunostains were observed, for example, membranous Grn E immunopositivity in pyramidal neurons, and Grn C immunopositivity in ramified microglia. In the hippocampus, Grn immunopositivity in the CA1 and CA2 regions showed disease-specific changes in both neurons and microglia. Most interestingly, in FTLD-TDP type A with GRN mutations, there is a 60% decrease in the density of Grn-positive microglia in the hippocampal CA1, suggesting that haploinsufficiency of the GRN mutations also extends to PGRN expression in microglia. This study provides important insights into future studies of the pathogenesis and treatment of FTLD-TDP.
Collapse
Affiliation(s)
- Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Dongyang Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Yanqing Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Missia Kohler
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Jayson Wilson
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Zachary Parton
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Bella Shmaltsuyeva
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Demirkan Gursel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Rosa Rademakers
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Sandra Weintraub
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Marek-Marsel Mesulam
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Haibin Xia
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | | |
Collapse
|
118
|
Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Beneficial effects of liraglutide (GLP1 analog) in the hippocampal inflammation. Metab Brain Dis 2017; 32:1735-1745. [PMID: 28681199 DOI: 10.1007/s11011-017-0059-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
The brain is very sensitive to metabolic dysfunctions induced by diets high in saturated fatty acids, leading to neuroinflammation. The liraglutide has been found to have neuroprotective effects. However, its neuroprotective action in a model of palmitate-induced neuroinflammation had not yet been evaluated. Mice were intracerebroventricular (ICV) infused with palmitate and received subcutaneous liraglutide. The hippocampal dentate gyrus and CA1 regions were analyzed (morphology and inflammation-related proteins in microglia and astrocyte by confocal microscopy). Also, a real-time PCR was performed to measure the levels of tumor necrosis factor (TNF) alpha and interleukin (IL) 6. Palmitate ICV infusion resulted in pronounced inflammation response in the hippocampus, reactive microgliosis, and astrogliosis, with hypertrophied IBA1 immunoreactive microglia, increased microglial density with ameboid shape, decreased in the number of branches and junctions and increased the major histocompatibility complex (MHC) II expression. Also, we observed in the hippocampus of ICV palmitate infused mice an elevation in the pro-inflammatory cytokine levels TNFalpha and IL6. Liraglutide induced the neuroprotective microglial phenotype, characterized by an increased microglia complexity (enlarged Feret's diameter), an improved number of both cell junctions and processes, and lower circularity, accompanied by a significant reduction in TNFalpha and IL6 expressions. The study provides evidence that liraglutide may be a suitable treatment against the palmitate-induced neuroinflammation, which it is characterized by the reactive microgliosis and astrogliosis, as well as increased pro-inflammatory cytokines, which has been described as one of the primary causes of several pathologies of the central nervous system.
Collapse
Affiliation(s)
- Andre R C Barreto-Vianna
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Centro Biomedico, Instituto de Biologia, Laboratorio de Morfometria, Metabolismo e doenca Cardiovascular (www.lmmc.uerj.br), Universidade do Estado do Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
119
|
Schallner N, Lieberum JL, Gallo D, LeBlanc RH, Fuller PM, Hanafy KA, Otterbein LE. Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice. Stroke 2017; 48:2565-2573. [PMID: 28747460 PMCID: PMC5575974 DOI: 10.1161/strokeaha.116.016165] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/Hmox1) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. METHODS Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. RESULTS Significant elevations in the clock genes Per-1, Per-2, and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion (Lyz-Cre-Hmox1fl/fl ), Per-1, Per-2, and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1fl/fl mice, restored Per-1, Per-2, and NPAS-2 expression, and reduced neuronal apoptosis. CONCLUSIONS Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH.
Collapse
Affiliation(s)
- Nils Schallner
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Judith-Lisa Lieberum
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - David Gallo
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Robert H LeBlanc
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Patrick M Fuller
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Khalid A Hanafy
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Leo E Otterbein
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.).
| |
Collapse
|
120
|
Schallner N, Lieberum JL, Gallo D, LeBlanc RH, Fuller PM, Hanafy KA, Otterbein LE. Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice. Stroke 2017; 48:2565-2573. [PMID: 28747460 DOI: 10.1161/strokeaha.116.016165.carbon] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/Hmox1) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. METHODS Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. RESULTS Significant elevations in the clock genes Per-1, Per-2, and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion (Lyz-Cre-Hmox1fl/fl ), Per-1, Per-2, and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1fl/fl mice, restored Per-1, Per-2, and NPAS-2 expression, and reduced neuronal apoptosis. CONCLUSIONS Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH.
Collapse
Affiliation(s)
- Nils Schallner
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Judith-Lisa Lieberum
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - David Gallo
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Robert H LeBlanc
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Patrick M Fuller
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Khalid A Hanafy
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Leo E Otterbein
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.).
| |
Collapse
|
121
|
Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles. Mediators Inflamm 2017; 2017:6742427. [PMID: 29138531 PMCID: PMC5613690 DOI: 10.1155/2017/6742427] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2016] [Revised: 03/06/2017] [Accepted: 07/30/2017] [Indexed: 12/11/2022] Open
Abstract
Inflammatory mechanisms triggered by microglial cells are involved in the pathophysiology of several brain disorders, hindering repair. Herein, we propose the use of retinoic acid-loaded polymeric nanoparticles (RA-NP) as a means to modulate microglia response towards an anti-inflammatory and neuroprotective phenotype (M2). RA-NP were first confirmed to be internalized by N9 microglial cells; nanoparticles did not affect cell survival at concentrations below 100 μg/mL. Then, immunocytochemical studies were performed to assess the expression of pro- and anti-inflammatory mediators. Our results show that RA-NP inhibited LPS-induced release of nitric oxide and the expression of inducible nitric oxide synthase and promoted arginase-1 and interleukin-4 production. Additionally, RA-NP induced a ramified microglia morphology (indicative of M2 state), promoting tissue viability, particularly neuronal survival, and restored the expression of postsynaptic protein-95 in organotypic hippocampal slice cultures exposed to an inflammatory challenge. RA-NP also proved to be more efficient than the free equivalent RA concentration. Altogether, our data indicate that RA-NP may be envisioned as a promising therapeutic agent for brain inflammatory diseases.
