151
|
Turczański K, Dyderski MK, Rutkowski P. Ash dieback, soil and deer browsing influence natural regeneration of European ash (Fraxinus excelsior L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141787. [PMID: 32889266 DOI: 10.1016/j.scitotenv.2020.141787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
European ash (Fraxinus excelsior L.) dieback affects both overstory trees and natural regeneration. The decline of ash caused by severe crown defoliation and branch mortality has a high impact on ash natural regeneration. The site factors affecting the disease symptoms vary significantly and are not fully understood. Hence, we aimed to assess the joined effects of soil fertility and moisture (expressed by soil pH, CaCO3 content, and summer groundwater table level), herbivory, and health conditions connected with Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz, and Hosoya infestation on natural regeneration of F. excelsior. We examined 32 ash stands in Western Poland across soil fertility gradient. We established randomly selected circular plots (400 m2) in forests with ≥60% of ash in overstory species composition. We assessed natural regeneration density, the proportion of browsed trees, and trees damaged by ash dieback using generalized mixed-effects models. We found a higher proportion of damaged trees in neutral and base soils than in acid soils. Moreover, we found a low proportion of damaged trees in sites with low groundwater table levels. High CaCO3 content decreased the proportion of browsed trees, similarly as high shrub cover. The density of F. excelsior natural regeneration depended on groundwater table level, canopy cover, and proportion of damaged trees. We also found a positive relationship between density and deer browsing. The factor responsible for the higher infestation of saplings (low groundwater table level) also influenced natural regeneration density. This way, our study revealed how soil properties influence ash natural regeneration directly and indirectly. We showed that ash dieback will have a more severe impact on ash regeneration in ash typical sites. This is essential for predicting forest recovery and the ability to resilience after disturbances caused by H. fraxineus. CAPSULE: Joined effects of ash dieback, soil pH, and CaCO3 content, together with soil moisture, as well as deer browsing, affect ash regeneration.
Collapse
Affiliation(s)
- Krzysztof Turczański
- Department of Forest Sites and Ecology, Poznań University of Life Sciences, Wojska Polskiego 71f, 60-625 Poznań, Poland.
| | - Marcin K Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Paweł Rutkowski
- Department of Forest Sites and Ecology, Poznań University of Life Sciences, Wojska Polskiego 71f, 60-625 Poznań, Poland.
| |
Collapse
|
152
|
Abstract
When developing theories, designing studies, and interpreting the results, researchers are influenced by their perception of tree size. For example, we may compare two trees of the same size belonging to different species, and attribute any differences to dissimilarities between the species. However, the meaning of “same size” depends on the measures of size used. Wood density influences certain measures, such as biomass, but does not influence e.g., trunk diameter. Therefore, the choice of the measure of size can reverse any conclusions. Hence, it is import to consider which measure of size should be used. I argue that the most common measure of size, i.e., trunk diameter, is often a bad choice when wood density varies, as diameter is then not directly related to processes important in evolution. When trees with equal diameters but differing wood densities are compared, the tree with denser wood is larger if the measure of size is related to construction cost or trunk strength, a proxy of leaf area. From this perspective, the comparison is then conducted between a biologically larger heavy-wooded tree and a smaller light-wooded tree, and the differences between the trees may be caused by size instead of wood density. Therefore, trunk biomass and strength may often be more suitable measures of size, as they reflect the construction cost and biomechanical potency linked to leaf area crown height, often too challenging to estimate more directly. To assess how commonly inadequate measures of tree size have been used, I reviewed 10 highly cited journal articles. None of these 10 articles discussed the impact of wood density on biological size, and instead based the analyses on diameters or basal areas. This led to conclusions that could change or even reverse in an analysis based on biomass or strength. Overall, I do not suggest avoiding the use of diameter, but I recommend considering result sensitivity to the measure of size, particularly in studies ones with variable wood densities.
Collapse
|
153
|
|
154
|
Zhao J, Zhang Y, Xu J, Chai Y, Liu P, Cao Y, Li C, Yin Q, Zhu J, Yue M. Strong Environmental Filtering Based on Hydraulic Traits Occurring in the Lower Water Availability of Temperate Forest Communities. FRONTIERS IN PLANT SCIENCE 2021; 12:698878. [PMID: 35126402 PMCID: PMC8811132 DOI: 10.3389/fpls.2021.698878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/29/2021] [Indexed: 05/18/2023]
Abstract
The trait-based approaches have made progress in understanding the community assembly process. Here, we explore the key traits that may shape community assembly patterns of the same community type but within different water availabilities. Natural Quercus wutaishanica forests were chosen as a suitable study system to test the difference between economic and hydraulic traits across water availability on the Loess Plateau (LP, drought region) and Qinling Mountains (QL, humid region) of China. A total of 75 plots were established separately in two sites, and 12 functional traits (seven hydraulic traits and five economic traits) of 167 species were studied. Community-weighted mean trait values and functional diversity indices were compared between the two sites. Canonical component analysis was performed to infer whether the changes of community traits and their relationships are driven by intraspecific variation or species turnover. Evidence for likely community assembly processes was tested using the null model to determine whether functional structure among seven hydraulic traits and five economic traits was dominated by different ecological processes between two sites. We found that forests in the Loess Plateau and Qinling Mountains showed different hydraulic and economic traits. Hydraulic and economic traits coupled at the community level were driven by species turnover. Hydraulic traits showed more significant convergent patterns on LP than that in QL. Our results suggest a strong environmental filtering process occurred in hydraulic-based community assembly in the temperate forest with low water availability. Reveal the relationship of hydraulic and economic traits at the community level. Emphasize the critical role of multi-dimensional traits selecting like hydraulic traits in community ecology.
Collapse
Affiliation(s)
- Jiale Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Yuhan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Jinshi Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Peiliang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Ying Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Cunxia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Qiulong Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Jiangang Zhu
- Shuanglong State-Owned Ecological Experimental Forest Farm of Qiaoshan State-Owned Forestry Administration of Yan’an City, Yan’an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
- *Correspondence: Ming Yue,
| |
Collapse
|
155
|
Folk RA, Siniscalchi CM, Soltis DE. Angiosperms at the edge: Extremity, diversity, and phylogeny. PLANT, CELL & ENVIRONMENT 2020; 43:2871-2893. [PMID: 32926444 DOI: 10.1111/pce.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
A hallmark of flowering plants is their ability to invade some of the most extreme and dynamic habitats, including cold and dry biomes, to a far greater extent than other land plants. Recent work has provided insight to the phylogenetic distribution and evolutionary mechanisms which have enabled this success, yet needed is a synthesis of evolutionary perspectives with plant physiological traits, morphology, and genomic diversity. Linking these disparate components will not only lead to better understand the evolutionary parallelism and diversification of plants with these two strategies, but also to provide the framework needed for directing future research. We summarize the primary physiological and structural traits involved in response to cold- and drought stress, outline the phylogenetic distribution of these adaptations, and describe the recurring association of these changes with rapid diversification events that occurred in multiple lineages over the past 15 million years. Across these threefold facets of dry-cold correlation (traits, phylogeny, and time) we stress the contrast between (a) the amazing diversity of solutions flowering plants have developed in the face of extreme environments and (b) a broad correlation between cold and dry adaptations that in some cases may hint at deep common origins.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
156
|
Marshall LA, Falk DA. Demographic trends in community functional tolerance reflect tree responses to climate and altered fire regimes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02197. [PMID: 32524676 DOI: 10.1002/eap.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Forests of the western United States are undergoing substantial stress from fire exclusion and increasing effects of climate change, altering ecosystem functions and processes. Changes in broad-scale drivers of forest community composition become apparent in their effect on survivorship and regeneration, driving demographic shifts. Here we take a community functional approach to forest demography, by investigating mean drought or shade functional tolerance in community assemblages. We created the Community Mean Tolerance Index (CMTI), a response metric utilizing drought/shade tolerance trade-offs to identify communities undergoing demographic change from a functional trait perspective. We applied the CMTI to Forest Inventory and Analysis data to investigate demographic trends in drought and shade tolerance across the southern Rocky Mountains. To find the major drivers of change in community tolerance within and across forest types, we compared index trends to climate and fire-exclusion-driven disturbance, and identified areas where demographic change was most pronounced. We predicted that greater shifts in drought tolerance would occur at lower forest type ecotones where climate stress is limiting and that shifts in shade tolerance would correspond to excursions from the historic fire regime leading to greater changes in forest types adapted to frequent, low-intensity fire. The CMTI was applied spatially to identify sites likely to transition to oak shrubfield, where disturbance history combined with a species-driven demographic shift toward drought tolerance. Within forest types, lower elevations are trending toward increased drought tolerance, while higher elevations are trending toward increased shade tolerance. Across forest types, CMTI difference peaked in mid-elevation ponderosa pine and mixed-conifer forests, where fire exclusion and autecology drive demographic changes. Peak CMTI difference was associated with fire exclusion in forest types adapted to frequent fire. At higher elevations, site-level stand dynamics appear to be influencing demographic tolerance trends more than broad climate drivers. Through a community demographic approach to functional traits, the CMTI highlights areas and forest types where ecosystem function is in the process of changing, before persistent vegetation type change occurs. Applied to regional plot networks, the CMTI provides an early warning of shifts in community functional processes as climate change pressures continue.
