101
|
Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo ID, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Hübner H, Hunter DJ, Jernström H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PKE, Mannermaa A, McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O’Brien KM, Offit K, Oldehinkel AJ, Ostrowski SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SFA, Gudnason V, Hayward C, Kolčić I, Kraft P, Lawlor DA, Martin NG, Nøhr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, Snieder H, Sovio U, Spector TD, Stöckl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, Ulivi S, Völzke H, Wareham NJ, Widen E, Wilson JF, Pharoah PDP, Li L, Easton DF, Njølstad P, Sulem P, Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JRB, Ong KK. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.14.23291322. [PMID: 37503126 PMCID: PMC10371120 DOI: 10.1101/2023.06.14.23291322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, NO-0213, Oslo, Norway
| | - Edson M de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Andrea Messina
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexander S Busch
- Department of General Pediatrics, University of Münster, Münster, Germany
- Deptartment of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Federico Santon
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yassine Zouaghi
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirik Bratland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Raina Jia
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Margie Riggan
- Department of Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Jonath P Bradfield
- Quantinuum Research, Wayne, PA, USA
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lude H Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgia Girotto
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Chunyan He
- Department of Epidemiology and Biostatistics, Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Departments of Medical Oncology and Hematology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Institute of Health Sciences, P.O.Box 5000, FI-90014 University of Oulu, Finland
- Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029 OYS, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Kathryn L Lunetta
- Boston University School of Public Health, Department of Biostatistics. Boston, Massachusetts 02118, USA
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation Trust, London, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Augsburg, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Susan M Ring
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
| | - Gonneke Willemsen
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Marek Zygmunt
- Clinic of Gynaecology and Obstetrics, University Medicine Greifswald, Germany
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital Toronto, Ontario, Canada
- Department of Molecular Genetics University of Toronto Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute University of California Irvine Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center Medical College of Wisconsin Milwaukee, WI, USA
| | - Catriona LK Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Amy Berrington
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Federico Canzian
- Genomic Epidemiology Group German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, PA, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Liana Ferreli
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team “Exposome and Heredity”, CESP, Gustave Roussy INSERM, University Paris-Saclay, UVSQ Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology at the University of Melbourne and The Royal Women’s Hospital, Victoria, Australia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
| | - Jouke-Jan Hottenga
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health School of Public Health, Boston, Massachusetts 02115, USA
| | - Hanna Hübner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - ABCTB Investigators
- Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine Stanford, CA, USA
- Department of Medicine, Division of Oncology Stanford Cancer Institute, Stanford University School of Medicine Stanford, CA, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, & Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie M O’Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan Kettering Cancer Center New York, NY, USA
- Clinical Genetics Service, Department of Medicine Memorial Sloan Kettering Cancer Center New York, NY, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet - University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of health and medical sciences, University of Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Pianigiani
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov” MASA Skopje Republic of North Macedonia
| | - Anneli Pouta
- National Institute for Health and Welfare, Finland
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion, Faculty of Medicine, Haifa, Israel
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, NC, USA
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Meir Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia Perth, Western Australia, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Population Health Sciences Weill Cornell Medicine New York, NY, USA
| | - Lauren R Teras
- Department of Population Science American Cancer Society Atlanta, GA, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology Mayo Clinic Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine Nashville, TN, USA
| | - Ko W van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam; Amsterdam Public Health (APH) research institute, The Netherlands
- Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan FA Grant
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ellen A Nøhr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics & Gynecology, Odense University Hospital, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales 2308, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales 2305, Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Doris Stöckl
- Gesundheitsamt Fürstenfeldbruck, Regierung von Oberbayern, Fürstenfeldbruck, Germany
| | - Cathie Sudlow
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh
| | - Nic J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health – IRCCS ‘‘Burlo Garofolo”, Trieste, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | | | | | | | | | | | | | - Paul DP Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Pål Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, NO-5021, Bergen, Norway
| | | | - Joanne M Murabito
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
- Boston University Chobanian & Avedisian School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA 02118, USA
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- MRC Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Nelly Pitteloud
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - John RB Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
102
|
Yifu P. Evidence for causal effects of polycystic ovary syndrome on oxidative stress: a two-sample mendelian randomisation study. BMC Med Genomics 2023; 16:141. [PMID: 37337194 DOI: 10.1186/s12920-023-01581-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is often accompanied by increased oxidative stress levels; however, it is still unclear whether PCOS itself is causally related to oxidative stress (OS), whether OS can increase the occurrence of PCOS, and which characteristics of PCOS increase OS levels. Therefore, this study explored the causal relationship between PCOS, its characteristics, and OS. METHODS Two-sample bidirectional and two-sample Mendelian randomisation studies were performed based on publicly available statistics from genome-wide association studies. PCOS; its characteristics, such as testosterone, low-density lipoprotein, high-density lipoprotein; and 11 major OS markers (superoxide dismutase, glutathione S-transferase, glutathione peroxidase, catalase, uric acid, zinc, tocopherol, ascorbic acid, retinol, albumin, and total bilirubin), were studied. The main analytical method used was inverse variance weighting (IVW). Pleiotropy was evaluated using the Mendelian randomisation-Egger intercept. Q and P values were used to assess heterogeneity. RESULTS There was no causal relationship between PCOS and the OS indices (all P > 0.05). There was a causal relationship between the OS index, ascorbate level, and PCOS (IVW, odds ratio: 2.112, 95% confidence interval: 1.257-3.549, P = 0.005). In addition, there was a causal relationship between testosterone, low-density lipoprotein, high-density lipoprotein, sex hormone-binding globulin, body mass index, triacylglycerol, age at menarche, and most OS indices according to the IVW method. The F statistics showed that there was no weak instrumental variable. A sensitivity analysis was performed using the leave-one-out method. No pleiotropy was observed. The results were robust, and the conclusions were reliable. CONCLUSIONS This study showed for the first time that there was no causal relationship between PCOS and OS. However, there was a causal relationship between the OS index, ascorbate level, and PCOS. It revealed that PCOS itself could not increase OS, and the increase in OS in PCOS was related to other potential factors, such as testosterone, low-density lipoprotein, high-density lipoprotein, sex hormone-binding globulin, body mass index, triacylglycerol, and age at menarche.
Collapse
Affiliation(s)
- Pu Yifu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
103
|
Liu D, Gan Y, Zhang Y, Cui L, Tao T, Zhang J, Zhao J. Fetal genome predicted birth weight and polycystic ovary syndrome in later life: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1140499. [PMID: 37351103 PMCID: PMC10282929 DOI: 10.3389/fendo.2023.1140499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Associations between lower birth weight and higher polycystic ovary syndrome (PCOS) risk have been reported in previous observational studies, however, the causal relationship is still unknown. Based on decomposed fetal and maternal genetic effects on birth weight (n = 406,063), we conducted a two-sample Mendelian randomization (MR) analysis to assess potential causal relationships between fetal genome predicted birth weight and PCOS risk using a large-scale genome-wide association study (GWAS) including 4,138 PCOS cases and 20,129 controls. To further eliminate the maternally transmitted or non-transmitted effects on fetal growth, we performed a secondary MR analysis by utilizing genetic instruments after excluding maternally transmitted or non-transmitted variants, which were identified in another birth weight GWAS (n = 63,365 parent-offspring trios from Icelandic birth register). Linkage disequilibrium score regression (LDSR) analysis was conducted to estimate the genetic correlation. We found little evidence to support a causal effect of fetal genome determined birth weight on the risk of developing PCOS (primary MR analysis, OR: 0.86, 95% CI: 0.52 to 1.43; secondary MR analysis, OR: 0.86, 95% CI: 0.54 to 1.39). In addition, a marginally significant genetic correlation (rg = -0.14, se = 0.07) between birth weight and PCOS was revealed via LDSR analysis. Our findings indicated that observed associations between birth weight and future PCOS risk are more likely to be attributable to genetic pleiotropy driven by the fetal genome rather than a causal mechanism.
Collapse
Affiliation(s)
- Dong Liu
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Cui
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Tao Tao
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Zhao
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
104
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
105
|
Juber NF, Abdulle A, AlJunaibi A, AlNaeemi A, Ahmad A, Leinberger-Jabari A, Al Dhaheri AS, AlZaabi E, Mezhal F, Al-Maskari F, Alanouti F, Alsafar H, Alkaabi J, Wareth LA, Aljaber M, Kazim M, Weitzman M, Al-Houqani M, Hag-Ali M, Oumeziane N, El-Shahawy O, Sherman S, Shah SM, Loney T, Almahmeed W, Idaghdour Y, Ali R. Association between pediatric asthma and adult polycystic ovarian syndrome (PCOS): a cross-sectional analysis of the UAE healthy future Study (UAEHFS). Front Endocrinol (Lausanne) 2023; 14:1022272. [PMID: 37293507 PMCID: PMC10246854 DOI: 10.3389/fendo.2023.1022272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Asthma and polycystic ovarian syndrome (PCOS) are linked in several possible ways. To date, there has been no study evaluating whether pediatric asthma is an independent risk factor for adult PCOS. Our study aimed to examine the association between pediatric asthma (diagnosed at 0-19 years) and adult PCOS (diagnosed at ≥20 years). We further assessed whether the aforementioned association differed in two phenotypes of adult PCOS which were diagnosed at 20-25 years (young adult PCOS), and at >25 years (older adult PCOS). We also evaluated whether the age of asthma diagnosis (0-10 vs 11-19 years) modified the association between pediatric asthma and adult PCOS. Material and methods This is a retrospective cross-sectional analysis using the United Arab Emirates Healthy Future Study (UAEHFS) collected from February 2016 to April 2022 involving 1334 Emirati females aged 18-49 years. We fitted a Poisson regression model to estimate the risk ratio (RR) and its 95% confidence interval (95% CI) to assess the association between pediatric asthma and adult PCOS adjusting for age, urbanicity at birth, and parental smoking at birth. Results After adjusting for confounding factors and comparing to non-asthmatic counterparts, we found that females with pediatric asthma had a statistically significant association with adult PCOS diagnosed at ≥20 years (RR=1.56, 95% CI: 1.02-2.41), with a stronger magnitude of the association found in the older adult PCOS phenotype diagnosed at >25 years (RR=2.06, 95% CI: 1.16-3.65). Further, we also found females reported thinner childhood body size had a two-fold to three-fold increased risk of adult PCOS diagnosed at ≥20 years in main analysis and stratified analyses by age of asthma and PCOS diagnoses (RR=2.06, 95% CI: 1.08-3.93 in main analysis; RR=2.74, 95% CI: 1.22-6.15 among those diagnosed with PCOS > 25 years; and RR=3.50, 95% CI: 1.38-8.43 among those diagnosed with asthma at 11-19 years). Conclusions Pediatric asthma was found to be an independent risk factor for adult PCOS. More targeted surveillance for those at risk of adult PCOS among pediatric asthmatics may prevent or delay PCOS in this at-risk group. Future studies with robust longitudinal designs aimed to elucidate the exact mechanism between pediatric asthma and PCOS are warranted.