Collapse
|
122
|
The flavonoid rutin modulates microglial/macrophage activation to a CD150/CD206 M2 phenotype. Chem Biol Interact 2017; 274:89-99. [PMID: 28693884 DOI: 10.1016/j.cbi.2017.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
Rutin is a glycosylated flavonoid present in many fruits and plants that has been demonstrated to have anti-inflammatory and antioxidant properties. However, little is known about the mechanisms underlying microglial activation and its effects on the regulation of cytokines and chemokines associated with inflammatory responses in the central nervous system. In this study we examined the effect of rutin on resting or lipopolysaccharide (LPS)-stimulated microglia and characterized their modulation to an activated M1 phenotype or an alternatively activated M2 phenotype. Microglial cells were treated with rutin (1-100 μM); alternatively, microglial cells were stimulated with LPS and the cells were then treated with rutin (50 μM). The results revealed that rutin treatment was not toxic to microglial cells and induced a dose-dependent increase in microglial proliferation associated with changes in morphology after 24 h of treatment. Rutin also induced microglial activation characterized by an increase in OX-42 positive cells and a large proportion of cells with a CD150/CD206-positive M2 phenotype. Rutin also induced a decrease in the mRNA levels of TNF, IL1β, IL6 and iNOS, reduced the production of IL6, TNF, and nitric oxide, and increased production of the M2 regulatory cytokine IL10 and arginase. Rutin also significantly inhibited the LPS-induced expression of PTGS2, IL18 and TGFβ mRNA. These findings show that rutin has the ability to promote microglial proliferation and induces microglial polarization to the M2 profile when cells are stimulated with LPS. These results point this flavonoid as a possible alternative in the treatment or prevention of neurodegenerative disorders.
Collapse
|
123
|
Rybachuk O, Kopach O, Krotov V, Voitenko N, Pivneva T. Optimized Model of Cerebral Ischemia In situ for the Long-Lasting Assessment of Hippocampal Cell Death. Front Neurosci 2017; 11:388. [PMID: 28729821 PMCID: PMC5498507 DOI: 10.3389/fnins.2017.00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
Among all the brain, the hippocampus is the most susceptible region to ischemic lesion, with the highest vulnerability of CA1 pyramidal neurons to ischemic damage. This damage may cause either prompt neuronal death (within hours) or with a delayed appearance (over days), providing a window for applying potential therapies to reduce or prevent ischemic impairments. However, the time course when ischemic damage turns to neuronal death strictly depends on experimental modeling of cerebral ischemia and, up to now, studies were predominantly focused on a short time-window—from hours to up to a few days post-lesion. Using different schemes of oxygen-glucose deprivation (OGD), the conditions taking place upon cerebral ischemia, we optimized a model of mimicking ischemic conditions in organotypical hippocampal slices for the long-lasting assessment of CA1 neuronal death (at least 3 weeks). By combining morphology and electrophysiology, we show that prolonged (30-min duration) OGD results in a massive neuronal death and overwhelmed astrogliosis within a week post-OGD whereas OGD of a shorter duration (10-min) triggered programmed CA1 neuronal death with a significant delay—within 2 weeks—accompanied with drastically impaired CA1 neuron functions. Our results provide a rationale toward optimized modeling of cerebral ischemia for reliable examination of potential treatments for brain neuroprotection, neuro-regeneration, or testing neuroprotective compounds in situ.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Olga Kopach
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Volodymyr Krotov
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Tatyana Pivneva
- Department of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| |
Collapse
|
124
|
Zhang B, Yang Y, Tang J, Tao Y, Jiang B, Chen Z, Feng H, Yang L, Zhu G. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism. Oncotarget 2017; 8:43061-43067. [PMID: 28574841 PMCID: PMC5522127 DOI: 10.18632/oncotarget.17898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2017] [Accepted: 04/15/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. RESULTS Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). MATERIALS AND METHODS Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. CONCLUSIONS In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Yunfeng Yang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Bing Jiang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| |
Collapse
|
125
|
Shen Z, Li X, Bao X, Wang R. Microglia-targeted stem cell therapies for Alzheimer disease: A preclinical data review. J Neurosci Res 2017. [PMID: 28643422 DOI: 10.1002/jnr.24066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a severe, life-threatening illness characterized by gradual memory loss. The classic histological features of AD include extracellular formation of β-amyloid plaques (Aβ), intracellular neurofibrillary tangles (NFT), and synaptic loss. Recently, accumulated evidence has confirmed the critical role of microglia in the development and exacerbation of AD. When Aβ forms deposits, microglia quickly respond to restore brain physiology by activating a series of repair mechanisms. However, prolonged microglial activation is considered detrimental and may aggravate AD progression. To date, there are no curative therapies for AD. The advent of stem cell transplantation offers novel strategies to treat AD in animal models. Furthermore, studies have reported that transplanted stem cells might ameliorate AD symptoms by regulating microglial functions, from detrimental to protective. This review focuses on the crucial functions of microglia in AD and examines the reactions of microglia to transplanted stem cells.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
126
|
Herz J, Filiano AJ, Wiltbank AT, Yogev N, Kipnis J. Myeloid Cells in the Central Nervous System. Immunity 2017; 46:943-956. [PMID: 28636961 PMCID: PMC5657250 DOI: 10.1016/j.immuni.2017.06.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.
