151
|
Schön J, Barut GT, Trüeb BS, Halwe NJ, Berenguer Veiga I, Kratzel A, Ulrich L, Kelly JN, Brügger M, Wylezich C, Taddeo A, Aguiar Moreira E, Túrós D, Grau-Roma L, Ahrens AK, Schlottau K, Britzke T, Breithaupt A, Corleis B, Kochmann J, Oliveira Esteves BI, Almeida L, Thomann L, Devisme C, Stalder H, Steiner S, Ochsenbein S, Schmied K, Labroussaa F, Jores J, V'kovski P, Cmiljanovic V, Alves MP, Benarafa C, Ebert N, Hoffmann D, Beer M, Thiel V. A safe, effective and adaptable live-attenuated SARS-CoV-2 vaccine to reduce disease and transmission using one-to-stop genome modifications. Nat Microbiol 2024; 9:2099-2112. [PMID: 38997518 PMCID: PMC11306094 DOI: 10.1038/s41564-024-01755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.
Collapse
Affiliation(s)
- Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bettina Salome Trüeb
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Inês Berenguer Veiga
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Melanie Brügger
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Adriano Taddeo
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Demeter Túrós
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ann Kathrin Ahrens
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Tobias Britzke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christelle Devisme
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sarah Ochsenbein
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kimberly Schmied
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jörg Jores
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Marco P Alves
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
- European Virus Bioinformatics Center, Jena, Germany.
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
152
|
Hills RA, Tan TK, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PNP, Storm KN, Rorick AV, West AP, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, Admans G, James WS, Bjorkman PJ, Townsend AR, Howarth MR. Proactive vaccination using multiviral Quartet Nanocages to elicit broad anti-coronavirus responses. NATURE NANOTECHNOLOGY 2024; 19:1216-1223. [PMID: 38710880 PMCID: PMC11329374 DOI: 10.1038/s41565-024-01655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Defending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links. These Quartet Nanocages, possessing a branched morphology, induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented in the vaccine. Equivalent antibody responses are raised to RBDs close to the nanocage or at the tips of the nanoparticle's branches. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increase the strength and breadth of an otherwise narrow immune response. A Quartet Nanocage including the Omicron XBB.1.5 'Kraken' RBD induced antibodies with binding to a broad range of sarbecoviruses, as well as neutralizing activity against this variant of concern. Quartet nanocages are a nanomedicine approach with potential to confer heterotypic protection against emergent zoonotic pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Kaya N Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabrielle Admans
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
153
|
Choi ANX, Siriphanitchakorn T, Choy MM, Ooi JSG, Manuel M, Tan HC, Lin LZ, Yap X, Gubler DJ, Ooi EE. A prM mutation that attenuates dengue virus replication in human cells enhances midgut infection in mosquitoes. Sci Transl Med 2024; 16:eadk4769. [PMID: 39083584 DOI: 10.1126/scitranslmed.adk4769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Dengue viruses (DENVs), like all viruses, evolve to perpetuate transmission of their species in their hosts. However, how DENV genetics influences dengue disease outbreaks remains poorly understood. Here, we examined isolates of the South Pacific dengue virus type 2 (DENV-2) that emerged in the 1970s and caused major dengue outbreaks in islands in this region until it reached Tonga, where only a few mild cases were reported. Phylogenetically, the DENV-2 strain isolated in Tonga segregated into a clade different from those clades infecting populations in other South Pacific islands. We found that this epidemiological observation could be explained by a single histidine-to-arginine substitution in position 86 of the premembrane (prM) protein of the Tonga DENV-2 strain. This mutation attenuated viral protein translation in mammalian cells but not in midgut cells of the mosquito vector Aedes aegypti. In mammalian cells, the prM mutation resulted in reduced translation of the viral genome and subsequent reduced virus replication. In contrast, in mosquito midgut cells, the prM mutation conferred a selective infection advantage, possibly because of the positively charged arginine residue introduced by the mutation. These findings provide molecular insights into the year-long silent transmission of attenuated DENV-2 in Tonga during the 1970s dengue outbreak in the South Pacific.
Collapse
Affiliation(s)
- Allyson N X Choi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Tanamas Siriphanitchakorn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Milly M Choy
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Justin S G Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Menchie Manuel
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Lowell Z Lin
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Xin Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Duane J Gubler
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Department of Clinical Research, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
154
|
Tachibana K, Nakamura Y, Do TL, Kihara T, Kawada H, Yamamoto N, Ando K. Mutations in the SARS-CoV-2 spike proteins affected the ACE2-binding affinity during the development of Omicron pandemic variants. Biochem Biophys Res Commun 2024; 719:150120. [PMID: 38759524 DOI: 10.1016/j.bbrc.2024.150120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Mutations in SARS-CoV-2 caused multiple waves of pandemics. To identify the function of such mutations, we investigated the binding affinity of the S protein with its receptor, ACE2. Omicron BA.1 showed significantly lower binding affinity with human ACE2 than prototype SARS-CoV-2 and Alpha strain, indicating that pre-Omicron to Omicron transition was not mediated by increasing the ACE2-binding affinity. Meanwhile, the later Omicron variants, BA.5 and XBB.1.5, showed significantly higher ACE2-binding affinity, suggesting that the increased ACE2-binding could be involved in the variant transition within Omicron strains. Furthermore, Alpha and Omicron variants, but not prototype SARS-CoV-2, bound mouse ACE2, which lead to a hypothesis that early Omicron strains evolved from Alpha strain by acquiring multiple mutations in mice.
Collapse
Affiliation(s)
- Kouichi Tachibana
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Yoshihiko Nakamura
- Tokai University School of Medicine, Center for Regenerative Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Thi Ly Do
- The University of Kitakyusyu, Department of Life and Environment Engineering, 1-1 Hibikino, Wakamatu, Kitakyusyu, Fukuoka, Japan
| | - Takanori Kihara
- The University of Kitakyusyu, Department of Life and Environment Engineering, 1-1 Hibikino, Wakamatu, Kitakyusyu, Fukuoka, Japan
| | - Hiroshi Kawada
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Norio Yamamoto
- Tokai University School of Medicine, Department of Microbiology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Tokai University School of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
155
|
Goldberg AR, Langwig KE, Brown KL, Marano JM, Rai P, King KM, Sharp AK, Ceci A, Kailing CD, Kailing MJ, Briggs R, Urbano MG, Roby C, Brown AM, Weger-Lucarelli J, Finkielstein CV, Hoyt JR. Widespread exposure to SARS-CoV-2 in wildlife communities. Nat Commun 2024; 15:6210. [PMID: 39075057 PMCID: PMC11286844 DOI: 10.1038/s41467-024-49891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022-September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.
Collapse
Affiliation(s)
- Amanda R Goldberg
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Katherine L Brown
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Jeffrey M Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Kelsie M King
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Amanda K Sharp
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Alessandro Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | | | - Macy J Kailing
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Russell Briggs
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Matthew G Urbano
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Clinton Roby
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Data Services, University Libraries, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA.
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA.
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA.
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
156
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
157
|
Papaneophytou C. Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management. Int J Mol Sci 2024; 25:8105. [PMID: 39125676 PMCID: PMC11311956 DOI: 10.3390/ijms25158105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
158
|
Bonetti Franceschi V, Volz E. Phylogenetic signatures reveal multilevel selection and fitness costs in SARS-CoV-2. Wellcome Open Res 2024; 9:85. [PMID: 39132669 PMCID: PMC11316176 DOI: 10.12688/wellcomeopenres.20704.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Large-scale sequencing of SARS-CoV-2 has enabled the study of viral evolution during the COVID-19 pandemic. Some viral mutations may be advantageous to viral replication within hosts but detrimental to transmission, thus carrying a transient fitness advantage. By affecting the number of descendants, persistence times and growth rates of associated clades, these mutations generate localised imbalance in phylogenies. Quantifying these features in closely-related clades with and without recurring mutations can elucidate the tradeoffs between within-host replication and between-host transmission. Methods We implemented a novel phylogenetic clustering algorithm ( mlscluster, https://github.com/mrc-ide/mlscluster) to systematically explore time-scaled phylogenies for mutations under transient/multilevel selection. We applied this method to a SARS-CoV-2 time-calibrated phylogeny with >1.2 million sequences from England, and characterised these recurrent mutations that may influence transmission fitness across PANGO-lineages and genomic regions using Poisson regressions and summary statistics. Results We found no major differences across two epidemic stages (before and after Omicron), PANGO-lineages, and genomic regions. However, spike, nucleocapsid, and ORF3a were proportionally more enriched for transmission fitness polymorphisms (TFP)-homoplasies than other proteins. We provide a catalog of SARS-CoV-2 sites under multilevel selection, which can guide experimental investigations within and beyond the spike protein. Conclusions This study provides empirical evidence for the existence of important tradeoffs between within-host replication and between-host transmission shaping the fitness landscape of SARS-CoV-2. This method may be used as a fast and scalable means to shortlist large sequence databases for sites under putative multilevel selection which may warrant subsequent confirmatory analyses and experimental confirmation.