Collapse
Affiliation(s)
- Nirmin F. Juber
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Abdishakur Abdulle
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Abdulla AlJunaibi
- Department of Pediatrics, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Abdulla AlNaeemi
- Department of Cardiology, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Amar Ahmad
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences; United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Eiman AlZaabi
- Department of Pathology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Fatima Mezhal
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Fatma Al-Maskari
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fatme Alanouti
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Juma Alkaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Laila Abdel Wareth
- Department of Laboratory Medicine, National Reference Laboratory, Abu Dhabi, United Arab Emirates
| | - Mai Aljaber
- Healthpoint Hospital, Abu Dhabi, United Arab Emirates
| | - Marina Kazim
- Abu Dhabi Blood Bank Services, SEHA, Abu Dhabi & Al-Ain, United Arab Emirates
| | - Michael Weitzman
- Department of Environmental Medicine, New York University of Medicine, New York, United States
| | - Mohammed Al-Houqani
- Department of Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed Hag-Ali
- Faculty of Health Sciences, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Naima Oumeziane
- Abu Dhabi Blood Bank Services, SEHA, Abu Dhabi & Al-Ain, United Arab Emirates
| | - Omar El-Shahawy
- Department of Population Health, New York University School of Medicine, New York, United States
| | - Scott Sherman
- Department of Population Health, New York University School of Medicine, New York, United States
| | - Syed M. Shah
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
106
|
Mills EG, Abbara A, Dhillo WS, Comninos AN. Effects of distinct Polycystic Ovary Syndrome phenotypes on bone health. Front Endocrinol (Lausanne) 2023; 14:1163771. [PMID: 37251667 PMCID: PMC10213631 DOI: 10.3389/fendo.2023.1163771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a highly prevalent and heterogenous endocrinopathy affecting 5-18% of women. Although its cardinal features include androgen excess, ovulatory dysfunction, and/or polycystic ovarian morphology, women often display related metabolic manifestations, including hyperinsulinaemia, insulin resistance, and obesity. Emerging data reveal that the hormonal alterations associated with PCOS also impact bone metabolism. However, inconsistent evidence exists as to whether PCOS is a bone-protective or bone-hindering disorder with an accumulating body of clinical data indicating that hyperandrogenism, hyperinsulinaemia, insulin resistance, and obesity may have a relative protective influence on bone, whereas chronic low-grade inflammation and vitamin D deficiency may adversely affect bone health. Herein, we provide a comprehensive assessment of the endocrine and metabolic manifestations associated with PCOS and their relative effects on bone metabolism. We focus principally on clinical studies in women investigating their contribution to the alterations in bone turnover markers, bone mineral density, and ultimately fracture risk in PCOS. A thorough understanding in this regard will indicate whether women with PCOS require enhanced surveillance of bone health in routine clinical practice.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
107
|
Liang X, He H, Zeng H, Wei L, Yang J, Wen Y, Fan S, Fan J. The relationship between polycystic ovary syndrome and coronary heart disease: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1172750. [PMID: 37223024 PMCID: PMC10200869 DOI: 10.3389/fendo.2023.1172750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine diseases for women of puberty and reproductive age. PCOS can affect women's health for the rest of their lives since the incidence of coronary heart disease (CHD) may increase in the perimenopausal and senile periods among PCOS women compared with non-PCOS women. Method A literature retrieval based on the Science Citation Index Expanded (SCI-E) database. All obtained records results were downloaded in plain text format for subsequent analysis. VOSviewer v1.6.10, Citespace and Microsoft Excel 2010 software were utilized for analyzing the following terms: countries, institutions, authors, journals, references and keywords. Results There were 312 articles retrieved from January 1, 2000 to February 8, 2023, and the frequency of citations was 23,587. The United States, England, and Italy contributed the majority of the records. Harvard University, the University of Athens, and Monash University were the top 3 most productive institutions with publications on the relationship between PCOS and CHD. Journal of clinical endocrinology & metabolism ranked first with the highest publications (24 records), followed by Fertility and sterility (18 records). The keywords were divided into six clusters in the overlay keywords network: (1) the correlation between CHD risk factors and PCOS women; (2) the relationship between cardiovascular disease and female reproductive system hormone secretion; (3) the interaction between CHD and metabolic syndrome; (4) the relationship between c-reactive protein and endothelial function and oxidative stress in PCOS patients; (5) the potential positive effect of metformin on reducing CHD risk factors in PCOS patients; (6) the study of serum cholesterol and body-fat distribution in patients with CHD in PCOS. Oxidative stress, genome-wide association, obesity, primary prevention, and sex difference were main hotspots in this field in recent five years according to the keyword citation burst analysis. Conclusion The article obtained the hotspots and trends and provided a reference for subsequent research on the association between PCOS and CHD. Moreover, it is hypothesized that oxidative stress and genome-wide association were frontier hotspots in studies that explore the relationship between PCOS and CHD, and prevention research may be valued in the future.
Collapse
Affiliation(s)
- Xuzhi Liang
- Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Haijing He
- Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Hao Zeng
- Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Liuyi Wei
- Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Jiahuang Yang
- Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Yuqi Wen
- Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Siqi Fan
- Department of Ophthalmology, University of Bonn, Bonn, North Rhin-Westphalia, Germany
| | - Jiangtao Fan
- Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| |
Collapse
|
108
|
Azumah R, Hummitzsch K, Anderson RA, Rodgers RJ. Genes in loci genetically associated with polycystic ovary syndrome are dynamically expressed in human fetal gonadal, metabolic and brain tissues. Front Endocrinol (Lausanne) 2023; 14:1149473. [PMID: 37223019 PMCID: PMC10201802 DOI: 10.3389/fendo.2023.1149473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, affecting around 10% of women of reproductive age, with infertility, depression or anxiety, obesity, insulin resistance and type 2 diabetes as risk factors. The cause of PCOS is not known but there is a predisposition to developing PCOS in adult life that arises during fetal or perinatal life. PCOS also has a genetic predisposition and a number of genetic loci associated with PCOS have been identified. These loci contain 25 candidate genes which are currently being studied to define the syndrome. Although the name PCOS suggests a syndrome of the ovary, PCOS has also been associated with the central nervous system and other organ systems in the body due to the wide variety of symptoms it presents. Methods Here, we examined the expression patterns of PCOS candidate genes in gonadal (ovary and testis), metabolic (heart, liver and kidney) and brain (brain and cerebellum) tissues during the first half of human fetal development and postnatally until adulthood using public RNA sequencing data. This study is an initial step for more comprehensive and translational studies to define PCOS. Results We found that the genes were dynamically expressed in the fetal tissues studied. Some genes were significantly expressed in gonadal tissues, whilst others were expressed in metabolic or brain tissues at different time points prenatally and/or postnatally. HMGA2, FBN3 and TOX3 were highly expressed during the early stages of fetal development in all tissues but least during adulthood. Interestingly, correlation between expression of HMGA2/YAP1 and RAD50/YAP1 were significant in at least 5 of the 7 fetal tissues studied. Notably, DENND1A, THADA, MAPRE1, RAB5B, ARL14EP, KRR1, NEIL2 and RAD50 were dynamically expressed in all postnatal tissues studied. Conclusions These findings suggest that these genes have tissue- or development-specific roles in multiple organs, possibly resulting in the various symptoms associated with PCOS. Thus the fetal origin of a predisposition to PCOS in adulthood could arise via the effects of PCOS candidate genes in the development of multiple organs.
Collapse
Affiliation(s)
- Rafiatu Azumah
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
109
|
Tsompanidis A, Warrier V, Baron-Cohen S. The genetics of autism and steroid-related traits in prenatal and postnatal life. Front Endocrinol (Lausanne) 2023; 14:1126036. [PMID: 37223033 PMCID: PMC10200920 DOI: 10.3389/fendo.2023.1126036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Background Autism likelihood is a largely heritable trait. Autism prevalence has a skewed sex ratio, with males being diagnosed more often than females. Steroid hormones play a mediating role in this, as indicated by studies of both prenatal biology and postnatal medical conditions in autistic men and women. It is currently unclear if the genetics of steroid regulation or production interact with the genetic liability for autism. Methods To address this, two studies were conducted using publicly available datasets, which focused respectively on rare genetic variants linked to autism and neurodevelopmental conditions (study 1) and common genetic variants (study 2) for autism. In Study 1 an enrichment analysis was conducted, between autism-related genes (SFARI database) and genes that are differentially expressed (FDR<0.1) between male and female placentas, in 1st trimester chorionic villi samples of viable pregnancies (n=39). In Study 2 summary statistics of genome wide association studies (GWAS) were used to investigate the genetic correlation between autism and bioactive testosterone, estradiol and postnatal PlGF levels, as well as steroid-related conditions such as polycystic ovaries syndrome (PCOS), age of menarche, and androgenic alopecia. Genetic correlation was calculated based on LD Score regression and results were corrected for multiple testing with FDR. Results In Study 1, there was significant enrichment of X-linked autism genes in male-biased placental genes, independently of gene length (n=5 genes, p<0.001). In Study 2, common genetic variance associated with autism did not correlate to the genetics for the postnatal levels of testosterone, estradiol or PlGF, but was associated with the genotypes associated with early age of menarche in females (b=-0.109, FDR-q=0.004) and protection from androgenic alopecia for males (b=-0.135, FDR-q=0.007). Conclusion The rare genetic variants associated with autism appear to interact with placental sex differences, while the common genetic variants associated with autism appear to be involved in the regulation of steroid-related traits. These lines of evidence indicate that the likelihood for autism is partly linked to factors mediating physiological sex differences throughout development.
Collapse
Affiliation(s)
- Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
110
|
Mathieson I, Day FR, Barban N, Tropf FC, Brazel DM, Vaez A, van Zuydam N, Bitarello BD, Gardner EJ, Akimova ET, Azad A, Bergmann S, Bielak LF, Boomsma DI, Bosak K, Brumat M, Buring JE, Cesarini D, Chasman DI, Chavarro JE, Cocca M, Concas MP, Davey Smith G, Davies G, Deary IJ, Esko T, Faul JD, Franco O, Ganna A, Gaskins AJ, Gelemanovic A, de Geus EJC, Gieger C, Girotto G, Gopinath B, Grabe HJ, Gunderson EP, Hayward C, He C, van Heemst D, Hill WD, Hoffmann ER, Homuth G, Hottenga JJ, Huang H, Hyppӧnen E, Ikram MA, Jansen R, Johannesson M, Kamali Z, Kardia SLR, Kavousi M, Kifley A, Kiiskinen T, Kraft P, Kühnel B, Langenberg C, Liew G, Lind PA, Luan J, Mägi R, Magnusson PKE, Mahajan A, Martin NG, Mbarek H, McCarthy MI, McMahon G, Medland SE, Meitinger T, Metspalu A, Mihailov E, Milani L, Missmer SA, Mitchell P, Møllegaard S, Mook-Kanamori DO, Morgan A, van der Most PJ, de Mutsert R, Nauck M, Nolte IM, Noordam R, Penninx BWJH, Peters A, Peyser PA, Polašek O, Power C, Pribisalic A, Redmond P, Rich-Edwards JW, Ridker PM, Rietveld CA, Ring SM, Rose LM, Rueedi R, Shukla V, Smith JA, Stankovic S, Stefánsson K, Stöckl D, Strauch K, Swertz MA, Teumer A, Thorleifsson G, Thorsteinsdottir U, Thurik AR, Timpson NJ, Turman C, Uitterlinden AG, Waldenberger M, Wareham NJ, Weir DR, Willemsen G, Zhao JH, Zhao W, Zhao Y, Snieder H, den Hoed M, Ong KK, Mills MC, Perry JRB. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat Hum Behav 2023; 7:790-801. [PMID: 36864135 DOI: 10.1038/s41562-023-01528-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/12/2023] [Indexed: 03/04/2023]
Abstract
Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success.
Collapse
Affiliation(s)
- Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Nicola Barban
- Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Felix C Tropf
- Nuffield College, University of Oxford, Oxford, UK
- École Nationale de la Statistique et de L'administration Économique (ENSAE), Paris, France
- Center for Research in Economics and Statistics (CREST), Paris, France
| | - David M Brazel
- Nuffield College, University of Oxford, Oxford, UK
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Natalie van Zuydam
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Bárbara D Bitarello
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Evelina T Akimova
- Nuffield College, University of Oxford, Oxford, UK
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Ajuna Azad
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, the Netherlands
| | | | - Marco Brumat
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Julie E Buring
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Cesarini
- Department of Economics, New York University, New York, NY, USA
- Research Institute for Industrial Economics, Stockholm, Sweden
- National Bureau of Economic Research, Cambridge, MA, USA
| | - Daniel I Chasman
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Oscar Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Eco J C de Geus
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Bamini Gopinath
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chunyan He
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - W David Hill
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hongyang Huang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elina Hyppӧnen
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Magnus Johannesson
- Department of Economics, Stockholm School of Economics, Stockholm, Sweden
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annette Kifley
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gerald Liew
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hamdi Mbarek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Qatar Genome Programme, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - George McMahon
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Stacey A Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Paul Mitchell
- Centre for Vision Research, Westmead Institute for Medical Research and Department of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Stine Møllegaard
- Department of Sociology, University of Copenhagen, Copenhagen, Denmark
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna Morgan
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam, the Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Chris Power
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janet W Rich-Edwards
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Cornelius A Rietveld
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Applied Economics, Erasmus School of Economics, Rotterdam, the Netherlands
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Stasa Stankovic
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Doris Stöckl
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | - A Roy Thurik
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Applied Economics, Erasmus School of Economics, Rotterdam, the Netherlands
- Montpellier Business School, Montpellier, France
| | | | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - André G Uitterlinden
- Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jing Hau Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcel den Hoed
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Melinda C Mills
- Nuffield College, University of Oxford, Oxford, UK.
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Economics, Econometrics and Finance, University of Groningen, Groningen, the Netherlands.