Collapse
Affiliation(s)
- L A Marshall
- School of Natural Resources and the Environment, The University of Arizona, Tucson, Arizona, 85721-0045, USA
- Laboratory of Tree-Ring Research, The University of Arizona, Tucson, Arizona, 85721-0045, USA
| | - D A Falk
- School of Natural Resources and the Environment, The University of Arizona, Tucson, Arizona, 85721-0045, USA
- Laboratory of Tree-Ring Research, The University of Arizona, Tucson, Arizona, 85721-0045, USA
| |
Collapse
|
157
|
De Lombaerde E, Baeten L, Verheyen K, Perring MP, Ma S, Landuyt D. Understorey removal effects on tree regeneration in temperate forests: A meta‐analysis. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Emiel De Lombaerde
- Forest & Nature Lab Department of Environment Faculty of Bioscience Engineering Ghent University Melle‐Gontrode Belgium
| | - Lander Baeten
- Forest & Nature Lab Department of Environment Faculty of Bioscience Engineering Ghent University Melle‐Gontrode Belgium
| | - Kris Verheyen
- Forest & Nature Lab Department of Environment Faculty of Bioscience Engineering Ghent University Melle‐Gontrode Belgium
| | - Michael P. Perring
- Forest & Nature Lab Department of Environment Faculty of Bioscience Engineering Ghent University Melle‐Gontrode Belgium
- Ecosystem Restoration and Intervention Ecology Research Group School of Biological Sciences The University of Western Australia Crawley WA Australia
- UK Centre for Ecology and Hydrology Environment Centre Wales Bangor UK
| | - Shiyu Ma
- School of Ecological and Environmental Sciences East China Normal University Shanghai China
| | - Dries Landuyt
- Forest & Nature Lab Department of Environment Faculty of Bioscience Engineering Ghent University Melle‐Gontrode Belgium
| |
Collapse
|
158
|
Zhu J, Zhang Y, Yang X, Chen N, Jiang L. Synergistic effects of nitrogen and CO 2 enrichment on alpine grassland biomass and community structure. THE NEW PHYTOLOGIST 2020; 228:1283-1294. [PMID: 32574402 DOI: 10.1111/nph.16767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Global environmental change is altering the Earth's ecosystems. However, much research has focused on ecosystem-level responses, and we know substantially less about community-level responses to global change stressors. Here we conducted a 6-yr field experiment in a high-altitude (4600 m asl) alpine grassland on the Tibetan Plateau to explore the effects of nitrogen (N) addition and rising atmospheric CO2 concentration on plant communities. Our results showed that N and CO2 enrichment had synergistic effects on alpine grassland communities. Adding nitrogen or CO2 alone did not alter total community biomass, species diversity or community composition, whereas adding both resources together increased community biomass, reduced species diversity and altered community composition. The observed decline in species diversity under simultaneous N and CO2 enrichment was associated with greater community biomass and lower soil water content, and driven by the loss of species characterised simultaneously by tall stature and small specific leaf area. Our findings point to the co-limitation of alpine plant community biomass and structure by nitrogen and CO2 , emphasising the need for future studies to consider multiple aspects of global environmental change together to gain a more complete understanding of their ecological consequences.
Collapse
Affiliation(s)
- Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xian Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ning Chen
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
159
|
Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees. DIVERSITY 2020. [DOI: 10.3390/d12100397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organisms are adapted to their environment through a suite of anatomical, morphological, and physiological traits. These functional traits are commonly thought to determine an organism’s tolerance to environmental conditions. However, the differences in functional traits among co-occurring species, and whether trait differences mediate competition and coexistence is still poorly understood. Here we review studies comparing functional traits in two co-occurring tropical woody plant guilds, lianas and trees, to understand whether competing plant guilds differ in functional traits and how these differences may help to explain tropical woody plant coexistence. We examined 36 separate studies that compared a total of 140 different functional traits of co-occurring lianas and trees. We conducted a meta-analysis for ten of these functional traits, those that were present in at least five studies. We found that the mean trait value between lianas and trees differed significantly in four of the ten functional traits. Lianas differed from trees mainly in functional traits related to a faster resource acquisition life history strategy. However, the lack of difference in the remaining six functional traits indicates that lianas are not restricted to the fast end of the plant life–history continuum. Differences in functional traits between lianas and trees suggest these plant guilds may coexist in tropical forests by specializing in different life–history strategies, but there is still a significant overlap in the life–history strategies between these two competing guilds.
Collapse
|
160
|
Iida Y, Swenson NG. Towards linking species traits to demography and assembly in diverse tree communities: Revisiting the importance of size and allocation. Ecol Res 2020. [DOI: 10.1111/1440-1703.12175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshiko Iida
- Forestry and Forest Products Research Institute Tsukuba Japan
| | | |
Collapse
|
161
|
Fontes CG, Fine PVA, Wittmann F, Bittencourt PRL, Piedade MTF, Higuchi N, Chambers JQ, Dawson TE. Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. THE NEW PHYTOLOGIST 2020; 228:106-120. [PMID: 32452033 DOI: 10.1111/nph.16675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/10/2020] [Indexed: 05/12/2023]
Abstract
Amazonian droughts are increasing in frequency and severity. However, little is known about how this may influence species-specific vulnerability to drought across different ecosystem types. We measured 16 functional traits for 16 congeneric species from six families and eight genera restricted to floodplain, swamp, white-sand or plateau forests of Central Amazonia. We investigated whether habitat distributions can be explained by species hydraulic strategies, and if habitat specialists differ in their vulnerability to embolism that would make water transport difficult during drought periods. We found strong functional differences among species. Nonflooded species had higher wood specific gravity and lower stomatal density, whereas flooded species had wider vessels, and higher leaf and xylem hydraulic conductivity. The P50 values (water potential at 50% loss of hydraulic conductivity) of nonflooded species were significantly more negative than flooded species. However, we found no differences in hydraulic safety margin among species, suggesting that all trees may be equally likely to experience hydraulic failure during severe droughts. Water availability imposes a strong selection leading to differentiation of plant hydraulic strategies among species and may underlie patterns of adaptive radiation in many tropical tree genera. Our results have important implications for modeling species distribution and resilience under future climate scenarios.
Collapse
Affiliation(s)
- Clarissa G Fontes
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Paul V A Fine
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Florian Wittmann
- Department of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology - KIT, Josefstr.1, Rastatt, D-76437, Germany
- Biogeochemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, Mainz, 55128, Germany
| | - Paulo R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maria Teresa Fernandez Piedade
- Coordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, Petrópolis, Manaus, AM, 2936, 69067-375, Brazil
| | - Niro Higuchi
- Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, 69067-375, Brazil
| | - Jeffrey Q Chambers
- Climate Science Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 74, Berkeley, CA, 94720, USA
- Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA, 94720, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
162
|
Welsh ME, Cronin JP, Mitchell CE. Trait-based variation in host contribution to pathogen transmission across species and resource supplies. Ecology 2020; 101:e03164. [PMID: 33460129 DOI: 10.1002/ecy.3164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023]
Abstract
Two key knowledge gaps currently limit the development of more predictive and general models of pathogen transmission: (1) the physiological basis of heterogeneity in host contribution to pathogen transmission (reservoir potential) remains poorly understood and (2) a general means of integrating the ecological dynamics of host communities has yet to emerge. If the traits responsible for differences in reservoir potential also modulate host community dynamics, these traits could be used to predict pathogen transmission as host communities change. In two greenhouse experiments, across 23 host species and two levels of resource supply, the reservoir potential of plant hosts increased significantly along the Leaf Economics Spectrum, a global axis of plant physiological trait covariation that features prominently in models of plant community ecology. This indicates that the traits of the Leaf Economics Spectrum underlie broad differences in reservoir potential across host species and resource supplies. Therefore, host traits could be used to integrate epidemiological models of pathogen transmission with ecological models of host community change.
Collapse
Affiliation(s)
- Miranda E Welsh
- Thompson Writing Program, Duke University, Durham, North Carolina, 27708, USA.,Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - James Patrick Cronin
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, Louisiana, 70506, USA
| | - Charles E Mitchell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
163
|
Astigarraga J, Andivia E, Zavala MA, Gazol A, Cruz-Alonso V, Vicente-Serrano SM, Ruiz-Benito P. Evidence of non-stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests. GLOBAL CHANGE BIOLOGY 2020; 26:5063-5076. [PMID: 32479675 DOI: 10.1111/gcb.15198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non-stationary (i.e. non-time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above-ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above-ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non-stationary relationships between climate, forest structure and demography. Above-ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.
Collapse
Affiliation(s)
- Julen Astigarraga
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
| | - Enrique Andivia
- Department of Biodiversity, Ecology & Evolution, Complutense University of Madrid, Madrid, Spain
| | - Miguel A Zavala
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- Franklin Institute, University of Alcala, Alcalá de Henares, Spain
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | - Verónica Cruz-Alonso
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola de Vallès, Spain
| | | | - Paloma Ruiz-Benito
- Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcalá de Henares, Spain
- Environmental Remote Sensing Group, Department of Geology, Geography and Environment, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
164
|
The Net Effect of Functional Traits on Fitness. Trends Ecol Evol 2020; 35:1037-1047. [PMID: 32807503 DOI: 10.1016/j.tree.2020.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022]
Abstract
Generalizing the effect of traits on performance across species may be achievable if traits explain variation in population fitness. However, testing relationships between traits and vital rates to infer effects on fitness can be misleading. Demographic trade-offs can generate variation in vital rates that yield equal population growth rates, thereby obscuring the net effect of traits on fitness. To address this problem, we describe a diversity of approaches to quantify intrinsic growth rates of plant populations, including experiments beyond range boundaries, density-dependent population models built from long-term demographic data, theoretical models, and methods that leverage widely available monitoring data. Linking plant traits directly to intrinsic growth rates is a fundamental step toward rigorous predictions of population dynamics and community assembly.
Collapse
|
165
|
Zhang J, Swenson NG, Liu J, Liu M, Qiao X, Jiang M. A phylogenetic and trait-based analysis of community assembly in a subtropical forest in central China. Ecol Evol 2020; 10:8091-8104. [PMID: 32788963 PMCID: PMC7417225 DOI: 10.1002/ece3.6465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co-occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait-based tests to gain insights into community processes at four spatial scales in a large stem-mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait-based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co-occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait-based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Jianming Liu
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengting Liu
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed EcologyWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesWuhanChina
| |
Collapse
|
166
|
Inferring Species Diversity and Variability over Climatic Gradient with Spectral Diversity Metrics. REMOTE SENSING 2020. [DOI: 10.3390/rs12132130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Filling in the void between forest ecology and remote sensing through monitoring biodiversity variables is of great interest. In this study, we utilized imaging spectroscopy data from the ISRO–NASA Airborne Visible InfraRed Imaging Spectrometer—Next Generation (AVIRIS-NG) India campaign to investigate how the measurements of biodiversity attributes of forests over wide areas can be augmented by synchronous field- and spectral-metrics. Three sites, Shoolpaneshwar Wildlife Sanctuary (SWS), Vansda National Park (VNP), and Mudumalai Tiger Reserve (MTR), spread over a climatic gradient (rainfall and temperature), were selected for this study. Abundant species maps of three sites were produced using a support vector machine (SVM) classifier with a 76–80% overall accuracy. These maps are a valuable input for forest resource management. Convex hull volume (CHV) is computed from the first three principal components of AVIRIS-NG spectra and used as a spectral diversity metric. It was observed that CHV increased with species numbers showing a positive correlation between species and spectral diversity. Additionally, it was observed that the abundant species show higher spectral diversity over species with lesser spread, provisionally revealing their functional diversity. This could be one of the many reasons for their expansive reach through adaptation to local conditions. Higher rainfall at MTR was shown to have a positive impact on species and spectral diversity as compared to SWS and VNP. Redundancy analysis explained 13–24% of the variance in abundant species distribution because of climatic gradient. Trends in spectral CHVs observed across the three sites of this study indicate that species assemblages may have strong local controls, and the patterns of co-occurrence are largely aligned along climatic gradient. Observed changes in species distribution and diversity metrics over climatic gradient can help in assessing these forests’ responses to the projected dynamics of rainfall and temperature in the future.
