151
|
Kim A, Lim G, Oh I, Kim Y, Lee T, Lee J. Perinatal factors and the development of childhood asthma. Ann Allergy Asthma Immunol 2018; 120:292-299. [PMID: 29508716 DOI: 10.1016/j.anai.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Perinatal factors are suspected to have a significant impact on the development of asthma; however, sufficiently powered studies have not been performed to investigate this issue. OBJECTIVE To evaluate whether perinatal factors and other risk factors have an independent or combined effect on the development of asthma. METHODS This study involved 3,770 children (mean age 9.1 years, range 5.68-12.16 years; 51.9% boys) who were enrolled in the Elementary School Student Cohort (2009-2014) in Ulsan University Hospital (Ulsan, Korea). Subjects were divided into an asthma group (n = 514) and a non-asthma group (n = 3,256). RESULTS Multivariate analyses showed that early life (within first week) oxygen therapy (adjusted odds ratio [aOR] 1.864, 95% confidence interval [CI] 1.156-3.004) and breastfeeding (aOR 0.763, 95% CI 0.606-0.960) were 2 significant perinatal factors influencing the development of asthma. Environmental tobacco smoke (aOR 1.634, 95% CI 1.298-2.058) and parental allergic disease (aOR 1.882, 95% CI 1.521-2.328) also were identified as risk factors. Using subgroup analyses, combined effects on asthma development were observed between perinatal factors (early life oxygen therapy and breastfeeding) and other risk factors (vicinity to major roadway [traffic-related air pollution], environmental tobacco smoke, parental allergic disease, and atopy). CONCLUSION Early life oxygen therapy and breastfeeding were identified as 2 important perinatal factors influencing the development of asthma. Furthermore, these factors showed combined effects with other risk factors (environmental tobacco smoke, traffic-related air pollution, parental allergic disease, and atopy) on the development of asthma.
Collapse
Affiliation(s)
- Ahra Kim
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Gina Lim
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Inbo Oh
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Taehoon Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
| | - Jiho Lee
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| |
Collapse
|
152
|
Abstract
This article on exposome and asthma focuses on the interaction of patients and their environments in various parts of their growth, development, and stages of life. Indoor and outdoor environments play a role in pathogenesis via levels and duration of exposure, with genetic susceptibility as a crucial factor that alters the initiation and trajectory of common conditions such as asthma. Knowledge of environmental exposures globally and changes that are occurring is necessary to function effectively as medical professionals and health advocates.
Collapse
Affiliation(s)
- Ahila Subramanian
- Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, CWRU School of Medicine, 9500 Euclid Avenue/A90, Cleveland, OH 4419, USA
| | - Sumita B Khatri
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, CWRU School of Medicine, 9500 Euclid Avenue/A90, Cleveland, OH 4419, USA.
| |
Collapse
|
153
|
Yu H, Cheng J, Gordon SP, An R, Yu M, Chen X, Yue Q, Qiu J. Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122811. [PMID: 30544739 PMCID: PMC6313684 DOI: 10.3390/ijerph15122811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
Human populations worldwide have experienced substantial environmental issues in part due to air pollution, notably in China. Gaps in the scientific literature remain regarding the relationship between air pollution and sedentary behavior among young adults in China. The purpose of this study is to examine the effect of air pollution on sedentary behavior among college students living in Beijing, China. We conducted follow-up health surveys on 12,174 freshman students enrolled at Tsinghua University from 2013 to 2017. Sedentary behavior was measured using the short version of the International Physical Activity Questionnaire (IPAQ). Corresponding air pollution data measured by the Ministry of Environmental Protection of the People's Republic of China were collected to include the average hourly air quality index (AQI), PM2.5, PM10, and NO₂ (µg/m³). The data were analyzed using linear individual fixed-effect regressions. An increase in air pollution concentration of one standard deviation in AQI, PM2.5, PM10, and NO₂ was associated with an increase in weekly total hours of sedentary behavior by 7.35 (95% confidence interval (CI) = 5.89, 8.80), 6.24 (95% CI = 5.00, 7.49), 6.80 (95% CI = 5.46, 8.15), and 7.06 (95% CI = 5.65, 8.47), respectively. In the presence of air pollution, women students tended to increase their sedentary behavior more than men. Air pollution increases sedentary behavior among freshman students living in Beijing, China. Replication of this study is warranted among various populations within China.
Collapse
Affiliation(s)
- Hongjun Yu
- Department of Physical Education, Tsinghua University, Beijing 100084, China.
| | - Jiali Cheng
- Department of Physical Education, Tsinghua University, Beijing 100084, China.
| | - Shelby Paige Gordon
- Department of Interdisciplinary Health Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | - Ruopeng An
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | - Miao Yu
- Renmin University of China Libraries, Beijing 100872, China.
| | - Xiaodan Chen
- Department of Martial Art, Guangzhou Sport University, Guangzhou, Guangdong 510500, China.
| | - Qingli Yue
- Department of Olympic Games, Beijing Sport University, Beijing 100084, China.
| | - Jun Qiu
- Department of Physical Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
154
|
Salimi F, Morgan G, Rolfe M, Samoli E, Cowie CT, Hanigan I, Knibbs L, Cope M, Johnston FH, Guo Y, Marks GB, Heyworth J, Jalaludin B. Long-term exposure to low concentrations of air pollutants and hospitalisation for respiratory diseases: A prospective cohort study in Australia. ENVIRONMENT INTERNATIONAL 2018; 121:415-420. [PMID: 30261462 DOI: 10.1016/j.envint.2018.08.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Short- and long-term spatiotemporal variation in exposure to air pollution is associated with respiratory morbidity in areas with moderate-to-high level of air pollution, but very few studies have examined whether these associations also exist in areas with low level exposure. OBJECTIVES We assessed the association between spatial variation in long-term exposure to PM2.5 and NO2 and hospitalisation for all respiratory diseases, asthma, chronic obstructive pulmonary disease (COPD), and pneumonia, in older adults residing in Sydney, Australia, a city with low-level concentrations. METHODS We recorded data on hospitalisations for 100,084 participants, who were aged >45 years at entry in 2006-2009 until June 2014. Annual NO2 and PM2.5 concentrations were estimated for the participants' residential addresses and Cox proportional hazards regression was used to model the association between exposure to air pollutants and first episode of hospitalisation, controlling for personal and area level covariates. We further investigated the shape of the exposure-response association and potential effect modification by age, sex, education level, smoking status, and BMI. RESULTS NO2 and PM2.5 annual mean exposure estimates were 17.5 μg·m-3 and 4.5 μg·m-3 respectively. NO2 and PM2.5 was positively, although not significantly, associated with asthma. The adjusted hazard ratio for a 1 μg·m-3 increase in PM2.5 was 1.08, 95% confidence interval 0.89-1.30. The adjusted hazard ratio for a 5 μg·m-3 increase in NO2 was 1.03, 95% confidence interval 0.88-1.19. We found no positive statistically significant associations with hospitalisation for all respiratory diseases, and pneumonia while negative associations were observed with COPD. CONCLUSIONS We found weak positive associations of exposure to air pollution with hospitalisation for asthma while there was no evidence of an association for all respiratory diseases.
Collapse
Affiliation(s)
- Farhad Salimi
- University Centre for Rural Health - North Coast, School of Public Health, University of Sydney, Australia; Menzies Institute for Medical Research, University of Tasmania, Australia; Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia
| | - Geoffrey Morgan
- University Centre for Rural Health - North Coast, School of Public Health, University of Sydney, Australia; Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia.
| | - Margaret Rolfe
- University Centre for Rural Health - North Coast, School of Public Health, University of Sydney, Australia
| | - Evangelia Samoli
- Department of Hygiene and Epidemiology, University of Athens Medical School, Greece
| | - Christine T Cowie
- Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; South West Sydney Clinical School, University of New South Wales, Sydney, Australia; Woolcock Institute of Medical Research, University of Sydney, Australia
| | - Ivan Hanigan
- University Centre for Rural Health - North Coast, School of Public Health, University of Sydney, Australia; Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; Centre for Research and Action in Public Health, University of Canberra, Australia
| | - Luke Knibbs
- Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; School of Public Health, The University of Queensland, Australia
| | - Martin Cope
- Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; CSIRO Oceans & Atmosphere, PMB1, Aspendale, VIC, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Australia; Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia
| | - Yuming Guo
- Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Australia
| | - Guy B Marks
- Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; South West Sydney Clinical School, University of New South Wales, Sydney, Australia; Woolcock Institute of Medical Research, University of Sydney, Australia
| | - Jane Heyworth
- Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; School of Population and Global Health, The University of Western Australia, Australia
| | - Bin Jalaludin
- Centre for Air Pollution, Energy and Health, Glebe, NSW 2037, Australia; School of Public Health and Community Medicine and Ingham, Institute for Applied Medical Research, University of New South Wales, Australia
| |
Collapse
|
155
|
Alfano R, Herceg Z, Nawrot TS, Chadeau-Hyam M, Ghantous A, Plusquin M. The Impact of Air Pollution on Our Epigenome: How Far Is the Evidence? (A Systematic Review). Curr Environ Health Rep 2018; 5:544-578. [PMID: 30361985 DOI: 10.1007/s40572-018-0218-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This systematic review evaluated existing evidence linking air pollution exposure in humans to major epigenetic mechanisms: DNA methylation, microRNAs, long noncoding RNAs, and chromatin regulation. RECENT FINDINGS Eighty-two manuscripts were eligible, most of which were observational (85%), conducted in adults (66%) and based on DNA methylation (79%). Most observational studies, except panel, demonstrated modest effects of air pollution on the methylome. Panel and experimental studies revealed a relatively large number of significant methylome alterations, though based on smaller sample sizes. Particulate matter levels were positively associated in several studies with global or LINE-1 hypomethylation, a hallmark of several diseases, and with decondensed chromatin structure. Several air pollution species altered the DNA methylation clock, inducing accelerated biological aging. The causal nature of identified associations is not clear, however, especially that most originate from countries with low air pollution levels. Existing evidence, gaps, and perspectives are highlighted herein.
Collapse
Affiliation(s)
- Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon, France
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Environment & Health Unit, Leuven University, Leuven, Belgium
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon, France.
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
156
|
Mudway IS, Dundas I, Wood HE, Marlin N, Jamaludin JB, Bremner SA, Cross L, Grieve A, Nanzer A, Barratt BM, Beevers S, Dajnak D, Fuller GW, Font A, Colligan G, Sheikh A, Walton R, Grigg J, Kelly FJ, Lee TH, Griffiths CJ. Impact of London's low emission zone on air quality and children's respiratory health: a sequential annual cross-sectional study. Lancet Public Health 2018; 4:e28-e40. [PMID: 30448150 PMCID: PMC6323357 DOI: 10.1016/s2468-2667(18)30202-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Low emission zones (LEZ) are an increasingly common, but unevaluated, intervention aimed at improving urban air quality and public health. We investigated the impact of London's LEZ on air quality and children's respiratory health. METHODS We did a sequential annual cross-sectional study of 2164 children aged 8-9 years attending primary schools between 2009-10 and 2013-14 in central London, UK, following the introduction of London's LEZ in February, 2008. We examined the association between modelled pollutant exposures of nitrogen oxides (including nitrogen dioxide [NO2]) and particulate matter with a diameter of less than 2·5 μm (PM2·5) and less than 10 μm (PM10) and lung function: postbronchodilator forced expiratory volume in 1 s (FEV1, primary outcome), forced vital capacity (FVC), and respiratory or allergic symptoms. We assigned annual exposures by each child's home and school address, as well as spatially resolved estimates for the 3 h (0600-0900 h), 24 h, and 7 days before each child's assessment, to isolate long-term from short-term effects. FINDINGS The percentage of children living at addresses exceeding the EU limit value for annual NO2 (40 μg/m3) fell from 99% (444/450) in 2009 to 34% (150/441) in 2013. Over this period, we identified a reduction in NO2 at both roadside (median -1·35 μg/m3 per year; 95% CI -2·09 to -0·61; p=0·0004) and background locations (-0·97; -1·56 to -0·38; p=0·0013), but not for PM10. The effect on PM2·5 was equivocal. We found no association between postbronchodilator FEV1 and annual residential pollutant attributions. By contrast, FVC was inversely correlated with annual NO2 (-0·0023 L/μg per m3; -0·0044 to -0·0002; p=0·033) and PM10 (-0·0090 L/μg per m3; -0·0175 to -0·0005; p=0·038). INTERPRETATION Within London's LEZ, a smaller lung volume in children was associated with higher annual air pollutant exposures. We found no evidence of a reduction in the proportion of children with small lungs over this period, despite small improvements in air quality in highly polluted urban areas during the implementation of London's LEZ. Interventions that deliver larger reductions in emissions might yield improvements in children's health. FUNDING National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service (NHS) Foundation Trust and King's College London, NHS Hackney, Lee Him donation, and Felicity Wilde Charitable Trust.