Collapse
Affiliation(s)
- Vinicius Bonetti Franceschi
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| | - Erik Volz
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| |
Collapse
|
159
|
Wu Y, Lai SK, En-Zuo Chan C, Tan BH, Sugrue RJ. Evidence that the SARS-CoV-2 S protein undergoes a conformational change at the Golgi complex that leads to the formation of virus neutralising antibody binding epitopes in the S1 protein subunit. Virology 2024; 598:110187. [PMID: 39094503 DOI: 10.1016/j.virol.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Recombinant SARS-CoV-2 S protein expression was examined in Vero cells by imaging using the human monoclonal antibody panel (PD4, PD5, sc23, and sc29). The PD4 and sc29 antibodies recognised conformational specific epitopes in the S2 protein subunit at the Endoplasmic reticulum and Golgi complex. While PD5 and sc23 detected conformationally specific epitopes in the S1 protein subunit at the Golgi complex, only PD5 recognised the receptor binding domain (RBD). A comparison of the staining patterns of PD5 with non-conformationally specific antibodies that recognises the S1 subunit and RBD suggested the PD5 recognised a conformational structure within the S1 protein subunit. Our data suggests the antibody binding epitopes recognised by the human monoclonal antibodies formed at different locations in the secretory pathway during S protein transport, but a conformational change in the S1 protein subunit at the Golgi complex formed antibody binding epitopes that are recognised by virus neutralising antibodies.
Collapse
Affiliation(s)
- Yanjun Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Conrad En-Zuo Chan
- Infectious Disease Research Laboratory, National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442
| | - Boon Huan Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
160
|
de Sousa NF, Duarte GD, Moraes CB, Barbosa CG, Martin HJ, Muratov NN, do Nascimento YM, Scotti L, de Freitas-Júnior LHG, Filho JMB, Scotti MT. In Silico and In Vitro Studies of Terpenes from the Fabaceae Family Using the Phenotypic Screening Model against the SARS-CoV-2 Virus. Pharmaceutics 2024; 16:912. [PMID: 39065609 PMCID: PMC11279753 DOI: 10.3390/pharmaceutics16070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
In 2019, the emergence of the seventh known coronavirus to cause severe illness in humans triggered a global effort towards the development of new drugs and vaccines for the SARS-CoV-2 virus. These efforts are still ongoing in 2024, including the present work where we conducted a ligand-based virtual screening of terpenes with potential anti-SARS-CoV-2 activity. We constructed a Quantitative Structure-Activity Relationship (QSAR) model from compounds with known activity against SARS-CoV-2 with a model accuracy of 0.71. We utilized this model to predict the activity of a series of 217 terpenes isolated from the Fabaceae family. Four compounds, predominantly triterpenoids from the lupane series, were subjected to an in vitro phenotypic screening in Vero CCL-81 cells to assess their inhibitory activity against SARS-CoV-2. The compounds which showed high rates of SARS-CoV-2 inhibition along with substantial cell viability underwent molecular docking at the SARS-CoV-2 main protease, papain-like protease, spike protein and RNA-dependent RNA polymerase. Overall, virtual screening through our QSAR model successfully identified compounds with the highest probability of activity, as validated using the in vitro study. This confirms the potential of the identified triterpenoids as promising candidates for anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | - Gabrielly Diniz Duarte
- Postgraduate Program in Development and Innovation of Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Carolina Borsoi Moraes
- Institute of Biomedical Sciences, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil; (C.B.M.); (C.G.B.); (L.H.G.d.F.-J.)
| | - Cecília Gomes Barbosa
- Institute of Biomedical Sciences, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil; (C.B.M.); (C.G.B.); (L.H.G.d.F.-J.)
| | - Holli-Joi Martin
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Nail N. Muratov
- Department of Chemical Technology, Odessa National Polytechnic University, 65000 Odessa, Ukraine;
- A. V. Bogatsky Physical-Chemical Institute of NASU, 65047 Odessa, Ukraine
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | | | - José Maria Barbosa Filho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (N.F.d.S.); (Y.M.d.N.); (L.S.); (J.M.B.F.)
| |
Collapse
|
161
|
Daigle L, Khalid H, Gagnon CA, Arsenault J, Bienzle D, Bisson SK, Blais MC, Denis-Robichaud J, Forest C, Grenier St-Sauveur V, Koszegi M, MacNicol J, Nantel-Fortier N, Nury C, Prystajecky N, Fraser E, Carabin H, Aenishaenslin C. High prevalence of SARS-CoV-2 antibodies and low prevalence of SARS-CoV-2 RNA in cats recently exposed to human cases. BMC Vet Res 2024; 20:304. [PMID: 38982461 PMCID: PMC11232172 DOI: 10.1186/s12917-024-04150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The primary objective of this cross-sectional study, conducted in Québec and Bristish Columbia (Canada) between February 2021 and January 2022, was to measure the prevalence of viral RNA in oronasal and rectal swabs and serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amongst cats living in households with at least one confirmed human case. Secondary objectives included a description of potential risk factors for the presence of SARS-CoV-2 antibodies and an estimation of the association between the presence of viral RNA in swabs as well as SARS-CoV-2 antibodies and clinical signs. Oronasal and rectal swabs and sera were collected from 55 cats from 40 households at most 15 days after a human case confirmation, and at up to two follow-up visits. A RT-qPCR assay and an ELISA were used to detect SARS-CoV-2 RNA in swabs and serum SARS-CoV-2 IgG antibodies, respectively. Prevalence and 95% Bayesian credibility intervals (BCI) were calculated, and associations were evaluated using prevalence ratio and 95% BCI obtained from Bayesian mixed log-binomial models. RESULTS Nine (0.16; 95% BCI = 0.08-0.28) and 38 (0.69; 95% BCI = 0.56-0.80) cats had at least one positive RT-qPCR and at least one positive serological test result, respectively. No risk factor was associated with the prevalence of SARS-CoV-2 serum antibodies. The prevalence of clinical signs suggestive of COVID-19 in cats, mainly sneezing, was 2.12 (95% BCI = 1.03-3.98) times higher amongst cats with detectable viral RNA compared to those without. CONCLUSIONS We showed that cats develop antibodies to SARS-CoV-2 when exposed to recent human cases, but detection of viral RNA on swabs is rare, even when sampling occurs soon after confirmation of a human case. Moreover, cats with detectable levels of virus showed clinical signs more often than cats without signs, which can be useful for the management of such cases.
Collapse
Affiliation(s)
- Laurence Daigle
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada.
| | - Hattaw Khalid
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center - FRQ, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Julie Arsenault
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Dorothee Bienzle
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah-Kim Bisson
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marie-Claude Blais
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - José Denis-Robichaud
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Independent Researcher, Amqui, QC, Canada
| | - Caroline Forest
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Valérie Grenier St-Sauveur
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marika Koszegi
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Jennifer MacNicol
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Nicolas Nantel-Fortier
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Charlotte Nury
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Natalie Prystajecky
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erin Fraser
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Hélène Carabin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| | - Cécile Aenishaenslin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| |
Collapse
|
162
|
Nowakowska A, Lee SM, Kim M, Chun J, Kim S, Kim BC, In HJ, Lee E, Lee C, Lee H, Jang Y, Cho H, Kim J, Lee J, Lee HJ, Lee YK, Park JS, Kim YB. Timing of maternal vaccination against COVID-19 for effective protection of neonates: cohort study. Front Immunol 2024; 15:1359209. [PMID: 39040104 PMCID: PMC11260787 DOI: 10.3389/fimmu.2024.1359209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Although the safety and effectiveness of COVID-19 vaccination during pregnancy have been proven, there is still little data explaining neonatal outcomes of maternal pre-pregnancy vaccination. Methods Here, we investigated the impact of vaccination and SARS-CoV-2 infection on maternal-neonate immune response in a cohort study involving 141 pregnant individuals, and defined the importance of maternal COVID-19 vaccination timing for its effectiveness. Results and discussion Our data indicate that vertically transferred maternal hybrid immunity provides significantly better antiviral protection for a neonate than either maternal post-infection or post-vaccination immunity alone. Higher neutralization potency among mothers immunized before pregnancy and their newborns highlights the promising role of pre-pregnancy vaccination in neonatal protection. A comparison of neutralizing antibody titers calculated for each dyad suggests that infection and pre-/during-pregnancy vaccination all support transplacental transfer, providing the offspring with strong passive immunity against SARS-CoV-2. Analysis of neutralizing antibody levels in maternal sera collected during pregnancy and later during delivery shows that immunization may exert a positive effect on maternal protection.
Collapse
Affiliation(s)
- Aleksandra Nowakowska
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minjee Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jungmin Chun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Sehyun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
- KR Biotech Co., Ltd, Seoul, Republic of Korea
| | - Byung Chul Kim
- Korea Disease Control and Prevention Agency, National Institute of Health, National Institute of Infectious Diseases, Center for Vaccine Research, Division of Vaccine Development Coordination, Cheongju, Republic of Korea
| | - Hyun Ju In
- Korea Disease Control and Prevention Agency, National Institute of Health, National Institute of Infectious Diseases, Center for Vaccine Research, Division of Vaccine Development Coordination, Cheongju, Republic of Korea
| | - Eunji Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Chanyeong Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyeondong Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yuyeon Jang
- Department of Bio-industrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Hansam Cho
- KR Biotech Co., Ltd, Seoul, Republic of Korea
| | - Jinha Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeesun Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yoo-Kyoung Lee
- Korea Disease Control and Prevention Agency, National Institute of Health, National Institute of Infectious Diseases, Center for Vaccine Research, Division of Vaccine Development Coordination, Cheongju, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
- KR Biotech Co., Ltd, Seoul, Republic of Korea
| |
Collapse
|
163
|
Lytton SD, Ghosh AK. SARS-CoV-2 Variants and COVID-19 in Bangladesh-Lessons Learned. Viruses 2024; 16:1077. [PMID: 39066238 PMCID: PMC11281597 DOI: 10.3390/v16071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The coronavirus infectious disease-2019 (COVID-19) in Bangladesh is a paradigm for how one of the most densely populated countries in the world, with 1270 people per square kilometer, managed to cope with the COVID-19 pandemic under extraordinary circumstances. This review highlights the SARS-CoV-2 variants in Bangladesh and the timeline of their detection in the context of the global experience with the management of vaccination and natural SARS-CoV-2 infection. The motivation to overcome the COVID-19 vaccine dilemma and track Bangladeshi SARS-CoV-2 sub-variants underscores the potential for a low-income country to excel in international medical science, despite having stressed health care services and limited availability of resources for SARS-CoV-2 testing and gene sequencing.