Collapse
Affiliation(s)
- Jasmin Herz
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony J Filiano
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ashtyn T Wiltbank
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Nir Yogev
- Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
127
|
Banach M, Popławska M, Borowicz-Reutt KK. Sotalol enhances the anticonvulsant action of valproate and diphenylhydantoin in the mouse maximal electroshock model. Pharmacol Rep 2017; 69:1173-1177. [PMID: 29128797 DOI: 10.1016/j.pharep.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2017] [Revised: 04/29/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sotalol as a drug blocking β-receptors and potassium KCNH2 channels may interact with different substances that affect seizures. Herein, we present interactions between sotalol and four conventional antiepileptic drugs: carbamazepine, valproate, phenytoin and phenobarbital. METHODS Effects of sotalol and antiepileptics alone on seizures were determined in the electroconvulsive threshold test, while interactions between sotalol and antiepileptic drugs were estimated in the maximal electroshock test in mice. Motor coordination and long-term memory were evaluated, respectively, in the chimney test and passive-avoidance task. Brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay. RESULTS Sotalol at doses up to 100mg/kg did not affect the electroconvulsive threshold. Applied at doses 60-100mg/kg, sotalol potentiated the antielectroshock action of valproate, while at doses 80-100mg/kg that of phenytoin. Sotalol (up to 100mg/kg) did not affect the action of carbamazepine or phenobarbital in the maximal electroshock. Sotalol alone and in combinations with antiepileptics impaired neither motor performance nor long-term memory in mice. Finally, sotalol did not change brain concentration of valproate and phenytoin, so pharmacokinetic interactions between the drugs are not probable. CONCLUSIONS As far as obtained data may be extrapolated into clinical conditions, sotalol may be considered as an arrhythmic drug that does not reduce the action of classical antiepileptic drugs and thereby can be used in epileptic patients with cardiac arrhythmias.
Collapse
Affiliation(s)
- Monika Banach
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Monika Popławska
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
128
|
Bhandare AM, Kapoor K, Powell KL, Braine E, Casillas-Espinosa P, O'Brien TJ, Farnham MM, Pilowsky PM. Inhibition of microglial activation with minocycline at the intrathecal level attenuates sympathoexcitatory and proarrhythmogenic changes in rats with chronic temporal lobe epilepsy. Neuroscience 2017; 350:23-38. [DOI: 10.1016/j.neuroscience.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022]
|
129
|
Paci P, Gabriele S, Ris L. A new method allowing long-term potentiation recordings in hippocampal organotypic slices. Brain Behav 2017; 7:e00692. [PMID: 28523233 PMCID: PMC5434196 DOI: 10.1002/brb3.692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/20/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hippocampal organotypic slices are used to improve the understanding of synaptic plasticity mechanisms because they allow longer term studies compared to acute slices. However, it is more delicate to keep cultures alive in the recording system outside in vitro conditions. Experiments from the organotypic cultures are common but the handling of slices is rarely described in the literature, even though tissue preservation is crucial. Instruments are sometimes required to extract the slices from the culture inserts but this approach is delicate and can lead to damage, given how strongly the slices are attached to the insert. METHODS A new configuration is proposed to secure the transfer of slices from the incubator to the recording chamber through an adaptor piece that can be designed for any model of chamber and/or insert. The adaptor is a Plexiglas ring in which a culture insert containing the slice can be easily introduced and stabilized. This system allows slices to be placed in the interface for electrophysiological investigations without having to detach them from the insert. That way, no damage is caused and the recording system can safely hold the slices, maintaining them close to culture conditions. RESULTS In addition to the description of the adaptation system, slices were characterized. Their viability was validated and microglial expression was observed. According to the experimental conditions, neuroprotective ramified microgliocytes are present. Dendritic spines studies were also performed to determine neuronal network maturity in culture. Moreover, SKF 83822 hydrobromide and three trains of 100 pulses at 100 Hz with a 10-min inter-train interval are suggested to induce long-term potentiation and to record an increase of fEPSP amplitude and slope. CONCLUSION This paper provides detailed information on the preparation and characterization of hippocampal organotypic slices, a new recording configuration more suitable for cultures, and a long-term potentiation protocol combining SKF and trains.