Collapse
Affiliation(s)
- Ian S Mudway
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Isobel Dundas
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Helen E Wood
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Nadine Marlin
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Jeenath B Jamaludin
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Stephen A Bremner
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Louise Cross
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Andrew Grieve
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Alex Nanzer
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Ben M Barratt
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Sean Beevers
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - David Dajnak
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Gary W Fuller
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Anna Font
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Grainne Colligan
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Aziz Sheikh
- Asthma UK Centre for Applied Research, Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Robert Walton
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK
| | - Jonathan Grigg
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Frank J Kelly
- Medical Research Council (MRC)–Public Health England Centre for Environmental Health, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London, UK
| | - Tak H Lee
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK,Allergy Centre, HK Sanatorium and Hospital, Hong Kong Special Administrative Region, China
| | - Chris J Griffiths
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London, UK,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK,Correspondence to: Prof Chris Griffiths, Asthma UK Centre for Applied Research, Centre for Primary Care and Public Health, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
157
|
Cole CA, Carlsten C, Koehle M, Brauer M. Particulate matter exposure and health impacts of urban cyclists: a randomized crossover study. Environ Health 2018; 17:78. [PMID: 30428890 PMCID: PMC6237024 DOI: 10.1186/s12940-018-0424-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/30/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Cycling and other forms of active transportation provide health benefits via increased physical activity. However, direct evidence of the extent to which these benefits may be offset by exposure and intake of traffic-related air pollution is limited. The purpose of this study is to measure changes in endothelial function, measures of oxidative stress and inflammation, and lung function in healthy participants before and after cycling along a high- and low- traffic route. METHODS Participants (n = 38) bicycled for 1 h along a Downtown and a Residential designated bicycle route in a randomized crossover trial. Heart rate, power output, particulate matter air pollution (PM10, PM2.5, and PM1) and particle number concentration (PNC) were measured. Lung function, endothelial function (reactive hyperemia index, RHI), C-reactive protein, interleukin-6, and 8-hydroxy-2'-deoxyguanosine were assessed within one hour pre- and post-trial. RESULTS Geometric mean PNC exposures and intakes were higher along the Downtown (exposure = 16,226 particles/cm3; intake = 4.54 × 1010 particles) compared to the Residential route (exposure = 9367 particles/cm3; intake = 3.13 × 1010 particles). RHI decreased following cycling along the Downtown route and increased on the Residential route; in mixed linear regression models, the (post-pre) change in RHI was 21% lower following cycling on the Downtown versus the Residential route (-0.43, 95% CI: -0.79, -0.079) but RHI decreases were not associated with measured exposure or intake of air pollutants. The differences in RHI by route were larger amongst females and older participants. No consistent associations were observed for any of the other outcome measures. CONCLUSIONS Although PNC exposures and intakes were higher along the Downtown route, the lack of association between air pollutant exposure or intake with RHI and other measures suggests other exposures related to cycling on the Downtown route may have been influential in the observed differences between routes in RHI. TRIAL REGISTRATION ClinicalTrials.gov, NCT01708356 . Registered 16 October 2012.
Collapse
Affiliation(s)
- Christie A. Cole
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3 Canada
| | - Christopher Carlsten
- Air Pollution Exposure Lab, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC V5Z 1M9 Canada
| | - Michael Koehle
- School of Kinesiology and Division of Sport & Exercise Medicine, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
158
|
Liang D, Moutinho JL, Golan R, Yu T, Ladva CN, Niedzwiecki M, Walker DI, Sarnat SE, Chang HH, Greenwald R, Jones DP, Russell AG, Sarnat JA. Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. ENVIRONMENT INTERNATIONAL 2018; 120:145-154. [PMID: 30092452 PMCID: PMC6414207 DOI: 10.1016/j.envint.2018.07.044] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND High-resolution metabolomics (HRM) is emerging as a sensitive tool for measuring environmental exposures and biological responses. The aim of this analysis is to assess the ability of high-resolution metabolomics (HRM) to reflect internal exposures to complex traffic-related air pollution mixtures. METHODS We used untargeted HRM profiling to characterize plasma and saliva collected from participants in the Dorm Room Inhalation to Vehicle Emission (DRIVE) study to identify metabolic pathways associated with traffic emission exposures. We measured a suite of traffic-related pollutants at multiple ambient and indoor sites at varying distances from a major highway artery for 12 weeks in 2014. In parallel, 54 students living in dormitories near (20 m) or far (1.4 km) from the highway contributed plasma and saliva samples. Untargeted HRM profiling was completed for both plasma and saliva samples; metabolite and metabolic pathway alternations were evaluated using a metabolome-wide association study (MWAS) framework with pathway analyses. RESULTS Weekly levels of traffic pollutants were significantly higher at the near dorm when compared to the far dorm (p < 0.05 for all pollutants). In total, 20,766 metabolic features were extracted from plasma samples and 29,013 from saliva samples. 45% of features were detected and shared in both plasma and saliva samples. 1291 unique metabolic features were significantly associated with at least one or more traffic indicator, including black carbon, carbon monoxide, nitrogen oxides and fine particulate matter (p < 0.05 for all significant features), after controlling for confounding and false discovery rate. Pathway analysis of metabolic features associated with traffic exposure indicated elicitation of inflammatory and oxidative stress related pathways, including leukotriene and vitamin E metabolism. We confirmed the chemical identities of 10 metabolites associated with traffic pollutants, including arginine, histidine, γ‑linolenic acid, and hypoxanthine. CONCLUSIONS Using HRM, we identified and verified biological perturbations associated with primary traffic pollutant in panel-based setting with repeated measurement. Observed response was consistent with endogenous metabolic signaling related to oxidative stress, inflammation, and nucleic acid damage and repair. Collectively, the current findings provide support for the use of untargeted HRM in the development of metabolic biomarkers of traffic pollution exposure and response.
Collapse
Affiliation(s)
- Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| | - Jennifer L Moutinho
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Chandresh N Ladva
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Megan Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Douglas I Walker
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Roby Greenwald
- Division of Environmental Health, Georgia State University School of Public Health, Atlanta, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| |
Collapse
|
159
|
Espín-Pérez A, Krauskopf J, Chadeau-Hyam M, van Veldhoven K, Chung F, Cullinan P, Piepers J, van Herwijnen M, Kubesch N, Carrasco-Turigas G, Nieuwenhuijsen M, Vineis P, Kleinjans JCS, de Kok TMCM. Short-term transcriptome and microRNAs responses to exposure to different air pollutants in two population studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:182-190. [PMID: 29980036 DOI: 10.1016/j.envpol.2018.06.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/17/2018] [Accepted: 06/17/2018] [Indexed: 05/18/2023]
Abstract
Diesel vehicle emissions are the major source of genotoxic compounds in ambient air from urban areas. These pollutants are linked to risks of cardiovascular diseases, lung cancer, respiratory infections and adverse neurological effects. Biological events associated with exposure to some air pollutants are widely unknown but applying omics techniques may help to identify the molecular processes that link exposure to disease risk. Most data on health risks are related to long-term exposure, so the aim of this study is to investigate the impact of short-term exposure (two hours) to air pollutants on the blood transcriptome and microRNA expression levels. We analyzed transcriptomics and microRNA expression using microarray technology on blood samples from volunteers participating in studies in London, the Oxford Street cohort, and, in Barcelona, the TAPAS cohort. Personal exposure levels measurements of particulate matter (PM10, PM2.5), ultrafine particles (UFPC), nitrogen oxides (NO2, NO and NOx), black carbon (BC) and carbon oxides (CO and CO2) were registered for each volunteer. Associations between air pollutant levels and gene/microRNA expression were evaluated using multivariate normal models (MVN). MVN-models identified compound-specific expression of blood cell genes and microRNAs associated with air pollution despite the low exposure levels, the short exposure periods and the relatively small-sized cohorts. Hsa-miR-197-3p, hsa-miR-29a-3p, hsa-miR-15a-5p, hsa-miR-16-5p and hsa-miR-92a-3p are found significantly expressed in association with exposures. These microRNAs target also relevant transcripts, indicating their potential relevance in the research of omics-biomarkers responding to air pollution. Furthermore, these microRNAs are also known to be associated with diseases previously linked to air pollution exposure including several cancers such lung cancer and Alzheimer's disease. In conclusion, we identified in this study promising compound-specific mRNA and microRNA biomarkers after two hours of exposure to low levels of air pollutants during two hours that suggest increased cancer risks.
Collapse
Affiliation(s)
- Almudena Espín-Pérez
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Julian Krauskopf
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Karin van Veldhoven
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Fan Chung
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Paul Cullinan
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jolanda Piepers
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Nadine Kubesch
- Centre for Epidemiology and Screening, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Theo M C M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
160
|
Yu S, Park S, Park CS, Kim S. Association between the Ratio of FEV₁ to FVC and the Exposure Level to Air Pollution in Neversmoking Adult Refractory Asthmatics Using Data Clustered by Patient in the Soonchunhyang Asthma Cohort Database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2349. [PMID: 30356011 PMCID: PMC6266833 DOI: 10.3390/ijerph15112349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/24/2018] [Accepted: 10/18/2018] [Indexed: 01/21/2023]
Abstract
Using real-world cases, asthma-related clinical data were clustered by patient; 5% of all asthmatics were found to have refractory asthma (RA) with a relatively low lung function (forced expiratory volume in 1 s/forced vital capacity (FEV₁/FVC) less than 80%). Using a multilevel study design for clustered spirometry data observed between 2005 and 2014, we evaluated the association between changes in the ratio of FEV₁ to FVC and variations in acute exposure to air pollution. We analyzed 2310 episodes of RA from 214 neversmoking patients. In spring, a 1 µg/m³ increase in concentration of particles ≤10 μm (PM10) on Lag 1 significantly reduced the ratio by 0.4% (95% confidence interval (CI): 0.1⁻0.7%) after adjusting for sex, age, body mass index (BMI), and total Immunoglobulin E (IgE) level. Unit (ppb) increase in SO₂ concentration on Lag 3 and 4 in fall and on Lag 6 in winter significantly reduced the ratio by 2 to 3% (p < 0.05). We found that acute exposure to PM10 in spring or SO₂ in fall or winter were positively associated with lung function drop indicating necessity of control strategies of target air pollutant source by season to protect susceptible population.
Collapse
Affiliation(s)
- Sol Yu
- Department of Environmental Sciences, Soonchunhyang University, Asan 31538, Korea.