Collapse
Affiliation(s)
| | - Asish Kumar Ghosh
- Department of Virology, Dhaka Medical College Hospital, Dhaka 1000, Bangladesh;
| |
Collapse
|
164
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
165
|
Zagórska A, Czopek A, Fryc M, Jończyk J. Inhibitors of SARS-CoV-2 Main Protease (Mpro) as Anti-Coronavirus Agents. Biomolecules 2024; 14:797. [PMID: 39062511 PMCID: PMC11275247 DOI: 10.3390/biom14070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an essential enzyme that plays a critical part in the virus's life cycle, making it a significant target for developing antiviral drugs. The inhibition of SARS-CoV-2 Mpro has emerged as a promising approach for developing therapeutic agents to treat COVID-19. This review explores the structure of the Mpro protein and analyzes the progress made in understanding protein-ligand interactions of Mpro inhibitors. It focuses on binding kinetics, origin, and the chemical structure of these inhibitors. The review provides an in-depth analysis of recent clinical trials involving covalent and non-covalent inhibitors and emerging dual inhibitors targeting SARS-CoV-2 Mpro. By integrating findings from the literature and ongoing clinical trials, this review captures the current state of research into Mpro inhibitors, offering a comprehensive understanding of challenges and directions in their future development as anti-coronavirus agents. This information provides new insights and inspiration for medicinal chemists, paving the way for developing more effective Mpro inhibitors as novel COVID-19 therapies.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.C.); (M.F.); (J.J.)
| | | | | | | |
Collapse
|
166
|
Murdocca M, Romeo I, Citro G, Latini A, Centofanti F, Bugatti A, Caccuri F, Caruso A, Ortuso F, Alcaro S, Sangiuolo F, Novelli G. A Dynamic and Effective Peptide-Based Strategy for Promptly Addressing Emerging SARS-CoV-2 Variants of Concern. Pharmaceuticals (Basel) 2024; 17:891. [PMID: 39065742 PMCID: PMC11279616 DOI: 10.3390/ph17070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Genomic surveillance based on sequencing the entire genetic code of SARS-CoV-2 involves monitoring and studying genetic changes and variations in disease-causing organisms such as viruses and bacteria. By tracing the virus, it is possible to prevent epidemic spread in the community, ensuring a 'precision public health' strategy. A peptide-based design was applied to provide an efficacious strategy that is able to counteract any emerging viral variant of concern dynamically and promptly to affect the outcomes of a pandemic at an early stage while waiting for the production of the anti-variant-specific vaccine, which require longer times. The inhibition of the interaction between the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and one of the cellular receptors (DPP4) that its receptors routinely bind to infect human cells is an intriguing therapeutic approach to prevent the virus from entering human cells. Among the other modalities developed for this purpose, peptides surely offer unique advantages, including ease of synthesis, serum stability, low immunogenicity and toxicity, and small production and distribution chain costs. Here, we obtained a potent new inhibitor based on the rearrangement of a previously identified peptide that has been rationally designed on a cell dipeptidyl peptidase 4 (DPP4) sequence, a ubiquitous membrane protein known to bind the RBD-SPIKE domain of the virus. This novel peptide (named DPP4-derived), conceived as an endogenous "drug", is capable of targeting the latest tested variants with a high affinity, reducing the VSV* DG-Fluc pseudovirus Omicron's infection capacity by up to 14%, as revealed by in vitro testing in human Calu-3 cells. Surface plasmon resonance (SPR) confirmed the binding affinity of the new DPP4-derived peptide with Omicron variant RBD.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Gennaro Citro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Andrea Latini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.C.); (A.C.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (I.R.); (F.O.); (S.A.)
- Net4Science Srl Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (G.C.); (A.L.); (F.C.); (G.N.)
- IRCCS Neuromed Mediterranean Neurological Institute, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
167
|
Jang G, Kim J, Lee Y, Son C, Ko KT, Lee H. Analysis of the impact of COVID-19 variants and vaccination on the time-varying reproduction number: statistical methods. Front Public Health 2024; 12:1353441. [PMID: 39022412 PMCID: PMC11253806 DOI: 10.3389/fpubh.2024.1353441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction The COVID-19 pandemic has profoundly impacted global health systems, requiring the monitoring of infection waves and strategies to control transmission. Estimating the time-varying reproduction number is crucial for understanding the epidemic and guiding interventions. Methods Probability distributions of serial interval are estimated for Pre-Delta and Delta periods. We conducted a comparative analysis of time-varying reproduction numbers, taking into account population immunity and variant differences. We incorporated the regional heterogeneity and age distribution of the population, as well as the evolving variants and vaccination rates over time. COVID-19 transmission dynamics were analyzed with variants and vaccination. Results The reproduction number is computed with and without considering variant-based immunity. In addition, values of reproduction number significantly differed by variants, emphasizing immunity's importance. Enhanced vaccination efforts and stringent control measures were effective in reducing the transmission of the Delta variant. Conversely, Pre-Delta variant appeared less influenced by immunity levels, due to lower vaccination rates. Furthermore, during the Pre-Delta period, there was a significant difference between the region-specific and the non-region-specific reproduction numbers, with particularly distinct pattern differences observed in Gangwon, Gyeongbuk, and Jeju in Korea. Discussion This research elucidates the dynamics of COVID-19 transmission concerning the dominance of the Delta variant, the efficacy of vaccinations, and the influence of immunity levels. It highlights the necessity for targeted interventions and extensive vaccination coverage. This study makes a significant contribution to the understanding of disease transmission mechanisms and informs public health strategies.
Collapse
Affiliation(s)
- Geunsoo Jang
- Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University, Daegu, Republic of Korea
| | - Jihyeon Kim
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Yeonsu Lee
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Changdae Son
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeong Tae Ko
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| | - Hyojung Lee
- Department of Statistics, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
168
|
Singer B, Di Nardo A, Hein J, Ferretti L. Comparing Phylogeographies to Reveal Incompatible Geographical Histories within Genomes. Mol Biol Evol 2024; 41:msae126. [PMID: 38922185 PMCID: PMC11251493 DOI: 10.1093/molbev/msae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Modern phylogeography aims at reconstructing the geographic movement of organisms based on their genomic sequences and spatial information. Phylogeographic approaches are often applied to pathogen sequences and therefore tend to neglect the possibility of recombination, which decouples the evolutionary and geographic histories of different parts of the genome. Genomic regions of recombining or reassorting pathogens often originate and evolve at different times and locations, which characterize their unique spatial histories. Measuring the extent of these differences requires new methods to compare geographic information on phylogenetic trees reconstructed from different parts of the genome. Here we develop for the first time a set of measures of phylogeographic incompatibility, aimed at detecting differences between geographical histories in terms of distances between phylogeographies. We study the effect of varying demography and recombination on phylogeographic incompatibilities using coalescent simulations. We further apply these measures to the evolutionary history of human and livestock pathogens, either reassorting or recombining, such as the Victoria and Yamagata lineages of influenza B and the O/Ind-2001 foot-and-mouth disease virus strain. Our results reveal diverse geographical paths of migration that characterize the origins and evolutionary histories of different viral genes and genomic segments. These incompatibility measures can be applied to any phylogeography, and more generally to any phylogeny where each tip has been assigned either a continuous or discrete "trait" independent of the sequence. We illustrate this flexibility with an analysis of the interplay between the phylogeography and phylolinguistics of Uralic-speaking human populations, hinting at patrilinear language transmission.