Collapse
|
167
|
|
168
|
Pinto‐Ledezma JN, Villalobos F, Reich PB, Catford JA, Larkin DJ, Cavender‐Bares J. Testing Darwin’s naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jesús N. Pinto‐Ledezma
- Department of Ecology, Evolution and Behavior University of Minnesota 1479 Gortner Avenue Saint Paul Minnesota 55108 USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya 91070Xalapa Veracruz México
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota 1530 Cleveland Avenue Saint Paul Minnesota 55108 USA
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales 2753 Australia
| | - Jane A. Catford
- Department of Geography King’s College London Strand London WC2B 4BG UK
| | - Daniel J. Larkin
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota 135 Skok Hall, 2003 Upper Buford Circle Saint Paul Minnesota 55108 USA
| | - Jeannine Cavender‐Bares
- Department of Ecology, Evolution and Behavior University of Minnesota 1479 Gortner Avenue Saint Paul Minnesota 55108 USA
| |
Collapse
|
169
|
Abstract
A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients.
Collapse
|
170
|
Plasticity of Root Traits under Competition for a Nutrient-Rich Patch Depends on Tree Species and Possesses a Large Congruency between Intra- and Interspecific Situations. FORESTS 2020. [DOI: 10.3390/f11050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Belowground competition is an important structuring force in terrestrial plant communities. Uncertainties remain about the plasticity of functional root traits under competition, especially comparing interspecific vs. intraspecific situations. This study addresses the plasticity of fine root traits of competing Acer pseudoplatanus L. and Fagus sylvatica L. seedlings in nutrient-rich soil patches. Seedlings’ roots were grown in a competition chamber experiment in which root growth (biomass), morphological and architectural fine roots traits, and potential activities of four extracellular enzymes were analyzed. Competition chambers with one, two conspecific, or two allospecific roots were established, and fertilized to create a nutrient ‘hotspot’. Interspecific competition significantly reduced fine root growth in Fagus only, while intraspecific competition had no significant effect on the fine root biomass of either species. Competition reduced root nitrogen concentration and specific root respiration of both species. Potential extracellular enzymatic activities of β-glucosidase (BG) and N-acetyl-glucosaminidase (NAG) were lower in ectomycorrhizal Fagus roots competing with Acer. Acer fine roots had greater diameter and tip densities under intraspecific competition. Fagus root traits were generally more plastic than those of Acer, but no differences in trait plasticity were found between competitive situations. Compared to Acer, Fagus roots possessed a greater plasticity of all studied traits but coarse root biomass. However, this high plasticity did not result in directed trait value changes under interspecific competition, but Fagus roots grew less and realized lower N concentrations in comparison to competing Acer roots. The plasticity of root traits of both species was thus found to be highly species- but not competitor-specific. By showing that both con- and allospecific roots had similar effects on target root growth and most trait values, our data sheds light on the paradigm that the intensity of intraspecific competition is greater than those of interspecific competition belowground.
Collapse
|
171
|
Zhu P, Zheng X, Xie G, Chen G, Lu Z, Gurr G. Relevance of the ecological traits of parasitoid wasps and nectariferous plants for conservation biological control: a hybrid meta-analysis. PEST MANAGEMENT SCIENCE 2020; 76:1881-1892. [PMID: 31840379 DOI: 10.1002/ps.5719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ecosystem services are key to human survival. In agriculture, they offer potential to intensify production while reducing reliance on hazardous inputs, including pesticides. Nectar plants can nourish natural enemies of pests and thereby promote the ecosystem service of biological control. To date, however, the selection of optimal plants has been reliant on laborious testing of multiple candidate species for use in each new agroecosystem. We report a hybrid meta-analysis of published literature, employing Bayesian network analysis. RESULTS The hybrid meta-analysis identified the particular plant and parasitoid traits that were most predictive of promoted or suppressed parasitoid longevity. Integrating trait effects identified a combination of plant-parasitoid traits that had the highest impact on parasitoid longevity: compound umbel or raceme inflorescence form and shallow corolla, together with high potential fecundity of the parasitoid. CONCLUSION Unlike earlier analyses focusing on taxonomic categories, we analyzed effect sizes in relation to the ecological traits of parasitoids and plants. This generated the first generalizable guidelines for selecting nectar plants as well as appropriate parasitoid targets for the enhancement of biological control. Within the guidelines, optimal outcomes resulted when plants with compound umbel or raceme inflorescences and shallow corollas were combined with fecund parasitoids. More widely, this type of ecological trait-based meta-analysis opens a new avenue for optimizing the delivery of other types of ecosystem services. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pingyang Zhu
- Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, NSW, Australia
- Jinhua Plant Protection Station, Jinhua, China
| | - Xusong Zheng
- Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Gang Xie
- Research Office, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Guihua Chen
- Jinhua Plant Protection Station, Jinhua, China
| | - Zhongxian Lu
- Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Geoff Gurr
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
172
|
Ren H, Shi FX, Mao R, Guo YD, Zhao WZ. Response of individual sizes and spatial patterns of Deyeuxia angustifolia to increasing water level gradient in a freshwater wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17085-17092. [PMID: 32146663 DOI: 10.1007/s11356-020-08283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The wetland plants are very sensitive to hydrological regimes. In this study, the individual sizes of a widely distributed species (i.e., Deyeuxia angustifolia) at three typical marshes with different water table depths (i.e., wet meadow (WM) marsh; seasonal inundated (SI) marsh; perennial inundated (PI) marsh) were investigated in the Sanjiang Plain of Northeast China. Concurrently, three primary point pattern processes (homogeneous Poisson (HP) process, homogeneous Thomas (HT) process, and inhomogeneous Thomas (IT) process) were used to model spatial patterns in the distribution at 0-50 cm scale for this tillering-cloning species. The plant height, diameter at breast height (d.b.h), internode number, branches number, and individual aboveground biomass of D. angustifolia decreased sharply with rising water level; however, its density and coverage increased first and then decreased as water level increases. The distribution of D. angustifolia totally diverged from the complete spatial randomness (CSR) model (i.e., HP process) suggesting strong aggregation at 0-50 cm scale in all marshes, and aggregated intensity enhanced with increasing water level. Interestingly, the spatial distribution of D. angustifolia fits better with the nested double-cluster model (i.e., IT process) at all scales in WM and SI marshes, indicating that there is a series of clustered patterns under the slight flood stress. However, the spatial pattern fits well with the Poisson cluster model (i.e., HT process) at all scales in PI marsh, implying the small-scale clustering disappeared with the intensification of flooding stress. Our results highlight that the D. angustifolia population could adapt to flooding stress in a certain degree via individual miniaturization strategies and multi-aggregation mechanisms in the freshwater wetlands.
Collapse
Affiliation(s)
- Heng Ren
- Linze Inland River Basin Research Station, Key Laboratory of Inland River Basin Ecohydrology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Xi Shi
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, No. 1101 Zhimin Road, Nanchang, 330045, China.
| | - Rong Mao
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, No. 1101 Zhimin Road, Nanchang, 330045, China
| | - Yue-Dong Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wen-Zhi Zhao
- Linze Inland River Basin Research Station, Key Laboratory of Inland River Basin Ecohydrology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| |
Collapse
|
173
|
Topography and disturbance influence trait‐based composition and productivity of adjacent habitats in a coastal system. Ecosphere 2020. [DOI: 10.1002/ecs2.3139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
174
|
Dylewski Ł, Ortega YK, Bogdziewicz M, Pearson DE. Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecol Lett 2020; 23:1024-1033. [DOI: 10.1111/ele.13499] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/21/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Łukasz Dylewski
- Poznań University of Life Sciences Institute of Zoology Wojska Polskiego 71C Poznań 60‐625 Poland
- Institute of Dendrology Polish Academy of Sciences Parkowa 5 62‐035 Kórnik Poland
| | - Yvette K. Ortega
- Rocky Mountain Research Station USDA Forest Service 800 E. Beckwith Ave. Missoula Montana 59801 USA
| | - Michał Bogdziewicz
- Department of Systematic Zoology Faculty of Biology Adam Mickiewicz University Poznań Poland
| | - Dean E. Pearson
- Rocky Mountain Research Station USDA Forest Service 800 E. Beckwith Ave. Missoula Montana 59801 USA
- Division of Biological Sciences University of Montana 32 Campus Dr. Missoula Montana 59812 USA
| |
Collapse
|
175
|
Rozendaal DMA, Phillips OL, Lewis SL, Affum-Baffoe K, Alvarez-Davila E, Andrade A, Aragão LEOC, Araujo-Murakami A, Baker TR, Bánki O, Brienen RJW, Camargo JLC, Comiskey JA, Djuikouo Kamdem MN, Fauset S, Feldpausch TR, Killeen TJ, Laurance WF, Laurance SGW, Lovejoy T, Malhi Y, Marimon BS, Marimon Junior BH, Marshall AR, Neill DA, Núñez Vargas P, Pitman NCA, Poorter L, Reitsma J, Silveira M, Sonké B, Sunderland T, Taedoumg H, Ter Steege H, Terborgh JW, Umetsu RK, van der Heijden GMF, Vilanova E, Vos V, White LJT, Willcock S, Zemagho L, Vanderwel MC. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 2020; 101:e03052. [PMID: 32239762 PMCID: PMC7379300 DOI: 10.1002/ecy.3052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/08/2020] [Accepted: 02/24/2020] [Indexed: 11/10/2022]
Abstract
Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.