- Division of Environmental Health Research, National Institute of Environmental Research, Incheon 22689, Korea.
| | - Sujung Park
- Department of Environmental Sciences, Soonchunhyang University, Asan 31538, Korea.
| | - Choon-Sik Park
- Department of Internal Medicine, Soonchunhyang Bocheon Hospital, Bucheon 22972, Korea.
| | - Sungroul Kim
- Department of Environmental Sciences, Soonchunhyang University, Asan 31538, Korea.
| |
Collapse
|
161
|
Jeong H, Park D. Characteristics of peak concentrations of black carbon encountered by elementary school children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:418-430. [PMID: 29754077 DOI: 10.1016/j.scitotenv.2018.04.399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
The objectives of this study were to examine characteristics of peak concentrations, including frequency, duration, and relative magnitude, and estimate its contributions to overall daily exposure to BC by activity and microenvironment. We assessed daily personal exposures from August 2015 to January 2016 (75.2% of weekdays and 24.8% of weekend days; 64.1% of school days and 35.9% of holidays) among forty 10-12 years old children living in the Seoul metropolitan area. These children were equipped with a microaethalometer (BC monitor) and recorded a time-activity diary. Pre-administrated questionnaires and follow-up interviews also provided information on children's time-activity patterns. Owing to the absence of a generally accepted threshold, peaks were alternatively defined as BC concentrations higher TWA, the 95th percentile, and the 99th percentile. Peak concentrations made substantial contributions to total daily exposure to BC (peaks ≥ TWA: 60%, peaks ≥95th-percentile: 19%, and peaks ≥99th-percentile: 6%). Average peak levels higher than TWA and the 95th percentile differed significantly by activity and ME. Transportation and cooking led to frequent peak occurrences which disproportionately contributed to daily integrated exposure relative to time spent in these activities. Walking was characterized by occasional brief but high-magnitude peaks exceeding the 99th percentile, which produced the most intense potential dose (0.09% of daily time spent on walking accounted for 1.6% of daily potential dose). It might be attributed to encounters with high emissions sources such as passing/idling vehicles and environmental tobacco smoke. Trips by diesel vehicle produced frequently occurring and long-duration peaks above the 95th percentile that contributed 2% to total daily exposure (corresponding time: 0.3%). Charbroiling meat incurred sustained peaks as intense as those in trips by diesel vehicles. Peaks during commuting showed relatively high exposure intensity on weekdays, possibly because of increased surrounding traffic volume on these days, while those during cooking accounted for a more elevated residential contribution to daily integrated exposure.
Collapse
Affiliation(s)
- Hyeran Jeong
- Department of Environmental Health, Korea National Open University, Republic of Korea
| | - Donguk Park
- Department of Environmental Health, Korea National Open University, Republic of Korea.
| |
Collapse
|
162
|
Commodore A, Mukherjee N, Chung D, Svendsen E, Vena J, Pearce J, Roberts J, Arshad SH, Karmaus W. Frequency of heavy vehicle traffic and association with DNA methylation at age 18 years in a subset of the Isle of Wight birth cohort. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy028. [PMID: 30697444 PMCID: PMC6343046 DOI: 10.1093/eep/dvy028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 05/08/2023]
Abstract
Assessment of changes in DNA methylation (DNA-m) has the potential to identify adverse environmental exposures. To examine DNA-m among a subset of participants (n = 369) in the Isle of Wight birth cohort who reported variable near resident traffic frequencies. We used self-reported frequencies of heavy vehicles passing by the homes of study subjects as a proxy measure for TRAP, which were: never, seldom, 10 per day, 1-9 per hour and >10 per hour. Methylation of cytosine-phosphate-guanine (CpG) dinucleotide sequences in the DNA was assessed from blood samples collected at age 18 years (n = 369) in the F1 generation. We conducted an epigenome wide association study to examine CpGs related to the frequency of heavy vehicles passing by subjects' homes, and employed multiple linear regression models to assess potential associations. We repeated some of these analysis in the F2 generation (n = 140). Thirty-five CpG sites were associated with heavy vehicular traffic. After adjusting for confounders, we found 23 CpGs that were more methylated, and 11 CpGs that were less methylated with increasing heavy vehicular traffic frequency among all subjects. In the F2 generation, 2 of 31 CpGs were associated with traffic frequencies and the direction of the effect was the same as in the F1 subset while differential methylation of 7 of 31 CpG sites correlated with gene expression. Our findings reveal differences in DNA-m in participants who reported higher heavy vehicular traffic frequencies when compared to participants who reported lower frequencies.
Collapse
Affiliation(s)
- A Commodore
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - N Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| | - D Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Svendsen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S H Arshad
- Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - W Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
163
|
Habre R, Zhou H, Eckel SP, Enebish T, Fruin S, Bastain T, Rappaport E, Gilliland F. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. ENVIRONMENT INTERNATIONAL 2018; 118:48-59. [PMID: 29800768 PMCID: PMC6368339 DOI: 10.1016/j.envint.2018.05.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to ultrafine particles (UFP, particles with aerodynamic diameter < 100 nm) is associated with reduced lung function and airway inflammation in individuals with asthma. Recently, elevated UFP number concentrations (PN) from aircraft landing and takeoff activity were identified downwind of the Los Angeles International Airport (LAX) but little is known about the health impacts of airport-related UFP exposure. METHODS We conducted a randomized crossover study of 22 non-smoking adults with mild to moderate asthma in Nov-Dec 2014 and May-Jul 2015 to investigate short-term effects of exposure to LAX airport-related UFPs. Participants conducted scripted, mild walking activity on two occasions in public parks inside (exposure) and outside (control) of the high UFP zone. Spirometry, multiple flow exhaled nitric oxide, and circulating inflammatory cytokines were measured before and after exposure. Personal UFP PN and lung deposited surface area (LDSA) and stationary UFP PN, black carbon (BC), particle-bound PAHs (PB-PAH), ozone (O3), carbon dioxide (CO2) and particulate matter (PM2.5) mass were measured. Source apportionment analysis was conducted to distinguish aircraft from roadway traffic related UFP sources. Health models investigated within-subject changes in outcomes as a function of pollutants and source factors. RESULTS A high two-hour walking period average contrast of ~34,000 particles·cm-3 was achieved with mean (std) PN concentrations of 53,342 (25,529) and 19,557 (11,131) particles·cm-3 and mean (std) particle size of 28.7 (9.5) and 33.2 (11.5) at the exposure and control site, respectively. Principal components analysis differentiated airport UFPs (PN), roadway traffic (BC, PB-PAH), PM mass (PM2.5, PM10), and secondary photochemistry (O3) sources. A standard deviation increase in the 'Airport UFPs' factor was significantly associated with IL-6, a circulating marker of inflammation (single-pollutant model: 0.21, 95% CI = 0.08-0.34; multi-pollutant model: 0.18, 0.04-0.32). The 'Traffic' factor was significantly associated with lower Forced Expiratory Volume in 1 s (FEV1) (single-pollutant model: -1.52, -2.28 to -0.77) and elevated sTNFrII (single-pollutant model: 36.47; 6.03-66.91; multi-pollutant model: 64.38; 6.30-122.46). No consistent associations were observed with exhaled nitric oxide. CONCLUSIONS To our knowledge, our study is the first to demonstrate increased acute systemic inflammation following exposure to airport-related UFPs. Health effects associated with roadway traffic exposure were distinct. This study emphasizes the importance of multi-pollutant measurements and modeling techniques to disentangle sources of UFPs contributing to the complex urban air pollution mixture and to evaluate population health risks.
Collapse
Affiliation(s)
- Rima Habre
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hui Zhou
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temuulen Enebish
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott Fruin
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward Rappaport
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank Gilliland
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
164
|
Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C, Soberanes S, Hamanaka RB, Niğdelioğlu R, Meliton AY, Ghio AJ, Budinger GRS, Mutlu GM. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:817-830. [PMID: 29783199 PMCID: PMC6400491 DOI: 10.1016/j.envpol.2018.04.130] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 05/19/2023]
Abstract
Recent studies suggest an association between particulate matter (PM) air pollution and gastrointestinal (GI) disease. In addition to direct deposition, PM can be indirectly deposited in oropharynx via mucociliary clearance and upon swallowing of saliva and mucus. Within the GI tract, PM may alter the GI epithelium and gut microbiome. Our goal was to determine the effect of PM on gut microbiota in a murine model of PM exposure via inhalation. C57BL/6 mice were exposed via inhalation to either concentrated ambient particles or filtered air for 8-h per day, 5-days a week, for a total of 3-weeks. At exposure's end, GI tract tissues and feces were harvested, and gut microbiota was analyzed. Alpha-diversity was modestly altered with increased richness in PM-exposed mice compared to air-exposed mice in some parts of the GI tract. Most importantly, PM-induced alterations in the microbiota were very apparent in beta-diversity comparisons throughout the GI tract and appeared to increase from the proximal to distal parts. Changes in some genera suggest that distinct bacteria may have the capacity to bloom with PM exposure. Exposure to PM alters the microbiota throughout the GI tract which maybe a potential mechanism that explains PM induced inflammation in the GI tract.
Collapse
Affiliation(s)
- Ece A Mutlu
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Işın Y Comba
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Takugo Cho
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Phillip A Engen
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Cemal Yazıcı
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Recep Niğdelioğlu
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Angelo Y Meliton
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew J Ghio
- United States Environmental Protection Agency, Chapel Hill, NC, 27599, USA.
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
165
|
Brugha R, Edmondson C, Davies JC. Outdoor air pollution and cystic fibrosis. Paediatr Respir Rev 2018; 28:80-86. [PMID: 29793860 DOI: 10.1016/j.prrv.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/01/2023]
Abstract
Outdoor air pollution is increasingly identified as a contributor to respiratory and cardiovascular disease. Pro-inflammatory particles and gases are inhaled deep into the lungs, and are associated with impaired lung growth and exacerbations of chronic respiratory diseases. The magnitude of these effects are of interest to patients and families, and have been assessed in studies specific to CF. Using systematic review methodology, we sought to collate these studies in order to summarise the known effects of air pollution in cystic fibrosis, and to present information on decreasing personal air pollution exposures.
Collapse
Affiliation(s)
- Rossa Brugha
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| | - Claire Edmondson
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| | - Jane C Davies
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| |
Collapse
|
166
|
Rider CF, Carlsten C. Air pollution and resistance to inhaled glucocorticoids: Evidence, mechanisms and gaps to fill. Pharmacol Ther 2018; 194:1-21. [PMID: 30138638 DOI: 10.1016/j.pharmthera.2018.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Substantial evidence indicates that cigarette smoke exposure induces resistance to glucocorticoids, the primary maintenance medication in asthma treatment. Modest evidence also suggests that air pollution may reduce the effectiveness of these critical medications. Cigarette smoke, which has clear parallels with air pollution, has been shown to induce glucocorticoid resistance in asthma and it has been speculated that air pollution may have similar effects. However, the literature on an association of air pollution with glucocorticoid resistance is modest to date. In this review, we detail the evidence for, and against, the effects of air pollution on glucocorticoid effectiveness, focusing on results from epidemiology and controlled human exposure studies. Epidemiological studies indicate a correlation between increased air pollution exposure and worse asthma symptoms. But these studies also show a mix of beneficial and harmful effects of glucocorticoids on spirometry and asthma symptoms, perhaps due to confounding influences, or the induction of glucocorticoid resistance. We describe mechanisms that may contribute to reductions in glucocorticoid responsiveness following air pollution exposure, including changes to phosphorylation or oxidation of the glucocorticoid receptor, repression by cytokines, or inflammatory pathways, and epigenetic effects. Possible interactions between air pollution and respiratory infections are also briefly discussed. Finally, we detail a number of therapies that may boost glucocorticoid effectiveness or reverse resistance in the presence of air pollution, and comment on the beneficial effects of engineering controls, such as air filtration and asthma action plans. We also call attention to the benefits of improved clean air policy on asthma. This review highlights numerous gaps in our knowledge of the interactions between air pollution and glucocorticoids to encourage further research in this area with a view to reducing the harm caused to those with airways disease.