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
111
|
Actkins KV, Jean-Pierre G, Aldrich MC, Velez Edwards DR, Davis LK. Sex modifies the effect of genetic risk scores for polycystic ovary syndrome on metabolic phenotypes. PLoS Genet 2023; 19:e1010764. [PMID: 37256887 PMCID: PMC10259776 DOI: 10.1371/journal.pgen.1010764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 06/12/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Females with polycystic ovary syndrome (PCOS), the most common endocrine disorder in women, have an increased risk of developing cardiometabolic disorders such as insulin resistance, obesity, and type 2 diabetes (T2D). While only diagnosable in females, males with a family history of PCOS can also exhibit a poor cardiometabolic profile. Therefore, we aimed to elucidate the role of sex in the cardiometabolic comorbidities observed in PCOS by conducting bidirectional genetic risk score analyses in both sexes. We first conducted a phenome-wide association study (PheWAS) using PCOS polygenic risk scores (PCOSPRS) to identify potential pleiotropic effects of PCOSPRS across 1,380 medical conditions recorded in the Vanderbilt University Medical Center electronic health record (EHR) database, in females and males. After adjusting for age and genetic ancestry, we found that European (EUR)-ancestry males with higher PCOSPRS were significantly more likely to develop hypertensive diseases than females at the same level of genetic risk. We performed the same analysis in an African (AFR)-ancestry population, but observed no significant associations, likely due to poor trans-ancestry performance of the PRS. Based on observed significant associations in the EUR-ancestry population, we then tested whether the PRS for comorbid conditions (e.g., T2D, body mass index (BMI), hypertension, etc.) also increased the odds of a PCOS diagnosis. Only BMIPRS and T2DPRS were significantly associated with a PCOS diagnosis in EUR-ancestry females. We then further adjusted the T2DPRS for measured BMI and BMIresidual (regressed on the BMIPRS and enriched for the environmental contribution to BMI). Results demonstrated that genetically regulated BMI primarily accounted for the relationship between T2DPRS and PCOS. Overall, our findings show that the genetic architecture of PCOS has distinct sex differences in associations with genetically correlated cardiometabolic traits. It is possible that the cardiometabolic comorbidities observed in PCOS are primarily explained by their shared genetic risk factors, which can be further influenced by biological variables including sex and BMI.
Collapse
Affiliation(s)
- Ky’Era V. Actkins
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Genevieve Jean-Pierre
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Melinda C. Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Digna R. Velez Edwards
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Epidemiology Center, Institute of Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lea K. Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
112
|
Banerjee S, Cooney LG, Stanic AK. Immune Dysfunction in Polycystic Ovary Syndrome. Immunohorizons 2023; 7:323-332. [PMID: 37195871 PMCID: PMC10579973 DOI: 10.4049/immunohorizons.2200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged individuals with ovaries. It is associated with anovulation and increased risk to fertility and metabolic, cardiovascular, and psychological health. The pathophysiology of PCOS is still inadequately understood, although there is evidence of persistent low-grade inflammation, which correlates with associated visceral obesity. Elevated proinflammatory cytokine markers and altered immune cells have been reported in PCOS and raise the possibility that immune factors contribute to ovulatory dysfunction. Because normal ovulation is modulated by immune cells and cytokines in the ovarian microenvironment, the endocrine and metabolic abnormalities associated with PCOS orchestrate the accompanying adverse effects on ovulation and implantation. This review evaluates the current literature on the relationship between PCOS and immune abnormalities, with a focus on emerging research in the field.
Collapse
Affiliation(s)
- Soma Banerjee
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI
| | - Laura G. Cooney
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin–Madison
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin–Madison
| |
Collapse
|
113
|
Deshmukh H, Sathyapalan T. No causal association between anti-Mullerian hormone (AMH) levels and polycystic ovary syndrome (PCOS)-a Mendelian randomization analysis. Endocrine 2023:10.1007/s12020-023-03380-0. [PMID: 37115376 DOI: 10.1007/s12020-023-03380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Affiliation(s)
- Harshal Deshmukh
- Hull University Teaching Hospital NHS Trust, Hull, UK.
- University of Hull, Hull, UK.
| | | |
Collapse
|
114
|
Risal S, Li C, Luo Q, Fornes R, Lu H, Eriksson G, Manti M, Ohlsson C, Lindgren E, Crisosto N, Maliqueo M, Echiburú B, Recabarren S, Petermann TS, Benrick A, Brusselaers N, Qiao J, Deng Q, Stener-Victorin E. Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome. Cell Rep Med 2023; 4:101035. [PMID: 37148878 DOI: 10.1016/j.xcrm.2023.101035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/27/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
The transgenerational maternal effects of polycystic ovary syndrome (PCOS) in female progeny are being revealed. As there is evidence that a male equivalent of PCOS may exists, we ask whether sons born to mothers with PCOS (PCOS-sons) transmit reproductive and metabolic phenotypes to their male progeny. Here, in a register-based cohort and a clinical case-control study, we find that PCOS-sons are more often obese and dyslipidemic. Our prenatal androgenized PCOS-like mouse model with or without diet-induced obesity confirmed that reproductive and metabolic dysfunctions in first-generation (F1) male offspring are passed down to F3. Sequencing of F1-F3 sperm reveals distinct differentially expressed (DE) small non-coding RNAs (sncRNAs) across generations in each lineage. Notably, common targets between transgenerational DEsncRNAs in mouse sperm and in PCOS-sons serum indicate similar effects of maternal hyperandrogenism, strengthening the translational relevance and highlighting a previously underappreciated risk of transmission of reproductive and metabolic dysfunction via the male germline.
Collapse
Affiliation(s)
- Sanjiv Risal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qing Luo
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Romina Fornes
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gustaw Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Manti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Crisosto
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile; Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile
| | - Barbara Echiburú
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile
| | - Sergio Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - Teresa Sir Petermann
- Endocrinology and Metabolism Laboratory, West Division, School of Medicine, University of Chile, Carlos Schachtebeck 299, Interior Quinta Normal, Santiago, Chile
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Nele Brusselaers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Global Health Institute, Antwerp University, Antwerp, Belgium
| | - Jie Qiao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
115
|
Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life (Basel) 2023; 13:life13041056. [PMID: 37109585 PMCID: PMC10145572 DOI: 10.3390/life13041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is increasingly being characterized as an evolutionary mismatch disorder that presents with a complex mixture of metabolic and endocrine symptoms. The Evolutionary Model proposes that PCOS arises from a collection of inherited polymorphisms that have been consistently demonstrated in a variety of ethnic groups and races. In utero developmental programming of susceptible genomic variants are thought to predispose the offspring to develop PCOS. Postnatal exposure to lifestyle and environmental risk factors results in epigenetic activation of developmentally programmed genes and disturbance of the hallmarks of health. The resulting pathophysiological changes represent the consequences of poor-quality diet, sedentary behaviour, endocrine disrupting chemicals, stress, circadian disruption, and other lifestyle factors. Emerging evidence suggests that lifestyle-induced gastrointestinal dysbiosis plays a central role in the pathogenesis of PCOS. Lifestyle and environmental exposures initiate changes that result in disturbance of the gastrointestinal microbiome (dysbiosis), immune dysregulation (chronic inflammation), altered metabolism (insulin resistance), endocrine and reproductive imbalance (hyperandrogenism), and central nervous system dysfunction (neuroendocrine and autonomic nervous system). PCOS can be a progressive metabolic condition that leads to obesity, gestational diabetes, type two diabetes, metabolic-associated fatty liver disease, metabolic syndrome, cardiovascular disease, and cancer. This review explores the mechanisms that underpin the evolutionary mismatch between ancient survival pathways and contemporary lifestyle factors involved in the pathogenesis and pathophysiology of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
116
|
Escobar-Morreale HF, Martínez-García MÁ, Insenser M, Cañellas N, Correig X, Luque-Ramírez M. Serum metabolomics profiling by proton nuclear magnetic resonance spectroscopy reveals sexual dimorphism and masculinization of intermediate metabolism in women with polycystic ovary syndrome (PCOS). Biol Sex Differ 2023; 14:21. [PMID: 37076926 PMCID: PMC10114375 DOI: 10.1186/s13293-023-00507-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) is associated with insulin resistance, obesity and cardiometabolic comorbidities. We here challenged the hypothesis, using state-of-the art proton nuclear magnetic resonance spectroscopy metabolomics profiling, that androgen excess in women induces also a certain masculinization of intermediate metabolism that is modulated by obesity. METHODS Participants were 53 Caucasian young adults, including 17 women with classic PCOS consisting of hyperandrogenism and ovulatory dysfunction, 17 non-hyperandrogenic women presenting with regular menses, and 19 healthy men, selected in order to be similar in terms of age and body mass index (BMI). Half of the subjects had obesity defined by a body mass index ≥ 30 kg/m2. Subjects maintained the same diet unrestricted in carbohydrates for 3 days before sampling and maintained their lifestyle and exercise patterns prior and during the study. Plasma samples were submitted to proton nuclear magnetic resonance spectroscopy metabolomics profiling. RESULTS Obesity associated a metabolomics profile mainly characterized by increased branched chain and aromatic aminoacids. Regardless of obesity, this unfavorable profile also characterized men as compared with control women, and was shared by women with PCOS. Notably, the negative impact of obesity on metabolomics profile was restricted to women, with obese men showing no further deterioration when compared with their non-obese counterparts. CONCLUSIONS Serum metabolomics profiling by proton nuclear magnetic resonance spectroscopy reveals sexual dimorphism, and masculinization of intermediate metabolism in women with PCOS, further suggesting a role for sex and sex hormones in the regulation of intermediate metabolism.
Collapse
Affiliation(s)
- Héctor F Escobar-Morreale
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain.
| | - M Ángeles Martínez-García
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - María Insenser
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| | - Nicolau Cañellas
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, University Rovira i Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Institut d'Investigació Sanitària Pere Virgili, University Rovira i Virgili, Tarragona, Spain
| | - Manuel Luque-Ramírez
- Diabetes Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar km 9.1, 28034, Madrid, Spain
| |
Collapse
|
117
|
Pesonen E, Nurkkala M, Niemelä M, Morin-Papunen L, Tapanainen JS, Jämsä T, Korpelainen R, Ollila MM, Piltonen TT. Polycystic ovary syndrome is associated with weight-loss attempts and perception of overweight independent of BMI: a population-based cohort study. Obesity (Silver Spring) 2023; 31:1108-1120. [PMID: 36855820 DOI: 10.1002/oby.23681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 03/02/2023]
Abstract
OBJECTIVE Up to 70% of women with polycystic ovary syndrome (PCOS) have pre-obesity or obesity. The aim of this study was to investigate whether women with PCOS have more weight-loss attempts than women without PCOS, regardless of BMI. Moreover, women's weight perceptions in relation to previous weight-loss attempts were evaluated. METHODS A population-based birth cohort study included women with (n = 278) and without PCOS (control individuals, n = 1560) who were examined at ages 31 and 46 years with questionnaires and clinical examinations. RESULTS Women with PCOS had more weight-loss attempts compared with control individuals at age 31 (47% vs. 34%, p < 0.001) and 46 years (63% vs. 47%, p < 0.001). At age 46 years, PCOS was associated with multiple weight-loss attempts in the adjusted model (odds ratio: 1.43 [95% CI: 1.00-2.03], p = 0.05). The perception of having overweight was more prevalent in those with PCOS, even among participants with normal weight, at age 31 (PCOS 47% vs. control 34%, p = 0.014) and 46 years (PCOS 60% vs. control 39%, p = 0.001). CONCLUSIONS Women with PCOS were more likely to have experienced multiple weight-loss attempts and a perception of having overweight compared with control individuals, regardless of obesity status.
Collapse
Affiliation(s)
- Emilia Pesonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Marjukka Nurkkala
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Maisa Niemelä
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Laure Morin-Papunen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Jämsä
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Raija Korpelainen
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Meri-Maija Ollila
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
118
|
Solé-Navais P, Flatley C, Steinthorsdottir V, Vaudel M, Juodakis J, Chen J, Laisk T, LaBella AL, Westergaard D, Bacelis J, Brumpton B, Skotte L, Borges MC, Helgeland Ø, Mahajan A, Wielscher M, Lin F, Briggs C, Wang CA, Moen GH, Beaumont RN, Bradfield JP, Abraham A, Thorleifsson G, Gabrielsen ME, Ostrowski SR, Modzelewska D, Nohr EA, Hypponen E, Srivastava A, Talbot O, Allard C, Williams SM, Menon R, Shields BM, Sveinbjornsson G, Xu H, Melbye M, Lowe W, Bouchard L, Oken E, Pedersen OB, Gudbjartsson DF, Erikstrup C, Sørensen E, Lie RT, Teramo K, Hallman M, Juliusdottir T, Hakonarson H, Ullum H, Hattersley AT, Sletner L, Merialdi M, Rifas-Shiman SL, Steingrimsdottir T, Scholtens D, Power C, West J, Nyegaard M, Capra JA, Skogholt AH, Magnus P, Andreassen OA, Thorsteinsdottir U, Grant SFA, Qvigstad E, Pennell CE, Hivert MF, Hayes GM, Jarvelin MR, McCarthy MI, Lawlor DA, Nielsen HS, Mägi R, Rokas A, Hveem K, Stefansson K, Feenstra B, Njolstad P, Muglia LJ, Freathy RM, Johansson S, Zhang G, Jacobsson B. Genetic effects on the timing of parturition and links to fetal birth weight. Nat Genet 2023; 55:559-567. [PMID: 37012456 PMCID: PMC10101852 DOI: 10.1038/s41588-023-01343-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023]
Abstract
The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n = 195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n = 136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.