Collapse
Affiliation(s)
- Paula Paci
- Neuroscience Unit Research Institute for Health Sciences and Technology University of Mons - UMONS Mons Belgium
| | - Sylvain Gabriele
- Mechanobiology & Soft Matter Group Interfaces and Complex Fluids Laboratory Research Institute for Biosciences University of Mons - UMONS Mons Belgium
| | - Laurence Ris
- Neuroscience Unit Research Institute for Health Sciences and Technology University of Mons - UMONS Mons Belgium
| |
Collapse
|
130
|
Simultaneous blockade of NMDA receptors and PARP-1 activity synergistically alleviate immunoexcitotoxicity and bioenergetics in 3-nitropropionic acid intoxicated mice: Evidences from memantine and 3-aminobenzamide interventions. Eur J Pharmacol 2017; 803:148-158. [DOI: 10.1016/j.ejphar.2017.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
|
131
|
Tekko T, Lakspere T, Allikalt A, End J, Kõlvart KR, Jagomäe T, Terasmaa A, Philips MA, Visnapuu T, Väärtnõu F, Gilbert SF, Rinken A, Vasar E, Lilleväli K. Wfs1 is expressed in dopaminoceptive regions of the amniote brain and modulates levels of D1-like receptors. PLoS One 2017; 12:e0172825. [PMID: 28267787 PMCID: PMC5436468 DOI: 10.1371/journal.pone.0172825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2016] [Accepted: 02/10/2017] [Indexed: 11/27/2022] Open
Abstract
During amniote evolution, the construction of the forebrain has diverged across
different lineages, and accompanying the structural changes, functional
diversification of the homologous brain regions has occurred. This can be
assessed by studying the expression patterns of marker genes that are relevant
in particular functional circuits. In all vertebrates, the dopaminergic system
is responsible for the behavioral responses to environmental stimuli. Here we
show that the brain regions that receive dopaminergic input through dopamine
receptor D1 are relatively conserved, but with some important
variations between three evolutionarily distant vertebrate lines–house mouse
(Mus musculus), domestic chick (Gallus gallus
domesticus) / common quail (Coturnix coturnix) and
red-eared slider turtle (Trachemys scripta). Moreover, we find
that in almost all instances, those brain regions expressing D1-like dopamine
receptor genes also express Wfs1. Wfs1 has been studied
primarily in the pancreas, where it regulates the endoplasmic reticulum (ER)
stress response, cellular Ca2+ homeostasis, and insulin production
and secretion. Using radioligand binding assays in wild type and
Wfs1-/- mouse brains, we show that the number of
binding sites of D1-like dopamine receptors is increased in the hippocampus of
the mutant mice. We propose that the functional link between Wfs1 and D1-like
dopamine receptors is evolutionarily conserved and plays an important role in
adjusting behavioral reactions to environmental stimuli.
Collapse
Affiliation(s)
- Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Triin Lakspere
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Anni Allikalt
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Jaanus End
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | | | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Anton Terasmaa
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Fred Väärtnõu
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
of America
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
132
|
Sousa C, Biber K, Michelucci A. Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Front Immunol 2017; 8:198. [PMID: 28303137 PMCID: PMC5332364 DOI: 10.3389/fimmu.2017.00198] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2016] [Accepted: 02/09/2017] [Indexed: 12/26/2022] Open
Abstract
Microglia are essential for the development and function of the adult brain. Microglia arise from erythro-myeloid precursors in the yolk sac and populate the brain rudiment early during development. Unlike monocytes that are constantly renewed from bone marrow hematopoietic stem cells throughout life, resident microglia in the healthy brain persist during adulthood via constant self-renewal. Their ontogeny, together with the absence of turnover from the periphery and the singular environment of the central nervous system, make microglia a unique cell population. Supporting this notion, recent genome-wide transcriptional studies revealed specific gene expression profiles clearly distinct from other brain and peripheral immune cells. Here, we highlight the breakthrough studies that, over the last decades, helped elucidate microglial cell identity, ontogeny, and function. We describe the main techniques that have been used for this task and outline the crucial milestones that have been achieved to reach our actual knowledge of microglia. Furthermore, we give an overview of the “microgliome” that is currently emerging thanks to the constant progress in the modern profiling techniques.
Collapse
Affiliation(s)
- Carole Sousa
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, Section Molecular Psychiatry, University of Freiburg, Freiburg, Germany; Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| |
Collapse
|
133
|
Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 2017; 7:e1024. [PMID: 28170004 PMCID: PMC5438023 DOI: 10.1038/tp.2016.278] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/14/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
Abstract
An interaction between external stressors and intrinsic vulnerability is one of the longest standing pathoaetiological explanations for schizophrenia. However, novel lines of evidence from genetics, preclinical studies, epidemiology and imaging have shed new light on the mechanisms that may underlie this, implicating microglia as a key potential mediator. Microglia are the primary immune cells of the central nervous system. They have a central role in the inflammatory response, and are also involved in synaptic pruning and neuronal remodeling. In addition to immune and traumatic stimuli, microglial activation occurs in response to psychosocial stress. Activation of microglia perinatally may make them vulnerable to subsequent overactivation by stressors experienced in later life. Recent advances in genetics have shown that variations in the complement system are associated with schizophrenia, and this system has been shown to regulate microglial synaptic pruning. This suggests a mechanism via which genetic and environmental influences may act synergistically and lead to pathological microglial activation. Microglial overactivation may lead to excessive synaptic pruning and loss of cortical gray matter. Microglial mediated damage to stress-sensitive regions such as the prefrontal cortex and hippocampus may lead directly to cognitive and negative symptoms, and account for a number of the structural brain changes associated with the disorder. Loss of cortical control may also lead to disinhibition of subcortical dopamine-thereby leading to positive psychotic symptoms. We review the preclinical and in vivo evidence for this model and consider the implications this has for treatment, and future directions.
Collapse
Affiliation(s)
- O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,PET Imaging Group, MRC Clinical Sciences Centre, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - R McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
134
|
Tsunekawa T, Banno R, Mizoguchi A, Sugiyama M, Tominaga T, Onoue T, Hagiwara D, Ito Y, Iwama S, Goto M, Suga H, Sugimura Y, Arima H. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia. EBioMedicine 2017; 16:172-183. [PMID: 28094236 PMCID: PMC5474442 DOI: 10.1016/j.ebiom.2017.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 02/06/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.
Collapse
Affiliation(s)
- Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Takashi Tominaga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan.