Collapse
Affiliation(s)
- Christopher F Rider
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, BC, Canada.
| | - Chris Carlsten
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, BC, Canada; Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
167
|
Liang D, Golan R, Moutinho JL, Chang HH, Greenwald R, Sarnat SE, Russell AG, Sarnat JA. Errors associated with the use of roadside monitoring in the estimation of acute traffic pollutant-related health effects. ENVIRONMENTAL RESEARCH 2018; 165:210-219. [PMID: 29727821 DOI: 10.1016/j.envres.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Near-road monitoring creates opportunities to provide direct measurement on traffic-related air pollutants and to better understand the changing near-road environment. However, how such observations represent traffic-related air pollution exposures for estimating adverse health effect in epidemiologic studies remains unknown. A better understanding of potential exposure measurement error when utilizing near-road measurement is needed for the design and interpretation of the many observational studies linking traffic pollution and adverse health. The Dorm Room Inhalation to Vehicle Emission (DRIVE) study conducted near-road measurements of several single traffic indicators at six indoor and outdoor sites ranging from 0.01 to 2.3 km away from a heavily-trafficked (average annual daily traffic over 350,000) highway artery between September 2014 to January 2015. We examined spatiotemporal variability trends and assessed the potential for bias and errors when using a roadside monitor as a primary traffic pollution exposure surrogate, in lieu of more spatially-refined, proximal exposure indicators. Pollutant levels measured during DRIVE showed a low impact of this highway hotspot source. Primary pollutant species, including NO, CO, and BC declined to near background levels by 20-30 m from the highway source. Patterns of correlation among the sites also varied by pollutant and time of day. NO2, specifically, exhibited spatial trends that differed from other single-pollutant primary traffic indicators. This finding provides some indication of limitations in the use of NO2 as a primary traffic exposure indicator in panel-based health effect studies. Interestingly, roadside monitoring of NO, CO, and BC tended to be more strongly correlated with sites, both near and far from the road, during morning rush hour periods, and more weakly correlated during other periods of the day. We found pronounced attenuation of observed changes in health effects when using measured pollutant from the near-road monitor as a surrogate for true exposure, and the magnitude varied substantially over the course of the day. Caution should be taken when using near-road monitoring network observations, alone, to investigate health effects of traffic pollutants.
Collapse
Affiliation(s)
- Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta 30322, USA.
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Jennifer L Moutinho
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta 30322, USA
| | - Roby Greenwald
- Division of Environmental Health, Georgia State University School of Public Health, Atlanta 30302, USA
| | - Stefanie E Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta 30322, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta 30322, USA
| |
Collapse
|
168
|
Goeminne PC, Cox B, Finch S, Loebinger MR, Bedi P, Hill AT, Fardon TC, de Hoogh K, Nawrot T, Chalmers JD. The impact of acute air pollution fluctuations on bronchiectasis pulmonary exacerbation: a case-crossover analysis. Eur Respir J 2018; 52:13993003.02557-2017. [DOI: 10.1183/13993003.02557-2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/25/2018] [Indexed: 11/05/2022]
Abstract
In bronchiectasis, exacerbations are believed to be triggered by infectious agents, but often no pathogen can be identified. We hypothesised that acute air pollution exposure may be associated with bronchiectasis exacerbations.We combined a case-crossover design with distributed lag models in an observational record linkage study. Patients were recruited from a specialist bronchiectasis clinic at Ninewells Hospital, Dundee, UK.We recruited 432 patients with clinically confirmed bronchiectasis, as diagnosed by high-resolution computed tomography. After excluding days with missing air pollution data, the final model for particles with a 50% cut-off aerodynamic diameter of 10 µm (PM10) was based on 6741 exacerbations from 430 patients and for nitrogen dioxide (NO2) it included 6248 exacerbations from 426 patients. For each 10 µg·m−³ increase in PM10 and NO2, the risk of having an exacerbation that same day increased significantly by 4.5% (95% CI 0.9–8.3) and 3.2% (95% CI 0.7–5.8) respectively. The overall (lag zero to four) increase in risk of exacerbation for a 10 μg·m−3 increase in air pollutant concentration was 11.2% (95% CI 6.0–16.8) for PM10 and 4.7% (95% CI 0.1–9.5) for NO2. Subanalysis showed higher relative risks during spring (PM10 1.198 (95% CI 1.102–1.303), NO2 1.146 (95% CI 1.035–1.268)) and summer (PM10 2.142 (95% CI 1.785–2.570), NO2 1.352 (95% CI 1.140–1.602)) when outdoor air pollution exposure would be expected to be highest.In conclusion, acute air pollution fluctuations are associated with increased exacerbation risk in bronchiectasis.
Collapse
|
169
|
Kurai J, Watanabe M, Sano H, Iwata K, Hantan D, Shimizu E. A Muscarinic Antagonist Reduces Airway Inflammation and Bronchoconstriction Induced by Ambient Particulate Matter in a Mouse Model of Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061189. [PMID: 29882826 PMCID: PMC6025324 DOI: 10.3390/ijerph15061189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023]
Abstract
Ambient particulate matter (PM) can increase airway inflammation and induce bronchoconstriction in asthma. This study aimed to investigate the effect of tiotropium bromide, a long-acting muscarinic antagonist, on airway inflammation and bronchoconstriction induced by ambient PM in a mouse model of asthma. We compared the effect of tiotropium bromide to that of fluticasone propionate and formoterol fumarate. BALB/c mice were sensitized to ovalbumin (OVA) via the airways and then administered tiotropium bromide, fluticasone propionate, or formoterol fumarate. Mice were also sensitized to ambient PM via intranasal instillation. Differential leukocyte counts and the concentrations of interferon (IFN)-γ, interleukin (IL)-5, IL-6, IL-13, and keratinocyte-derived chemokine (KC/CXCL1) were measured in bronchoalveolar lavage fluid (BALF). Diacron-reactive oxygen metabolites (dROMs) were measured in the serum. Airway resistance and airway inflammation were evaluated in lung tissue 24 h after the OVA challenge. Ambient PM markedly increased neutrophilic airway inflammation in mice with OVA-induced asthma. Tiotropium bromide improved bronchoconstriction, and reduced neutrophil numbers, decreased the concentrations of IL-5, IL-6, IL-13, and KC/CXCL1 in BALF. However, tiotropium bromide did not decrease the levels of dROMs increased by ambient PM. Though eosinophilic airway inflammation was reduced with fluticasone propionate, neutrophilic airway inflammation was unaffected. Bronchoconstriction was improved with formoterol fumarate, but not with fluticasone propionate. In conclusion, tiotropium bromide reduced bronchoconstriction, subsequently leading to reduced neutrophilic airway inflammation induced by ambient PM.
Collapse
Affiliation(s)
- Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kinki University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-0014, Japan.
| | - Kyoko Iwata
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
- Mio Fertility Clinic, Reproductive Centre, 2-2-1 Kuzumo-Minami, Yonago, Tottori 683-0008, Japan.
| | - Degejirihu Hantan
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| |
Collapse
|
170
|
Krall JR, Ladva CN, Russell AG, Golan R, Peng X, Shi G, Greenwald R, Raysoni AU, Waller LA, Sarnat JA. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:337-347. [PMID: 29298976 PMCID: PMC6013329 DOI: 10.1038/s41370-017-0016-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 05/19/2023]
Abstract
Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.
Collapse
Affiliation(s)
- Jenna R Krall
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive MS 5B7, Fairfax, VA, 22030, USA.
| | | | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Xing Peng
- College of Environmental Science and Engineering, Nankai University, Nankai Qu, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Nankai Qu, China
| | - Roby Greenwald
- Department of Environmental Health, Georgia State University, Atlanta, USA
| | - Amit U Raysoni
- Department of Environmental Health, Emory University, Atlanta, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Emory University, Atlanta, USA
| |
Collapse
|
171
|
Baek KI, Packard RRS, Hsu JJ, Saffari A, Ma Z, Luu AP, Pietersen A, Yen H, Ren B, Ding Y, Sioutas C, Li R, Hsiai TK. Ultrafine Particle Exposure Reveals the Importance of FOXO1/Notch Activation Complex for Vascular Regeneration. Antioxid Redox Signal 2018; 28:1209-1223. [PMID: 29037123 PMCID: PMC5912723 DOI: 10.1089/ars.2017.7166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Redox active ultrafine particles (UFP, d < 0.2 μm) promote vascular oxidative stress and atherosclerosis. Notch signaling is intimately involved in vascular homeostasis, in which forkhead box O1 (FOXO1) acts as a co-activator of the Notch activation complex. We elucidated the importance of FOXO1/Notch transcriptional activation complex to restore vascular regeneration after UFP exposure. RESULTS In a zebrafish model of tail injury and repair, transgenic Tg(fli1:GFP) embryos developed vascular regeneration at 3 days post amputation (dpa), whereas UFP exposure impaired regeneration (p < 0.05, n = 20 for control, n = 28 for UFP). UFP dose dependently reduced Notch reporter activity and Notch signaling-related genes (Dll4, JAG1, JAG2, Notch1b, Hey2, Hes1; p < 0.05, n = 3). In the transgenic Tg(tp1:GFP; flk1:mCherry) embryos, UFP attenuated endothelial Notch activity at the amputation site (p < 0.05 vs. wild type [WT], n = 20). A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) inhibitor or dominant negative (DN)-Notch1b messenger RNA (mRNA) disrupted the vascular network, whereas notch intracellular cytoplasmic domain (NICD) mRNA restored the vascular network (p < 0.05 vs. WT, n = 20). UFP reduced FOXO1 expression, but not Master-mind like 1 (MAML1) or NICD (p < 0.05, n = 3). Immunoprecipitation and immunofluorescence demonstrated that UFP attenuated FOXO1-mediated NICD pull-down and FOXO1/NICD co-localization, respectively (p < 0.05, n = 3). Although FOXO1 morpholino oligonucleotides (MOs) attenuated Notch activity, FOXO1 mRNA reversed UFP-mediated reduction in Notch activity to restore vascular regeneration and blood flow (p < 0.05 vs. WT, n = 5). Innovation and Conclusion: Our findings indicate the importance of the FOXO1/Notch activation complex to restore vascular regeneration after exposure to the redox active UFP. Antioxid. Redox Signal. 28, 1209-1223.
Collapse
Affiliation(s)
- Kyung In Baek
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - René R Sevag Packard
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Jeffrey J Hsu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Arian Saffari
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Zhao Ma
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Anh Phuong Luu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Andrew Pietersen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Hilary Yen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Bin Ren
- 4 Division of Hematology and Oncology, Medical College of Wisconsin , Milwaukee, Wisconsin.,5 Blood Research Institute , Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Yichen Ding
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Constantinos Sioutas
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Rongsong Li
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Tzung K Hsiai
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California.,2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California.,6 Research Services, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles , California
| |
Collapse
|
172
|
Jin SP, Li Z, Choi EK, Lee S, Kim YK, Seo EY, Chung JH, Cho S. Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J Dermatol Sci 2018; 91:S0923-1811(18)30202-0. [PMID: 29731195 DOI: 10.1016/j.jdermsci.2018.04.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Particulate matter (PM) is an integral part of air pollution, which is a mixture of particles suspended in the air. Recently, it has been reported that PM is associated with increased risks of skin diseases, especially atopic dermatitis in children. However, it is unclear if PM directly goes into the skin and what mechanisms are involved in response to PM. OBJECTIVE To see whether PM could penetrate into the barrier-disrupted skin, produce reactive oxygen species (ROS), and elicit an inflammatory response. METHODS We collected PMs during a winter in Seoul and used cultured keratinocytes for in vitro study and tape-stripped BALB/c mice for in vivo study. RESULTS Keratinocyte cytotoxicity increased in a dose-dependent manner by PM treatment. IL-8 and MMP-1 mRNA expression and protein levels were significantly increased compared to control by qPCR and ELISA, respectively. Cellular ROS production was increased by PM treatment, and antioxidant N-acetyl cysteine pretreatment prevented induction of inflammatory cytokines IL-8 and MMP-1. In PM-treated keratinocytes, electron-dense subcellular particles were observed by transmission electron microscopy. PM was observed inside hair follicles in both intact and barrier-disrupted skin in vivo. Additionally, intercellular penetration of PM was seen in the barrier-disrupted skin. Repeated PM application induced epidermal thickening and dermal inflammation with neutrophil infiltration. Finally, N-acetyl cysteine could ameliorate skin inflammation induced by PM application. CONCLUSION PM penetrates into the barrier-disrupted skin, causing inflammation, demonstrating detrimental effects in the skin.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Deparment of Biomedical Science, Seoul National University Graduate School, Republic of Korea
| | - Zhenyu Li
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Deparment of Biomedical Science, Seoul National University Graduate School, Republic of Korea
| | - Eun Kyung Choi
- Laboratory of Electron Microscope, Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Serah Lee
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Yoen Kyung Kim
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Eun Young Seo
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Deparment of Biomedical Science, Seoul National University Graduate School, Republic of Korea
| | - Soyun Cho
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Department of Dermatology, Seoul National University Boramae Medical Center, Republic of Korea.