Collapse
Affiliation(s)
- Benjamin Singer
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Jotun Hein
- Department of Statistics, University of Oxford, Oxford, UK
| | - Luca Ferretti
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
169
|
Zhang Y, Chamblee M, Xu J, Qu P, Shamseldin MM, Yoo SJ, Misny J, Thongpan I, Kc M, Hall JM, Gupta YA, Evans JP, Lu M, Ye C, Hsu CC, Liang X, Martinez-Sobrido L, Yount JS, Boyaka PN, Liu SL, Dubey P, Peeples ME, Li J. Three SARS-CoV-2 spike protein variants delivered intranasally by measles and mumps vaccines are broadly protective. Nat Commun 2024; 15:5589. [PMID: 38961063 PMCID: PMC11222507 DOI: 10.1038/s41467-024-49443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Panke Qu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Egypt
| | - Sung J Yoo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jack Misny
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse M Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yash A Gupta
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | | | - Jacob S Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
170
|
Liang R, Liu K, Li Y, Zhang X, Duan L, Huang M, Sun L, Yuan F, Zhao J, Zhao Y, Zhang G. Adaptive truncation of the S gene in IBV during chicken embryo passaging plays a crucial role in its attenuation. PLoS Pathog 2024; 20:e1012415. [PMID: 39078847 PMCID: PMC11315334 DOI: 10.1371/journal.ppat.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Like all coronaviruses, infectious bronchitis virus, the causative agent of infectious bronchitis in chickens, exhibits a high mutation rate. Adaptive mutations that arise during the production of live attenuated vaccines against IBV often decrease virulence. The specific impact of these mutations on viral pathogenicity, however, has not been fully elucidated. In this study, we identified a mutation at the 3' end of the S gene in an IBV strain that was serially passaged in chicken embryos, and showed that this mutation resulted in a 9-aa truncation of the cytoplasmic tail (CT) of the S protein. This phenomenon of CT truncation has previously been observed in the production of attenuated vaccines against other coronaviruses such as the porcine epidemic diarrhea virus. We next discovered that the 9-aa truncation in the S protein CT resulted in the loss of the endoplasmic-reticulum-retention signal (KKSV). Rescue experiments with recombinant viruses confirmed that the deletion of the KKSV motif impaired the localization of the S protein to the endoplasmic-reticulum-Golgi intermediate compartment (ERGIC) and increased its expression on the cell surface. This significantly reduced the incorporation of the S protein into viral particles, impaired early subgenomic RNA and protein synthesis, and ultimately reduced viral invasion efficiency in CEK cells. In vivo experiments in chickens confirmed the reduced pathogenicity of the mutant IBV strains. Additionally, we showed that the adaptive mutation altered the TRS-B of ORF3 and impacted the transcriptional regulation of this gene. Our findings underscore the significance of this adaptive mutation in the attenuation of IBV infection and provide a novel strategy for the development of live attenuated IBV vaccines.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingfei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linqing Duan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Yuan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
171
|
Gravenstein S, DeVone F, Oyebanji OA, Abul Y, Cao Y, Chan PA, Halladay CW, Rudolph JL, Nugent C, Bosch J, King CL, Wilson BM, Balazs AB, White EM, Canaday DH, McConeghy KW. Durability of immunity and clinical protection in nursing home residents following bivalent SARS-CoV-2 vaccination. EBioMedicine 2024; 105:105180. [PMID: 38861869 PMCID: PMC11215210 DOI: 10.1016/j.ebiom.2024.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Bivalent SARS-CoV-2 vaccines were developed to counter increasing susceptibility to emerging SARS-CoV-2 variants. We evaluated the durability of immunity and protection following first bivalent vaccination among nursing home residents. METHODS We evaluated anti-spike and neutralization titers from blood in 653 community nursing home residents before and after each monovalent booster, and a bivalent vaccine. Concurrent clinical outcomes were evaluated using electronic health record data from a separate cohort of 3783 residents of Veterans Affairs (VA) nursing homes who had received at least the primary series monovalent vaccination. Using target trial emulation, we compared VA residents who did and did not receive the bivalent vaccine to measure vaccine effectiveness against infection, hospitalization, and death. FINDINGS In the community cohort, Omicron BA.5 neutralization activity rose after each monovalent and bivalent booster vaccination regardless of prior infection history. Titers declined over time but six months post-bivalent vaccination, BA.5 neutralization persisted at detectable levels in 75% of infection-naive and 98% of prior-infected individuals. In the VA nursing home cohort, bivalent vaccine added effectiveness to monovalent booster vaccination by 18.5% for infection (95% confidence interval (CI) -5.6, 34.0%), and 29.2% for hospitalization or death (95% CI -14.2, 56.2%) over five months. INTERPRETATION The level of protection declined after bivalent vaccination over a 6 month period and may open a window of added vulnerability before the next updated vaccine becomes available, suggesting a subset of nursing home residents may benefit from an additional vaccination booster. FUNDING CDC, NIH, VHA.
Collapse
Affiliation(s)
- Stefan Gravenstein
- Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Health Services, Policy & Practice, School of Public Health, Brown University, Providence, RI, USA; Center of Innovation in Long-Term Services and Supports, Veterans Administration (VA) Medical Center, Providence, RI, USA.
| | - Frank DeVone
- Center of Innovation in Long-Term Services and Supports, Veterans Administration (VA) Medical Center, Providence, RI, USA
| | | | - Yasin Abul
- Warren Alpert Medical School, Brown University, Providence, RI, USA; Center of Innovation in Long-Term Services and Supports, Veterans Administration (VA) Medical Center, Providence, RI, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Philip A Chan
- Warren Alpert Medical School, Brown University, Providence, RI, USA; Rhode Island Department of Health, Providence, RI, USA
| | - Christopher W Halladay
- Center of Innovation in Long-Term Services and Supports, Veterans Administration (VA) Medical Center, Providence, RI, USA
| | - James L Rudolph
- Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Health Services, Policy & Practice, School of Public Health, Brown University, Providence, RI, USA; Center of Innovation in Long-Term Services and Supports, Veterans Administration (VA) Medical Center, Providence, RI, USA
| | - Clare Nugent
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jürgen Bosch
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Brigid M Wilson
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | | | - Elizabeth M White
- Department of Health Services, Policy & Practice, School of Public Health, Brown University, Providence, RI, USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| | - Kevin W McConeghy
- Department of Health Services, Policy & Practice, School of Public Health, Brown University, Providence, RI, USA; Center of Innovation in Long-Term Services and Supports, Veterans Administration (VA) Medical Center, Providence, RI, USA.
| |
Collapse
|
172
|
Hong B, Li M, Fan H. SARS-CoV-2 Omicron subvariants from BA.2 to BA.2.86 and JN.1: strong lung infection ability and evolving immune escape capacity. MedComm (Beijing) 2024; 5:e578. [PMID: 38882208 PMCID: PMC11179520 DOI: 10.1002/mco2.578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024] Open
Affiliation(s)
- Bixia Hong
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Maochen Li
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Huahao Fan
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
- School of Life Sciences Tianjin University Tianjin China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region Medical College Inner Mongolia Minzu University Tongliao China
| |
Collapse
|
173
|
Zhou L, Simonian AL. CRISPR/Cas Technology: The Unique Synthetic Biology Genome-Editing Tool Shifting the Paradigm in Viral Diagnostics, Defense, and Therapeutics. Annu Rev Biomed Eng 2024; 26:247-272. [PMID: 38346278 DOI: 10.1146/annurev-bioeng-081723-013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.
Collapse
Affiliation(s)
- Lang Zhou
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| | - Aleksandr L Simonian
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
174
|
Iftimie S, Gabaldó-Barrios X, Penadés-Nadal J, Canela-Capdevila M, Piñana R, Jiménez-Franco A, López-Azcona AF, Castañé H, Cárcel M, Camps J, Castro A, Joven J. Serum Levels of Arachidonic Acid, Interleukin-6, and C-Reactive Protein as Potential Indicators of Pulmonary Viral Infections: Comparative Analysis of Influenza A, Respiratory Syncytial Virus Infection, and COVID-19. Viruses 2024; 16:1065. [PMID: 39066228 PMCID: PMC11281451 DOI: 10.3390/v16071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Acute respiratory tract infections, including influenza A (FluA), respiratory syncytial virus (RSV) infection, and COVID-19, can aggravate to levels requiring hospitalization, increasing morbidity and mortality. Identifying biomarkers for an accurate diagnosis and prognosis of these infections is a clinical need. We performed a cross-sectional study aimed to investigate the changes in circulating levels of arachidonic acid, interleukin 6 (IL-6), and C-reactive protein (CRP) in patients with FluA, RSV, or COVID-19, and to analyze the potential of these parameters as diagnosis or prognosis biomarkers. We analyzed serum samples from 172 FluA, 80 RSV, and 217 COVID-19 patients, and 104 healthy volunteers. Individuals with lung viral diseases showed reduced arachidonic acid concentrations compared to healthy people, with these differences being most pronounced in the order COVID-19 > RSV > FluA. Conversely, IL-6 and CRP levels were elevated across diseases, with IL-6 emerging as the most promising diagnostic biomarker, with areas under the curve (AUC) of the receiver operating characteristics plot higher than 0.85 and surpassing arachidonic acid and CRP. Moreover, IL-6 displayed notable efficacy in distinguishing between FluA patients who survived and those who did not (AUC = 0.80). These findings may provide useful tools for diagnosing and monitoring the severity of acute viral respiratory tract infections, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (S.I.); (J.P.-N.); (A.F.L.-A.); (A.C.)
| | - Xavier Gabaldó-Barrios
- Department of Clinical Laboratory, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (R.P.); (M.C.)
| | - Joan Penadés-Nadal
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (S.I.); (J.P.-N.); (A.F.L.-A.); (A.C.)
| | - Marta Canela-Capdevila
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.C.-C.); (A.J.-F.); (H.C.); (J.J.)
| | - Rubén Piñana
- Department of Clinical Laboratory, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (R.P.); (M.C.)
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.C.-C.); (A.J.-F.); (H.C.); (J.J.)
| | - Ana F. López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (S.I.); (J.P.-N.); (A.F.L.-A.); (A.C.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.C.-C.); (A.J.-F.); (H.C.); (J.J.)
| | - María Cárcel
- Department of Clinical Laboratory, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (R.P.); (M.C.)
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.C.-C.); (A.J.-F.); (H.C.); (J.J.)
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (S.I.); (J.P.-N.); (A.F.L.-A.); (A.C.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.C.-C.); (A.J.-F.); (H.C.); (J.J.)
| |
Collapse
|
175
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
176
|
Machkovech HM, Hahn AM, Garonzik Wang J, Grubaugh ND, Halfmann PJ, Johnson MC, Lemieux JE, O'Connor DH, Piantadosi A, Wei W, Friedrich TC. Persistent SARS-CoV-2 infection: significance and implications. THE LANCET. INFECTIOUS DISEASES 2024; 24:e453-e462. [PMID: 38340735 DOI: 10.1016/s1473-3099(23)00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
SARS-CoV-2 causes persistent infections in a subset of individuals, which is a major clinical and public health problem that should be prioritised for further investigation for several reasons. First, persistent SARS-CoV-2 infection often goes unrecognised, and therefore might affect a substantial number of people, particularly immunocompromised individuals. Second, the formation of tissue reservoirs (including in non-respiratory tissues) might underlie the pathophysiology of the persistent SARS-CoV-2 infection and require new strategies for diagnosis and treatment. Finally, persistent SARS-CoV-2 replication, particularly in the setting of suboptimal immune responses, is a possible source of new, divergent virus variants that escape pre-existing immunity on the individual and population levels. Defining optimal diagnostic and treatment strategies for patients with persistent virus replication and monitoring viral evolution are therefore urgent medical and public health priorities.