Collapse
Affiliation(s)
- Danaë M A Rozendaal
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, S4S 0A2, Saskatchewan, Canada.,Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.,Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.,Plant Production Systems Group, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands.,Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| | - Oliver L Phillips
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Simon L Lewis
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Geography, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Esteban Alvarez-Davila
- Escuela ECAPMA, UNAD, Calle 14 Sur No. 14-23, Bogotá, Colombia.,Fundación Con Vida, Avenida del Río # 20-114, Medellín, Colombia
| | - Ana Andrade
- Projeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo 2936, Manaus, Amazonas, 69067-375, Brazil
| | - Luiz E O C Aragão
- Remote Sensing Division, National Institute for Space Research - INPE, Av. dos Astronautas 1758, São José dos Campos, São Paulo, 12227-010, Brazil.,Geography, College of Life and Environmental Sciences, University of Exeter, North Park Road, Exeter, EX4 4QE, UK
| | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565, Casilla Postal 2489, Santa Cruz, Bolivia
| | - Timothy R Baker
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Olaf Bánki
- Naturalis Biodiversity Center, Darwinweg 2, 2332 CR, Leiden, The Netherlands
| | - Roel J W Brienen
- School of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - José Luis C Camargo
- Projeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo 2936, Manaus, Amazonas, 69067-375, Brazil
| | - James A Comiskey
- Inventory & Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, 22405, Virginia, USA.,Center for Conservation and Sustainability, Smithsonian Conservation Biology Institute, 1100 Jefferson Dr. SW, Suite 3123, Washington, 20560-0705, D.C., USA
| | - Marie Noël Djuikouo Kamdem
- Department of Botany & Plant Physiology, Faculty of Science, University of Buea, P.O. Box 063, Buea, Cameroon
| | - Sophie Fauset
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, North Park Road, Exeter, EX4 4QE, UK
| | - Timothy J Killeen
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565, Casilla Postal 2489, Santa Cruz, Bolivia
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, 14-88 McGregor Road, Cairns, 4878, Australia
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, 14-88 McGregor Road, Cairns, 4878, Australia
| | - Thomas Lovejoy
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX13QY, UK
| | - Beatriz S Marimon
- Universidade do Estado de Mato Grosso, Av. Prof. Dr. Renato Figueiro Varella, s/n, Bairro Olaria, Nova Xavantina, State of Mato Grosso, CEP 78690-000, Brazil
| | - Ben-Hur Marimon Junior
- Universidade do Estado de Mato Grosso, Av. Prof. Dr. Renato Figueiro Varella, s/n, Bairro Olaria, Nova Xavantina, State of Mato Grosso, CEP 78690-000, Brazil
| | - Andrew R Marshall
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Queensland, 4556, Australia.,Department of Environment and Geography, University of York, York, YO10 5NG, UK.,Flamingo Land Ltd., Malton, North Yorkshire, YO17 6UX, UK
| | - David A Neill
- Facultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Percy Núñez Vargas
- Herbario Vargas, Universidad Nacional de San Antonio Abad del Cusco, Avenida de la Cultura, Nro 733, Cusco, Peru
| | - Nigel C A Pitman
- Science and Education, The Field Museum, 1400S. Lake Shore Drive, Chicago, 60605-2496, Illinois, USA.,Center for Tropical Conservation, Nicholas School of the Environment, Duke University, P.O. Box 90381, Durham, 27708, North Carolina, USA
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Jan Reitsma
- Bureau Waardenburg, P.O. Box 365, 4100 AJ, Culemborg, The Netherlands
| | - Marcos Silveira
- Museu Universitário, Universidade Federal do Acre, Acre, Brazil
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, University of Yaounde I, Yaounde, Cameroon
| | - Terry Sunderland
- Centre for International Forestry Research (CIFOR), Jalan CIFOR, Situ Gede, Sindang Barang, Bogor, 16115, Indonesia.,Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, V6T 1Z4, British Columbia, Canada
| | - Hermann Taedoumg
- Plant Systematic and Ecology Laboratory, University of Yaounde I, Yaounde, Cameroon
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Darwinweg 2, 2332 CR, Leiden, The Netherlands.,Systems Ecology, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - John W Terborgh
- Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, 14-88 McGregor Road, Cairns, 4878, Australia.,Department of Biology and Florida Museum of Natural History, University of Florida, Gainesville, 32611, Florida, USA
| | - Ricardo K Umetsu
- Universidade do Estado de Mato Grosso, Av. Prof. Dr. Renato Figueiro Varella, s/n, Bairro Olaria, Nova Xavantina, State of Mato Grosso, CEP 78690-000, Brazil
| | | | - Emilio Vilanova
- Instituto de Investigaciones para el Desarrollo Forestal, Universidad de Los Andes, Mérida, Venezuela
| | - Vincent Vos
- Universidad Autónoma de Beni, Riberalta, Beni, Bolivia
| | - Lee J T White
- Agence Nationale des Parcs Nationaux, Libreville, BP 20379, Gabon.,Institut de Recherche en Ecologie Tropicale, Libreville, BP 13354, Gabon.,School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Simon Willcock
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG, UK
| | - Lise Zemagho
- Plant Systematic and Ecology Laboratory, University of Yaounde I, Yaounde, Cameroon
| | - Mark C Vanderwel
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, S4S 0A2, Saskatchewan, Canada
| |
Collapse
|
176
|
Variation in Stem Xylem Traits is Related to Differentiation of Upper Limits of Tree Species along an Elevational Gradient. FORESTS 2020. [DOI: 10.3390/f11030349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The distribution limits of many plants are dictated by environmental conditions and species’ functional traits. While many studies have evaluated how plant distribution is driven by environmental conditions, there are not many studies investigating xylem vessel properties with altitude, and whether these traits correlate with altitudinal distribution of tree. Here, we investigated the upper limits of distribution for ten deciduous broadleaf tree species from three temperate montane forest communities along a large elevational gradient on the north-facing slope of Changbai Mountain in Northeast China. We measured stem xylem traits associated with a species’ ability to transport water and resist freezing-induced cavitation that theoretically represent important adaptations to changes in climatic conditions along the elevational gradient. Hydraulically weighted vessel diameter (Dh) was negatively correlated with with the upper limit across the ten studied tree species; however, the correlation seems to be driven by the large differences between ring- and diffuse-porous tree species groups. The ring-porous tree species (e.g., Fraxinus mandshurica Rupr., Maackia amurensis Rupr. et Maxim., and Phellodendron amurense Rupr.) had considerably wider vessels than the diffuse-porous species and were all limited to low-elevation communities. The coefficient of variation (CV) for Dh was 0.53 among the 10 studied species, while the intraspecific analysis showed that the highest CV was only 0.22 among the 10 species. We found no evidence of a relationship between Dh and the upper limits across the seven diffuse-porous species. In contrast to elevation, hydraulic-related xylem traits had no clear patterns of change with precipitation, indicating that hydraulic functionality was largely decoupled from the influences of precipitation in the study area. This finding suggests that xylem traits are associated with altitudinal limits of species distribution, which is mostly evidenced by the contrasts between ring- and diffuse-porous species in xylem anatomy and their altitudinal distributions.
Collapse
|
177
|
D’Andrea R, Guittar J, O’Dwyer JP, Figueroa H, Wright SJ, Condit R, Ostling A. Counting niches: Abundance‐by‐trait patterns reveal niche partitioning in a Neotropical forest. Ecology 2020; 101:e03019. [DOI: 10.1002/ecy.3019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rafael D’Andrea
- Department of Ecology & Evolutionary Biology University of Michigan 1105 North University Ave, Biological Sciences Building Ann Arbor Michigan48109-1085 USA
- Department of Plant Biology University of Illinois Urbana-Champaign, 265 Morrill Hall, MC-116, 505 South Goodwin Avenue Urbana Illinois61801 USA
| | - John Guittar
- Department of Ecology & Evolutionary Biology University of Michigan 1105 North University Ave, Biological Sciences Building Ann Arbor Michigan48109-1085 USA
- Department of Plant Biology Michigan State University Plant Biology Laboratories 612 Wilson Road, Rm 166 East Lansing Michigan 48824 USA
| | - James P. O’Dwyer
- Department of Plant Biology University of Illinois Urbana-Champaign, 265 Morrill Hall, MC-116, 505 South Goodwin Avenue Urbana Illinois61801 USA
| | - Hector Figueroa
- Department of Ecology & Evolutionary Biology University of Michigan 1105 North University Ave, Biological Sciences Building Ann Arbor Michigan48109-1085 USA
| | - S. J. Wright
- Smithsonian Tropical Research Institute Apartado 0843–03092 Balboa Republic of Panama
| | - Richard Condit
- Field Museum of Natural History 1400 South Lake Shore Drive Chicago Illinois 60605 USA
- Morton Arboretum 4100 Illinois Route. 53 Lisle Illinois 60532 USA
| | - Annette Ostling
- Department of Ecology & Evolutionary Biology University of Michigan 1105 North University Ave, Biological Sciences Building Ann Arbor Michigan48109-1085 USA
| |
Collapse
|
178
|
Thomas HJD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Kattge J, Diaz S, Vellend M, Blok D, Cornelissen JHC, Forbes BC, Henry GHR, Hollister RD, Normand S, Prevéy JS, Rixen C, Schaepman-Strub G, Wilmking M, Wipf S, Cornwell WK, Beck PSA, Georges D, Goetz SJ, Guay KC, Rüger N, Soudzilovskaia NA, Spasojevic MJ, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Te Beest M, Berner LT, Björk RG, Buchwal A, Buras A, Carbognani M, Christie KS, Collier LS, Cooper EJ, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Heijmans MMPD, Hermanutz L, Hudson JMG, Johnstone JF, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Kaarlejarvi E, Kulonen A, Lamarque LJ, Lantz TC, Lévesque E, Little CJ, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Petraglia A, Rumpf SB, Shetti R, Speed JDM, Suding KN, Tape KD, Tomaselli M, Trant AJ, Treier UA, Tremblay M, Venn SE, Vowles T, Weijers S, Wookey PA, Zamin TJ, Bahn M, Blonder B, van Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS, Craine JM, Dainese M, Green WA, Jansen S, Kleyer M, Manning P, Niinemets Ü, Onoda Y, Ozinga WA, Peñuelas J, Poschlod P, Reich PB, Sandel B, Schamp BS, Sheremetiev SN, de Vries FT. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat Commun 2020; 11:1351. [PMID: 32165619 PMCID: PMC7067758 DOI: 10.1038/s41467-020-15014-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
Collapse
Affiliation(s)
- H J D Thomas
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK.