| |
Collapse
|
173
|
Chambers L, Finch J, Edwards K, Jeanjean A, Leigh R, Gonem S. Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation. Clin Exp Allergy 2018. [PMID: 29526044 DOI: 10.1111/cea.13130] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is evidence that air pollution increases the risk of asthma hospitalizations and healthcare utilization, but the effects on day-to-day asthma control are not fully understood. OBJECTIVE We undertook a prospective single-centre panel study to test the hypothesis that personal air pollution exposure is associated with asthma symptoms, lung function and airway inflammation. METHODS Thirty-two patients with a clinical diagnosis of asthma were provided with a personal air pollution monitor (Cairclip NO2 /O3 ) which was kept on or around their person throughout the 12-week follow-up period. Ambient levels of NO2 and particulate matter were modelled based upon satellite imaging data. Directly measured ozone, NO2 and particulate matter levels were obtained from a monitoring station in central Leicester. Participants made daily electronic records of asthma symptoms, peak expiratory flow and exhaled nitric oxide. Spirometry and asthma symptom questionnaires were completed at fortnightly study visits. Data were analysed using linear mixed effects models and cross-correlation. RESULTS Cairclip exposure data were of good quality with clear evidence of diurnal variability and a missing data rate of approximately 20%. We were unable to detect consistent relationships between personal air pollution exposure and clinical outcomes in the group as a whole. In an exploratory subgroup analysis, total oxidant exposure was associated with increased daytime symptoms in women but not men. CONCLUSIONS AND CLINICAL RELEVANCE We did not find compelling evidence that air pollution exposure impacts on day-to-day clinical control in an unselected asthma population, but further studies are required in larger populations with higher exposure levels. Women may be more susceptible than men to the effects of air pollution, an observation which requires confirmation in future studies.
Collapse
Affiliation(s)
- L Chambers
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - J Finch
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - K Edwards
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - A Jeanjean
- Department of Physics and Astronomy, University of Leicester, Leicester, UK
| | - R Leigh
- Department of Physics and Astronomy, University of Leicester, Leicester, UK
| | - S Gonem
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
174
|
Abstract
PURPOSE OF REVIEW Airway inflammation is considered to be a cardinal feature of asthma. However, the type of airway inflammation is heterogeneous and airway inflammation may even be absent. Biomarkers may help to identify the inflammatory phenotype or endotype, especially now the time has come that targeted therapies enter daily practice. RECENT FINDINGS Sputum biomarkers have increased our insights into the different inflammatory asthma phenotypes, their response to treatment and their association with progression of disease. New endotypes of type 2 driven inflammation were identified using a multidimensional approach. A specific mast cell subtype has been linked with type 2 driven inflammation and response to inhaled corticosteroids. Advances have been made with regard to sputum cytokine analysis and might also help to guide future treatment of severe asthma. SUMMARY Identifying the target population for biological therapies will not be possible without the use of biomarkers. Optimized, easy-to-apply, automated methods for sputum analysis (cellular content or soluble markers) need to be developed for implementation of sputum biomarkers in daily clinical practice.
Collapse
|
175
|
Xu T, Hou J, Cheng J, Zhang R, Yin W, Huang C, Zhu X, Chen W, Yuan J. Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:505-513. [PMID: 29324380 DOI: 10.1016/j.envpol.2017.12.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/04/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Fine particle (PM2.5)-related lung damage has been reported in most studies regarding environmental or personal PM2.5 concentrations. To assess effects of personal PM2.5 exposures on lung function, we recruited 20 postgraduate students and estimated the individual doses of inhaled PM2.5 based on their microenvironmetal PM2.5 concentrations, time-activity patterns and refereed inhalation rates. During the period of seven consecutive days in each of the four seasons, we repeatedly measured the daily lung function parameters and airway inflammation makers such as fractional exhaled nitric oxide (FeNO) as well as systemic inflammation markers including interleukin-1β on the final day. The high individual dose (median (IQR)) of inhaled PM2.5 was 957 (948) μg/day. We observed a maximum FeNO increase (9.1% (95%CI: 2.2-15.5)) at lag 0 day, a maximum decrease of maximum voluntary ventilation (11.8% (95% CI: 4.6-19.0)) at lag 5 day and a maximum interleukin-1β increase (103% (95% CI: 47-159)) at lag 2 day for an interquartile range increase in the individual dose of inhaled PM2.5 during the four seasons. Short-term exposure to PM2.5 assessed by the individual dose of inhaled PM2.5 was associated with higher airway and systemic inflammation and reduced lung function. Further studies are needed to understand better underlying mechanisms of lung damage following acute exposure to PM2.5.
Collapse
Affiliation(s)
- Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Runbo Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Cheng Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Xiaochuan Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
176
|
Krauskopf J, Caiment F, van Veldhoven K, Chadeau-Hyam M, Sinharay R, Chung KF, Cullinan P, Collins P, Barratt B, Kelly FJ, Vermeulen R, Vineis P, de Kok TM, Kleinjans JC. The human circulating miRNome reflects multiple organ disease risks in association with short-term exposure to traffic-related air pollution. ENVIRONMENT INTERNATIONAL 2018; 113:26-34. [PMID: 29421404 DOI: 10.1016/j.envint.2018.01.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 05/24/2023]
Abstract
Traffic-related air pollution is a complex mixture of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide (NO2). PM exposure contributes to the pathogenesis of many diseases including several types of cancer, as well as pulmonary, cardiovascular and neurodegenerative diseases. Also exposure to NO2 has been related to increased cardiovascular mortality. In search of an early diagnostic biomarker for improved air pollution-associated health risk assessment, recent human studies have shown that certain circulating miRNAs are altered upon exposure to traffic-related air pollutants. Here, we present for the first time a global analysis of the circulating miRNA genome in an experimental cross-over study of a human population exposed to traffic-related air pollution. By utilizing next-generation sequencing technology and detailed real-time exposure measurements we identified 54 circulating miRNAs to be dose- and pollutant species-dependently associated with PM10, PM2.5, black carbon, ultrafine particles and NO2 already after 2 h of exposure. Bioinformatics analysis suggests that these circulating miRNAs actually reflect the adverse consequences of traffic pollution-induced toxicity in target tissues including the lung, heart, kidney and brain. This study shows the strong potential of circulating miRNAs as novel biomarkers for environmental health risk assessment.
Collapse
Affiliation(s)
- Julian Krauskopf
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Florian Caiment
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Karin van Veldhoven
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Rudy Sinharay
- National Heart and Lung Institute, Imperial College London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, UK
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College London, UK
| | - Peter Collins
- National Heart and Lung Institute, Imperial College London, UK
| | - Benjamin Barratt
- MRC-PHE Centre for Environment and Health, Analytical & Environmental Sciences, King's College London, UK
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, Analytical & Environmental Sciences, King's College London, UK
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Theo M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jos C Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
177
|
Low Dose Carbon Black Nanoparticle Exposure Does Not Aggravate Allergic Airway Inflammation in Mice Irrespective of the Presence of Surface Polycyclic Aromatic Hydrocarbons. NANOMATERIALS 2018; 8:nano8040213. [PMID: 29614747 PMCID: PMC5923543 DOI: 10.3390/nano8040213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022]
Abstract
Exposure to exogenous noxae, such as particulate matter, can trigger acute aggravations of allergic asthma—a chronic inflammatory airway disease. We tested whether Carbon Black nanoparticles (CBNP) with or without surface polycyclic aromatic hydrocarbons (PAH) aggravate an established allergic airway inflammation in mice. In an ovalbumin mouse model, Printex®90 (P90), P90 coated with benzo[a]pyrene (P90-BaP) or 9-nitroanthracene (P90-9NA), or acetylene soot exhibiting a mixture of surface PAH (AS-PAH) was administered twice (70 µL, 100 µg/mL) during an established allergic airway inflammation. We analyzed the immune cell numbers and chemokine/cytokine profiles in bronchoalveolar lavages, the mRNA expressions of markers for PAH metabolism (Cyp1a1, 1b1), oxidative stress (HO-1, Gr, Gpx-3), inflammation (KC, Mcp-1, IL-6, IL-13, IL-17a), mucin synthesis (Muc5ac, Muc5b), the histology of mucus-producing goblet cells, ciliary beat frequency (CBF), and the particle transport speed. CBNP had a comparable primary particle size, hydrodynamic diameter, and ζ-potential, but differed in the specific surface area (P90 > P90-BaP = P90-9NA = AS-PAH) and surface chemistry. None of the CBNP tested increased any parameter related to inflammation. The unmodified P90, however, decreased the tracheal CBF, decreased the Muc5b in intrapulmonary airways, but increased the tracheal Muc5ac. Our results demonstrated that irrespective of the surface PAH, a low dose of CBNP does not acutely aggravate an established allergic airway inflammation in mice.
Collapse
|
178
|
Biomarkers of Human Cardiopulmonary Response After Short-Term Exposures to Medical Laser-Generated Particulate Matter From Simulated Procedures: A Pilot Study. J Occup Environ Med 2018; 58:940-5. [PMID: 27465102 DOI: 10.1097/jom.0000000000000832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We conducted an exposure chamber study in humans using a simulated clinical procedure lasing porcine tissue to demonstrate evidence of effects of exposure to laser-generated particulate matter (LGPM). METHODS We measured pre- and post-exposure changes in exhaled nitric oxide (eNO), spirometry, heart rate variability (HRV), and blood markers of inflammation in five volunteers. RESULTS Change in pre- and post-exposure measurements of eNO and spirometry was unremarkable. Neutrophil and lymphocyte counts increased and fibrinogen levels decreased in four of the five subjects. Measures of HRV showed decreases in the standard deviation of normal between beat intervals and sequential 5-minute intervals. CONCLUSION These data represent the first evidence of human physiologic response to LGPM exposure. Further exploration of coagulation effects and HRV is warranted.
Collapse
|
179
|
Bonini M, Silvers W. Exercise-Induced Bronchoconstriction: Background, Prevalence, and Sport Considerations. Immunol Allergy Clin North Am 2018; 38:205-214. [PMID: 29631730 DOI: 10.1016/j.iac.2018.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transient airway narrowing that occurs as a result of exercise is defined as exercise-induced bronchoconstriction (EIB). The prevalence of EIB has been reported to be up to 90% in asthmatic patients, reflecting the level of disease control. However, EIB may develop even in subjects without clinical asthma, particularly in children, athletes, patients with atopy or rhinitis, and following respiratory infections. The intensity, duration, and type of training have been associated with the occurrence of EIB. In athletes, EIB seems to be only partly reversible, and exercise seems to be a causative factor of airway inflammation and symptoms.