Collapse
Affiliation(s)
- Heather M Machkovech
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | | | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Jacob E Lemieux
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Wanting Wei
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
177
|
Bicchieraro G, Ciurnelli R, Graziani A, Wong AYW, Camilloni B, Mencacci A, Spaccapelo R. SARS-CoV-2 Molecular Evolution: A Focus on Omicron Variants in Umbria, Italy. Microorganisms 2024; 12:1330. [PMID: 39065097 PMCID: PMC11279337 DOI: 10.3390/microorganisms12071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 6 million deaths worldwide, and the spread of new variants over time increased the ability of this virus to cause infection. The Omicron variant was detected for the first time in Umbria, a region of central Italy, in November 2021 and it induced an unprecedented increase in the number of infection cases. Here, we analysed 3300 SARS-CoV-2 positive samples collected in Umbria between April 2022 and December 2023. We traced the molecular evolution of SARS-CoV-2 variants over time through the Next-Generation Sequencing (NGS) approach. We assessed correlation between SARS-CoV-2 infection and patients' health status. In total, 17.3% of our samples came from patients hospitalised as a consequence of COVID-19 infection even though 81.4% of them received at least three vaccine doses. We identified only Omicron variants, and the BA.5 lineage was detected in the majority of our samples (49.2%). Omicron variants outcompeted each other through the acquisition of mutations especially in Spike glycoprotein that are fingerprints of each variant. Viral antigenic evolution confers higher immunological escape and makes a continuous improvement of vaccine formulation necessary. The continuous update of international genomic databases with sequencing results obtained by emergent pathogens is essential to manage a possible future pandemic.
Collapse
Affiliation(s)
- Giulia Bicchieraro
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.B.); (A.G.); (A.Y.W.W.); (A.M.)
| | - Raffaella Ciurnelli
- Medical Microbiology Section, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy;
| | - Alessandro Graziani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.B.); (A.G.); (A.Y.W.W.); (A.M.)
| | - Alicia Yoke Wei Wong
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.B.); (A.G.); (A.Y.W.W.); (A.M.)
| | - Barbara Camilloni
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.B.); (A.G.); (A.Y.W.W.); (A.M.)
- Medical Microbiology Section, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy;
| | - Antonella Mencacci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.B.); (A.G.); (A.Y.W.W.); (A.M.)
- Medical Microbiology Section, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy;
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.B.); (A.G.); (A.Y.W.W.); (A.M.)
| |
Collapse
|
178
|
Liu Q, Lu Y, Cai C, Huang Y, Zhou L, Guan Y, Fu S, Lin Y, Yan H, Zhang Z, Li X, Yang X, Yang H, Guo H, Lan K, Chen Y, Hou SC, Xiong Y. A broad neutralizing nanobody against SARS-CoV-2 engineered from an approved drug. Cell Death Dis 2024; 15:458. [PMID: 38937437 PMCID: PMC11211474 DOI: 10.1038/s41419-024-06802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein at S351, S470-471and S493-494 as determined by structural analysis, with an affinity of 2.56 nM. It inhibits infections of both ancestral SARS-CoV-2 strain and pseudotyped viruses harboring SARS-CoV-2 wildtype, key mutations or variants at the nanomolar level. Furthermore, VHH60 suppressed SARS-CoV-2 infection and propagation 50-fold better and protected mice from death for twice as long as the control group after SARS-CoV-2 nasal infections in vivo. Therefore, VHH60 is not only a powerful nanobody with a promising profile for disease control but also provides evidence for a highly effective and rapid approach to generating therapeutic nanobodies.
Collapse
Affiliation(s)
- Qianyun Liu
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | | | - Yanyan Huang
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China
| | - Yanbin Guan
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Shiying Fu
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Youyou Lin
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Zhen Zhang
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China
| | - Xiang Li
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
- Animal Biosafety Level-III Laboratory/Institute for Vaccine Research, Wuhan University, Wuhan, 430071, China.
| | - Yu Chen
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
| | | | - Yi Xiong
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Bioduro-sundia LLC., Wuxi, 214174, Jiangsu, China.
- Bayray Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
179
|
Calistri A, Francesco Roggero P, Palù G. Chaos theory in the understanding of COVID-19 pandemic dynamics. Gene 2024; 912:148334. [PMID: 38458366 DOI: 10.1016/j.gene.2024.148334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
The chaos theory, a field of study in mathematics and physics, offers a unique lens through which to understand the dynamics of the COVID-19 pandemic. This theory, which deals with complex systems whose behavior is highly sensitive to initial conditions, can provide insights into the unpredictable and seemingly random nature of the pandemic's spread. In this review, we will discuss some literature data with the aim of showing how chaos theory could provide valuable perspectives in understanding the complex and dynamic nature of the COVID-19 pandemic. In particular, we will emphasize how the chaos theory can help in dissecting the unpredictable, non- linear progression of the disease, the importance of initial conditions, and the complex interactions between various factors influencing its spread. These insights are crucial for developing effective strategies to manage and mitigate the impact of the pandemic.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy.
| | - Pier Francesco Roggero
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy.
| |
Collapse
|
180
|
McGough L, Cobey S. A speed limit on serial strain replacement from original antigenic sin. Proc Natl Acad Sci U S A 2024; 121:e2400202121. [PMID: 38857397 PMCID: PMC11194583 DOI: 10.1073/pnas.2400202121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
Many pathogens evolve to escape immunity, yet it remains difficult to predict whether immune pressure will lead to diversification, serial replacement of one variant by another, or more complex patterns. Pathogen strain dynamics are mediated by cross-protective immunity, whereby exposure to one strain partially protects against infection by antigenically diverged strains. There is growing evidence that this protection is influenced by early exposures, a phenomenon referred to as original antigenic sin (OAS) or imprinting. In this paper, we derive constraints on the emergence of the pattern of successive strain replacements demonstrated by influenza, SARS-CoV-2, seasonal coronaviruses, and other pathogens. We find that OAS implies that the limited diversity found with successive strain replacement can only be maintained if [Formula: see text] is less than a threshold set by the characteristic antigenic distances for cross-protection and for the creation of new immune memory. This bound implies a "speed limit" on the evolution of new strains and a minimum variance of the distribution of infecting strains in antigenic space at any time. To carry out this analysis, we develop a theoretical model of pathogen evolution in antigenic space that implements OAS by decoupling the antigenic distances required for protection from infection and strain-specific memory creation. Our results demonstrate that OAS can play an integral role in the emergence of strain structure from host immune dynamics, preventing highly transmissible pathogens from maintaining serial strain replacement without diversification.
Collapse
Affiliation(s)
- Lauren McGough
- Department of Ecology and EvolutionThe University of Chicago, Chicago, IL60637
| | - Sarah Cobey
- Department of Ecology and EvolutionThe University of Chicago, Chicago, IL60637
| |
Collapse
|
181
|
Donker T, Papathanassopoulos A, Ghosh H, Kociurzynski R, Felder M, Grundmann H, Reuter S. Estimation of SARS-CoV-2 fitness gains from genomic surveillance data without prior lineage classification. Proc Natl Acad Sci U S A 2024; 121:e2314262121. [PMID: 38861609 PMCID: PMC11194495 DOI: 10.1073/pnas.2314262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
The emergence of SARS-CoV-2 variants with increased fitness has had a strong impact on the epidemiology of COVID-19, with the higher effective reproduction number of the viral variants leading to new epidemic waves. Tracking such variants and their genetic signatures, using data collected through genomic surveillance, is therefore crucial for forecasting likely surges in incidence. Current methods of estimating fitness advantages of variants rely on tracking the changing proportion of a particular lineage over time, but describing successful lineages in a rapidly evolving viral population is a difficult task. We propose a method of estimating fitness gains directly from nucleotide information generated by genomic surveillance, without a priori assigning isolates to lineages from phylogenies, based solely on the abundance of single nucleotide polymorphisms (SNPs). The method is based on mapping changes in the genetic population structure over time. Changes in the abundance of SNPs associated with periods of increasing fitness allow for the unbiased discovery of new variants, thereby obviating a deliberate lineage assignment and phylogenetic inference. We conclude that the method provides a fast and reliable way to estimate fitness advantages of variants without the need for a priori assigning isolates to lineages.
Collapse
Affiliation(s)
- Tjibbe Donker
- Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau79106, Germany
| | - Alexis Papathanassopoulos
- Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau79106, Germany
| | - Hiren Ghosh
- Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau79106, Germany
| | - Raisa Kociurzynski
- Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau79106, Germany
| | - Marius Felder
- Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau79106, Germany
| | - Hajo Grundmann
- Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau79106, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau79106, Germany
| |
Collapse
|
182
|
Herrmann L, Breuer J, Duc TN, Thomé N, Ghazaani F, Kamhieh-Milz S, Kamhieh-Milz J, Pfützner A. Comparison of the diagnostic accuracy of the Pluslife Mini Dock RHAM technology with Abbott ID Now and Cepheid GenXpert: A retrospective evaluation study. Sci Rep 2024; 14:13978. [PMID: 38886535 PMCID: PMC11183097 DOI: 10.1038/s41598-024-64406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Rapid and sensitive detection of pathogens is critical in interrupting the transmission chain of infectious diseases. Currently, real-time (RT-)PCR represents the gold standard for the detection of SARS-CoV-2. RNase HII-assisted amplification (RHAM) is a promising technology, enabling reliable point-of-care (PoC) testing; however, its diagnostic accuracy has not yet been investigated. The present study compared the Pluslife Mini Dock (RHAM technology), with Abbott ID Now and Cepheid GeneXpert IV. The positive percent agreement (PPA) and negative percent agreement (NPA) were determined in 100 SARS-CoV-2 positive and 210 SARS-CoV-2 negative samples. Further, the reliability of the Pluslife Mini Dock was investigated in different SARS-CoV-2 variants (Delta and Omicron subvariants). The PPA was 99.00% for Pluslife, 100.00% for Abbott ID Now, and 99.00% for Cepheid GeneXpert, with an NPA of 100.00%, 98.90%, and 93.72%, respectively. Abbott ID Now demonstrated the highest rate of invalid results. All SARS-CoV-2 analysed variants were detected by the Pluslife device. Altogether, the Pluslife Mini Dock demonstrated a PPA of 99.16% (235/237) for CT < 36 and an NPA of 100.00% (313/313), respectively. In conclusion, the Pluslife Mini Dock demonstrated better analytical performance than Abbott ID Now and Cepheid GeneXpert IV, representing a highly accurate and rapid PoC alternative to RT-PCR.