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
135
|
Haim A, Julian D, Albin-Brooks C, Brothers HM, Lenz KM, Leuner B. A survey of neuroimmune changes in pregnant and postpartum female rats. Brain Behav Immun 2017; 59:67-78. [PMID: 27686844 DOI: 10.1016/j.bbi.2016.09.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/29/2016] [Revised: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
During pregnancy and the postpartum period, the adult female brain is remarkably plastic exhibiting modifications of neurons, astrocytes and oligodendrocytes. However, little is known about how microglia, the brain's innate immune cells, are altered during this time. In the current studies, microglial density, number and morphological phenotype were analyzed within multiple regions of the maternal brain that are known to show neural plasticity during the peripartum period and/or regulate peripartum behavioral changes. Our results show a significant reduction in microglial density during late pregnancy and the early-mid postpartum period in the basolateral amygdala, medial prefrontal cortex, nucleus accumbens shell and dorsal hippocampus. In addition, microglia numbers were reduced postpartum in all four brain regions, and these reductions occurred primarily in microglia with a thin, ramified morphology. Across the various measures, microglia in the motor cortex were unaffected by reproductive status. The peripartum decrease in microglia may be a consequence of reduced proliferation as there were fewer numbers of proliferating microglia, and no changes in apoptotic microglia, in the postpartum hippocampus. Finally, hippocampal concentrations of the cytokines interleukin (IL)-6 and IL-10 were increased postpartum. Together, these data point to a shift in the maternal neuroimmune environment during the peripartum period that could contribute to neural and behavioral plasticity occurring during the transition to motherhood.
Collapse
Affiliation(s)
- Achikam Haim
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Dominic Julian
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | | | - Holly M Brothers
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - Kathryn M Lenz
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA; Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210, USA
| | - Benedetta Leuner
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA; Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
136
|
Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. J Neurosci 2016; 37:1413-1427. [PMID: 28011744 DOI: 10.1523/jneurosci.2462-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1G93A mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1G93A mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1G93A mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also for sporadic ALS. This approach aims to address the neuroinflammatory reaction that is a major hallmark of ALS. However, given the complexity of the disease, a combination of therapeutic approaches may be necessary.
Collapse
|
137
|
Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J 2016; 36:583-603. [PMID: 28007893 DOI: 10.15252/embj.201694591] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co-culturing organotypic brain slices from up to 20-month-old, amyloid-bearing AD mouse model (APPPS1) and young, neonatal wild-type (WT) mice. Surprisingly, co-culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.
Collapse
Affiliation(s)
- Anna Daria
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| |
Collapse
|
138
|
Wohleb ES. Neuron-Microglia Interactions in Mental Health Disorders: "For Better, and For Worse". Front Immunol 2016; 7:544. [PMID: 27965671 PMCID: PMC5126117 DOI: 10.3389/fimmu.2016.00544] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
Abstract
Persistent cognitive and behavioral symptoms that characterize many mental health disorders arise from impaired neuroplasticity in several key corticolimbic brain regions. Recent evidence suggests that reciprocal neuron–microglia interactions shape neuroplasticity during physiological conditions, implicating microglia in the neurobiology of mental health disorders. Neuron–microglia interactions are modulated by several molecular and cellular pathways, and dysregulation of these pathways often have neurobiological consequences, including aberrant neuronal responses and microglia activation. Impaired neuron-microglia interactions are implicated in mental health disorders because rodent stress models lead to concomitant neuronal dystrophy and alterations in microglia morphology and function. In this context, functional changes in microglia may be indicative of an immune state termed parainflammation in which tissue-resident macrophages (i.e., microglia) respond to malfunctioning cells by initiating modest inflammation in an attempt to restore homeostasis. Thus, aberrant neuronal activity and release of damage-associated signals during repeated stress exposure may contribute to functional changes in microglia and resultant parainflammation. Furthermore, accumulating evidence shows that uncoupling neuron–microglia interactions may contribute to altered neuroplasticity and associated anxiety- or depressive-like behaviors. Additional work shows that microglia have varied phenotypes in specific brain regions, which may underlie divergent neuroplasticity observed in corticolimbic structures following stress exposure. These findings indicate that neuron–microglia interactions are critical mediators of the interface between adaptive, homeostatic neuronal function and the neurobiology of mental health disorders.
Collapse
Affiliation(s)
- Eric S Wohleb
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
139
|
Abstract
Historically, the brain has been considered an immune-privileged organ separated from the peripheral immune system by the blood-brain barrier. However, immune responses do occur in the brain in neurological conditions in which the integrity of the blood-brain barrier is compromised, exposing the brain to peripheral antigens and endogenous danger signals. While most of the associated pathological processes occur in the central nervous system, it is now clear that peripheral immune cells, especially mononuclear phagocytes, that infiltrate into the injury site play a key role in modulating the progression of primary brain injury development. As inflammation is a necessary and critical component for the subsequent injury resolution process, understanding the contribution of mononuclear phagocytes on the regulation of inflammatory responses may provide novel approaches for potential therapies. Furthermore, predisposed comorbid conditions at the time of stroke cause the alteration of stroke-induced immune and inflammatory responses and subsequently influence stroke outcome. In this review, we summarize a role for microglia and monocytes/macrophages in acute ischemic stroke in the context of normal and metabolically compromised conditions.