Collapse
Affiliation(s)
- Matteo Bonini
- Airways Disease Section, National Heart and Lung Institute (NHLI), Royal Brompton Hospital, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| | - William Silvers
- University of Colorado School of Medicine, 13001 E 17th Place, Aurora, CO 80045, USA
| |
Collapse
|
180
|
Dai Y, Ren D, Bassig BA, Vermeulen R, Hu W, Niu Y, Duan H, Ye M, Meng T, Xu J, Bin P, Shen M, Yang J, Fu W, Meliefste K, Silverman D, Rothman N, Lan Q, Zheng Y. Occupational exposure to diesel engine exhaust and serum cytokine levels. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:144-150. [PMID: 29023999 PMCID: PMC6438621 DOI: 10.1002/em.22142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 05/27/2023]
Abstract
The International Agency for Research on Cancer has classified diesel engine exhaust (DEE) as a human lung carcinogen. Given that inflammation is suspected to be an important underlying mechanism of lung carcinogenesis, we evaluated the relationship between DEE exposure and the inflammatory response using data from a cross-sectional molecular epidemiology study of 41 diesel engine testing workers and 46 unexposed controls. Repeated personal exposure measurements of PM2.5 and other DEE constituents were taken for the diesel engine testing workers before blood collection. Serum levels of six inflammatory biomarkers including interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1β, and monocyte chemotactic protein (MCP)-1 were analyzed in all subjects. Compared to unexposed controls, concentrations of MIP-1β were significantly reduced by ∼37% in DEE exposed workers (P < 0.001) and showed a strong decreasing trend with increasing PM2.5 concentrations in all subjects (Ptrend < 0.001) as well as in exposed subjects only (Ptrend = 0.001). Levels of IL-8 and MIP-1β were significantly lower in workers in the highest exposure tertile of PM2.5 (>397 µg/m3 ) compared to unexposed controls. Further, significant inverse exposure-response relationships for IL-8 and MCP-1 were also found in relation to increasing PM2.5 levels among the DEE exposed workers. Given that IL-8, MIP-1β, and MCP-1 are chemokines that play important roles in recruitment of immunocompetent cells for immune defense and tumor cell clearance, the observed lower levels of these markers with increasing PM2.5 exposure may provide insight into the mechanism by which DEE promotes lung cancer. Environ. Mol. Mutagen. 59:144-150, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute. Rockville, Maryland, U.S.A
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and prevention, Chaoyang, China
| | - Bryan A. Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute. Rockville, Maryland, U.S.A
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute. Rockville, Maryland, U.S.A
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
| | - Meng Ye
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
| | - Jun Xu
- Hong Kong University, Hong Kong, China
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
| | - Meili Shen
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and prevention, Chaoyang, China
| | - Wei Fu
- Chaoyang Center for Disease Control and prevention, Chaoyang, China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Debra Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute. Rockville, Maryland, U.S.A
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute. Rockville, Maryland, U.S.A
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute. Rockville, Maryland, U.S.A
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention. Beijing, China
| |
Collapse
|
181
|
Hu L, Zhu L, Xu Y, Lyu J, Imm K, Yang L. Relationship Between Air Quality and Outdoor Exercise Behavior in China: a Novel Mobile-Based Study. Int J Behav Med 2018; 24:520-527. [PMID: 28534316 DOI: 10.1007/s12529-017-9647-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Based on data collected from an exercise app, the study aims to provide empirical evidence on the relationship between air quality and patterns of outdoor exercise in China. METHODS Objective outdoor exercise data spanning 160 days were collected from 153 users of an exercise app, Tulipsport in China. Each exercise mode (running, biking, and walking, respectively) was organized into five air quality categories based on Air Quality Index (AQI): excellent, good, mild pollution, moderate pollution, and serious pollution. Key parameters of each app user were calculated and analyzed: the total number of exercise bouts, the average duration, and the average distance of each exercise mode in each air quality category. RESULTS Multivariate analyses of variance indicate that the users were less likely to participate in outdoor running, biking, and walking (F = 24.16, p < .01, Wilk's Λ = 0.64) as levels of air pollution increased. However, there is no difference in terms of average distance and duration of exercise across different air pollution categories. CONCLUSIONS People's participation in outdoor exercise is impeded by air pollution severity, but they stick to their exercise routines once exercise is initiated. Although people should protect themselves from health damages caused by exercising under pollution, the decreases in physical activity associated with air pollution may also pose an indirect risk to public health. The interactive relationship between air quality, exercise, and health warrants more empirical and interdisciplinary explorations.
Collapse
Affiliation(s)
- Liang Hu
- College of Education, Zhejiang University, Hangzhou, China
| | - Li Zhu
- College of Education, Zhejiang University, Hangzhou, China
| | - Yaping Xu
- Department of Physical and Art Education, Zhejiang University, Hangzhou, China
| | - Jiaying Lyu
- School of Management, Zhejiang University, Hangzhou, 310028, China.
| | - Kellie Imm
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin Yang
- Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
182
|
Liu S, Grigoryan H, Edmands WMB, Dagnino S, Sinharay R, Cullinan P, Collins P, Chung KF, Barratt B, Kelly FJ, Vineis P, Rappaport SM. Cys34 Adductomes Differ between Patients with Chronic Lung or Heart Disease and Healthy Controls in Central London. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2307-2313. [PMID: 29350914 DOI: 10.1021/acs.est.7b05554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oxidative stress generates reactive species that modify proteins, deplete antioxidant defenses, and contribute to chronic obstructive pulmonary disease (COPD) and ischemic heart disease (IHD). To determine whether protein modifications differ between COPD or IHD patients and healthy subjects, we performed untargeted analysis of adducts at the Cys34 locus of human serum albumin (HSA). Biospecimens were obtained from nonsmoking participants from London, U.K., including healthy subjects (n = 20) and patients with COPD (n = 20) or IHD (n = 10). Serum samples were digested with trypsin and analyzed by liquid chromatography-high resolution mass spectrometry. Effects of air pollution on adduct levels were also investigated based on estimated residential exposures to PM2.5, O3 and NO2. For the 39 adducts with sufficient data, levels were essentially identical in blood samples collected from the same subjects on two consecutive days, consistent with the 28 day residence time of HSA. Multivariate linear regression revealed 21 significant associations, mainly with the underlying diseases but also with air-pollution exposures (p-value < 0.05). Interestingly, most of the associations indicated that adduct levels decreased with the presence of disease or increased pollutant concentrations. Negative associations of COPD and IHD with the Cys34 disulfide of glutathione and two Cys34 sulfoxidations, were consistent with previous results from smoking and nonsmoking volunteers and nonsmoking women exposed to indoor combustion of coal and wood.
Collapse
Affiliation(s)
- Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California , Berkeley, California 94720, United States
| | - Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California , Berkeley, California 94720, United States
| | - William M B Edmands
- Division of Environmental Health Sciences, School of Public Health, University of California , Berkeley, California 94720, United States
| | - Sonia Dagnino
- MRC-PHE Centre for Environment and Health, Imperial College , Norfolk Place London W2 1PG, U.K
| | - Rudy Sinharay
- National Heart & Lung Institute, Imperial College , London SW3 6LY, U.K
- NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust , London, SW3 6NP, U.K
| | - Paul Cullinan
- National Heart & Lung Institute, Imperial College , London SW3 6LY, U.K
- NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust , London, SW3 6NP, U.K
| | - Peter Collins
- National Heart & Lung Institute, Imperial College , London SW3 6LY, U.K
- NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust , London, SW3 6NP, U.K
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College , London SW3 6LY, U.K
- NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust , London, SW3 6NP, U.K
| | - Benjamin Barratt
- MRC-PHE Centre for Environment and Health, King's College London , London SE1 9NH, U.K
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, King's College London , London SE1 9NH, U.K
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College , Norfolk Place London W2 1PG, U.K
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California , Berkeley, California 94720, United States
| |
Collapse
|
183
|
Turner MC, Vineis P, Seleiro E, Dijmarescu M, Balshaw D, Bertollini R, Chadeau-Hyam M, Gant T, Gulliver J, Jeong A, Kyrtopoulos S, Martuzzi M, Miller GW, Nawrot T, Nieuwenhuijsen M, Phillips DH, Probst-Hensch N, Samet J, Vermeulen R, Vlaanderen J, Vrijheid M, Wild C, Kogevinas M. EXPOsOMICS: final policy workshop and stakeholder consultation. BMC Public Health 2018; 18:260. [PMID: 29448939 PMCID: PMC5815236 DOI: 10.1186/s12889-018-5160-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
The final meeting of the EXPOsOMICS project “Final Policy Workshop and Stakeholder Consultation” took place 28–29 March 2017 to present the main results of the project and discuss their implications both for future research and for regulatory and policy activities. This paper summarizes presentations and discussions at the meeting related with the main results and advances in exposome research achieved through the EXPOsOMICS project; on other parallel research initiatives on the study of the exposome in Europe and in the United States and their complementarity to EXPOsOMICS; lessons learned from these early studies on the exposome and how they may shape the future of research on environmental exposure assessment; and finally the broader implications of exposome research for risk assessment and policy development on environmental exposures. The main results of EXPOsOMICS in relation to studies of the external exposome and internal exposome in relation to both air pollution and water contaminants were presented as well as new technologies for environmental health research (adductomics) and advances in statistical methods. Although exposome research strengthens the scientific basis for policy development, there is a need in terms of showing added value for public health to: improve communication of research results to non-scientific audiences; target research to the broader landscape of societal challenges; and draw applicable conclusions. Priorities for future work include the development and standardization of methodologies and technologies for assessing the external and internal exposome, improved data sharing and integration, and the demonstration of the added value of exposome science over conventional approaches in answering priority policy questions.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG, London, UK.
| | | | - Michaela Dijmarescu
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG, London, UK
| | - David Balshaw
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Roberto Bertollini
- Former WHO Chief Scientist and Representative to the European Union, Brussels, Belgium
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG, London, UK
| | | | - John Gulliver
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG, London, UK
| | - Ayoung Jeong
- University of Basel, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Nicole Probst-Hensch
- University of Basel, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | |
Collapse
|
184
|
Slezakova K, Peixoto C, Oliveira M, Delerue-Matos C, Pereira MDC, Morais S. Indoor particulate pollution in fitness centres with emphasis on ultrafine particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:180-193. [PMID: 29073525 DOI: 10.1016/j.envpol.2017.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Fitness centres (FC) represent a unique indoor microenvironment. Exercising on regular basis provides countless health benefits and improves overall well-being, but if these facilities have poor indoor air quality, the respective exercisers might be subjected to some adverse risks. Considering the limited existent data, this work aimed to evaluate particulate pollution (PM10, PM2.5, and ultrafine particles - UFP) in indoor air of FC and to estimate the respective risks for occupants (both staff and exercising subjects). Sampling was conducted during 40 consecutive days of May-June 2014 in general fitness areas, studios and classrooms (for group activities) of four different fitness centres (FC1-FC4) situated within Oporto metropolitan area, Portugal. The results showed that across the four FC, PM10 ranged between 5 and 1080 μg m-3 with median concentrations (15-43 μg m-3) fulfilling the limit (50 μg m-3) of Portuguese legislation in all FC. PM2.5 (medians 5-37 μg m-3; range 5-777 μg m-3) exceeded thresholds of 25 μg m-3 at some FC, indicating potential risks for the respective occupants; naturally ventilated FC exhibited significantly higher PM ranges (p < 0.05). Similarly, UFPs (range 0.5-88.6 × 103 # cm-3) median concentrations were higher (2-3 times) at FC without controlled ventilation systems. UFP were approximately twice higher (p < 0.05) during the occupied periods (mean of 9.7 × 103vs. 4.8 × 103 # cm-3) with larger temporal variations of UFP levels observed in general fitness areas than in classrooms and studios. Cardio activities (conducted in studios and classrooms) led to approximately twice the UFPs intakes than other types of exercising. These results indicate that even short-term physical activity (or more specifically its intensity) might strongly influence the daily inhalation dose. Finally, women exhibited 1.2 times higher UFPs intake than men thus suggesting the need for future gender-specific studies assessing UFP exposure.