Collapse
Affiliation(s)
| | - Juliana Breuer
- Lifecare Laboratories, Mainz, Germany
- Pfützner Science and Health Institute, Mainz, Germany
| | - Tuan Ngo Duc
- DHS - Diagnostic HealthCare Solutions, Berlin, Germany
| | - Nicole Thomé
- Lifecare Laboratories, Mainz, Germany
- Pfützner Science and Health Institute, Mainz, Germany
| | | | | | - Julian Kamhieh-Milz
- DHS - Diagnostic HealthCare Solutions, Berlin, Germany.
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Robert-Koch Platz 4, 10117, Berlin, Germany.
| | - Andreas Pfützner
- Pfützner Science and Health Institute, Mainz, Germany
- Institute for Internal Medicine and Laboratory Medicine, University for Digital Technologies in Medicine and Dentistry, Wiltz, Luxembourg
| |
Collapse
|
183
|
Mallory M, Munt JE, Narowski TM, Castillo I, Cuadra E, Pisanic N, Fields P, Powers JM, Dickson A, Harris R, Wargowsky R, Moran S, Allabban A, Raphel K, McCaffrey TA, Brien JD, Heaney CD, Lafleur JE, Baric RS, Premkumar L. COVID-19 point-of-care tests can identify low-antibody individuals: In-depth immunoanalysis of boosting benefits in a healthy cohort. SCIENCE ADVANCES 2024; 10:eadi1379. [PMID: 38865463 PMCID: PMC11168476 DOI: 10.1126/sciadv.adi1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The recommended COVID-19 booster vaccine uptake is low. At-home lateral flow assay (LFA) antigen tests are widely accepted for detecting infection during the pandemic. Here, we present the feasibility and potential benefits of using LFA-based antibody tests as a means for individuals to detect inadequate immunity and make informed decisions about COVID-19 booster immunization. In a health care provider cohort, we investigated the changes in the breadth and depth of humoral and T cell immune responses following mRNA vaccination and boosting in LFA-positive and LFA-negative antibody groups. We show that negative LFA antibody tests closely reflect the lack of functional humoral immunity observed in a battery of sophisticated immune assays, while positive results do not necessarily reflect adequate immunity. After booster vaccination, both groups gain depth and breadth of systemic antibodies against evolving SARS-CoV-2 and related viruses. Our findings show that LFA-based antibody tests can alert individuals about inadequate immunity against COVID-19, thereby increasing booster shots and promoting herd immunity.
Collapse
Affiliation(s)
- Michael Mallory
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E. Munt
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara M. Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Izabella Castillo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Edwing Cuadra
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - John M. Powers
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandria Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, USA
| | - Rohan Harris
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Seamus Moran
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Ahmed Allabban
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Kristin Raphel
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - John E. Lafleur
- Department Emergency Medicine, George Washington University School of Medicine, Washington, DC, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
184
|
Fang L, Kang X, Hong Q, Xue C, Pan L, Chen J, Tang C, Sun L, Xu X, Yuan J, Du Y, Xu A. Virological and Mitochondriopathogical Characteristics of the SARS-CoV-2 Omicron XBB.1.16 Spike. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29716-29727. [PMID: 38814480 DOI: 10.1021/acsami.4c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The emergence of XBB.1.16 has gained rapid global prominence. Previous studies have elucidated that the infection of SARS-CoV-2 induces alterations in the mitochondrial integrity of host cells, subsequently influencing the cellular response to infection. In this study, we compared the differences in infectivity and pathogenicity between XBB.1.16 and the parental Omicron sublineages BA.1 and BA.2 and assessed their impact on host mitochondria. Our findings suggest that, in comparison with BA.1 and BA.2, XBB.1.16 exhibits more efficient spike protein cleavage, more efficient mediating syncytia formation, mild mitochondriopathy, and less pathogenicity. Altogether, our investigations suggest that, based on the mutation of key sites, XBB.1.16 exhibited enhanced infectivity but lower pathogenicity. This will help us to further investigate the biological functions of key mutation sites.
Collapse
Affiliation(s)
- Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
- Affiliated Huaihai Hospital of Xuzhou Medical University/71st Group Army Hospital of CPLA Army, Xuzhou 221004, Jiangsu,China
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Qian Hong
- Affiliated Huaihai Hospital of Xuzhou Medical University/71st Group Army Hospital of CPLA Army, Xuzhou 221004, Jiangsu,China
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Lu Pan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jiaxin Chen
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Chuanhao Tang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Liying Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - An Xu
- Department of Oncology, The Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
185
|
Trende R, Darling TL, Gan T, Wang D, Boon AC. Barcoded SARS-CoV-2 viruses define the impact of time and route of transmission on the transmission bottleneck in a Syrian hamster model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597602. [PMID: 38915710 PMCID: PMC11195048 DOI: 10.1101/2024.06.08.597602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The transmission bottleneck, defined as the number of viruses that transmit from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, SARS-CoV-2's transmission bottleneck remains poorly characterized, in part due to a lack of quantitative measurement tools. To address this, we adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes inserted in ORF10, a non-translated ORF. We directly inoculated donor Syrian hamsters intranasally with this barcoded virus pool and exposed a paired naïve contact hamster to each donor. Following exposure, the nasal turbinates, trachea, and lungs were collected, viral titers were measured, and the number of barcodes in each tissue were enumerated to quantify the transmission bottleneck. The duration and route (airborne, direct contact, and fomite) of exposure were varied to assess their impact on the transmission bottleneck. In airborne-exposed hamsters, the transmission bottleneck increased with longer exposure durations. We found that direct contact exposure produced the largest transmission bottleneck (average 27 BCs), followed by airborne exposure (average 16 BCs) then fomite exposure (average 8 BCs). Interestingly, we detected unique BCs in both the upper and lower respiratory tract of contact animals from all routes of exposure, suggesting that SARS-CoV-2 can directly infect hamster lungs. Altogether, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission. In the future, barcoded SARS-CoV-2 will strengthen studies of immune factors that influence virus transmission.
Collapse
Affiliation(s)
- Reed Trende
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Adrianus C.M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| |
Collapse
|
186
|
Brudenell EL, Pohare MB, Zafred D, Phipps J, Hornsby HR, Darby JF, Dai J, Liggett E, Cain KM, Barran PE, de Silva TI, Sayers JR. Efficient overexpression and purification of severe acute respiratory syndrome coronavirus 2 nucleocapsid proteins in Escherichia coli. Biochem J 2024; 481:669-682. [PMID: 38713013 PMCID: PMC11346444 DOI: 10.1042/bcj20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.
Collapse
Affiliation(s)
- Emma L. Brudenell
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Manoj B. Pohare
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Domen Zafred
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Janine Phipps
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Hailey R. Hornsby
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - John F. Darby
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Junxiao Dai
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Ellen Liggett
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Kathleen M. Cain
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Thushan I. de Silva
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Jon R. Sayers
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| |
Collapse
|
187
|
Caobi A, Saeed M. Upping the ante: enhanced expression of interferon-antagonizing ORF6 and ORF9b proteins by SARS-CoV-2 variants of concern. Curr Opin Microbiol 2024; 79:102454. [PMID: 38518551 PMCID: PMC11162932 DOI: 10.1016/j.mib.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
SARS-CoV-2 exhibits a remarkable capability to subvert the host antiviral innate immune system. This adeptness is orchestrated by viral proteins, which initially attempt to obstruct the activation of the antiviral immune program and then act as a fail-safe mechanism to mitigate the downstream effects of the activated immune response. This dual strategy leads to delayed expression and enfeebled action of type-I and -III interferons at the infection site, enabling the virus to replicate extensively in the lungs and subsequently disseminate to other organs. Throughout the course of the COVID-19 pandemic, SARS-CoV-2 has undergone evolution, giving rise to several variants of concern, some with exceedingly higher transmission and virulence. These improved features have been linked, at least in part, to the heightened expression or activity of specific viral proteins involved in circumventing host defense mechanisms. In this review, we aim to provide a concise summary of two SARS-CoV-2 proteins, ORF6 and ORF9b, which provided selective advantage to certain variants, affecting their biology and pathogenesis.