| | - A D Bjorkman
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 40530, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319, Gothenburg, Sweden
| | - I H Myers-Smith
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
| | - S C Elmendorf
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| | - J Kattge
- Max Planck Institute for Biogeochemistry, 07701, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - S Diaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Av.Velez Sarsfield 299, Cordoba, Argentina
- FCEFyN, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - M Vellend
- Département de Biologie, Université de Sherbrooke, 2500, boul. de l'Université Sherbrooke, Québec, J1K 2R1, Canada
| | - D Blok
- Dutch Research Council, (NWO), Postbus 93460, 2509 AL, Den Haag, The Netherlands
| | - J H C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - B C Forbes
- Arctic Centre, University of Lapland, 96101, Rovaniemi, Finland
| | - G H R Henry
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, V6T 1Z2, Canada
| | - R D Hollister
- Biology Department, Grand Valley State University, 1 Campus Drive, 3300a Kindschi Hall of Science, Allendale, Michigan, USA
| | - S Normand
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - J S Prevéy
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - C Rixen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - G Schaepman-Strub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - M Wilmking
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
| | - S Wipf
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss National Park, Runatsch 124, Chastè Planta-Wildenberg, 7530, Zernez, Switzerland
| | - W K Cornwell
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - P S A Beck
- European Commission, Joint Research Centre, Via Enrico Fermi, 2749, Ispra, 21027, Italy
| | - D Georges
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
- International Agency for Research in Cancer, 150 Cours Albert Thomas, 69372, Lyon, France
| | - S J Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, 1295S Knoles Dr, AZ, 86011, USA
| | - K C Guay
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, Maine, 04544, USA
| | - N Rüger
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancón, Panama
| | - N A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA, Leiden, The Netherlands
| | - M J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Life Sciences Building, Eucalyptus Dr #2710, Riverside, CA, 92521, USA
| | - J M Alatalo
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
- Environmental Science Center, Qatar University, Doha, Qatar
| | - H D Alexander
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Mississippi, MS, 39762, USA
| | - A Anadon-Rosell
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal, 643, 08028, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| | - S Angers-Blondin
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
| | - M Te Beest
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
- Department of Ecology and Environmental Science Umeå University, SE-901 87, Umeå, Sweden
| | - L T Berner
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, 1295S Knoles Dr, AZ, 86011, USA
| | - R G Björk
- Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30, Gothenburg, Sweden
| | - A Buchwal
- Adam Mickiewicz University, Institute of Geoecology and Geoinformation, B. Krygowskiego 10, 61-680, Poznan, Poland
- University of Alaska Anchorage, 3211 Providence Dr, Anchorage, AK, 99508, USA
| | - A Buras
- Land Surface-Atmosphere Interactions, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - M Carbognani
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - K S Christie
- Alaska Department of Fish and Game, 333 Raspberry Rd, Anchorage, AK, 99518, USA
| | - L S Collier
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - E J Cooper
- Deptartment of Arctic and Marine Biology, Faculty of Bioscences Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway
| | - B Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| | - A Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, Linnanmaa, Oulu, Finland
| | - E R Frei
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, V6T 1Z2, Canada
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - O Grau
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ Antilles, Univ Guyane), Campus Agronomique, 97310, Kourou, French Guiana
| | - P Grogan
- Department of Biology, Queen's University, Biosciences Complex, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - M Hallinger
- Biology Department, Swedish Agricultural University (SLU), SE-750 07, Uppsala, Sweden
| | - M M P D Heijmans
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - L Hermanutz
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - J M G Hudson
- British Columbia Public Service, Vancouver, Canada
| | - J F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - K Hülber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - M Iturrate-Garcia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - C M Iversen
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6134, USA
| | - F Jaroszynska
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, N-5020, Bergen, Norway
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3FX, Scotland, UK
| | - E Kaarlejarvi
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
- Department of Biology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussles, Belgium
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box, 65, FI-00014, Helsinki, Finland
| | - A Kulonen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - L J Lamarque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - T C Lantz
- School of Environmental Studies, University of Victoria, David Turpin Building, B243, Victoria, BC, Canada
| | - E Lévesque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - C J Little
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Aquatic Ecology, Eawag, the Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Duebendorf, Switzerland
| | - A Michelsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
- Department of Biology, University of Copenhagen, Terrestrial Ecology Section, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - A Milbau
- Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, 1000, Brussels, Belgium
| | - J Nabe-Nielsen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - S S Nielsen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - J M Ninot
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal, 643, 08028, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| | - S F Oberbauer
- Department of Biological Sciences, Florida International University, 11200S.W. 8th Street, Miami, FL, 33199, USA
| | - J Olofsson
- Department of Ecology and Environmental Science Umeå University, SE-901 87, Umeå, Sweden
| | - V G Onipchenko
- Department of Ecology and Plant Geography, Moscow State Lomonosov University, 119234, Moscow, 1-12 Leninskie Gory, Russia
| | - A Petraglia
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - S B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
- Department of Ecology and Evolution, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015, Lausanne, Switzerland
| | - R Shetti
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
| | - J D M Speed
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - K N Suding
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| | - K D Tape
- Institute of Northern Engineering, University of Alaska, Engineering Learning and Innovation Facility (ELIF), Suite 240, 1764 Tanana Loop, Fairbanks, AK, 99775-5910, USA
| | - M Tomaselli
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - A J Trant
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - U A Treier
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - M Tremblay
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - S E Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Rd, Waurn Ponds Victoria, 3216, Australia
| | - T Vowles
- Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - S Weijers
- Department of Geography, University of Bonn, Meckenheimer Allee 166, D-53115, Bonn, Germany
| | - P A Wookey
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - T J Zamin
- Department of Biology, Queen's University, Biosciences Complex, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - M Bahn
- Department of Ecology, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - B Blonder
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, 3 South Parks Road, Oxford, OX1 3QY, UK
- Rocky Mountain Biological Laboratory, 8000 Co Rd 317, Crested Butte, CO, 81224, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94706, USA
| | - P M van Bodegom
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA, Leiden, The Netherlands
| | - B Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, 5825 University Research Ct, College Park, MD, 20740, USA
| | - G Campetella
- School of Biosciences and Veterinary Medicine-Plant Diversity and Ecosystems Management Unit, Univeristy of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - B E L Cerabolini
- DBSV-University of Insubria, Via Dunant, 3, 21100, Varese, Italy
| | - F S Chapin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - J M Craine
- Jonah Ventures, 1600 Range Street Suite 201, Boulder, CO, 80301, USA
| | - M Dainese
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Alpine Environment, EURAC Research, Viale Druso, 1, 39100, Bolzano, Italy
| | - W A Green
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - S Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - M Kleyer
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - P Manning
- Senckenberg Biodiversity and Climate Research Centre, 60325, Frankfurt, Germany
| | - Ü Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R.Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Y Onoda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - W A Ozinga
- Vegetation, Forest and Landscape Ecology, Wageningen University and Research, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands
| | - J Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - P Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - P B Reich
- Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave. N., St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - B Sandel
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - B S Schamp
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste., Marie, ON, P6A 2G4, Canada
| | - S N Sheremetiev
- Komarov Botanical Institute, Professor Popova Street, 2, St Petersburg, Russia
| | - F T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94240, 1090 GE, Amsterdam, Netherlands
| |
Collapse
|
179
|
Allen D, Kim AY. A permutation test and spatial cross-validation approach to assess models of interspecific competition between trees. PLoS One 2020; 15:e0229930. [PMID: 32160247 PMCID: PMC7065802 DOI: 10.1371/journal.pone.0229930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/18/2020] [Indexed: 11/30/2022] Open
Abstract
Measuring species-specific competitive interactions is key to understanding plant communities. Repeat censused large forest dynamics plots offer an ideal setting to measure these interactions by estimating the species-specific competitive effect on neighboring tree growth. Estimating these interaction values can be difficult, however, because the number of them grows with the square of the number of species. Furthermore, confidence in the estimates can be overestimated if any spatial structure of model errors is not considered. Here we measured these interactions in a forest dynamics plot in a transitional oak-hickory forest. We analytically fit Bayesian linear regression models of annual tree radial growth as a function of that tree's species, its size, and its neighboring trees. We then compared these models to test whether the identity of a tree's neighbors matters and if so at what level: based on trait grouping, based on phylogenetic family, or based on species. We used a spatial cross-validation scheme to better estimate model errors while avoiding potentially over-fitting our models. Since our model is analytically solvable we can rapidly evaluate it, which allows our proposed cross-validation scheme to be computationally feasible. We found that the identity of the focal and competitor trees mattered for competitive interactions, but surprisingly, identity mattered at the family rather than species-level.
Collapse
Affiliation(s)
- David Allen
- Department of Biology, Middlebury College, Middlebury, VT, United States of America
| | - Albert Y. Kim
- Statistical and Data Sciences Program, Smith College, Northampton, MA, United States of America
| |
Collapse
|
180
|
Cai H, Li F, Jin G. Soil nutrients, forest structure and species traits drive aboveground carbon dynamics in an old-growth temperate forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135874. [PMID: 31841914 DOI: 10.1016/j.scitotenv.2019.135874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Forests store a substantial amount of terrestrial carbon (C), but the drivers of forest C dynamics remain poorly understood, especially in old-growth forests. Here, we evaluate how aboveground C dynamics (i.e., net C change and its demographic processes: C gain from the growth of surviving trees (∆C-surv), C gain from the growth of recruited trees (∆C-recr) and C loss by tree mortality (∆C-mort)) are driven by vegetation attributes (diversity, trait composition and forest structure) and habitat conditions (soil properties and light environment), as well as how ∆C-surv, ∆C-recr and ∆C-mort contribute to net C change. Using 10-year interval demographic data from a 9-ha permanent plot in an old-growth temperate forest in northeastern China, we performed structural equation model to relate the C dynamics to the vegetation attributes and habitat conditions. The net C change is most strongly determined by ∆C-mort. High soil phosphorus concentrations increased ∆C-surv, soil moisture increased ∆C-recr, and leaf area index increased both ∆C-surv and ∆C-recr. Diversity (i.e., structural diversity) had a positive relationship with ∆C-surv but was not related to ∆C-recr or ∆C-mort. Trait composition was significantly related to all three demographic processes. Forest structure was the best predictor of ∆C-surv and ∆C-recr. The net C change increased with higher soil phosphorus concentrations and basal area and in communities dominated by conservative traits (i.e., high wood density). This study highlights that soil nutrients, forest structure and trait composition are important drivers of net C change in old-growth temperate forests. Better insights into C storage and productivity can be gained by simultaneously evaluating the vegetation attributes and habitat conditions of C dynamics in natural ecosystems.