Collapse
Affiliation(s)
- Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia Peixoto
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| |
Collapse
|
185
|
Sinharay R, Gong J, Barratt B, Ohman-Strickland P, Ernst S, Kelly FJ, Zhang JJ, Collins P, Cullinan P, Chung KF. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet 2018; 391:339-349. [PMID: 29221643 PMCID: PMC5803182 DOI: 10.1016/s0140-6736(17)32643-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. FUNDING British Heart Foundation.
Collapse
Affiliation(s)
- Rudy Sinharay
- National Heart and Lung Institute and MRC-PHE Centre for Environment and Health, Imperial College, London, UK; NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing China; Nicholas School of Environment & Duke Global Health Institute, Duke University, Durham, USA; Duke Kunshan University, Kunshan, China
| | - Benjamin Barratt
- MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Pamela Ohman-Strickland
- Rutgers School of Public Health, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Sabine Ernst
- NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Junfeng Jim Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing China; Nicholas School of Environment & Duke Global Health Institute, Duke University, Durham, USA; Duke Kunshan University, Kunshan, China
| | - Peter Collins
- National Heart and Lung Institute and MRC-PHE Centre for Environment and Health, Imperial College, London, UK; NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Paul Cullinan
- National Heart and Lung Institute and MRC-PHE Centre for Environment and Health, Imperial College, London, UK; NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute and MRC-PHE Centre for Environment and Health, Imperial College, London, UK; NIHR Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK.
| |
Collapse
|
186
|
Mookherjee N, Piyadasa H, Ryu MH, Rider C, Ezzati P, Spicer V, Carlsten C. Inhaled diesel exhaust alters the allergen-induced bronchial secretome in humans. Eur Respir J 2018; 51:51/1/1701385. [DOI: 10.1183/13993003.01385-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Diesel exhaust (DE) is a paradigm for traffic-related air pollution. Human adaptation to DE is poorly understood and currently based on oversimplified models. DE promotes allergic responses, but protein expression changes mediated by this interaction have not been systematically investigated. The aim of this study was to define the effect of inhaled DE on allergen-induced proteins in the lung.We performed a randomised and blinded controlled human crossover exposure study. Participants inhaled filtered air or DE; thereafter, contralateral lung segments were challenged with allergen or saline. Using label-free quantitative proteomics, we comprehensively defined DE-mediated alteration of allergen-driven secreted proteins (secretome) in bronchoalveolar lavage. We further examined expression of proteins selected from the secretome data in independent validation experiments using Western blots, ELISA and immunohistochemistry.We identified protein changes unique to co-exposure (DE+allergen), undetected with mono-exposures (DE or allergen alone). Validation studies confirmed that specific proteins (e.g.the antimicrobial peptide cystatin-SA) were significantly enhanced with DE+allergen compared to either mono-exposure.This study demonstrates that common environmental co-exposures can uniquely alter protein responses in the lungs, illuminating biology that mono-exposures cannot. This study highlights the value of complex humanin vivomodels in detailing airway responses to inhaled pollution.
Collapse
|
187
|
Wagner DR, Clark NW. Effects of ambient particulate matter on aerobic exercise performance. J Exerc Sci Fit 2018; 16:12-15. [PMID: 30662486 PMCID: PMC6323157 DOI: 10.1016/j.jesf.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/05/2022] Open
Abstract
Background/Objective Wintertime thermal inversions in narrow mountain valleys create a ceiling effect, increasing concentration of small particulate matter (PM2.5). Despite potential health risks, many people continue to exercise outdoors in thermal inversions. This study measured the effects of ambient PM2.5 exposure associated with a typical thermal inversion on exercise performance, pulmonary function, and biological markers of inflammation. Methods Healthy, active adults (5 males, 11 females) performed two cycle ergometer time trials outdoors in a counterbalanced design: 1) low ambient PM2.5 concentrations (<12 μg/m3), and 2) an air quality index (AQI) ranking of “yellow.” Variables of interest were exercise performance, exhaled nitric oxide (eNO), c-reactive protein (CRP), forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1). Results Despite a significant difference in mean PM2.5 concentration of 9.3 ± 3.0 μg/m3 between trials (p < .001), there was no significant difference (p = .424) in the distance covered during low PM2.5 conditions (9.9 ± 1.7 km) compared to high PM2.5 conditions (10.1 ± 1.5 km). There were no clinically significant differences across time or between trials for eNO, CRP, FVC, or FEV1. Additionally, there were no dose-response relationships (p > .05) for PM2.5 concentration and the measured variables. Conclusion An acute bout of vigorous exercise during an AQI of “yellow” did not diminish exercise performance in healthy adults, nor did it have a negative effect on pulmonary function or biological health markers. These variables might not be sensitive to small changes from acute, mild PM2.5 exposure.
Collapse
Affiliation(s)
- Dale R Wagner
- Kinesiology & Health Science Department, Utah State University, USA
| | - Nicolas W Clark
- Kinesiology & Health Science Department, Utah State University, USA
| |
Collapse
|
188
|
Bencsik A, Lestaevel P, Guseva Canu I. Nano- and neurotoxicology: An emerging discipline. Prog Neurobiol 2018; 160:45-63. [DOI: 10.1016/j.pneurobio.2017.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 09/10/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
|
189
|
Ghaffari HR, Aval HE, Alahabadi A, Mokammel A, Khamirchi R, Yousefzadeh S, Ahmadi E, Rahmani-Sani A, Estaji M, Ghanbarnejad A, Gholizadeh A, Taghavi M, Miri M. Asthma disease as cause of admission to hospitals due to exposure to ambient oxidants in Mashhad, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27402-27408. [PMID: 28975536 DOI: 10.1007/s11356-017-0226-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 05/21/2023]
Abstract
Nowadays, asthma is one of the most common chronic respiratory diseases, worldwide. Many reports have emphasized the correlation between the short-term exposure to the ambient air pollutants and acute respiratory diseases, especially among children with asthmatic symptoms. The aim of this study was to evaluate the relationship between the exposure to three atmospheric antioxidants (NO2, SO2, and O3) and hospital admission due to asthmatic disease (HAAD) in the city of Mashhad, Iran. The concentrations of atmospheric antioxidants were obtained from the real-time monitoring stations located in the city. The collected data were employed for developing predictive models in the AirQ software. In order to investigate the association between short-term exposure to air pollutants and HAAD, the study participants were categorized into two age groups: less than 15 and from 15 to 64 years old. The results indicated that in people less than 15 years increase in NO2 (attributable proportion (AP) = 3.775%, 95% CI 0.897-6.883%), SO2 (AP = 3.649%, 95% CI 1.295-5.937%), and O3 (AP = 0.554%,95% CI 0.00-3.321) results in increase in HAAD. While for those aged between 15 and 64 years, the AP was 4.192% (95% CI 0.450-7.662%) for NO2; 0.0% (95% CI 0.00-1.687%) for SO2; and 0.236% (95% CI 0.00-1.216%) for O3. The number of asthmatic cases who were less than 15 years admitted to the hospitals during the study period was higher than that of those within the age groups between 15 and 64 years as a consequence of exposure to NO2 (101 vs. 75), SO2 (98 vs. 0), and O3 (15 vs. 3), respectively. To the best of our knowledge, the AirQ model has not been applied before to estimate the effect of atmospheric antioxidant exposure on hospital admission because of asthma disease. Eventually, this model is proposed to be applicable for other cities around the world.
Collapse
Affiliation(s)
- Hamid Reza Ghaffari
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Ebrahimi Aval
- Department of Environmental Health, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Alahabadi
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Adel Mokammel
- Department of Environmental Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramzanali Khamirchi
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Samira Yousefzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Ahmadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Rahmani-Sani
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehdi Estaji
- Department of Environmental Health Engineering, School of Public Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Amin Ghanbarnejad
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmoud Taghavi
- Department of Environmental Health, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Miri
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
190
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
191
|
Ntontsi P, Loukides S, Bakakos P, Kostikas K, Papatheodorou G, Papathanassiou E, Hillas G, Koulouris N, Papiris S, Papaioannou AI. Clinical, functional and inflammatory characteristics in patients with paucigranulocytic stable asthma: Comparison with different sputum phenotypes. Allergy 2017; 72:1761-1767. [PMID: 28407269 DOI: 10.1111/all.13184] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND According to induced sputum cell count, four different asthma phenotypes have been recognized (eosinophilic, neutrophilic, mixed and paucigranulocytic). The aim of this study was to detect functional and inflammatory characteristics of patients with paucigranulocytic asthma. METHODS A total of 240 asthmatic patients were categorized into the four phenotypes according to cell counts in induced sputum. All patients underwent pulmonary function tests, and measurement of fraction of exhaled nitric oxide (FeNO). The levels of IL-8, IL-13 and eosinophilic cationic protein (ECP) were also measured in sputum supernatant. Treatment, asthma control and the presence of severe refractory asthma (SRA) were also recorded. RESULTS Patients were categorized into the four phenotypes as follows: eosinophilic (40%), mixed (6.7%), neutrophilic (5.4%) and paucigranulocytic (47.9%). Although asthma control test did not differ between groups (P=.288), patients with paucigranulocytic asthma had better lung function (FEV1 % pred) [median (IQR): 71.5 (59.0-88.75) vs 69.0 (59.0-77.6) vs 68.0 (60.0-85.5) vs 80.5 (69.7-95.0), P=.009] for eosinophilic, mixed, neutrophilic and paucigranulocytic asthma, respectively, P=.009). SRA occurred more frequently in the eosinophilic and mixed phenotype (41.6% and 43.7%, respectively) and less frequently in the neutrophilic and paucigranulocytic phenotype (25% and 21.7%, respectively, P=.01). FeNO, ECP and IL-8 were all low in the paucigranulocytic, whereas as expected FeNO and ECP were higher in eosinophilic and mixed asthma, while IL-8 was higher in patients with neutrophilic and mixed asthma (P<.001 for all comparisons). Interestingly, 14.8% of patients with paucigranulocytic asthma had poor asthma control. CONCLUSION Paucigranulocytic asthma most likely represents a "benign" asthma phenotype, related to a good response to treatment, rather than a "true" phenotype of asthma. However, paucigranulocytic patients that remain not well controlled despite optimal treatment represent an asthmatic population that requires further study for potential novel targeted interventions.
Collapse
Affiliation(s)
- P. Ntontsi
- 2nd Respiratory Medicine Department Attikon Hospital University of Athens Athens Greece
| | - S. Loukides
- 2nd Respiratory Medicine Department Attikon Hospital University of Athens Athens Greece
| | - P. Bakakos
- 1st Respiratory Medicine Department Sotiria Hospital University of Athens Athens Greece
| | - K. Kostikas
- 2nd Respiratory Medicine Department Attikon Hospital University of Athens Athens Greece
| | - G. Papatheodorou
- Clinical Research Unit Athens Army General Hospital Athens Greece
| | - E. Papathanassiou
- 2nd Respiratory Medicine Department Attikon Hospital University of Athens Athens Greece
| | - G. Hillas
- Respiratory Medicine Department Evangelismos Hospital Athens Greece
| | - N. Koulouris
- 1st Respiratory Medicine Department Sotiria Hospital University of Athens Athens Greece
| | - S. Papiris
- 2nd Respiratory Medicine Department Attikon Hospital University of Athens Athens Greece
| | - A. I. Papaioannou
- 2nd Respiratory Medicine Department Attikon Hospital University of Athens Athens Greece
| |
Collapse
|
192
|
Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Møller P, Schins RPF, Vogel U, Kreyling WG, Alstrup Jensen K, Kuhlbusch TAJ, Schwarze PE, Hoet P, Pietroiusti A, De Vizcaya-Ruiz A, Baeza-Squiban A, Teixeira JP, Tran CL, Cassee FR. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:106002. [PMID: 29017987 PMCID: PMC5933410 DOI: 10.1289/ehp424] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. OBJECTIVES NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. METHODS A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. DISCUSSION Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. CONCLUSION There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424.