Collapse
Affiliation(s)
- Eunhee Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA
| | - Sunghee Cho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA.
| |
Collapse
|
140
|
Cabrera-Pastor A, Hernandez-Rabaza V, Taoro-Gonzalez L, Balzano T, Llansola M, Felipo V. In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats. Brain Behav Immun 2016; 57:360-370. [PMID: 27189036 DOI: 10.1016/j.bbi.2016.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | | | - Lucas Taoro-Gonzalez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain.
| |
Collapse
|
141
|
Bauer PM, Zalis MC, Abdshill H, Deierborg T, Johansson F, Englund-Johansson U. Inflamed In Vitro Retina: Cytotoxic Neuroinflammation and Galectin-3 Expression. PLoS One 2016; 11:e0161723. [PMID: 27612287 PMCID: PMC5017668 DOI: 10.1371/journal.pone.0161723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
Background Disease progression in retinal neurodegeneration is strongly correlated to immune cell activation, which may have either a neuroprotective or neurotoxic effect. Increased knowledge about the immune response profile and retinal neurodegeneration may lead to candidate targets for treatments. Therefore, we have used the explanted retina as a model to explore the immune response and expression of the immune modulator galectin-3 (Gal-3), induced by the cultivation per se and after additional immune stimulation with lipopolysaccharide (LPS), and how this correlates with retinal neurotoxicity. Methods Post-natal mouse retinas were cultured in a defined medium. One group was stimulated with LPS (100 ng/ml, 24 h). Retinal architecture, apoptotic cell death, and micro- and macroglial activity were studied at the time of cultivation (0 days in vitro (DIV)) and at 3, 4 and 7 DIV using morphological staining, biochemical- and immunohistochemical techniques. Results Our results show that sustained activation of macro- and microglia, characterized by no detectable cytokine release and limited expression of Gal-3, is not further inducing apoptosis additional to the axotomy-induced apoptosis in innermost nuclear layer. An elevated immune response was detected after LPS stimulation, as demonstrated primarily by release of immune mediators (i.e. interleukin 2 (IL-2), IL-6, KC/GRO (also known as CLCX1) and tumour necrosis factor-α (TNF-α)), increased numbers of microglia displaying morphologies of late activation stages as well as Gal-3 expression. This was accompanied with increased apoptosis in the two additional nuclear layers, and damage to retinal gross architecture. Conclusion We demonstrate that an immune response characterized by sustained and increased release of cytokines, along with an increase in Gal-3 expression, is accompanied by significant increased neurotoxicity in the explanted retina. Further investigations using the current setting may lead to increased understanding on the mechanisms involved in neuronal loss in retinal neurodegenerations.
Collapse
Affiliation(s)
- Patrik Maximilian Bauer
- Dept. of Biology, Sec. Functional Zoology, Lund University, Lund, Sweden
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Marina Castro Zalis
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Hodan Abdshill
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Dept. Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Fredrik Johansson
- Dept. of Biology, Sec. Functional Zoology, Lund University, Lund, Sweden
| | | |
Collapse
|
142
|
Gouweleeuw L, Hovens IB, Liu H, Naudé PJ, Schoemaker RG. Differences in the association between behavior and neutrophil gelatinase-associated lipocalin in male and female rats after coronary artery ligation. Physiol Behav 2016; 163:7-16. [DOI: 10.1016/j.physbeh.2016.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2015] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 01/06/2023]
|
143
|
Macht VA. Neuro-immune interactions across development: A look at glutamate in the prefrontal cortex. Neurosci Biobehav Rev 2016; 71:267-280. [PMID: 27593444 DOI: 10.1016/j.neubiorev.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2015] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Although the primary role for the immune system is to respond to pathogens, more recently, the immune system has been demonstrated to have a critical role in signaling developmental events. Of particular interest for this review is how immunocompetent microglia and astrocytes interact with glutamatergic systems to influence the development of neural circuits in the prefrontal cortex (PFC). Microglia are the resident macrophages of the brain, and astrocytes mediate both glutamatergic uptake and coordinate with microglia to respond to the general excitatory state of the brain. Cross-talk between microglia, astrocytes, and glutamatergic neurons forms a quad-partite synapse, and this review argues that interactions within this synapse have critical implications for the maturation of PFC-dependent cognitive function. Similarly, understanding developmental shifts in immune signaling may help elucidate variations in sensitivities to developmental disruptions.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina, 1512 Pendleton St., Department of Psychology, Columbia, SC 29208, United States.