Collapse
Affiliation(s)
- Huiying Cai
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Fengri Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
181
|
Ntawuhiganayo EB, Uwizeye FK, Zibera E, Dusenge ME, Ziegler C, Ntirugulirwa B, Nsabimana D, Wallin G, Uddling J. Traits controlling shade tolerance in tropical montane trees. TREE PHYSIOLOGY 2020; 40:183-197. [PMID: 31860725 PMCID: PMC7048680 DOI: 10.1093/treephys/tpz119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/24/2019] [Accepted: 10/24/2019] [Indexed: 06/01/2023]
Abstract
Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation.
Collapse
Affiliation(s)
- Elisée Bahati Ntawuhiganayo
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- World Agroforestry (ICRAF), University Avenue PO Box 227, Huye, Rwanda
| | - Félicien K Uwizeye
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- BirdLife International, KG 501 St, PO Box 2527, Kigali, Rwanda
| | - Etienne Zibera
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Mirindi E Dusenge
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- Department of Biology, University of Western Ontario, 1157 Richmond street, London, Ontario N6A 5B7, Canada
| | - Camille Ziegler
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
- UMR EcoFoG, INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, BP 709, 97387 Kourou Cedex, France
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Bonaventure Ntirugulirwa
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- Rwanda Agriculture and Animal Resources Development, PO Box 5016, Kigali, Rwanda
| | - Donat Nsabimana
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
182
|
Baker BH, Sultan SE, Lopez-Ichikawa M, Waterman R. Transgenerational effects of parental light environment on progeny competitive performance and lifetime fitness. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180182. [PMID: 30966959 DOI: 10.1098/rstb.2018.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plant and animal parents may respond to environmental conditions such as resource stress by altering traits of their offspring via heritable non-genetic effects. While such transgenerational plasticity can result in progeny phenotypes that are functionally pre-adapted to the inducing environment, it is unclear whether such parental effects measurably enhance the adult competitive success and lifetime reproductive output of progeny, and whether they may also adversely affect fitness if offspring encounter contrasting conditions. In glasshouse experiments with inbred genotypes of the annual plant Polygonum persicaria, we tested the effects of parental shade versus sun on (a) competitive performance of progeny in shade, and (b) lifetime reproductive fitness of progeny in three contrasting treatments. Shaded parents produced offspring with increased fitness in shade despite competition, as well as greater competitive impact on plant neighbours. Inherited effects of parental light conditions also significantly altered lifetime fitness: parental shade increased reproductive output for progeny in neighbour and understorey shade, but decreased fitness for progeny in sunny, dry conditions. Along with these substantial adaptive and maladaptive transgenerational effects, results show complex interactions between genotypes, parent environment and progeny conditions that underscore the role of environmental variability and change in shaping future adaptive potential. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Brennan H Baker
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | | | - Robin Waterman
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| |
Collapse
|
183
|
Boet O, Arnan X, Retana J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS One 2020; 15:e0228625. [PMID: 32074138 PMCID: PMC7029880 DOI: 10.1371/journal.pone.0228625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/20/2020] [Indexed: 11/18/2022] Open
Abstract
Functional trait-based approaches are increasingly used for studying the processes underlying community assembly. The relative influence of different assembly rules might depend on the spatial scale of analysis, the environmental context and the type of functional traits considered. By using a functional trait-based approach, we aim to disentangle the relative role of environmental filtering and interspecific competition on the structure of European ant communities according to the spatial scale and the type of trait considered. We used a large database on ant species composition that encompasses 361 ant communities distributed across the five biogeographic regions of Europe; these communities were composed of 155 ant species, which were characterized by 6 functional traits. We then analysed the relationship between functional divergence and co-occurrence between species pairs across different spatial scales (European, biogeographic region and local) and considering different types of traits (ecological tolerance and niche traits). Three different patterns emerged: negative, positive and non-significant regression coefficients suggest that environmental filtering, competition and neutrality are at work, respectively. We found that environmental filtering is important for structuring European ant communities at large spatial scales, particularly at the scale of Europe and most biogeographic regions. Competition could play a certain role at intermediate spatial scales where temperatures are more favourable for ant productivity (i.e. the Mediterranean region), while neutrality might be especially relevant in spatially discontinuous regions (i.e. the Alpine region). We found that no ecological mechanism (environmental filtering or competition) prevails at the local scale. The type of trait is especially important when looking for different assembly rules, and multi-trait grouping works well for traits associated with environmental responses (tolerance traits), but not for traits related to resource exploitation (niche traits). The spatial scale of analysis, the environmental context and the chosen traits merit special attention in trait-based analyses of community assembly mechanisms.
Collapse
Affiliation(s)
- Olga Boet
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Xavier Arnan
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Javier Retana
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
184
|
Banitz T, Chatzinotas A, Worrich A. Prospects for Integrating Disturbances, Biodiversity and Ecosystem Functioning Using Microbial Systems. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
185
|
Gallagher RV, Falster DS, Maitner BS, Salguero-Gómez R, Vandvik V, Pearse WD, Schneider FD, Kattge J, Poelen JH, Madin JS, Ankenbrand MJ, Penone C, Feng X, Adams VM, Alroy J, Andrew SC, Balk MA, Bland LM, Boyle BL, Bravo-Avila CH, Brennan I, Carthey AJR, Catullo R, Cavazos BR, Conde DA, Chown SL, Fadrique B, Gibb H, Halbritter AH, Hammock J, Hogan JA, Holewa H, Hope M, Iversen CM, Jochum M, Kearney M, Keller A, Mabee P, Manning P, McCormack L, Michaletz ST, Park DS, Perez TM, Pineda-Munoz S, Ray CA, Rossetto M, Sauquet H, Sparrow B, Spasojevic MJ, Telford RJ, Tobias JA, Violle C, Walls R, Weiss KCB, Westoby M, Wright IJ, Enquist BJ. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol 2020; 4:294-303. [PMID: 32066887 DOI: 10.1038/s41559-020-1109-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023]
Abstract
Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges.
Collapse
Affiliation(s)
- Rachael V Gallagher
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Daniel S Falster
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Roberto Salguero-Gómez
- Department of Zoology, Oxford University, Oxford, UK.,Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia.,Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock, Germany
| | - Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - William D Pearse
- Ecology Center and Department of Biology, Utah State University, Logan, UT, USA
| | | | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Joshua S Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Manoa, HI, USA
| | - Markus J Ankenbrand
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Center for Computational and Theoretical Biology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Xiao Feng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Vanessa M Adams
- Discipline of Geography and Spatial Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - John Alroy
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Samuel C Andrew
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Meghan A Balk
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Lucie M Bland
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Brad L Boyle
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Catherine H Bravo-Avila
- Department of Biology, University of Miami, Miami, FL, USA.,Fairchild Tropical Botanic Garden, Coral Gables, FL, USA
| | - Ian Brennan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Renee Catullo
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Brittany R Cavazos
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dalia A Conde
- Species360 Conservation Science Alliance, Bloomington, MN, USA.,Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark.,Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Belen Fadrique
- Department of Biology, University of Miami, Miami, FL, USA
| | - Heloise Gibb
- Department of Ecology, Environment and Evolution and Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Aud H Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Jennifer Hammock
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - J Aaron Hogan
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Hamish Holewa
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Michael Hope
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Colleen M Iversen
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Michael Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander Keller
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Center for Computational and Theoretical Biology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Paula Mabee
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | - Peter Manning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Luke McCormack
- Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel S Park
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA, USA
| | - Timothy M Perez
- Department of Biology, University of Miami, Miami, FL, USA.,Fairchild Tropical Botanic Garden, Coral Gables, FL, USA
| | - Silvia Pineda-Munoz
- School of Biological Sciences and School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Courtenay A Ray
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Maurizio Rossetto
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia.,Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Hervé Sauquet
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.,National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia.,Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Universite Paris-Saclay, Orsay, France
| | - Benjamin Sparrow
- TERN / School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Richard J Telford
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, London, UK
| | - Cyrille Violle
- CEFE, CNRS, Univ Montpellier, Université Paul Valéry Montpellier, Montpellier, France
| | | | | | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
186
|
Luo S, Schmid B, Wagg C, Chen Y, Jiang B, Liang M, Liu X, Yu S. Community‐wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. OIKOS 2020. [DOI: 10.1111/oik.07273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Luo
- Dept of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat‐sen Univ. CN‐510275 Guangzhou PR China
| | | | - Cameron Wagg
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich Zürich Switzerland
| | - Yuxin Chen
- Dept of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat‐sen Univ. CN‐510275 Guangzhou PR China
| | - Bin Jiang
- Dept of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat‐sen Univ. CN‐510275 Guangzhou PR China
| | - Minxia Liang
- Dept of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat‐sen Univ. CN‐510275 Guangzhou PR China
| | - Xubing Liu
- Dept of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat‐sen Univ. CN‐510275 Guangzhou PR China
| | - Shixiao Yu
- Dept of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat‐sen Univ. CN‐510275 Guangzhou PR China
| |
Collapse
|
187
|
Helsen K, Van Cleemput E, Bassi L, Graae BJ, Somers B, Blonder B, Honnay O. Inter‐ and intraspecific trait variation shape multidimensional trait overlap between two plant invaders and the invaded communities. OIKOS 2020. [DOI: 10.1111/oik.06919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kenny Helsen
- Plant Conservation and Population Biology, Biology Dept, KU Leuven Kasteelpark Arenberg 31 BE‐3001 Leuven Belgium
| | | | - Leonardo Bassi
- Plant Conservation and Population Biology, Biology Dept, KU Leuven Kasteelpark Arenberg 31 BE‐3001 Leuven Belgium
| | - Bente J. Graae
- Dept of Biology, Norwegian Univ. of Science and Technology Trondheim Norway
| | - Ben Somers
- Division of Forest, Nature and Landscape, KU Leuven Leuven Belgium
| | - Benjamin Blonder
- Dept of Biology, Norwegian Univ. of Science and Technology Trondheim Norway
- School of Life Sciences, Arizona State Univ. Tempe AZ USA
| | - Olivier Honnay
- Plant Conservation and Population Biology, Biology Dept, KU Leuven Kasteelpark Arenberg 31 BE‐3001 Leuven Belgium
| |
Collapse
|
188
|
van der Sande MT, Bruelheide H, Dawson W, Dengler J, Essl F, Field R, Haider S, van Kleunen M, Kreft H, Pagel J, Pergl J, Purschke O, Pyšek P, Weigelt P, Winter M, Attorre F, Aubin I, Bergmeier E, Chytrý M, Dainese M, De Sanctis M, Fagundez J, Golub V, Guerin GR, Gutiérrez AG, Jandt U, Jansen F, Jiménez‐Alfaro B, Kattge J, Kearsley E, Klotz S, Kramer K, Moretti M, Niinemets Ü, Peet RK, Penuelas J, Petřík P, Reich PB, Sandel B, Schmidt M, Sibikova M, Violle C, Whitfeld TJS, Wohlgemuth T, Knight TM. Similar factors underlie tree abundance in forests in native and alien ranges. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2020; 29:281-294. [PMID: 32063745 PMCID: PMC7006795 DOI: 10.1111/geb.13027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
AIM Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION Global. TIME PERIOD Recent. MAJOR TAXA STUDIED Trees. METHODS We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.