Collapse
Affiliation(s)
- Pol Solé-Navais
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden.
| | - Christopher Flatley
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | | | - Marc Vaudel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Julius Juodakis
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Jonas Bacelis
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Maria C Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Øyvind Helgeland
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Frederick Lin
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine Briggs
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Gunn-Helen Moen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Australia
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Abin Abraham
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dominika Modzelewska
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Elina Hypponen
- Australian Centre for Precision Health, Uni Clinical & Health Sciences, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Amit Srivastava
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Octavious Talbot
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine Allard
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynaecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Huan Xu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mads Melbye
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - William Lowe
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Saguenay, Québec, Canada
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ole B Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Aarhus, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Kari Teramo
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | | | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Mario Merialdi
- Maternal Newborn Health Innovations, PBC, Geneva, Switzerland
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Denise Scholtens
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christine Power
- Population, Policy, Practice. Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jane West
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, USA
| | - Anne H Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Struan F A Grant
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey M Hayes
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Linnanmaa, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Henriette S Nielsen
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals Rigshospitalet & Hvidovre Hospital, Hvidovre, Denmark
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Pål Njolstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Louis J Muglia
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel M Freathy
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ge Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden.
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
119
|
Henne SK, Nöthen MM, Heilmann-Heimbach S. Male-pattern hair loss: Comprehensive identification of the associated genes as a basis for understanding pathophysiology. MED GENET-BERLIN 2023; 35:3-14. [PMID: 38835416 PMCID: PMC10842561 DOI: 10.1515/medgen-2023-2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Male-pattern hair loss (MPHL) is a highly heritable and prevalent condition that is characterized by progressive hair loss from the frontotemporal and vertex scalp. This androgen-dependent hair loss may commence during puberty, and up to 80 % of European men experience some degree of MPHL during their lifetime. Current treatment options for MPHL have limited efficacy, and improved understanding of the underlying biological causes is required to facilitate novel therapeutic approaches. To date, molecular genetic studies have identified 389 associated genomic regions, have implicated numerous genes in these regions, and suggested pathways that are likely to contribute to key pathophysiological mechanisms in MPHL. This review provides an overview of the current status of MPHL genetic research. We discuss the most significant achievements, current challenges, and anticipated developments in the field, as well as their potential to advance our understanding of hair (loss) biology, and to improve hair loss prediction and treatment.
Collapse
Affiliation(s)
- Sabrina K. Henne
- University Hospital of Bonn & University of BonnInstitute of Human GeneticsBonnGermany
| | - Markus M. Nöthen
- University Hospital of Bonn & University of BonnInstitute of Human GeneticsBonnGermany
| | | |
Collapse
|
120
|
Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R, Huerta-Chagoya A, Rayner NW, Bocher O, Arruda ALDSV, Sonehara K, Namba S, Lee SSK, Preuss MH, Petty LE, Schroeder P, Vanderwerff B, Kals M, Bragg F, Lin K, Guo X, Zhang W, Yao J, Kim YJ, Graff M, Takeuchi F, Nano J, Lamri A, Nakatochi M, Moon S, Scott RA, Cook JP, Lee JJ, Pan I, Taliun D, Parra EJ, Chai JF, Bielak LF, Tabara Y, Hai Y, Thorleifsson G, Grarup N, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Kwak SH, Long J, Sun M, Tong L, Chen WM, Nongmaithem SS, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen CH, Raffield LM, Prins BP, Nicolas A, Yanek LR, Chen G, Brody JA, Kabagambe E, An P, Xiang AH, Choi HS, Cade BE, Tan J, Broadaway KA, Williamson A, Kamali Z, Cui J, Adair LS, Adeyemo A, Aguilar-Salinas CA, Ahluwalia TS, Anand SS, Bertoni A, Bork-Jensen J, Brandslund I, Buchanan TA, Burant CF, Butterworth AS, Canouil M, Chan JCN, Chang LC, Chee ML, Chen J, Chen SH, Chen YT, Chen Z, Chuang LM, Cushman M, Danesh J, Das SK, de Silva HJ, Dedoussis G, Dimitrov L, Doumatey AP, Du S, Duan Q, Eckardt KU, Emery LS, Evans DS, Evans MK, Fischer K, Floyd JS, Ford I, Franco OH, Frayling TM, Freedman BI, Genter P, Gerstein HC, Giedraitis V, González-Villalpando C, González-Villalpando ME, Gordon-Larsen P, Gross M, Guare LA, Hackinger S, Han S, Hattersley AT, Herder C, Horikoshi M, Howard AG, Hsueh W, Huang M, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Ikram MA, Ingelsson M, Islam MT, Isono M, Jang HM, Jasmine F, Jiang G, Jonas JB, Jørgensen T, Kandeel FR, Kasturiratne A, Katsuya T, Kaur V, Kawaguchi T, Keaton JM, Kho AN, Khor CC, Kibriya MG, Kim DH, Kronenberg F, Kuusisto J, Läll K, Lange LA, Lee KM, Lee MS, Lee NR, Leong A, Li L, Li Y, Li-Gao R, Lithgart S, Lindgren CM, Linneberg A, Liu CT, Liu J, Locke AE, Louie T, Luan J, Luk AO, Luo X, Lv J, Lynch JA, Lyssenko V, Maeda S, Mamakou V, Mansuri SR, Matsuda K, Meitinger T, Metspalu A, Mo H, Morris AD, Nadler JL, Nalls MA, Nayak U, Ntalla I, Okada Y, Orozco L, Patel SR, Patil S, Pei P, Pereira MA, Peters A, Pirie FJ, Polikowsky HG, Porneala B, Prasad G, Rasmussen-Torvik LJ, Reiner AP, Roden M, Rohde R, Roll K, Sabanayagam C, Sandow K, Sankareswaran A, Sattar N, Schönherr S, Shahriar M, Shen B, Shi J, Shin DM, Shojima N, Smith JA, So WY, Stančáková A, Steinthorsdottir V, Stilp AM, Strauch K, Taylor KD, Thorand B, Thorsteinsdottir U, Tomlinson B, Tran TC, Tsai FJ, Tuomilehto J, Tusie-Luna T, Udler MS, Valladares-Salgado A, van Dam RM, van Klinken JB, Varma R, Wacher-Rodarte N, Wheeler E, Wickremasinghe AR, van Dijk KW, Witte DR, Yajnik CS, Yamamoto K, Yamamoto K, Yoon K, Yu C, Yuan JM, Yusuf S, Zawistowski M, Zhang L, Zheng W, Raffel LJ, Igase M, Ipp E, Redline S, Cho YS, Lind L, Province MA, Fornage M, Hanis CL, Ingelsson E, Zonderman AB, Psaty BM, Wang YX, Rotimi CN, Becker DM, Matsuda F, Liu Y, Yokota M, Kardia SLR, Peyser PA, Pankow JS, Engert JC, Bonnefond A, Froguel P, Wilson JG, Sheu WHH, Wu JY, Hayes MG, Ma RCW, Wong TY, Mook-Kanamori DO, Tuomi T, Chandak GR, Collins FS, Bharadwaj D, Paré G, Sale MM, Ahsan H, Motala AA, Shu XO, Park KS, Jukema JW, Cruz M, Chen YDI, Rich SS, McKean-Cowdin R, Grallert H, Cheng CY, Ghanbari M, Tai ES, Dupuis J, Kato N, Laakso M, Köttgen A, Koh WP, Bowden DW, Palmer CNA, Kooner JS, Kooperberg C, Liu S, North KE, Saleheen D, Hansen T, Pedersen O, Wareham NJ, Lee J, Kim BJ, Millwood IY, Walters RG, Stefansson K, Goodarzi MO, Mohlke KL, Langenberg C, Haiman CA, Loos RJF, Florez JC, Rader DJ, Ritchie MD, Zöllner S, Mägi R, Denny JC, Yamauchi T, Kadowaki T, Chambers JC, Ng MCY, Sim X, Below JE, Tsao PS, Chang KM, McCarthy MI, Meigs JB, Mahajan A, Spracklen CN, Mercader JM, Boehnke M, Rotter JI, Vujkovic M, Voight BF, Morris AP, Zeggini E. Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.31.23287839. [PMID: 37034649 PMCID: PMC10081410 DOI: 10.1101/2023.03.31.23287839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.
Collapse
Affiliation(s)
- Ken Suzuki
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Henry J. Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing City, China
| | - Kim M. Lorenz
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ravi Mandla
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alicia Huerta-Chagoya
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nigel W. Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ozvan Bocher
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ana Luiza de S. V. Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Simon S. K. Lee
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H. Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E. Petty
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Schroeder
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brett Vanderwerff
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fiona Bragg
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hosptial, London NorthWest Healthcare NHS Trust, Middlesex, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sanghoon Moon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - James P. Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Jung-Jin Lee
- Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Pan
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Daniel Taliun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto at Mississsauga, Mississauga, ON, Canada
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yang Hai
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamar Sofer
- Department of Biostatistics, Harvard University, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard University, Boston, MA, USA
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Chloé Sarnowski
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Darryl Nousome
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meng Sun
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Lin Tong
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Wei-Min Chen
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Suraj S. Nongmaithem
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Victor J. Y. Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Claudia H. T. Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yoonjung Yoonie Joo
- Institute of Data Science, Korea University, Seoul, South Korea
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bram Peter Prins
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Aude Nicolas
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Edmond Kabagambe
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Academics, Ochsner Health, New Orleans, LA, USA
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anny H. Xiang
- Department of Research and Evaluation, Division of Biostatistics Research, Kaiser Permanente of Southern California, Pasadena, CA, USA
| | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - K. Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alice Williamson
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jinrui Cui
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Linda S. Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A. Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tarunveer S. Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sonia S. Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
| | - Thomas A. Buchanan
- Department of Medicine, Division of Endocrinology and Diabetes, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Charles F. Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- National Institute for Health and Care Research (NIHR) Blood and Transplant Unit (BTRU) in Donor Health and Behaviour, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Mickaël Canouil
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ji Chen
- Exeter Centre of Excellence in Diabetes (ExCEeD), Exeter Medical School, University of Exeter, Exeter, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shyh-Huei Chen
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Lee-Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Mary Cushman
- Department of Medicine, University of Vermont, Colchester, VT, USA
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- National Institute for Health and Care Research (NIHR) Blood and Transplant Unit (BTRU) in Donor Health and Behaviour, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Swapan K. Das
- Section on Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - H. Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ayo P. Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leslie S. Emery
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Pauline Genter
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hertzel C. Gerstein
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Maria Elena González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay A. Guare
- Genomics and Computational Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sophie Hackinger
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | | | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Dusseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Annie-Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Willa Hsueh
- Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mengna Huang
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hye-Mi Jang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jost B. Jonas
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Fouad R. Kandeel
- Department of Clinical Diabetes, Endocrinology and Metabolism, Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | | | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Varinderpal Kaur
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacob M. Keaton
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Abel N. Kho
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Health Information Partnerships, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kyung Min Lee
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nanette R. Lee
- USC-Office of Population Studies Foundation Inc., University of San Carlos, Cebu City, Philippines
| | - Aaron Leong
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Symen Lithgart
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Cecilia M. Lindgren
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Big Data Institute, Li Ka Shing Centre For Health Information and Discovery, University of Oxford, Oxford, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Adam E. Locke
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Division of Genomics and Bioinformatics, Washington University School of Medicine, St Louis, MO, USA
- Present address: Regeneron Genetics Center, Tarrytown, NY, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andrea O. Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Luo
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Julie A. Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Shiro Maeda
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Vasiliki Mamakou
- Dromokaiteio Psychiatric Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sohail Rafik Mansuri
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Koichi Matsuda
- Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Huan Mo
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D. Morris
- The Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Jerry L. Nadler
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Michael A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Uma Nayak
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Snehal Patil
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilians Universität München, Munich, Germany
| | - Fraser J. Pirie
- Department of Diabetes and Endocrinology, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hannah G. Polikowsky
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bianca Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gauri Prasad
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Campus, Ghaziabad, India
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Dusseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katheryn Roll
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Kevin Sandow
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alagu Sankareswaran
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jinxiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Dong Mun Shin
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Chair of Genetic Epidemiology, Institute of Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Tam C. Tran
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland, Finnish Institute for Health and Welfare, Helsinki, Finland
- National School of Public Health, Madrid, Spain
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxiología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Miriam S. Udler
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adan Valladares-Salgado
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rob M. van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jan B. van Klinken
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Chemistry, Laboratory of Genetic Metabolic Disease, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rohit Varma
- Southern California Eye Institute, CHA Hollywood Presbyterian Hospital, Los Angeles, CA, USA
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Ko Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel R. Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Chittaranjan S. Yajnik
- Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salim Yusuf
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Liang Zhang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | - Leslie J Raffel
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UCI Irvine School of Medicine, Irvine, CA, USA
| | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Eli Ipp
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael A. Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Craig L. Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, US
| | - Erik Ingelsson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diane M. Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James C. Engert
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Amélie Bonnefond
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wayne H. H. Sheu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M. Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Ronald C. W. Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tiinamaija Tuomi
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Lund University Diabetes Centre, Malmö, Sweden
| | - Giriraj R. Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Guillaume Paré
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Michèle M. Sale
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Deceased
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ayesha A. Motala
- Department of Diabetes and Endocrinology, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyong-Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Roberta McKean-Cowdin
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Josee Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Woon-Puay Koh
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Donald W. Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Colin N. A. Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Dundee, UK
| | - Jaspal S. Kooner
- Department of Cardiology, Ealing Hosptial, London NorthWest Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
- Department of Medicine, Brown University Alpert School of Medicine, Providence, RI, USA
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danish Saleheen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas J. Wareham
- The Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Iona Y. Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Robin G. Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mark O. Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité Universitätsmedizin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose C. Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel J. Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Translational Medicine and Therapeutics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marylyn D. Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Precision Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Joshua C. Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hosptial, London NorthWest Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Maggie C. Y. Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jennifer E. Below
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip S. Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyong-Mi Chang
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hosptial, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Present address: Genentech, South San Francisco, CA, USA
| | - James B. Meigs
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Present address: Genentech, South San Francisco, CA, USA
| | - Cassandra N. Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Josep M. Mercader
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marijana Vujkovic
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Epidemiology, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin F. Voight
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
121
|
Du Y, Li F, Li S, Ding L, Liu M. Causal relationship between polycystic ovary syndrome and chronic kidney disease: A Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1120119. [PMID: 37008943 PMCID: PMC10050750 DOI: 10.3389/fendo.2023.1120119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Objective Polycystic ovary syndrome is one of the most common endocrine disorders among women of childbearing age. The relationship between polycystic ovary syndrome and chronic kidney disease remains unclear and controversial. In this study, we investigated the causal role of polycystic ovary syndrome in the development of chronic kidney disease using the two-sample Mendelian randomization method. Methods Public shared summary-level data was acquired from European-ancestry genome wide association studies. We finally obtained 12 single nucleotide polymorphisms as instrumental variables, which were associated with polycystic ovary syndrome in European at genome-wide significance (P < 5 × 10-8). Inverse-variance weighted method was employed in the Mendelian randomization analysis and multiple sensitivity analyses were implemented. Outcome data were obtained from the Open GWAS database. Results A positive causal association was observed between polycystic ovary syndrome and chronic kidney disease (odds ratio [OR]=1.180, 95% confidence interval [CI]: 1.038-1.342; P=0.010). Further analyses clarified that causal relationship exist between polycystic ovary syndrome and some serological indicators of chronic kidney disease (fibroblast growth factor 23: OR= 1.205, 95% CI: 1.031-1.409, P=0.019; creatinine: OR= 1.012, 95% CI: 1.001-1.023, P=0.035; cystatin C: OR= 1.024, 95% CI: 1.006-1.042, P=0.009). However, there was no causal association of polycystic ovary syndrome with other factors in the data sources we employed. Conclusions Our results indicate an important role of polycystic ovary syndrome in the development of chronic kidney disease. This study suggests that regular follow-up of renal function in patients with polycystic ovary syndrome is necessary for the early treatment of chronic kidney disease.