| |
Collapse
|
144
|
Orsini F, Chrysanthou E, Dudler T, Cummings WJ, Takahashi M, Fujita T, Demopulos G, De Simoni MG, Schwaeble W. Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J Neuroinflammation 2016; 13:213. [PMID: 27577570 PMCID: PMC5006610 DOI: 10.1186/s12974-016-0684-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Complement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease. This work defines the contributions of each of the three LP-associated enzymes-mannan-binding lectin-associated serine protease (MASP)-1, MASP-2, and MASP-3-to ischemic brain injury in experimental mouse models of stroke. METHODS Focal cerebral ischemia was induced in wild-type (WT) mice or mice deficient for defined complement components by transient middle cerebral artery occlusion (tMCAO) or three-vessel occlusion (3VO). The inhibitory MASP-2 antibody was administered systemically 7 and 3.5 days before and at reperfusion in WT mice in order to assure an effective MASP-2 inhibition throughout the study. Forty-eight hours after ischemia, neurological deficits and infarct volumes were assessed. C3 deposition and microglia/macrophage morphology were detected by immunohistochemical, immunofluorescence, and confocal analyses. RESULTS MASP-2-deficient mice (MASP-2(-/-)) and WT mice treated with an antibody that blocks MASP-2 activity had significantly reduced neurological deficits and histopathological damage after transient ischemia and reperfusion compared to WT or control-treated mice. Surprisingly, MASP-1/3(-/-) mice were not protected, while mice deficient in factor B (fB(-/-)) showed reduced neurological deficits compared to WT mice. Consistent with behavioral and histological data, MASP-2(-/-) had attenuated C3 deposition and presented with a significantly higher proportion of ramified, surveying microglia in contrast to the hypertrophic pro-inflammatory microglia/macrophage phenotype seen in the ischemic brain tissue of WT mice. CONCLUSIONS This work demonstrates the essential role of the low-abundant MASP-2 in the mediation of cerebral ischemia-reperfusion injury and demonstrates that targeting MASP-2 by an inhibitory therapeutic antibody markedly improved the neurological and histopathological outcome after focal cerebral ischemia. These results contribute to identifying the key lectin pathway component driving brain tissue injury following cerebral ischemia and call for a revision of the presently widely accepted view that MASP-1 is an essential activator of the lectin pathway effector component MASP-2.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy
| | - Elvina Chrysanthou
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.,Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.,MRC Toxicology Unit, Leicester, LE1 9HN, UK
| | - Thomas Dudler
- OMEROS Corporation, 201 Elliott Ave W, Seattle, WA, 98119, USA
| | | | - Minoru Takahashi
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | | | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.
| | - Wilhelm Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
145
|
Scheffold A, Holtman IR, Dieni S, Brouwer N, Katz SF, Jebaraj BMC, Kahle PJ, Hengerer B, Lechel A, Stilgenbauer S, Boddeke EWGM, Eggen BJL, Rudolph KL, Biber K. Telomere shortening leads to an acceleration of synucleinopathy and impaired microglia response in a genetic mouse model. Acta Neuropathol Commun 2016; 4:87. [PMID: 27550225 PMCID: PMC4994259 DOI: 10.1186/s40478-016-0364-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative disorders of the elderly and ageing hence described to be a major risk factor. Telomere shortening as a result of the inability to fully replicate the ends of linear chromosomes is one of the hallmarks of ageing. The role of telomere dysfunction in neurological diseases and the ageing brain is not clarified and there is an ongoing discussion whether telomere shortening is linked to Parkinson’s disease. Here we studied a mouse model of Parkinson’s disease (Thy-1 [A30P] α-synuclein transgenic mouse model) in the background of telomere shortening (Terc knockout mouse model). α-synuclein transgenic mice with short telomeres (αSYNtg/tg G3Terc-/-) developed an accelerated disease with significantly decreased survival. This accelerated phenotype of mice with short telomeres was characterized by a declined motor performance and an increased formation of α-synuclein aggregates. Immunohistochemical analysis and mRNA expression studies revealed that the disease end-stage brain stem microglia showed an impaired response in αSYNtg/tg G3Terc-/- microglia animals. These results provide the first experimental data that telomere shortening accelerates α-synuclein pathology that is linked to limited microglia function in the brainstem.
Collapse
|
146
|
Abstract
UNLABELLED Microglia, the principal resident immune cell of the CNS, exert significant influence on neurons during development and in pathological situations. However, if and how microglia contribute to normal neuronal function in the mature uninjured CNS is not well understood. We used the model of the adult mouse retina, a part of the CNS amenable to structural and functional analysis, to investigate the constitutive role of microglia by depleting microglia from the retina in a sustained manner using genetic methods. We discovered that microglia are not acutely required for the maintenance of adult retinal architecture, the survival of retinal neurons, or the laminar organization of their dendritic and axonal compartments. However, sustained microglial depletion results in the degeneration of photoreceptor synapses in the outer plexiform layer, leading to a progressive functional deterioration in retinal light responses. Our results demonstrate that microglia are constitutively required for the maintenance of synaptic structure in the adult retina and for synaptic transmission underlying normal visual function. Our findings on constitutive microglial function are relevant in understanding microglial contributions to pathology and in the consideration of therapeutic interventions that reduce or perturb constitutive microglial function. SIGNIFICANCE STATEMENT Microglia, the principal resident immune cell population in the CNS, has been implicated in diseases in the brain and retina. However, how they contribute to the everyday function of the CNS is unclear. Using the model of the adult mouse retina, we examined the constitutive role of microglia by depleting microglia from the retina. We found that in the absence of microglia, retinal neurons did not undergo overt cell death or become structurally disorganized in their processes. However, connections between neurons called synapses begin to break down, leading to a decreased ability of the retina to transmit light responses. Our results indicate that retinal microglia contribute constitutively to the maintenance of synapses underlying healthy vision.
Collapse
|
147
|
Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, Biber K. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun 2016; 55:126-137. [PMID: 26576722 DOI: 10.1016/j.bbi.2015.11.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/13/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Microglia are suggested to be involved in several neuropsychiatric diseases. Indeed changes in microglia morphology have been reported in different mouse models of depression. A crucial regulatory system for microglia function is the well-defined CX3C axis. Thus, we aimed to clarify the role of microglia and CX3CR1 in depressive behavior by subjecting CX3CR1-deficient mice to a particular chronic despair model (CDM) paradigm known to exhibit face validity to major depressive disorder. In wild-type mice we observed the development of chronic depressive-like behavior after 5days of repetitive swim stress. 3D-reconstructions of Iba-1-labeled microglia in the dentate molecular layer revealed that behavioral effects were associated with changes in microglia morphology towards a state of hyper-ramification. Chronic treatment with the anti-depressant venlafaxine ameliorated depression-like behavior and restored microglia morphology. In contrast, CX3CR1 deficient mice showed a clear resistance to either (i) stress-induced depressive-like behavior, (ii) changes in microglia morphology and (iii) antidepressant treatment. Our data point towards a role of hyper-ramified microglia in the etiology of chronic depression. The lack of effects in CX3CR1 deficient mice suggests that microglia hyper-ramification is controlled by neuron-microglia signaling via the CX3C axis. However, it remains to be elucidated how hyper-ramified microglia contribute to depressive-like behavior.