Collapse
Affiliation(s)
- Masha T. van der Sande
- Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Biological SciencesFlorida Institute of TechnologyMelbourneFlorida
- Institute for Biodiversity & Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Forest Ecology and Forest Management GroupWageningen University & ResearchWageningenThe Netherlands
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Wayne Dawson
- Department of BiosciencesDurham UniversityDurhamUnited Kingdom
| | - Jürgen Dengler
- Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of BayreuthBayreuthGermany
- Vegetation EcologyInstitute of Environment and Natural Resources (IUNR), Zurich University of Applied Sciences (ZHAW)Switzerland
| | - Franz Essl
- Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUnited Kingdom
| | - Sylvia Haider
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Mark van Kleunen
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Holger Kreft
- Biodiversity, Macroecology & BiogeographyUniversity of GoettingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of GoettingenGöttingenGermany
| | - Joern Pagel
- Landscape & Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Jan Pergl
- Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Oliver Purschke
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Petr Pyšek
- Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
- Faculty of Science, Department of EcologyCharles UniversityPragueCzech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & BiogeographyUniversity of GoettingenGöttingenGermany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Fabio Attorre
- Department of Environmental BiologyUniversity Sapienza of RomeRomeItaly
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest ServiceNatural Resources CanadaSault Ste MarieOntarioCanada
| | - Erwin Bergmeier
- Vegetation & Phytodiversity AnalysisUniversity of GöttingenGöttingenGermany
| | - Milan Chytrý
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Matteo Dainese
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany
- Institute for Alpine EnvironmentEURAC ResearchBolzanoItaly
| | | | - Jaime Fagundez
- Faculty of Science, Department of BiologyUniversity of A CoruñaCoruñaSpain
| | - Valentin Golub
- Institute of Ecology of the Volga River BasinRussian Academy of SciencesTolyattiRussia
| | - Greg R. Guerin
- Terrestrial Ecosystem Research Network, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alvaro G. Gutiérrez
- Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Ute Jandt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Florian Jansen
- Faculty of Agricultural and Environmental ScienceUniversity of RostockRostockGermany
| | | | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Max Planck Institute for BiogeochemistryJenaGermany
| | - Elizabeth Kearsley
- Computational and Applied Vegetation Ecology (CAVElab)Ghent UniversityGhentBelgium
| | - Stefan Klotz
- Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Koen Kramer
- Forest Ecology and Forest Management GroupWageningen University & ResearchWageningenThe Netherlands
- Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research (Alterra)Wageningen University and ResearchWageningenThe Netherlands
| | - Marco Moretti
- Swiss Federal Research Institute WSL, Biodiversity and Conservation BiologyBirmensdorfSwitzerland
| | - Ülo Niinemets
- Chair of Crop Science and Plant BiologyEstonian University of Life SciencesTartuEstonia
- Estonian Academy of SciencesTallinnEstonia
| | - Robert K. Peet
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF‐CSIC‐UABBarcelonaSpain
- CREAFBarcelonaSpain
| | - Petr Petřík
- Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesota
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrith South DCNew South WalesAustralia
| | - Brody Sandel
- Department of BiologySanta Clara UniversitySanta ClaraCalifornia
| | - Marco Schmidt
- Data and Modelling CentreSenckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
- Scientific ServicePalmengarten der Stadt FrankfurtFrankfurt am MainGermany
| | - Maria Sibikova
- Institute of Botany, Plant Science and Biodiversity CenterSlovak Academy of SciencesBratislavaSlovakia
| | - Cyrille Violle
- Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175)CNRS, Université Paul Valéry Montpellier, EPHE, Univ MontpellierMontpellierFrance
| | | | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Tiffany M. Knight
- Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| |
Collapse
|
189
|
Fréjaville T, Vizcaíno-Palomar N, Fady B, Kremer A, Benito Garzón M. Range margin populations show high climate adaptation lags in European trees. GLOBAL CHANGE BIOLOGY 2020; 26:484-495. [PMID: 31642570 DOI: 10.1111/gcb.14881] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
How populations of long-living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre-adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range-wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness-related traits could show similar adaptation lag patterns.
Collapse
Affiliation(s)
| | | | - Bruno Fady
- INRA, UR629, Ecologie des Forêts Méditerranéennes (URFM), Avignon, France
| | - Antoine Kremer
- BIOGECO (UMR 1202), INRA, University of Bordeaux, Cestas, France
| | | |
Collapse
|
190
|
Xu W, Tomlinson KW, Li J. Strong intraspecific trait variation in a tropical dominant tree species along an elevational gradient. PLANT DIVERSITY 2020; 42:1-6. [PMID: 32140632 PMCID: PMC7046502 DOI: 10.1016/j.pld.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Functional trait variation of plant species includes both inter- and intraspecific variation; however, trait-based plant ecology generally considers only interspecific variation while ignoring intraspecific variation. One reason for this neglect is that intraspecific variation may be negligible when compared to interspecific variation; however, direct comparisons between inter- and intraspecific variation of plant species are lacking, especially in tropical forests. Here we investigated intraspecific leaf trait variation (leaf area, specific leaf area, leaf thickness, leaf density, leaf chlorophyll content) of Pittosporopsis kerrii Craib (Icacinaceae), the most abundant tree species in the Xishuangbanna tropical seasonal rainforest in southwestern China, along an elevational gradient (703-824 m). We found a substantial range of intraspecific variation in P. kerrii that was never less than 22.1% of range of the interspecific variation among 462 tree species reported before in the same community. Moreover, with increased elevation, both leaf thickness and density increased and specific leaf area decreased significantly. It could be more important for the individuals of P. kerrii to produce thicker and denser leaves to tolerate environmental stress (e.g. soil water availability) rather than having high growth rates at the places with higher elevation in the Xishuangbanna tropical seasonal rainforest.
Collapse
Affiliation(s)
- Wumei Xu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Kyle W. Tomlinson
- Community Ecology and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
191
|
Loram-Lourenço L, Farnese FDS, de Sousa LF, Alves RDFB, de Andrade MCP, Almeida SEDS, Moura LMDF, Costa AC, Silva FG, Galmés J, Cochard H, Franco AC, Menezes-Silva PE. A Structure Shaped by Fire, but Also Water: Ecological Consequences of the Variability in Bark Properties Across 31 Species From the Brazilian Cerrado. FRONTIERS IN PLANT SCIENCE 2020; 10:1718. [PMID: 32038687 PMCID: PMC6987451 DOI: 10.3389/fpls.2019.01718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/06/2019] [Indexed: 05/26/2023]
Abstract
Bark is a structure involved in multiple physiological functions, but which has been traditionally associated with protection against fire. Thus, little is known about how the morpho-anatomical variations of this structure are related to different ecological pressures, especially in tropical savanna species, which are commonly subjected to frequent fire and drought events. Here we evaluated how the structural and functional variations of bark are related to the processes of resilience and resistance to fire, as well as transport and storage of water in 31 native species from the Brazilian Cerrado. Because of their thick bark, none of the trees analyzed were top-killed after a severe fire event. The structural and functional variations of the bark were also associated with water storage and transport, functions related to properties of the inner bark. In fact, species with a thicker and less dense inner bark were the ones that had the highest water contents in the wood, bark, and leaves. Lower bark density was also related to higher stem hydraulic conductivity, carbon assimilation, and growth. Overall, we provide strong evidence that in addition to protection from fire, the relative investment in bark also reflects different strategies of water use and conservation among many Cerrado tree species.
Collapse
Affiliation(s)
- Lucas Loram-Lourenço
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Brazil
| | - Fernanda dos Santos Farnese
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Brazil
| | - Letícia Ferreira de Sousa
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Brazil
| | | | - Maria Clara Pereira de Andrade
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Brazil
| | | | | | - Alan Carlos Costa
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Brazil
| | - Fabiano Guimarães Silva
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Brazil
| | - Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Palma, Spain
| | - Hervé Cochard
- Université Clermont-Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Augusto Cesar Franco
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Paulo Eduardo Menezes-Silva
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Brazil
| |
Collapse
|
192
|
Santini F, Climent JM, Voltas J. Phenotypic integration and life history strategies among populations of Pinus halepensis: an insight through structural equation modelling. ANNALS OF BOTANY 2020; 124:1161-1172. [PMID: 31115443 PMCID: PMC6943711 DOI: 10.1093/aob/mcz088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Understanding inter-population variation in the allocation of resources to specific anatomical compartments and physiological processes is crucial to disentangle adaptive patterns in forest species. This work aims to evaluate phenotypic integration and trade-offs among functional traits as determinants of life history strategies in populations of a circum-Mediterranean pine that dwells in environments where water and other resources are in limited supply. METHODS Adult individuals of 51 populations of Pinus halepensis grown in a common garden were characterized for 11 phenotypic traits, including direct and indirect measures of water uptake at different depths, leaf area, stomatal conductance, chlorophyll content, non-structural carbohydrates, stem diameter and tree height, age at first reproduction and cone production. The population differentiation in these traits was tested through analysis of variance (ANOVA). The resulting populations' means were carried forward to a structural equation model evaluating phenotypic integration between six latent variables (summer water uptake depth, summer transpiration, spring photosynthetic capacity, growth, reserve accumulation and reproduction). KEY RESULTS Water uptake depth and transpiration covaried negatively among populations, as the likely result of a common selective pressure for drought resistance, while spring photosynthetic capacity was lower in populations originating from dry areas. Transpiration positively influenced growth, while growth was negatively related to reproduction and reserves among populations. Water uptake depth negatively influenced reproduction. CONCLUSIONS The observed patterns indicate a differentiation in life cycle features between fast-growing and slow-growing populations, with the latter investing significantly more in reproduction and reserves. We speculate that such contrasting strategies result from different arrays of life history traits underlying the very different ecological conditions that the Aleppo pine must face across its distribution range. These comprise, principally, drought as the main stressor and fire as the main ecological disturbance of the Mediterranean basin.