Collapse
Affiliation(s)
| | | | | | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- *Correspondence: Li Ding, ; Ming Liu,
| |
Collapse
|
122
|
Current Guidelines for Diagnosing PCOS. Diagnostics (Basel) 2023; 13:diagnostics13061113. [PMID: 36980421 PMCID: PMC10047373 DOI: 10.3390/diagnostics13061113] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive-aged women. Much of the confusion surrounding PCOS diagnosis stems from the broad heterogeneity of symptomology experienced by women with PCOS. The diverse features of the syndrome have led to a number of diagnostic criteria over the years. This manuscript describes each of the current composite criteria and individually breaks down each component. The importance of accurate diagnosis for both clinical care and research is emphasized.
Collapse
|
123
|
Kim C, Catov J, Schreiner PJ, Appiah D, Wellons MF, Siscovick D, Calderon‐Margalit R, Huddleston H, Ebong IA, Lewis CE. Women's Reproductive Milestones and Cardiovascular Disease Risk: A Review of Reports and Opportunities From the CARDIA Study. J Am Heart Assoc 2023; 12:e028132. [PMID: 36847077 PMCID: PMC10111436 DOI: 10.1161/jaha.122.028132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In 1985 to 1986, the CARDIA (Coronary Artery Risk Development in Young Adults) study enrolled 5115 Black or White participants, including 2788 women, aged 18 to 30 years. Over the following 35 years, the CARDIA study amassed extensive longitudinal data on women's reproductive milestones, spanning menarche to menopause. Although not initially conceived as a study of women's health, >75 CARDIA study publications address relationships between reproductive factors and events with cardiovascular and metabolic risk factors, subclinical and clinical cardiovascular disease, and social determinants of health. The CARDIA study was one of the earliest population-based reports to note Black-White differences in age at menarche and associations with cardiovascular risk factors. Adverse pregnancy outcomes, particularly gestational diabetes and preterm birth, have been assessed along with postpartum behaviors, such as lactation. Existing studies have examined risk factors for adverse pregnancy outcomes and lactation, as well as their relationship to future cardiovascular and metabolic risk factors, diagnoses, and subclinical atherosclerosis. Ancillary studies examining components of polycystic ovary syndrome and ovarian biomarkers, such as anti-Müllerian hormone, have facilitated examination of reproductive health in a population-based cohort of young adult women. As the cohort transitioned through menopause, examination of the importance of premenopausal cardiovascular risk factors along with menopause has improved our understanding of shared mechanisms. The cohort is now aged in the 50s to mid-60s, and women will begin to experience a greater number of cardiovascular events as well as other conditions, such as cognitive impairment. Thus, in the next decade, the CARDIA study will provide a unique resource for understanding how the women's reproductive life course epidemiology informs cardiovascular risk, as well as reproductive and chronological aging.
Collapse
Affiliation(s)
- Catherine Kim
- Departments of Medicine, Obstetrics and Gynecology, and EpidemiologyUniversity of MichiganAnn ArborMI
| | - Janet Catov
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of PittsburghPittsburghPA
| | - Pamela J. Schreiner
- Division of Epidemiology and Community HealthUniversity of MinnesotaMinneapolisMN
| | - Duke Appiah
- Department of Public Health, Graduate School of Biomedical SciencesTexas Tech UniversityLubbockTX
| | | | | | | | - Heather Huddleston
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San FranciscoSan FranciscoCA
| | | | - Cora E. Lewis
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
124
|
Mu L, Ye Z, Hu J, Zhang Y, Chen K, Sun H, Li R, Mao W, Long X, Zhang C, Lai Y, Liu J, Zhao Y, Qiao J. PPM1K-regulated impaired catabolism of branched-chain amino acids orchestrates polycystic ovary syndrome. EBioMedicine 2023; 89:104492. [PMID: 36863088 PMCID: PMC9986518 DOI: 10.1016/j.ebiom.2023.104492] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common diseases with the coexistence of reproductive malfunction and metabolic disorders. Previous studies have found increased branched chain amino acid (BCAA) levels in women with PCOS. However, it remains unclear whether BCAA metabolism is causally associated with the risk of PCOS. METHODS The changes of BCAA levels in the plasma and follicular fluids of PCOS women were detected. Mendelian randomization (MR) approaches were used to explore the potential causal association between BCAA levels and the risk of PCOS. The function of the gene coding the protein phosphatase Mg2+/Mn2+-dependent 1K (PPM1K) was further explored by using Ppm1k-deficient mouse model and PPM1K down-regulated human ovarian granulosa cells. FINDINGS BCAA levels were significantly elevated in both plasma and follicular fluids of PCOS women. Based on MR, a potential direct, causal role for BCAA metabolism was revealed in the pathogenesis of PCOS, and PPM1K was detected as a vital driver. Ppm1k-deficient female mice had increased BCAA levels and exhibited PCOS-like traits, including hyperandrogenemia and abnormal follicle development. A reduction in dietary BCAA intake significantly improved the endocrine and ovarian dysfunction of Ppm1k-/- female mice. Knockdown of PPM1K promoted the conversion of glycolysis to pentose phosphate pathway and inhibited mitochondrial oxidative phosphorylation in human granulosa cells. INTERPRETATION Ppm1k deficiency-impaired BCAA catabolism causes the occurrence and development of PCOS. PPM1K suppression disturbed energy metabolism homeostasis in the follicular microenvironment, which provided an underlying mechanism of abnormal follicle development. FUNDING This study was supported by the National Key Research and Development Program of China (2021YFC2700402, 2019YFA0802503), the National Natural Science Foundation of China (81871139, 82001503, 92057107), the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-001), Key Clinical Projects of Peking University Third Hospital (BYSY2022043), the China Postdoctoral Science Foundation (2021T140600), and the Collaborative Innovation Program of Shanghai Municipal Health Commission (2020CXJQ01).
Collapse
Affiliation(s)
- Liangshan Mu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China; Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenhong Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Junhao Hu
- Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yurong Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Kai Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Weian Mao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chunmei Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuchen Lai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinery Studies Peking University, Beijing 100871, China.
| |
Collapse
|
125
|
Liu D, Gao X, Pan XF, Zhou T, Zhu C, Li F, Fan JG, Targher G, Zhao J. The hepato-ovarian axis: genetic evidence for a causal association between non-alcoholic fatty liver disease and polycystic ovary syndrome. BMC Med 2023; 21:62. [PMID: 36800955 PMCID: PMC9940436 DOI: 10.1186/s12916-023-02775-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/09/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Recent studies found associations between non-alcoholic fatty liver disease (NAFLD) and polycystic ovary syndrome (PCOS), but the causal nature of this association is still uncertain. METHODS We performed a bidirectional two-sample Mendelian randomization (MR) analysis to test for the causal association between NAFLD and PCOS using data from a large-scale biopsy-confirmed NAFLD genome-wide association study (GWAS) (1483 cases and 17,781 controls) and PCOS GWAS (10,074 cases and 103,164 controls) in European ancestries. Data from glycemic-related traits GWAS (in up to 200,622 individuals) and sex hormones GWAS (in 189,473 women) in the UK Biobank (UKB) were used in the MR mediation analysis to assess potential mediating roles of these molecules in the causal pathway between NAFLD and PCOS. Replication analysis was conducted using two independent datasets from NAFLD and PCOS GWASs in the UKB and a meta-analysis of data from FinnGen and the Estonian Biobank, respectively. A linkage disequilibrium score regression was conducted to assess genetic correlations between NAFLD, PCOS, glycemic-related traits, and sex hormones using full summary statistics. RESULTS Individuals with higher genetic liability to NAFLD were more likely to develop PCOS (OR per one-unit log odds increase in NAFLD: 1.10, 95% CI: 1.02-1.18; P = 0.013). Indirect causal effects of NAFLD on PCOS via fasting insulin only (OR: 1.02, 95% CI: 1.01-1.03; P = 0.004) and further a suggestive indirect causal effect via fasting insulin in concert with androgen levels were revealed in MR mediation analyses. However, the conditional F statistics of NAFLD and fasting insulin were less than 10, suggesting likely weak instrument bias in the MVMR and MR mediation analyses. CONCLUSIONS Our study suggests that genetically predicted NAFLD was associated with a higher risk of developing PCOS but less evidence for vice versa. Fasting insulin and sex hormones might mediate the link between NAFLD and PCOS.
Collapse
Affiliation(s)
- Dong Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Xue Gao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiong-Fei Pan
- Ministry of Education Key Laboratory of Birth Defects and Related Diseases in Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Tao Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Cairong Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Jian Zhao
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China. .,Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China. .,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
| |
Collapse
|
126
|
Alan Harris R, Archer KJ, Goodarzi MO, York TP, Rogers J, Dunaif A, McAllister JM, Strauss JF. Loci on chromosome 12q13.2 encompassing ERBB3, PA2G4 and RAB5B are associated with polycystic ovary syndrome. Gene 2023; 852:147062. [PMID: 36423778 PMCID: PMC9811427 DOI: 10.1016/j.gene.2022.147062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenemia of ovarian theca cell origin. We report significant association of androgen production with 15 single nucleotide variants (SNVs) identified by exome sequencing of theca cells from women with PCOS and normal ovulatory women. Ten SNVs are located within a 150 kbp region on 12q13.2 which encompasses loci identified in PCOS genome-wide association studies (GWAS) and contains PCOS candidate genes ERBB3 and RAB5B. The region also contains PA2G4 which encodes a transcriptional corepressor of androgen receptor and androgen receptor-regulated genes. PA2G4 has not previously been recognized as related to PCOS in published GWAS studies. Two of the SNVs are predicted to have functional consequences (ERBB3 missense SNV, PA2G4 promoter SNV). PA2G4 interacts with the ERBB3 cytoplasmic domain containing the missense variant, suggesting a potential signaling pathway disruption that could lead to the PCOS ovarian phenotype. Single cell RNA sequencing of theca cells showed significantly less expression of PA2G4 after forskolin treatment in PCOS cells compared to normal cells (padj = 3.82E-30) and in cells heterozygous for the PA2G4 promoter SNV compared to those without the SNV (padj = 2.16E-11). This is consistent with a functional effect of the PA2G4 promoter SNV. No individual SNV was significantly associated with PCOS in an independent family cohort, but a haplotype with minor alleles of three SNVs was found preferentially in women with PCOS. These findings suggest a functional role for 12q13.2 variants in PCOS and implicate variants in ERBB3 and PA2G4 in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA.