Collapse
Affiliation(s)
- Sabine Hellwig
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany.
| | - Simone Brioschi
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Sandra Dieni
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Lars Frings
- Centre of Geriatrics and Gerontology, University Hospital Freiburg, Freiburg, Germany; Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Annette Masuch
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Blank
- Department of Neuropathology, University Hospital Freiburg, Freiburg, Germany
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany; Department for Neuroscience, University Medical Center Groningen, University of Groningen, Netherlands.
| |
Collapse
|
148
|
Microglial Contact Prevents Excess Depolarization and Rescues Neurons from Excitotoxicity. eNeuro 2016; 3:eN-NWR-0004-16. [PMID: 27390772 PMCID: PMC4916329 DOI: 10.1523/eneuro.0004-16.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
Microglia survey and directly contact neurons in both healthy and damaged brain, but the mechanisms and functional consequences of these contacts are not yet fully elucidated. Combining two-photon imaging and patch clamping, we have developed an acute experimental model for studying the role of microglia in CNS excitotoxicity induced by neuronal hyperactivity. Our model allows us to simultaneously examine the effects of repetitive supramaximal stimulation on axonal morphology, neuronal membrane potential, and microglial migration, using cortical brain slices from Iba-1 eGFP mice. We demonstrate that microglia exert an acute and highly localized neuroprotective action under conditions of neuronal hyperactivity. Evoking repetitive action potentials in individual layer 2/3 pyramidal neurons elicited swelling of axons, but not dendrites, which was accompanied by a large, sustained depolarization of soma membrane potential. Microglial processes migrated to these swollen axons in a mechanism involving both ATP and glutamate release via volume-activated anion channels. This migration was followed by intensive microglial wrapping of affected axons and, in some cases, the removal of axonal debris that induced a rapid soma membrane repolarization back to resting potentials. When the microglial migration was pharmacologically blocked, the activity-induced depolarization continued until cell death ensued, demonstrating that the microglia–axon contact served to prevent pathological depolarization of the soma and maintain neuronal viability. This is a novel aspect of microglia surveillance: detecting, wrapping, and rescuing neuronal soma from damage due to excessive activity.
Collapse
|
149
|
Bhandare AM, Kapoor K, Farnham MM, Pilowsky PM. Microglia PACAP and glutamate: Friends or foes in seizure-induced autonomic dysfunction and SUDEP? Respir Physiol Neurobiol 2016; 226:39-50. [DOI: 10.1016/j.resp.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
|
150
|
Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, Gómez-Nicola D, Domercq M, Pérez-Samartín A, Sánchez-Zafra V, Paris I, Valero J, Savage JC, Hui CW, Tremblay MÈ, Deudero JJP, Brewster AL, Anderson AE, Zaldumbide L, Galbarriatu L, Marinas A, Vivanco MDM, Matute C, Maletic-Savatic M, Encinas JM, Sierra A. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biol 2016; 14:e1002466. [PMID: 27228556 PMCID: PMC4881984 DOI: 10.1371/journal.pbio.1002466] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2016] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders. Phagocytosis by microglia is tightly coupled to apoptosis, swiftly removing apoptotic cells and actively maintaining tissue homeostasis, but the neuronal hyperactivity associated with epilepsy disrupts the ATP gradients that drive phagocytosis, leading to the accumulation of apoptotic cells and inflammation. Phagocytosis, the engulfment and digestion of cellular debris, is at the core of the regenerative response of the damaged tissue, because it prevents the spillover of toxic intracellular contents and is actively anti-inflammatory. In the brain, the professional phagocytes are microglia, whose dynamic processes rapidly engulf and degrade cells undergoing apoptosis—programmed cell death—in physiological conditions. Thus, microglia hold the key to brain regeneration, but their efficiency as phagocytes in the diseased brain is only presumed. Here, we have discovered a generalized response of microglia to apoptotic challenge induced by excitotoxicity and inflammation, in which they boost their phagocytic efficiency to account for the increase in apoptosis. To our surprise, this apoptosis/microglial phagocytosis coupling was lost in the hippocampus from human and experimental mesial temporal lobe epilepsy (MTLE), a major neurodegenerative disorder characterized by excitotoxicity, inflammation, and seizures. This uncoupling was due to widespread ATP release during neuronal hyperactivity, which “blinded” microglia to the ATP microgradients released by apoptotic cells as “find-me” signals. The impairment of phagocytosis led to the accumulation of apoptotic cells and the build-up of a detrimental inflammatory reaction. Our data advocates for systematic assessment of the efficiency of microglial phagocytosis in brain disorders.
Collapse
Affiliation(s)
- Oihane Abiega
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Sol Beccari
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Irune Diaz-Aparicio
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | | | - Sophie Layé
- Université Bordeaux Segalen, Bordeaux, France
| | | | - Diego Gómez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Víctor Sánchez-Zafra
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Julie C. Savage
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Chin-Wai Hui
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Marie-Ève Tremblay
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Juan J. P. Deudero
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Amy L. Brewster
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Anne E. Anderson
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | | | | | | | | | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | | | - Juan M. Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|