Collapse
Affiliation(s)
- Filippo Santini
- Joint Research Unit CTFC – AGROTECNIO, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - José M Climent
- INIA-CIFOR, Department of Ecology and Forest Genetics, Madrid, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC – AGROTECNIO, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| |
Collapse
|
193
|
Ruiz-Benito P, Vacchiano G, Lines ER, Reyer CP, Ratcliffe S, Morin X, Hartig F, Mäkelä A, Yousefpour R, Chaves JE, Palacios-Orueta A, Benito-Garzón M, Morales-Molino C, Camarero JJ, Jump AS, Kattge J, Lehtonen A, Ibrom A, Owen HJ, Zavala MA. Available and missing data to model impact of climate change on European forests. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2019.108870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
194
|
Berzaghi F, Wright IJ, Kramer K, Oddou-Muratorio S, Bohn FJ, Reyer CPO, Sabaté S, Sanders TGM, Hartig F. Towards a New Generation of Trait-Flexible Vegetation Models. Trends Ecol Evol 2019; 35:191-205. [PMID: 31882280 DOI: 10.1016/j.tree.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models. We also present a roadmap of research priorities to develop a next generation of vegetation models with flexible traits. Including trait variability in vegetation models is necessary to better represent biosphere responses to global change.
Collapse
Affiliation(s)
- Fabio Berzaghi
- Laboratory for Sciences of Climate and Environment (LSCE) - UMR CEA/CNRS/UVSQ, Gif-sur-Yvette 91191, France; Department of Biological Sciences, Macquarie University, Sydney, NSW 2022, Australia; Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali, University of Tuscia, Viterbo 01100, Italy.
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2022, Australia
| | - Koen Kramer
- Wageningen University and Research, Droevendaalse steeg 4, 6700AA Wageningen, The Netherlands
| | | | - Friedrich J Bohn
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany; Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Christopher P O Reyer
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 60 12 03, D-14412 Potsdam, Germany
| | - Santiago Sabaté
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona (UB), Barcelona 08028, Spain; CREAF (Center for Ecological Research and Forestry Applications), Cerdanyola del Vallès 08193, Spain
| | - Tanja G M Sanders
- Thuenen Institut of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Florian Hartig
- Theoretical Ecology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 3, 93053, Regensburg, Germany
| |
Collapse
|
195
|
Dumack K, Fiore‐Donno AM, Bass D, Bonkowski M. Making sense of environmental sequencing data: Ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Mol Ecol Resour 2019; 20:398-403. [DOI: 10.1111/1755-0998.13112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Kenneth Dumack
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| | - Anna Maria Fiore‐Donno
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| | - David Bass
- Centre for Environment Fisheries and Aquaculture Science (Cefas) Weymouth UK
- Department of Life Sciences The Natural History Museum London UK
| | - Michael Bonkowski
- Institute of Zoology Terrestrial Ecology Cluster of Excellence on Plant Sciences (CEPLAS) University of Cologne Cologne Germany
| |
Collapse
|
196
|
Chai Y, Dang H, Yue M, Xu J, Zhang L, Quan J, Guo Y, Li T, Wang L, Wang M, Liu X. The role of intraspecific trait variability and soil properties in community assembly during forest secondary succession. Ecosphere 2019. [DOI: 10.1002/ecs2.2940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
- School of Life Sciences Northwest University Xi'an China
| | - Han Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
- School of Life Sciences Northwest University Xi'an China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
- School of Life Sciences Northwest University Xi'an China
| | - Jinshi Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
| | - Lixia Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
| | - Yaoxin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
| | - Ting Li
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
| | - Lei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
| | - Mao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
- College of Grassland and Environment Sciences Xinjiang Agricultural University Urumqi China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi'an China
- School of Life Sciences Northwest University Xi'an China
| |
Collapse
|
197
|
Understanding Community Assembly Based on Functional Traits, Ontogenetic Stages, Habitat Types and Spatial Scales in a Subtropical Forest. FORESTS 2019. [DOI: 10.3390/f10121055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Community assembly in natural communities is commonly explained by stochastic and niche-based processes such as environmental filtering and biotic interactions. Many studies have inferred the importance of these processes using a trait-based approach, however, there are still unknowns around what factors affect the importance of different assembly processes in natural communities. In this study, the trait dispersion patterns of 134 species were examined across different functional traits, habitat types, ontogenetic stages and spatial scales from a 20-ha Dinghushan Forest Dynamic Plot in China. The results showed that (1) functional traits related to productivity such as specific leaf area and leaf area mainly showed functional clustering, indicating these two functional traits were more affected by environmental filtering. However, trait dispersion patterns depended on more than the ecological significances of functional traits. For example, trait dispersions of leaf dry matter content, leaf thickness and maximum height did not show consistent patterns across habitat types and ontogenetic stages, suggesting more complex mechanisms may operate on these traits; (2) the trait dispersion varied with the habitat types and ontogenetic stages. Specifically, we found that habitat types only affected the strength of trait dispersions for all the five traits, but ontogenetic stages influenced both the strength and direction of trait dispersions, which depended on the traits selected; (3) the relative importance of soil, topography and space to trait dispersion varied with ontogenetic stages. Topography and space were more important for trait dispersion of saplings but soil was more important for trait dispersion of adults; (4) biotic interactions dominated community assembly at smaller spatial scales but environmental filtering dominated community assembly at larger spatial scales. Overall, the results highlight the importance of functional traits, habitat types, ontogenetic stages and spatial scales to community assembly in natural communities.
Collapse
|
198
|
Henry L, Morel J, Buendia L. Exploring physiological traits for measuring response to competition in durum wheat. PLANT SIGNALING & BEHAVIOR 2019; 15:1692459. [PMID: 31738636 PMCID: PMC7012061 DOI: 10.1080/15592324.2019.1692459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Studies of the effect of plant density have been conducted in numerous crops. However, most of them focused on yield to evaluate the impact of plant competition. In this study, we determined the best functional trait to detect early competition responses affecting plant growth. To do so, we designed experiments with increasing sowing density using two different durum wheat genotypes. Height from crown to the last liguled leaf and dry weight decreased with increasing sowing density showing that these traits are suitable to measure early competition responses. However, specific leaf area, a common-measured trait to study competition was not affected by sowing density at early stages. We conclude that plant density is a modifier of plant growth at the early stages of plant growth and that dry weight as well as height from crown to the last liguled leaf are the best functional traits to be measured.
Collapse
Affiliation(s)
- L Henry
- BGPI, INRA, CIRAD, SupAgro, Univ. Monpellier, Montpellier, France
| | - Jb Morel
- BGPI, INRA, CIRAD, SupAgro, Univ. Monpellier, Montpellier, France
| | - L Buendia
- BGPI, INRA, CIRAD, SupAgro, Univ. Monpellier, Montpellier, France
| |
Collapse
|
199
|
Kooyman RM, Morley RJ, Crayn DM, Joyce EM, Rossetto M, Slik JF, Strijk JS, Su T, Yap JYS, Wilf P. Origins and Assembly of Malesian Rainforests. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024737] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the origins of Malesia's once vast, hyperdiverse rainforests is a perennial challenge. Major contributions to rainforest assembly came from floristic elements carried on the Indian Plate and montane elementsfrom the Australian Plate (Sahul). The Sahul component is now understood to include substantial two-way exchanges with Sunda inclusive of lowland taxa. Evidence for the relative contributions of the great Asiatic floristic interchanges (GAFIs) with India and Sahul, respectively, to the flora of Malesia comes from contemporary lineage distributions, the fossil record, time-calibrated phylogenies, functional traits, and the spatial structure of genetic diversity. Functional-trait and biome conservatism are noted features of montane austral lineages from Sahul (e.g., diverse Podocarpaceae), whereas the abundance and diversity of lowland lineages, including Syzygium (Myrtaceae) and the Asian dipterocarps (Dipterocarpoideae), reflect a less well understood combination of dispersal, ecology, and adaptive radiations. Thus, Malesian rainforest assembly has been shaped by sharply contrasting evolutionary origins and biogeographic histories.
Collapse
Affiliation(s)
- Robert M. Kooyman
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia
| | - Robert J. Morley
- Palynova UK, Littleport, Cambridgeshire CB6 1PY, United Kingdom
- Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - Darren M. Crayn
- Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia
| | - Elizabeth M. Joyce
- Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia
| | - Maurizio Rossetto
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia
| | - J.W. Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
| | - Joeri S. Strijk
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530005, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, 06000 Luang Prabang, Lao PDR
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Tao Su
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Jia-Yee S. Yap
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
200
|
Searle EB, Chen HYH. Complementarity effects are strengthened by competition intensity and global environmental change in the central boreal forests of Canada. Ecol Lett 2019; 23:79-87. [PMID: 31631491 DOI: 10.1111/ele.13411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 01/23/2023]
Abstract
Increases in niche complementarity have been hypothesised to reduce the intensity of interspecific competition within natural forests. In regions currently experiencing potentially enhanced growth under global environmental change, niche complementarity may become even more beneficial. However, few studies have provided direct evidence of this mechanism. Here, we use data from 180 permanent sample plots in Manitoba, Canada, with a full spatial mapping of all stems, to show that complementarity effects on average increased with neighbourhood competition intensity and temporally rising CO2 , warming and water availability. Importantly, complementarity effects increased with both shade tolerance and phylogenetic dissimilarity between the focal tree and its neighbours. Our results provide further evidence that increasing stand functional and phylogenetic diversity can improve individual tree productivity, especially for individuals experiencing intense competition and may offer an avenue to maintain productivity under global environmental change.
Collapse
Affiliation(s)
- Eric B Searle
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.,Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| |
Collapse
|