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210 USA.
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.
| | - Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298 USA; Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA.
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA.
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.
| | - Jan M McAllister
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA 17033 USA.
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA; Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA.
| |
Collapse
|
127
|
Insulin Metabolism in Polycystic Ovary Syndrome: Secretion, Signaling, and Clearance. Int J Mol Sci 2023; 24:ijms24043140. [PMID: 36834549 PMCID: PMC9962893 DOI: 10.3390/ijms24043140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of reproductive age. Its heterogeneous clinical presentation is characterized by hyperandrogenemia, reproductive changes, polycystic ovary morphology, and insulin resistance (IR). The primary pathophysiological process in its multifactorial etiology has not yet been identified. However, the two most proposed core etiologies are the disruption of insulin metabolism and hyperandrogenemia, both of which begin to intertwine and propagate each other in the later stages of the disease. Insulin metabolism can be viewed as the interconnectedness of beta cell function, IR or insulin sensitivity, and insulin clearance. Previous studies of insulin metabolism in PCOS patients have yielded conflicting results, and literature reviews have focused mainly on the molecular mechanisms and clinical implications of IR. In this narrative review, we comprehensively explored the role of insulin secretion, clearance, and decreased sensitivity in target cells as a potential primary insult in PCOS pathogenesis, along with the molecular mechanism behind IR in PCOS.
Collapse
|
128
|
Haddad-Filho H, Tosatti JAG, Vale FM, Gomes KB, Reis FM. Updates in diagnosing polycystic ovary syndrome-related infertility. Expert Rev Mol Diagn 2023; 23:123-132. [PMID: 36856088 DOI: 10.1080/14737159.2023.2177536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a condition that affects approximately 13% of reproductive age women and is characterized by androgen excess, menstrual irregularity and altered ovarian morphology. PCOS presents a complex etiology and pathophysiology, which still requires a detailed investigation of biochemical signatures to identify the molecules and mechanisms that govern it. AREAS COVERED This narrative review summarizes the main molecular alterations found in the ovarian follicular fluid, endometrium and placenta of women with PCOS, and the genotypes potentially associated with the outcome of infertility treatments in PCOS. EXPERT OPINION PCOS is associated with multiple alterations in growth factors, sex steroid hormones, reactive oxygen species, proinflammatory cytokines and adipokines, which contribute to follicle arrest/ anovulation or suboptimal corpus luteum function, and ultimately to menstrual irregularity and hyperandrogenic symptoms. A panel of PCOS biomarkers should include, besides ovarian products, markers of adipose tissue function, insulin resistance, vascular health, and low-grade chronic inflammation. The effects of ovarian stimulation drugs on infertile women with PCOS are likely to be modified by genetic factors, but the available evidence is heterogeneous; therefore, future studies should evaluate standard treatments and pre-specified outcomes of interest to provide more conclusive answers.
Collapse
Affiliation(s)
- Hélio Haddad-Filho
- Graduate Program in Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Medicine, Universidade Federal de Lavras, Lavras, Brazil
| | - Jéssica A G Tosatti
- Department of Clinical and Toxicological Analyzes - Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda M Vale
- Department of Clinical and Toxicological Analyzes - Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karina B Gomes
- Department of Clinical and Toxicological Analyzes - Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
129
|
Woolner AM, Bhattacharya S. Intergenerational trends in reproduction: Infertility and pregnancy loss. Best Pract Res Clin Obstet Gynaecol 2023; 86:102305. [PMID: 36639284 DOI: 10.1016/j.bpobgyn.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
This review article summarises the evidence for intergenerational trends observed to date within infertility and pregnancy loss. There appears to be evidence of intergenerational trends between mothers and daughters for the age at menopause, endometriosis, polycystic ovarian syndrome (PCOS), male factor infertility and miscarriage. At present, there is no evidence for a predisposition to stillbirth between mothers and daughters. One study found an association with familial predisposition for ectopic pregnancy. Very few studies have considered the potential for paternal transmission of risk of infertility or pregnancy loss. The majority of studies to date have significant limitations because of their observational design, risk of recall bias and risk of confounding. Therefore, high-quality well-designed research, with multi-centre collaboration and utilisation of registry-based data sources and individual patient data, is needed to understand whether infertility and pregnancy loss may have heritable factors. Epidemiological findings need to be followed up and investigated with translational research to determine the possible causalities as well as any implications for clinical practice.
Collapse
Affiliation(s)
- Andrea Mf Woolner
- Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom.
| | - Siladitya Bhattacharya
- Aberdeen Centre for Women's Health Research, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom.
| |
Collapse
|
130
|
Lyle SM, Ahmed S, Elliott JE, Stener-Victorin E, Nachtigal MW, Drögemöller BI. Transcriptome-wide association analyses identify an association between ARL14EP and polycystic ovary syndrome. J Hum Genet 2023; 68:347-353. [PMID: 36720993 DOI: 10.1038/s10038-023-01120-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 02/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder, which is accompanied by a variety of comorbidities including metabolic, reproductive, and psychiatric disorders. Genome-wide association studies have identified several genetic variants that are associated with PCOS. However, these variants often occur outside of coding regions and require further investigation to understand their contribution to PCOS. A transcriptome-wide association study (TWAS) was performed to uncover heritable gene expression profiles that are associated with PCOS in two independent cohorts. Causal gene prioritization was subsequently performed and expression of genes prioritized through these analyses was examined in 49 PCOS patients and 30 controls. TWAS analyses revealed that increased expression of ARL14EP was significantly associated with PCOS risk in the discovery (P = 1.6 × 10-6) and replication cohorts (P = 2.0 × 10-13). Gene prioritization pipelines provided further evidence that ARL14EP is the most likely causal gene at this locus. ARL14EP gene expression was shown to be significantly different between PCOS cases and controls, after adjusting for body mass index, age and testosterone levels (P = 1.2 × 10-13). This study has provided evidence for the role of ARL14EP in PCOS. Given that ARL14EP has been reported to play an important role in chromatin remodeling, variants affecting the expression of ARL14EP may also affect the expression of other genes that contribute to PCOS pathogenesis.
Collapse
Affiliation(s)
- Sarah M Lyle
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samah Ahmed
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jason E Elliott
- Department of Obstetrics, Gynecology and Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | | | - Mark W Nachtigal
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada. .,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
| |
Collapse
|
131
|
Pei Y, Risal S, Jiang H, Lu H, Lindgren E, Stener-Victorin E, Deng Q. Transcriptomic survey of key reproductive and metabolic tissues in mouse models of polycystic ovary syndrome. Commun Biol 2023; 6:69. [PMID: 36653487 PMCID: PMC9849269 DOI: 10.1038/s42003-022-04362-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Excessive androgen production and obesity are key to polycystic ovary syndrome (PCOS) pathogenesis. Prenatal androgenized (PNA), peripubertal androgenized, and overexpression of nerve growth factor in theca cells (17NF) are commonly used PCOS-like mouse models and diet-induced maternal obesity model is often included for comparsion. To reveal the molecular features of these models, we have performed transcriptome survey of the hypothalamus, adipose tissue, ovary and metaphase II (MII) oocytes. The largest number of differentially expressed genes (DEGs) is found in the ovaries of 17NF and in the adipose tissues of peripubertal androgenized models. In contrast, hypothalamus is most affected in PNA and maternal obesity models suggesting fetal programming effects. The Ms4a6e gene, membrane-spanning 4-domains subfamily A member 6E, a DEG identified in the adipose tissue in all mouse models is also differently expressed in adipose tissue of women with PCOS, highlighting a conserved disease function. Our comprehensive transcriptomic profiling of key target tissues involved in PCOS pathology highlights the effects of developmental windows for androgen exposure and maternal obesity, and provides unique resource to investigate molecular mechanisms underlying PCOS pathogenesis.
Collapse
Affiliation(s)
- Yu Pei
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for molecular medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sanjiv Risal
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiang
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Lindgren
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Stener-Victorin
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Qiaolin Deng
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for molecular medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
132
|
Piltonen T, Morin-Papunen L, Ollila MM, Tapanainen J, Arffman R, Järvelin MR, Franks S. Women self-reporting PCOS symptoms should not be overlooked. Hum Reprod 2023; 38:189-190. [PMID: 36433765 DOI: 10.1093/humrep/deac251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Terhi Piltonen
- Department of Obstetrics and Gynaecology, Medical Research Center Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Laure Morin-Papunen
- Department of Obstetrics and Gynaecology, Medical Research Center Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Meri-Maija Ollila
- Department of Obstetrics and Gynaecology, Medical Research Center Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juha Tapanainen
- Department of Obstetrics and Gynaecology, Medical Research Center Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riikka Arffman
- Department of Obstetrics and Gynaecology, Medical Research Center Oulu, PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland.,MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| |
Collapse
|
133
|
Abruzzese GA, Velazquez ME, Cerrone GE, Motta AB. Polycystic ovary syndrome in Latin American populations: What is known and what remains unresolved. J Steroid Biochem Mol Biol 2023; 225:106195. [PMID: 36183993 DOI: 10.1016/j.jsbmb.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the main endocrine and reproductive disorders affecting women in their reproductive age. The syndrome is considered a multifactorial pathology. Therefore, genetic susceptibility and environmental factors contribute to PCOS development and phenotypic manifestation. Ethnicity and socioeconomic factors influence the development of PCOS and could affect the possibility of its diagnosis. Latin America is a unique case of study because of the heterogeneity within the region, complex socioeconomic status, and the mixed ancestry found in these populations. Up-to-date, most studies have focused on developed countries' populations, and there is a lack of evidence regarding Latin-American countries. We propose to review the state of the art of PCOS knowledge regarding Latin American populations, including the metabolic and reproductive aspects of the syndrome and the different influencing factors, and suggest future directions to deepen the study of PCOS.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela Edith Velazquez
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gloria Edith Cerrone
- Universidad de Buenos Aires, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Diabetes y Metabolismo, Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
134
|
Tamaoka S, Saito K, Yoshida T, Nakabayashi K, Tatsumi K, Kawamura T, Matsuzaki T, Matsubara K, Ogata‐Kawata H, Hata K, Kato‐Fukui Y, Fukami M. Exome-based genome-wide screening of rare variants associated with the risk of polycystic ovary syndrome. Reprod Med Biol 2023; 22:e12504. [PMID: 36845002 PMCID: PMC9947624 DOI: 10.1002/rmb2.12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose Genetic factors associated with the risk of polycystic ovary syndrome (PCOS) remain largely unknown. Here, we conducted an optimal sequence kernel association test (SKAT-O), an exome-based rare variant association study, to clarify whether rare variants in specific genes contribute to the development of PCOS. Methods SKAT-O was performed using exome data of 44 Japanese patients with PCOS and 301 control women. We analyzed frequencies of rare probably damaging variants in the genome. Results Rare variants of GSTO2 were more commonly identified in the patient group than in the control group (6/44 vs. 1/301; Bonferroni-corrected p-value, 0.028), while the frequencies of variants in other genes were comparable between the two groups. The identified GSTO2 variants were predicted to affect the function, structure, stability, hydrophobicity, and/or the formation of intrinsically disordered regions of the protein. GSTO2 encodes a glutathione transferase that mediates the oxidative stress response and arsenic metabolism. Previously, common variants in GSTO2 and its paralog GSTO1 were associated with the risk of PCOS. Conclusions The results indicate that there are no genes whose rare variants account for a large fraction of the etiology of PCOS, although rare damaging variants in GSTO2 may constitute a risk factor in some cases.