Collapse
Affiliation(s)
- Allen Caobi
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Mohsan Saeed
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA.
| |
Collapse
|
188
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
189
|
Cui L, Li T, Xue W, Zhang S, Wang H, Liu H, Gu Y, Xia N, Li S. Comprehensive Overview of Broadly Neutralizing Antibodies against SARS-CoV-2 Variants. Viruses 2024; 16:900. [PMID: 38932192 PMCID: PMC11209230 DOI: 10.3390/v16060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
190
|
Schmitz T, Freuer D, Goßlau Y, Warm TD, Hyhlik-Dürr A, Linseisen J, Meisinger C, Kirchberger I. Can inflammatory plasma proteins predict Long COVID or Fatigue severity after SARS-CoV-2 infection? Virus Res 2024; 344:199363. [PMID: 38508399 PMCID: PMC10979265 DOI: 10.1016/j.virusres.2024.199363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To investigate whether specific immune response plasma proteins can predict an elevated risk of developing Long COVID symptoms or fatigue severity after SARS-CoV-2 infection. METHODS This study was based on 257 outpatients with test-confirmed SARS-CoV-2 infection between February 2020 and January 2021. At least 12 weeks after the acute infection, 92 plasma proteins were measured using the Olink Target 96 immune response panel (median time between acute infection and venous blood sampling was 38.8 [IQR: 24.0-48.0] weeks). The presence of Long COVID symptoms and fatigue severity was assessed 115.8 [92.5-118.6] weeks after the acute infection by a follow-up postal survey. Long COVID (yes/no) was defined as having one or more of the following symptoms: fatigue, shortness of breath, concentration or memory problems. The severity of fatigue was assessed using the Fatigue Assessment Scale (FAS). In multivariable-adjusted logistic and linear regression models the associations between each plasma protein (exposure) and Long COVID (yes/no) or severity of fatigue were investigated. RESULTS Nine plasma proteins were significantly associated with Long COVID before, but not after adjusting for multiple testing (FDR-adjustment): DFFA, TRIM5, TRIM21, HEXIM1, SRPK2, PRDX5, PIK3AP1, IFNLR1 and HCLS1. Moreover, a total of 10 proteins were significantly associated with severity of fatigue before FDR-adjustment: SRPK2, ITGA6, CLEC4G, HEXIM1, PPP1R9B, PLXNA4, PRDX5, DAPP1, STC1 and HCLS1. Only SRPK2 and ITGA6 remained significantly associated after FDR-adjustment. CONCLUSIONS This study demonstrates that certain immune response plasma proteins might play an important role in the pathophysiology of Long COVID and severity of fatigue after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Timo Schmitz
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| | - Dennis Freuer
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Yvonne Goßlau
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Tobias Dominik Warm
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Alexander Hyhlik-Dürr
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Jakob Linseisen
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Inge Kirchberger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
191
|
Jagst M, Pottkämper L, Gömer A, Pitarokoili K, Steinmann E. Neuroinvasion and neurotropism of severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Microbiol 2024; 79:102474. [PMID: 38615394 DOI: 10.1016/j.mib.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, contributes to neurological pathologies in nearly 30% of patients, extending beyond respiratory symptoms. These manifestations encompass disorders of both the peripheral and central nervous systems, causing among others cerebrovascular issues and psychiatric manifestations during the acute and/or post-acute infection phases. Despite ongoing research, uncertainties persist about the precise mechanism the virus uses to infiltrate the central nervous system and the involved entry portals. This review discusses the potential entry routes, including hematogenous and anterograde transport. Furthermore, we explore variations in neurotropism, neurovirulence, and neurological manifestations among pandemic-associated variants of concern. In conclusion, SARS-CoV-2 can infect numerous cells within the peripheral and central nervous system, provoke inflammatory responses, and induce neuropathological changes.
Collapse
Affiliation(s)
- Michelle Jagst
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
192
|
Jiang R, Han B, Xu W, Zhang X, Peng C, Dang Q, Sun W, Lin L, Lin Y, Fan L, Lv D, Shao L, Chen Y, Qiu Y, Han L, Kong W, Li G, Wang K, Peng J, Lin B, Tong Z, Lu X, Wang L, Gao F, Feng J, Li Y, Ma X, Wang J, Wang S, Shen W, Wang C, Yan K, Lin Z, Jin C, Mao L, Liu J, Kushnareva Y, Kotoi O, Zhu Z, Royal M, Brunswick M, Ji H, Xu X, Lu H. Olgotrelvir as a Single-Agent Treatment of Nonhospitalized Patients with Covid-19. NEJM EVIDENCE 2024; 3:EVIDoa2400026. [PMID: 38804790 DOI: 10.1056/evidoa2400026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Olgotrelvir is an oral antiviral with dual mechanisms of action targeting severe acute respiratory syndrome coronavirus 2 main protease (i.e., Mpro) and human cathepsin L. It has potential to serve as a single-agent treatment of coronavirus disease 2019 (Covid-19). METHODS We conducted a phase 3, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of olgotrelvir in 1212 nonhospitalized adult participants with mild to moderate Covid-19, irrespective of risk factors, who were randomly assigned to receive orally either 600 mg of olgotrelvir or placebo twice daily for 5 days. The primary and key secondary end points were time to sustained recovery of a panel of 11 Covid-19-related symptoms and the viral ribonucleic acid (RNA) load. The safety end point was incidence of treatment-emergent adverse events. RESULTS The baseline characteristics of 1212 participants were similar in the two groups. In the modified intention-to-treat population (567 patients in the placebo group and 558 in the olgotrelvir group), the median time to symptom recovery was 205 hours in the olgotrelvir group versus 264 hours in the placebo group (hazard ratio, 1.29; 95% confidence interval [CI], 1.13 to 1.46; P<0.001). The least squares mean (95% CI) changes of viral RNA load from baseline were -2.20 (-2.59 to -1.81) log10 copies/ml in olgotrelvir-treated participants and -1.40 (-1.79 to -1.01) in participants receiving placebo at day 4. Skin rash (3.3%) and nausea (1.5%) were more frequent in the olgotrelvir group than in the placebo group; there were no treatment-related serious adverse events, and no deaths were reported. CONCLUSIONS Olgotrelvir as a single-agent treatment significantly improved symptom recovery. Adverse effects were not dose limiting. (Funded by Sorrento Therapeutics, a parent company of ACEA Therapeutics; ClinicalTrials.gov number, NCT05716425.).
Collapse
Affiliation(s)
- Rongmeng Jiang
- Beijing Ditan Hospital Capital Medical University, China
| | - Bing Han
- Beijing Ditan Hospital Capital Medical University, China
| | - Wanhong Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Xiaoying Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Chunxian Peng
- People's Hospital of Quzhou City, Quzhou, Zhejiang, China
| | - Qiang Dang
- Nanyang Central Hospital, Nanyang, Henan, China
| | - Wei Sun
- People's Hospital of Chongqing Banan District, Chongqing, China
| | - Ling Lin
- Hainan Third People's Hospital, Sanya, Hainan, China
| | - Yuanlong Lin
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, China
| | - Lingyan Fan
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Dongqing Lv
- Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Lei Shao
- Jinan Central Hospital, Jinan, Shandong, China
| | - Ying Chen
- The Second People's Hospital of Changde, Changde, Hunan, China
| | - Yunqing Qiu
- The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Limei Han
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Guangming Li
- The Sixth People's Hospital of Zhengzhou, Henan, China
| | - Kai Wang
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jie Peng
- Nangfang Hospital Southern Medical University, Guangzhou, Guangdong, China
| | - Bingliang Lin
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaowei Tong
- Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Xiaobo Lu
- The First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Feng Gao
- Linyi People's Hospital, Linyi, Shandong, China
| | - Jiemei Feng
- Guigang City People's Hospital, Guiyang, Guangxi, China
| | - Yongxia Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaojun Ma
- Linfen Central Hospital, Linfeng, Shanxi, China
| | - Jinxiang Wang
- Beijing Luhe Hospital Affiliated Capital Medical University, Beijing, China
| | - Shanbo Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Wei Shen
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Chao Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Kuan Yan
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Zhenhao Lin
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, China
| | - Can Jin
- ACEA Therapeutics, Inc., San Diego, CA
| | - Long Mao
- ACEA Therapeutics, Inc., San Diego, CA
| | - Jia Liu
- ACEA Therapeutics, Inc., San Diego, CA
| | | | | | | | - Mike Royal
- Sorrento Therapeutics, Inc., San Diego, CA
| | | | - Henry Ji
- Sorrento Therapeutics, Inc., San Diego, CA
| | - Xiao Xu
- ACEA Therapeutics, Inc., San Diego, CA
| | - Hongzhou Lu
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, China
| |
Collapse
|
193
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
194
|
Luo L, Lv J. An evolutionary theory on virus mutation in COVID-19. Virus Res 2024; 344:199358. [PMID: 38508401 PMCID: PMC10979259 DOI: 10.1016/j.virusres.2024.199358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
With the rapid evolution of SARS-CoV-2, the emergence of new strains is an intriguing question. This paper presents an evolutionary theory to analyze the mutations of the virus and identify the conditions that lead to the generation of new strains. We represent the virus variants using a 4-letter sequence based on amino acid mutations on the spike protein and employ an n-distance algorithm to derive a variant phylogenetic tree. We show that the theoretically-derived tree aligns with experimental data on virus evolution. Additionally, we propose an A-X model, utilizing the set of existing mutation sites (A) and a set of randomly generated sites (X), to calculate the emergence of new strains. Our findings demonstrate that a sufficient number of random iterations can predict the generation of new macro-lineages when the number of sites in X is large enough. These results provide a crucial theoretical basis for understanding the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Liaofu Luo
- Faculty of Physical Science and Technology, Inner Mongolia University, 235 West College Road, Hohhot 010021, China.
| | - Jun Lv
- College of Science, Inner Mongolia University of Technology, 49 Aymin Street, Hohhot 010051, China.
| |
Collapse
|
195
|
Baek K, Kim D, Kim J, Kang BM, Park H, Park S, Shin HE, Lee MH, Maharjan S, Kim M, Kim S, Park MS, Lee Y, Kwon HJ. Analysis of SARS-CoV-2 omicron mutations that emerged during long-term replication in a lung cancer xenograft mouse model. Virus Genes 2024; 60:251-262. [PMID: 38587722 DOI: 10.1007/s11262-024-02067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
SARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication. To investigate whether there are differences in the spectrum and frequency of mutations between parental SARS-CoV-2 and Omicron, we here applied this model to Omicron. At 30 days after infection, we found that the virus was present at high titers in the tumor tissues and had developed several rare sporadic mutations, mainly in ORF1ab with additional minor spike protein mutations. Many of the mutant isolates had higher replicative activity in Calu-3 cells compared with the original SARS-CoV-2 Omicron virus, suggesting that the novel mutations contributed to increased viral replication. Serial propagation of SARS-CoV-2 Omicron in cultured Calu-3 cells resulted in several rare sporadic mutations in various viral proteins with no mutations in the spike protein. Therefore, the genome of SARS-CoV-2 Omicron seems largely stable compared with that of the parental SARS-CoV-2 during extended replication in Calu-3 cells and xenograft model. The sporadic mutations and modified growth properties observed in Omicron might explain the emergence of Omicron sublineages. However, we cannot exclude the possibility of some differences in natural infection.