Collapse
Affiliation(s)
- Satoshi Tamaoka
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Kazuki Saito
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Perinatal and Maternal Medicine (Ibaraki), Graduate SchoolTokyo Medical and Dental UniversityTokyoJapan
| | - Tomoko Yoshida
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Kazuhiko Nakabayashi
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | | | | | - Toshiya Matsuzaki
- Department of Obstetrics and GynecologyYoshinogawa Medical CenterTokushimaJapan
| | - Keiko Matsubara
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Hiroko Ogata‐Kawata
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Kenichiro Hata
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Yuko Kato‐Fukui
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
135
|
Fujii S, Oguchi T. Shapes of the uterine cavity are different in women with polycystic ovary syndrome. Reprod Med Biol 2023; 22:e12508. [PMID: 36845000 PMCID: PMC9949362 DOI: 10.1002/rmb2.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose A cross-sectional study was conducted to evaluate differences in uterine morphology between women with or without polycystic ovary syndrome. Methods The authors recruited 333 infertile reproductive-age women including 93 with polycystic ovary syndrome diagnosed using the criteria of the Japanese Society of Obstetrics Gynecology-2007. Shapes of uterine cavity were measured by transvaginal three-dimensional ultrasound. Results The polycystic ovary syndrome group had a significantly deeper indentation (2.2 ± 0.4 mm vs. 0.0 ± 0.2 mm, p < 0.0001) and a significantly more acute indentation angle (162.9 ± 2.2 deg vs. 175.2 ± 1.3 deg, p < 0.0001) than the control group. Conclusion The depth and the apical angle of fundal indentation of uterine cavity are different in women with polycystic ovary syndrome.
Collapse
|
136
|
Pruett JE, Romero DG, Yanes Cardozo LL. Obesity-associated cardiometabolic complications in polycystic ovary syndrome: The potential role of sodium-glucose cotransporter-2 inhibitors. Front Endocrinol (Lausanne) 2023; 14:951099. [PMID: 36875461 PMCID: PMC9974663 DOI: 10.3389/fendo.2023.951099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. PCOS is characterized by androgen excess, oligo/anovulation, and polycystic appearance of the ovaries. Women with PCOS have an increased prevalence of multiple cardiovascular risk factors such as insulin resistance, hypertension, renal injury, and obesity. Unfortunately, there is a lack of effective, evidence-based pharmacotherapeutics to target these cardiometabolic complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors provide cardiovascular protection in patients with and without type 2 diabetes mellitus. Although the exact mechanisms of how SGLT2 inhibitors confer cardiovascular protection remains unclear, numerous mechanistic hypotheses for this protection include modulation of the renin-angiotensin system and/or the sympathetic nervous system and improvement in mitochondrial function. Data from recent clinical trials and basic research show a potential role for SGLT2 inhibitors in treating obesity-associated cardiometabolic complications in PCOS. This narrative review discusses the mechanisms of the beneficial effect of SGLT2 inhibitors in cardiometabolic diseases in PCOS.
Collapse
Affiliation(s)
- Jacob E. Pruett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Licy L. Yanes Cardozo,
| |
Collapse
|
137
|
Zhang N, Liao Y, Zhao H, Chen T, Jia F, Yu Y, Zhu S, Wang C, Zhang W, Liu X. Polycystic ovary syndrome and 25-hydroxyvitamin D: A bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1110341. [PMID: 36967791 PMCID: PMC10034407 DOI: 10.3389/fendo.2023.1110341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Accumulating observational studies have indicated that vitamin D deficiency (serum 25-hydroxyvitamin D (25OHD) < 50 nmol/L) is common in women with polycystic ovary syndrome (PCOS). However, the direction and causal nature remain unclear. In this study, we aimed to investigate the causal association between PCOS and 25OHD. METHODS A bidirectional two-sample Mendelian randomization (MR) study was used to evaluate the causal association between PCOS and 25OHD. From the publicly available European-lineage genome-wide association studies (GWAS) summary statistics for PCOS (4,890 cases of PCOS and 20,405 controls) and 25OHD (n = 417,580), we selected 11 and 102 single nucleotide polymorphisms (SNPs) as instrumental variables (IVs), respectively. In univariate MR (uvMR) analysis, inverse-variance weighted (IVW) method was employed in the primary MR analysis and multiple sensitivity analyses were implemented. Additionally, a multivariable MR (mvMR) design was carried to adjust for obesity and insulin resistance (IR) as well. RESULTS UvMR demonstrated that genetically determined PCOS was negatively associated with 25OHD level (IVW Beta: -0.02, P = 0.008). However, mvMR found the causal effect disappeared when adjusting the influence of obesity and IR. Both uvMR and mvMR analysis didn't support the causal effect of 25OHD deficiency on risk of PCOS (IVW OR: 0.86, 95% CI: 0.66 ~ 1.12, P = 0.280). CONCLUSION Our findings highlighted that the casual effect of PCOS on 25OHD deficiency might be mediated by obesity and IR, and failed to find substantial causal effect of 25OHD deficiency on risk of PCOS. Further observational studies and clinical trials are necessary.
Collapse
Affiliation(s)
- Nana Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyu Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Jia
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Yu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiqin Zhu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaoying Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wufan Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmin Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xinmin Liu,
| |
Collapse
|
138
|
Translational Bioinformatics for Human Reproductive Biology Research: Examples, Opportunities and Challenges for a Future Reproductive Medicine. Int J Mol Sci 2022; 24:ijms24010004. [PMID: 36613446 PMCID: PMC9819745 DOI: 10.3390/ijms24010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Since 1978, with the first IVF (in vitro fertilization) baby birth in Manchester (England), more than eight million IVF babies have been born throughout the world, and many new techniques and discoveries have emerged in reproductive medicine. To summarize the modern technology and progress in reproductive medicine, all scientific papers related to reproductive medicine, especially papers related to reproductive translational medicine, were fully searched, manually curated and reviewed. Results indicated whether male reproductive medicine or female reproductive medicine all have made significant progress, and their markers have experienced the progress from karyotype analysis to single-cell omics. However, due to the lack of comprehensive databases, especially databases collecting risk exposures, disease markers and models, prevention drugs and effective treatment methods, the application of the latest precision medicine technologies and methods in reproductive medicine is limited.
Collapse
|
139
|
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev 2022; 43:927-965. [PMID: 35026001 PMCID: PMC9695127 DOI: 10.1210/endrev/bnac001] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is among the most common disorders in women of reproductive age, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities, including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
140
|
Golovchenko I, Aizikovich B, Golovchenko O, Reshetnikov E, Churnosova M, Aristova I, Ponomarenko I, Churnosov M. Sex Hormone Candidate Gene Polymorphisms Are Associated with Endometriosis. Int J Mol Sci 2022; 23:13691. [PMID: 36430184 PMCID: PMC9697627 DOI: 10.3390/ijms232213691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The present study was designed to examine whether sex hormone polymorphisms proven by GWAS are associated with endometriosis risk. Unrelated female participants totaling 1376 in number (395 endometriosis patients and 981 controls) were recruited into the study. Nine single-nucleotide polymorphisms (SNPs) which GWAS correlated with circulating levels of sex hormones were genotyped using a TaqMan allelic discrimination assay. FSH-lowering, and LH- and testosterone-heightening polymorphisms of the FSHB promoter (allelic variants A rs11031002 and C rs11031005) exhibit a protective effect for endometriosis (OR = 0.60-0.68). By contrast, the TT haplotype loci that were GWAS correlated with higher FSH levels and lower LH and testosterone concentrations determined an increased risk for endometriosis (OR = 2.03). Endometriosis-involved epistatic interactions were found between eight loci of sex hormone genes (without rs148982377 ZNF789) within twelve genetic simulation models. In silico examination established that 8 disorder-related loci and 80 proxy SNPs are genome variants affecting the expression, splicing, epigenetic and amino acid conformation of the 34 genes which enrich the organic anion transport and secondary carrier transporter pathways. In conclusion, the present study showed that sex hormone polymorphisms proven by GWAS are associated with endometriosis risk and involved in the molecular pathophysiology of the disease due to their functionality.
Collapse
Affiliation(s)
- Ilya Golovchenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Boris Aizikovich
- Department of Fundamental Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Oleg Golovchenko
- Department of Obstetrics and Gynecology, Belgorod State University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| |
Collapse
|
141
|
Liu M, Hummitzsch K, Bastian NA, Hartanti MD, Irving-Rodgers HF, Anderson RA, Rodgers RJ. Expression of PCOS candidate genes in bovine fetal and adult ovarian somatic cells. REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0068. [PMID: 36346793 PMCID: PMC9782414 DOI: 10.1530/raf-22-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine metabolic disorder that appears to have a genetic predisposition and a fetal origin. The fetal ovary has two major somatic cell types shown previously to be of different cellular origins, different morphologies and to differentially express 15 genes. We isolated the somatic gonadal ridge epithelial-like (GREL) cells (n = 7) and ovarian fetal fibroblasts (n = 6) by clonal expansion. Using qRT-PCR, we compared the gene expression levels of PCOS candidate genes with previous data on the expression levels in whole fetal ovaries across gestation. We also compared these levels with those in bovine adult ovarian cells including fibroblasts (n = 4), granulosa cells (n = 5) and surface epithelial cells (n = 5). Adult cell types exhibited clear differences in the expression of most genes. In fetal ovarian cells, DENND1A and ERBB3 had significantly higher expression in GREL cells. HMGA2 and TGFB1I1 tended to have higher expression in fetal fibroblasts than GREL cells. Another 19 genes did not exhibit differences between GREL cells and fetal fibroblasts and FBN3, FSHB, LHCGR, FSHR and ZBTB16 were very lowly expressed in GREL cells and fibroblasts. The culture of fetal fibroblasts in EGF-containing medium resulted in lower expression of NEIL2, but higher expression of MAPRE1 compared to culture in the absence of EGF. Thus, the two fetal ovarian somatic cell types mostly lacked differential expression of PCOS candidate genes.
Collapse
Affiliation(s)
- Menghe Liu
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nicole A Bastian
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Monica D Hartanti
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Helen F Irving-Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, QLD, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Raymond J Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
142
|
Leone M, Kuja-Halkola R, Leval A, Butwicka A, Skov J, Zhang R, Liu S, Larsson H, Bergen SE. Genetic and Environmental Contribution to the Co-Occurrence of Endocrine-Metabolic Disorders and Depression: A Nationwide Swedish Study of Siblings. Am J Psychiatry 2022; 179:824-832. [PMID: 36128682 DOI: 10.1176/appi.ajp.21090954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Depression is common in individuals with endocrine-metabolic disorders and vice versa, and a better understanding of the underlying factors contributing to the comorbidity of these disorders is needed. This study investigated the familial coaggregation of depression and endocrine-metabolic disorders and estimated the contribution of genetic and environmental factors to their co-occurrence. METHODS This population-based cohort study included 2.2 million individuals born in Sweden between 1973 and 1996, with follow-up through 2013. Participants were linked to their biological parents, allowing identification of full siblings, maternal half siblings, and paternal half siblings. Diagnoses of depression and endocrine-metabolic conditions were investigated, with the latter grouped into autoimmune disorders (autoimmune hypothyroidism, Graves' disease, and type 1 diabetes) and non-autoimmune disorders (type 2 diabetes, obesity, and polycystic ovary syndrome). Logistic regression and Cox regression were used to estimate the associations between endocrine-metabolic disorders and depression within the same individual and across siblings. Quantitative genetic modeling was performed to investigate the relative contribution of genetic and environmental influences. RESULTS Individuals with endocrine-metabolic disorders had a significantly higher risk of depression, with odds ratios ranging from 1.43 (95% CI=1.30, 1.57) for Graves' disease to 3.48 (95% CI=3.25, 3.72) for type 2 diabetes. Increased risks extended to full and half siblings. These correlations were mainly explained by shared genetic influences for non-autoimmune conditions, and by nonshared environmental factors for autoimmune disorders, especially for type 1 diabetes. CONCLUSIONS These findings provide phenotypic and etiological insights into the co-occurrence of depression and various endocrine-metabolic conditions, which could guide future research aiming at identifying pathophysiological mechanisms and intervention targets.
Collapse
Affiliation(s)
- Marica Leone
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Ralf Kuja-Halkola
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Amy Leval
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Agnieszka Butwicka
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Jakob Skov
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Ruyue Zhang
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Shengxin Liu
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Henrik Larsson
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| | - Sarah E Bergen
- Janssen Pharmaceutical Companies of Johnson & Johnson, Solna, Sweden (Leone, Leval); Department of Medical Epidemiology and Biostatistics (Leone, Kuja-Halkola, Leval, Butwicka, Zhang, Liu, Larsson, Bergen) and Department of Molecular Medicine and Surgery (Skov), Karolinska Institutet, Solna, Sweden; Child and Adolescent Psychiatry Stockholm, Stockholm Health Care Services, Region Stockholm, Sweden (Butwicka); Department of Child Psychiatry, Medical University of Warsaw, Warsaw (Butwicka); Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland (Butwicka); Department of Medicine, Karlstad Central Hospital, Karlstad, Sweden (Skov); School of Medical Sciences, Örebro University, Örebro, Sweden (Larsson)
| |
Collapse
|
143
|
Stener-Victorin E. Update on Animal Models of Polycystic Ovary Syndrome. Endocrinology 2022; 163:bqac164. [PMID: 36201611 PMCID: PMC9631972 DOI: 10.1210/endocr/bqac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disease affecting up to 15% of women of reproductive age. Women with PCOS suffer from reproductive dysfunctions with excessive androgen secretion and irregular ovulation, leading to reduced fertility and pregnancy complications. The syndrome is associated with a wide range of comorbidities including type 2 diabetes, obesity, and psychiatric disorders. Despite the high prevalence of PCOS, its etiology remains unclear. To understand the pathophysiology of PCOS, how it is inherited, and how to predict PCOS, and prevent and treat women with the syndrome, animal models provide an important approach to answering these fundamental questions. This minireview summarizes recent investigative efforts on PCOS-like rodent models aiming to define underlying mechanisms of the disease and provide guidance in model selection. The focus is on new genetic rodent models, on a naturally occurring rodent model, and provides an update on prenatal and peripubertal exposure models.