Collapse
Affiliation(s)
- Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jinsoo Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Bo Min Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ha-Eun Shin
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Myeong-Heon Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Suyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
196
|
Li Y, Han M, Li X. Clinical and prognostic implications of hyaluronic acid in patients with COVID-19 reinfection and first infection. Front Microbiol 2024; 15:1406581. [PMID: 38881657 PMCID: PMC11178136 DOI: 10.3389/fmicb.2024.1406581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Previous research has shown that human identical sequences of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) promote coronavirus disease 2019 (COVID-19) progression by upregulating hyaluronic acid (HA). However, the association of HA with mortality and long COVID in SARS-CoV-2 reinfection and first infection is unclear. Methods Patients with COVID-19 at Beijing Ditan Hospital from September 2023 to November 2023 were consecutively enrolled. SARS-CoV-2 reinfections were matched 1:2 with first infections using a nearest neighbor propensity score matching algorithm. We compared the hospital outcomes between patients with COVID-19 reinfection and first infection. The association between HA levels and mortality and long COVID in the matched cohort was analyzed. Results The reinfection rate among COVID-19 hospitalized patients was 25.4% (62 cases). After propensity score matching, we found that reinfection was associated with a better clinical course and prognosis, including lower levels of C-reactive protein and erythrocyte sedimentation rate, fewer cases of bilateral lung infiltration and respiratory failure, and shorter viral clearance time and duration of symptoms (p < 0.05). HA levels were significantly higher in patients with primary infection [128.0 (90.5, 185.0) vs. 94.5 (62.0, 167.3), p = 0.008], those with prolonged viral clearance time [90.5 (61.5, 130.8) vs. 130.0 (95.0, 188.0), p < 0.001], and deceased patients [105.5 (76.8, 164.5) vs. 188.0 (118.0, 208.0), p = 0.002]. Further analysis showed that HA was an independent predictor of death (AUC: 0.789), and the risk of death increased by 4.435 times (OR = 5.435, 95% CI = 1.205-24.510, p = 0.028) in patients with high HA levels. We found that patients with HA levels above 116 ng/mL had an increased risk of death. However, the incidence of long COVID was similar in the different HA level groups (p > 0.05). Conclusion Serum HA may serve as a novel biomarker for predicting COVID-19 mortality in patients with SARS-CoV-2 reinfection and first infection. However, HA levels may not be associated with long COVID.
Collapse
Affiliation(s)
- Yanyan Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ming Han
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
197
|
Xiong D, Zhang X, Xu B, Shi M, Chen M, Dong Z, Zhong J, Gong R, Wu C, Li J, Wei H, Yu J. PHDtools: A platform for pathogen detection and multi-dimensional genetic signatures decoding to realize pathogen genomics data analyses online. Gene 2024; 909:148306. [PMID: 38408616 DOI: 10.1016/j.gene.2024.148306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Facing the emerging diseases, rapid identification of the pathogen and multi-dimensional characterization of the genomic features at both isolate-level and population-level through high-throughput sequencing data can provide invaluable information to guide the development of antiviral agents and strategies. However, a user-friendly program is in urgent need for clinical laboratories without bioinformatics background to decode the complex big genomics data. METHODS In this study, we developed an interactive online platform named PHDtools with a total of 15 functions to analyze metagenomics data to identify the potential pathogen and decode multi-dimensional genetic signatures including intra-/inter-host variations and lineage-level variations. The platform was applied to analyze the meta-genomic data of the samples collected from the 172 imported COVID-19 cases. RESULTS According to the analytical results of mNGS, 27 patients were found to have the co-infections of SARS-CoV-2 with either influenza virus (n = 9) or human picobirnavirus (n = 19). Enough coverages of all the assembled SARS-CoV-2 genomes provided the sub-lineages of Omicron variant, and the number of mutations in the non-structural genes and M gene was increased, as well as the intra-host variations occurred in E and M gene were under positive selection (Ka/Ks > 1). These findings of increased or changed mutations in the SARS-CoV-2 genome characterized the current adaptive evolution patterns of Omicron sub-lineages, and revealed the evolution speed of these sub-lineages might increase. CONCLUSIONS Consequently, the application of PHDtools has proved that this platform is accurate, user-friendly and convenient for clinical users who are deficient in bioinformatics, and the clinical monitor of SARS-CoV-2 genomes by PHDtools also highlighted the potential evolution features of current SARS-CoV-2 and indicated that the development of anti-SARS-CoV-2 agents and new-designed vaccines should incorporate the gene variations other than S gene.
Collapse
Affiliation(s)
- Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bohan Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjuan Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Dong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Jie Zhong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Rui Gong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Chang Wu
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Ji Li
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
198
|
Lytton SD, Ghosh AK, Bulbul RH, Nasifa T, Mamunur R, Meier C, Landt O, Kaiser M. The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) omicron sub-variants in Bangladesh cause mild COVID-19 and associate with similar antibody responses irrespective of natural infection or vaccination history. Heliyon 2024; 10:e31011. [PMID: 38770337 PMCID: PMC11103536 DOI: 10.1016/j.heliyon.2024.e31011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Objective Genomic surveillance and seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) in Bangladesh is paramount for COVID-19 pandemic preparedness yet lagging the high-income countries due to limited resources. Methods SARS-CoV-2 variants, COVID-19 symptoms, and serology were prospectively evaluated in a cross-sectional study of Bangladeshi adults testing RT-PCR positive in 2021 and 2022. Results SARS CoV-2 Omicron variants of asymptomatic or mild COVID-19 in 2022 replaced Delta variant infections requiring hospitalization and oxygen support. The omicron XBB became predominant in July 2022 and associated with cough, headache or body ache and loss of smell; 47 of 68 (69 %), 30 of 68 (44 %) and 27 of 68 (40 %) respectively at higher frequency than BA.1/BA.2; 16 of 88 (18 %), 13 of 88 (15 %) and 0 of 88 (0 %) p < 0.01, p < 0.01 and p < 0.0001. Linear regression analysis reveals no associations between the number of previous infections and the number of symptoms, r = -0.084, p = 0.68. The anti-nucleoprotein (N)-protein IgG post COVID-19 and anti-Spike (S) protein IgG post-COVID-19 vaccination were similar between BA.2, BA.4/BA.5 and XBB and significantly lower than the levels in delta variant infections (p < 0.001). Conclusions Omicron XBB subvariants emerged in Bangladesh two months prior to previous reports and include unique patterns of S-protein mutations not assigned in PANGO lineage. The SARS CoV-2 omicron break-through infections persist in the presence of sustained antibody responses and vaccinations, underscoring the importance of molecular surveillance in low-income countries.
Collapse
Affiliation(s)
| | - Asish Kumar Ghosh
- Department of Virology, Dhaka Medical College Hospital, Dhaka, 1000, Bangladesh
| | | | - Tasnim Nasifa
- National Institute of Laboratory Medicine and Referral Center, Sher E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Rashid Mamunur
- Bangladesh Institute Tropical Infectious Disease (BITID), Fouzderhat, Chittagong, 4317, Bangladesh
| | - Christian Meier
- TIB Molbiol GmbH, Eresburgstraße 22-23, 12103, Berlin, Germany
| | - Olfert Landt
- TIB Molbiol GmbH, Eresburgstraße 22-23, 12103, Berlin, Germany
| | - Marco Kaiser
- TIB Molbiol GmbH, Eresburgstraße 22-23, 12103, Berlin, Germany
| |
Collapse
|
199
|
Liu Y, Sapoval N, Gallego-García P, Tomás L, Posada D, Treangen TJ, Stadler LB. Crykey: Rapid identification of SARS-CoV-2 cryptic mutations in wastewater. Nat Commun 2024; 15:4545. [PMID: 38806450 PMCID: PMC11133379 DOI: 10.1038/s41467-024-48334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging variants of concerns and can be used to screen for novel cryptic linked-read mutations, which are co-occurring single nucleotide mutations that are rare, or entirely missing, in existing SARS-CoV-2 databases. While previous approaches have focused on specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and investigating their potential origin. We present Crykey, a tool for rapidly identifying rare linked-read mutations across the genome of SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and over 22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations in wastewater that represent potential circulating cryptic lineages, serving as a new computational tool for wastewater surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
200
|
Tomezsko PJ, Ford CT, Meyer AE, Michaleas AM, Jaimes R. Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens. FRONTIERS IN BIOINFORMATICS 2024; 4:1397968. [PMID: 38855143 PMCID: PMC11157076 DOI: 10.3389/fbinf.2024.1397968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.
Collapse
Affiliation(s)
| | - Colby T. Ford
- Tuple LLC, Charlotte, NC, United States
- University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, Charlotte, NC, United States
- University of North Carolina at Charlotte, Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), Charlotte, NC, United States
| | | | | | - Rafael Jaimes
- MIT Lincoln Laboratory, Lexington, MA, United States
| |
Collapse
|