Collapse
|
144
|
Sharma A, Krick B, Li Y, Summers SA, Playdon MC, Welt C. The Use of Ceramides to Predict Metabolic Response to Metformin in Women With PCOS. J Endocr Soc 2022; 6:bvac131. [PMID: 36249411 PMCID: PMC9557973 DOI: 10.1210/jendso/bvac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Context Polycystic ovarian syndrome (PCOS) is a complex disorder in which metabolic abnormalities are associated with reproductive dysfunction. Women with PCOS have increased ceramide concentrations. Previous studies demonstrated that treating metabolic abnormalities of PCOS with metformin improved glucose effectiveness after 12 weeks. Objective We evaluated whether, in women with PCOS, lower baseline ceramide, diacylglycerol (DAG), and triacylglycerol (TAG) concentrations were associated with improved metabolic response to metformin. Methods Women (n = 29), aged 29 ± 5 years and diagnosed with PCOS by the NIH criteria underwent an intravenous glucose tolerance test (IVGTT) before and after 12-week treatment with metformin (1500 mg per day). Metabolic responders were defined by improved glucose effectiveness, specifically, the ability of glucose to stimulate uptake and suppress production, after metformin treatment. Results Twelve weeks of metformin resulted in weight loss (-1.7 ± 2.6 kg, P < 0.01) and a reduction in BMI (-0.6 ± 0.9 kg/m2, P < 0.01) with no change in HbA1c. The concentrations of Cer(d18:1/22:0), Cer(d18:1/24:0), total ceramides, total Cer(d16:0), total Cer(d18:2), DAG, dihydrosphingomyelin (DHSM), and TAG decreased after metformin treatment (P < 0.05). Baseline total Cer(d16:0) concentration <204.1 pmol/mL was 82% sensitive (AUC 0.72, P = 0.03) and total DHSM concentration <32237 pmol/mL was 100% specific (AUC 0.73, P = 0.03) in predicting improved metabolic response to metformin, as measured by IVGTT. Conclusion Lower total Cer(16:0) and DHSM concentrations are associated with a beneficial metabolic response to metformin in women with PCOS. Based on the known association between higher ceramide levels and type 2 diabetes, the data suggest that metformin improves metabolic parameters in women with mild metabolic derangements.
Collapse
Affiliation(s)
- Anu Sharma
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Benjamin Krick
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ying Li
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mary C Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Corrine Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
145
|
Dalibalta S, Abukhaled Y, Samara F. Factors influencing the prevalence of polycystic ovary syndrome (PCOS) in the United Arab Emirates. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:311-319. [PMID: 35538690 DOI: 10.1515/reveh-2021-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Statistics indicate that at least 20-25% of women suffer from PCOS in the Gulf region. Despite its prevalence and negative implications on reproductive, metabolic, and physiological heath the exact cause of PCOS is unknown, in part due to the diversity of symptoms manifested by this disorder. In this review, we investigate causes of PCOS globally and draw on these studies, to determine the potential contributing factors for PCOS pathogenesis in the UAE population. The most frequently identified factors promoting PCOS pathogenesis that may be pertinent to this population include physiological factors such as insulin resistance, vitamin D deficiency, genetic factors, obesity, and anti-mullerian hormone (AMH) levels in the body as well as environmental factors such as air pollution, endocrine disrupting chemicals, and pesticide use. This evidence will help inform healthcare workers and government agencies to set up optimal guidelines for control and awareness of PCOS in the UAE.
Collapse
Affiliation(s)
- Sarah Dalibalta
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Yara Abukhaled
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Fatin Samara
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
146
|
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a common condition characterized by reproductive, hyperandrogenic and dysmetabolic features, and often becomes clinically manifest during adolescence, particularly with weight-gain. SOURCES OF DATA Pubmed search. AREAS OF AGREEMENT PCOS is heritable and closely associates with obesity (based on data from both epidemiological and genetic studies). Furthermore, insulin resistance forms a central cornerstone of the pathogenesis of PCOS and mediates a close association between obesity and the severity of the phenotypic features of PCOS. AREAS OF CONTROVERSY Our understanding of the pathogenesis of PCOS remains incomplete, especially regarding its missing heritability (with only a small fraction having been identified from the genome-wide association studies reported to date), and its developmental origins. GROWING POINTS A challenge for the future is to explore a role for epigenetic modifications in the development of PCOS, and implications for the in utero environment and novel therapeutic opportunities.
Collapse
Affiliation(s)
- T M Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| |
Collapse
|
147
|
Liu Q, Tang B, Zhu Z, Kraft P, Deng Q, Stener-Victorin E, Jiang X. A genome-wide cross-trait analysis identifies shared loci and causal relationships of type 2 diabetes and glycaemic traits with polycystic ovary syndrome. Diabetologia 2022; 65:1483-1494. [PMID: 35771237 PMCID: PMC9345824 DOI: 10.1007/s00125-022-05746-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS The link underlying abnormal glucose metabolism, type 2 diabetes and polycystic ovary syndrome (PCOS) that is independent of BMI remains unclear in observational studies. We aimed to clarify this association using a genome-wide cross-trait approach. METHODS Summary statistics from the hitherto largest genome-wide association studies conducted for type 2 diabetes, type 2 diabetes mellitus adjusted for BMI (T2DMadjBMI), fasting glucose, fasting insulin, 2h glucose after an oral glucose challenge (all adjusted for BMI), HbA1c and PCOS, all in populations of European ancestry, were used. We quantified overall and local genetic correlations, identified pleiotropic loci and expression-trait associations, and made causal inferences across traits. RESULTS A positive overall genetic correlation between type 2 diabetes and PCOS was observed, largely influenced by BMI (rg=0.31, p=1.63×10-8) but also independent of BMI (T2DMadjBMI-PCOS: rg=0.12, p=0.03). Sixteen pleiotropic loci affecting type 2 diabetes, glycaemic traits and PCOS were identified, suggesting mechanisms of association that are independent of BMI. Two shared expression-trait associations were found for type 2 diabetes/T2DMadjBMI and PCOS targeting tissues of the cardiovascular, exocrine/endocrine and digestive systems. A putative causal effect of fasting insulin adjusted for BMI and type 2 diabetes on PCOS was demonstrated. CONCLUSIONS/INTERPRETATION We found a genetic link underlying type 2 diabetes, glycaemic traits and PCOS, driven by both biological pleiotropy and causal mediation, some of which is independent of BMI. Our findings highlight the importance of controlling fasting insulin levels to mitigate the risk of PCOS, as well as screening for and long-term monitoring of type 2 diabetes in all women with PCOS, irrespective of BMI.
Collapse
Affiliation(s)
- Qianwen Liu
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Bowen Tang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | | | - Xia Jiang
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Stockholm, Sweden.
| |
Collapse
|
148
|
Li X, Xiao H, Ma Y, Zhou Z, Chen D. Identifying novel genetic loci associated with polycystic ovary syndrome based on its shared genetic architecture with type 2 diabetes. Front Genet 2022; 13:905716. [PMID: 36105080 PMCID: PMC9464923 DOI: 10.3389/fgene.2022.905716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified several common variants associated with polycystic ovary syndrome (PCOS). However, the etiology behind PCOS remains incomplete. Available evidence suggests a potential genetic correlation between PCOS and type 2 diabetes (T2D). The publicly available data may provide an opportunity to enhance the understanding of the PCOS etiology. Here, we quantified the polygenic overlap between PCOS and T2D using summary statistics of PCOS and T2D and then identified the novel genetic variants associated with PCOS behind this phenotypic association. A bivariate causal mixture model (MiXeR model) found a moderate genetic overlap between PCOS and T2D (Dice coefficient = 44.1% and after adjusting for body mass index, 32.1%). The conditional/conjunctional false discovery rate method identified 11 potential risk variants of PCOS conditional on associations with T2D, 9 of which were novel and 6 of which were jointly associated with two phenotypes. The functional annotation of these genetic variants supports a significant role for genes involved in lipid metabolism, immune response, and the insulin signaling pathway. An expression quantitative trait locus functionality analysis successfully repeated that 5 loci were significantly associated with the expression of candidate genes in many tissues, including the whole blood, subcutaneous adipose, adrenal gland, and cerebellum. We found that SCN2A gene is co-localized with PCOS in subcutaneous adipose using GWAS-eQTL co-localization analyses. A total of 11 candidate genes were differentially expressed in multiple tissues of the PCOS samples. These findings provide a new understanding of the shared genetic architecture between PCOS and T2D and the underlying molecular genetic mechanism of PCOS.
Collapse
|
149
|
He R, Liu R, Wu H, Yu J, Jiang Z, Huang H. The Causal Evidence of Birth Weight and Female-Related Traits and Diseases: A Two-Sample Mendelian Randomization Analysis. Front Genet 2022; 13:850892. [PMID: 36035116 PMCID: PMC9412024 DOI: 10.3389/fgene.2022.850892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: A large meta-analysis indicated a more pronounced association between lower birth weight (BW) and diseases in women but less concern about the causality between BW and female-related phenotypes and diseases. Methods: Mendelian randomization (MR) analysis was used to estimate the causal relationship between two traits or diseases using summary datasets from genome-wide association studies. Exposure instrumental variables are variants that are strongly associated with traits and are tested using four different statistical methods, including the inverse variance weighting, MR-Egger, weighted median, and weighted mode in MR analysis. Next, sensitivity analysis and horizontal pleiotropy were assessed using leave-one-out and MR-PRESSO packages. Results: The body mass index (BMI) in adulthood was determined by BW (corrected β = 0.071, p = 3.19E-03). Lower BW could decrease the adult sex hormone-binding globulin (SHBG) level (β = −0.081, p = 2.08E-06), but it resulted in increased levels of bioavailable testosterone (bio-T) (β = 0.105, p = 1.25E-05). A potential inverse effect was observed between BW and menarche (corrected β = −0.048, p = 4.75E-03), and no causal association was confirmed between BW and the risk of endometriosis, leiomyoma, and polycystic ovary syndrome. Conclusion: Our results suggest that BW may play an important role and demonstrates a significant direct influence on female BMI, SHBG and bio-T levels, and menarche.
Collapse
Affiliation(s)
- Renke He
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Rui Liu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyan Wu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaen Yu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Jiang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hefeng Huang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
- Shanghai Frontiers Science Center of Reproduction and Development, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Hefeng Huang,
| |
Collapse
|
150
|
Peña AS, Codner E, Witchel S. Criteria for Diagnosis of Polycystic Ovary Syndrome during Adolescence: Literature Review. Diagnostics (Basel) 2022; 12:diagnostics12081931. [PMID: 36010282 PMCID: PMC9406411 DOI: 10.3390/diagnostics12081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine conditions in women. PCOS may be more challenging to diagnose during adolescence due to an overlap with the physiological events of puberty, which are part of the diagnostic criteria in adult women. This review focuses on the evidence available in relation to PCOS diagnostic criteria for adolescents. Adolescent PCOS should be diagnosed using two main criteria irregular -menstrual cycles (relative to number of years post-menarche) and hyperandrogenism (clinical and/or biochemical); after excluding other conditions that mimic PCOS. Accurate definitions of the two main criteria will decrease challenges/controversies with the diagnosis and provide timely diagnosis during adolescence to establish early management. Despite the attempts to create accurate diagnostic criteria and definitions, this review highlights the limited research in this area, especially in the follow up of adolescents presenting with one diagnostic feature that are called “at risk of PCOS”. Studies in adolescents continue to use the Rotterdam diagnostic criteria that uses pelvic ultrasound. This is inappropriate, because previous and emerging data that show many healthy adolescents have polycystic ovarian morphology in the early years post-menarche. In the future, anti-Müllerian hormone levels might help support PCOS diagnosis if adolescents meet two main criteria.
Collapse
Affiliation(s)
- Alexia S. Peña
- Discipline of Paediatrics, The University of Adelaide Robinson Research Institute, 72 King William Road, Adelaide, SA 5006, Australia
- Endocrinology and Diabetes Department, Women’s and Children’s Hospital, 72 King William Road, Adelaide, SA 5006, Australia
- Correspondence: ; Tel.: +61-881618134
| | - Ethel Codner
- Institute of Child and Maternal Research, School of Medicine, University of Chile, Santiago 836-0160, Chile
| | - Selma Witchel
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|