Collapse
Affiliation(s)
- Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Martin J D Clift
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swansea University Medical School, Swansea, Wales, UK
| | - Alison Elder
- University of Rochester Medical Center, Rochester, New York
| | - Nicholas L Mills
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Roel P F Schins
- IUF Leibniz-Institut für Umweltmedizinische Forschung, Düsseldorf, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Wolfgang G Kreyling
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Munich, Germany
| | | | - Thomas A J Kuhlbusch
- Air Quality & Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik e. V. (IUTA), Duisburg, Germany
- Federal Institute of Occupational Safety and Health, Duisburg, Germany
| | | | - Peter Hoet
- Center for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Andrea De Vizcaya-Ruiz
- Departmento de Toxicología, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, México
| | | | - João Paulo Teixeira
- National Institute of Health, Porto, Portugal
- Instituto de Saúde Pública da Universidade do Porto–Epidemiology (ISPUP-EPI) Unit, Porto, Portugal
| | - C Lang Tran
- Institute of Occupational Medicine, Edinburgh, Scotland, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
193
|
Control Measures and Health Effects of Air Pollution: A Survey among Public Transportation Commuters in Malaysia. SUSTAINABILITY 2017. [DOI: 10.3390/su9091616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
194
|
Pañella P, Casas M, Donaire-Gonzalez D, Garcia-Esteban R, Robinson O, Valentín A, Gulliver J, Momas I, Nieuwenhuijsen M, Vrijheid M, Sunyer J. Ultrafine particles and black carbon personal exposures in asthmatic and non-asthmatic children at school age. INDOOR AIR 2017; 27:891-899. [PMID: 28321937 DOI: 10.1111/ina.12382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Traffic-related air pollution (TRAP) exposure during childhood is associated with asthma; however, the contribution of the different TRAP pollutants in each microenvironment (home, school, transportation, others) in asthmatic and non-asthmatic children is unknown. Daily (24-h) personal black carbon (BC), ultrafine particle (UFP), and alveolar lung-deposited surface area (LDSA) individual exposure measurements were obtained from 100 children (29 past and 21 current asthmatics, 50 non-asthmatics) aged 9±0.7 years from the INMA-Sabadell cohort (Catalonia, Spain). Time spent in each microenvironment was derived by the geolocation provided by the smartphone and a new spatiotemporal map-matching algorithm. Asthmatics and non-asthmatics spent the same amount of time at home (60% and 61%, respectively), at school (20% and 23%), on transportation (8% and 7%), and in other microenvironments (7% and 5%). The highest concentrations of all TRAPs were attributed to transportation. No differences in TRAP concentrations were found overall or by type of microenvironment between asthmatics and non-asthmatics, nor when considering past and current asthmatics, separately. In conclusion, asthmatic and non-asthmatic children had a similar time-activity pattern and similar average exposures to BC, UFP, and LDSA concentrations. This suggests that interventions should be tailored to general population, rather than to subgroups defined by disease.
Collapse
Affiliation(s)
- P Pañella
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - M Casas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - D Donaire-Gonzalez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Physical Activity and Sports Sciences Department, Fundació Blanquerna, Barcelona, Spain
| | - R Garcia-Esteban
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - O Robinson
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Kensington, London, UK
| | - A Valentín
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - J Gulliver
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Kensington, London, UK
| | - I Momas
- Faculté de Pharmacie de Paris, Laboratoire Santé Publique et Environnement, Université Paris Descartes, Paris, France
- Direction de l'Action Sociale de l'Enfance et de la Santé, Cellule Cohorte, Mairie de Paris, Paris, France
| | - M Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - M Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - J Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
195
|
The Association Between Particulate Matter Air Pollution and Respiratory Health in Elderly With Type 2 Diabetes Mellitus. J Occup Environ Med 2017; 59:830-834. [DOI: 10.1097/jom.0000000000001077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
196
|
Pui M, Nicol AM, Brauer M, Palad F, Carlsten C. A qualitative study of the knowledge, attitudes, and behaviors of people exposed to diesel exhaust at the workplace in British Columbia, Canada. PLoS One 2017; 12:e0182890. [PMID: 28841707 PMCID: PMC5571928 DOI: 10.1371/journal.pone.0182890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/26/2017] [Indexed: 12/05/2022] Open
Abstract
PURPOSE To identify exposure-related knowledge, attitudes and behaviors of individuals occupationally exposed to diesel exhaust (DE); to reveal strengths, knowledge gaps and misperceptions therein. METHODS A Mental Models approach was used to gather information about current scientific understanding of DE exposure hazards and the ways in which exposure can be reduced. Thirty individuals in British Columbia who were regularly exposed to occupational DE were interviewed. The audio was recorded and transcribed. Data was grouped together and examined to draw out themes around DE awareness, hazard assessment and risk reduction behaviors. These themes were then compared and contrasted with existing grey and research literature in order to reveal strengths, gaps and misperceptions regarding DE exposure. RESULTS Study participants were aware and concerned about their exposure to DE but had incomplete and sometimes incorrect understanding of exposure pathways, health effects, and effective strategies to reduce their exposures. The perceived likelihood of exposure to DE was significantly greater compared to that of other work hazards (p<0.01), whereas the difference for their perceived severity of consequences was not significant. There was no universally perceived main source of information regarding DE, and participants generally distrusted sources of information based on their past experience with the source. Most of the actions that were taken to address DE exposure fell into the area of administrative controls such as being aware of sources of DE and avoiding these sources. CONCLUSIONS This study of the knowledge, attitude, and behavior of those occupationally exposed to DE found, most notably, that more education and training and the creation of a health effects inventory regarding DE exposure were desired.
Collapse
Affiliation(s)
- Mandy Pui
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne-Marie Nicol
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Michael Brauer
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Farshad Palad
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
197
|
Fang T, Zeng L, Gao D, Verma V, Stefaniak AB, Weber RJ. Ambient Size Distributions and Lung Deposition of Aerosol Dithiothreitol-Measured Oxidative Potential: Contrast between Soluble and Insoluble Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6802-6811. [PMID: 28548846 PMCID: PMC5994611 DOI: 10.1021/acs.est.7b01536] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ambient particulate matter may upset redox homeostasis, leading to oxidative stress and adverse health effects. Size distributions of water-insoluble and water-soluble OPDTT (dithiothreitol assay, measure of oxidative potential per air volume) are reported for a roadside site and an urban site. The average water-insoluble fractions were 23% and 51%, and 37% and 39%, for fine and coarse modes at the roadside and urban sites, respectively, measured during different periods. Water-soluble OPDTT was unimodal, peaked near 1-2.5 μm due to contributions from fine-mode organic components plus coarse-mode transition metal ions. In contrast, water-insoluble OPDTT was bimodal, with both fine and coarse modes. The main chemical components that drive both fractions appear to be the same, except that for water-insoluble OPDTT the compounds were absorbed on surfaces of soot and non-tailpipe traffic dust. They were largely externally mixed and deposited in different regions in the respiratory system, transition metal ions predominately in the upper regions and organic species, such as quinones, deeper in the lung. Although OPDTT per mass (toxicity) was highest for ultrafine particles, estimated lung deposition was mainly from accumulation and coarse particles. Contrasts in the phases of these forms of OPDTT deposited in the respiratory system may have differing health impacts.
Collapse
Affiliation(s)
- Ting Fang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Linghan Zeng
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dong Gao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois Urbana–Champaign, Champaign, Illinois 61801, United States
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Rodney J. Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
198
|
Int Panis L, Provost EB, Cox B, Louwies T, Laeremans M, Standaert A, Dons E, Holmstock L, Nawrot T, De Boever P. Short-term air pollution exposure decreases lung function: a repeated measures study in healthy adults. Environ Health 2017; 16:60. [PMID: 28615020 PMCID: PMC5471732 DOI: 10.1186/s12940-017-0271-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/06/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Daily changes in ambient concentrations of particulate matter, nitrogen oxides and ozone are associated with increased cardiopulmonary morbidity and mortality, with the lungs and their function being a vulnerable target. METHODS To evaluate the association between daily changes in air pollution and lung function in healthy adults we obtained annual lung function measurements from a routine worker health surveillance program not designed for research purposes. Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), FEV1/FVC and Peak Expiratory flow (PEF) from a cohort of 2449 employees were associated with daily measurements of PM10, NO2 and ozone at a nearby monitoring station in the North of Belgium. Repeated measures were available for the period 2011-2015. RESULTS The mean (SD) PM10 concentration on the day of the lung function test was 24.9 (15.5) μg/m3. A 10 μg PM10/m3 increase on the day of the clinical examination was associated with a 18.9 ml lower FVC (95% CI: -27.5 to -10.3, p < 0.0001), 12.8 ml lower FEV1 (-19.1 to -6.5; p < 0.0001), and a 51.4 ml/s lower PEF (-75.0 to -27.0; p < 0.0001). The FEV1/FVC-ratio showed no associations. An increase of 10 μgNO2/m3 was associated with a reduction in PEF (-66.1 ml/s (-106.6 to -25.6; p < 0.001)) on the day of the examination. CONCLUSIONS We found negative associations between daily variations in ambient air pollution and FVC, FEV1 and PEF in healthy adults.
Collapse
Affiliation(s)
- Luc Int Panis
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Transportation Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Eline B Provost
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tijs Louwies
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Michelle Laeremans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Transportation Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Arnout Standaert
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Evi Dons
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Luc Holmstock
- The Belgian Nuclear Research Centre (SCK●CEN), Mol, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| | - Patrick De Boever
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
199
|
Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, Perera FP, Rundle AG, Perzanowski MS, Chillrud SN, Miller RL. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics 2017. [PMID: 28630656 PMCID: PMC5470266 DOI: 10.1186/s13148-017-0364-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). Methods We performed a cross-sectional study of 135 children ages 9–14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. Results In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m3), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs −77, −65, and −58) (βestimate = −2.37%, p < 0.01) but not among those with lower BC exposure (βestimate = 0.54%, p > 0.05). Differences across strata were statistically significant (pinteraction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (βestimate = −0.40%, p < 0.01) and reduced FEF25–75% (βestimate = −1.46%, p < 0.01). Conclusions Physical activity in urban children appeared associated with lower FOXP3 promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These findings suggest that physical activity may induce immunologic benefits, particularly for urban children with greater risk of impaired lung function due to exposure to higher air pollution. FOXP3 promoter buccal cell methylation may function as a useful biomarker of that benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0364-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 3959 Broadway CHC-745, New York, NY 10032 USA
| | - Kyung Hwa Jung
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - Jacqueline R Jezioro
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - David Z Torrone
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | | | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Frederica P Perera
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA.,Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA.,Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| |
Collapse
|
200
|
Farris BY, Antonini JM, Fedan JS, Mercer RR, Roach KA, Chen BT, Schwegler-Berry D, Kashon ML, Barger MW, Roberts JR. Pulmonary toxicity following acute coexposures to diesel particulate matter and α-quartz crystalline silica in the Sprague-Dawley rat. Inhal Toxicol 2017; 29:322-339. [PMID: 28967277 PMCID: PMC6545482 DOI: 10.1080/08958378.2017.1361487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 µg), DPM (7.89 or 50 µg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control). At one day, one week, one month, two months and three months postexposure bronchoalveolar lavage and histopathology were performed to assess lung injury, inflammation and immune response. While higher doses of silica caused inflammation and injury at all time points, DPM exposure alone did not. DPM (50 µg) combined with silica (233 µg) increased inflammation at one week and one-month postexposure and caused an increase in the incidence of fibrosis at one month compared with exposure to silica alone. To assess susceptibility to lung infection following coexposure, rats were exposed by IT to 233 µg silica, 50 µg DPM, a combination of the two or PBS control one week before intratracheal inoculation with 5 × 105 Listeria monocytogenes. At 1, 3, 5, 7 and 14 days following infection, pulmonary immune response and bacterial clearance from the lung were evaluated. Coexposure to DPM and silica did not alter bacterial clearance from the lung compared to control. Although DPM and silica coexposure did not alter pulmonary susceptibility to infection in this model, the study showed that noninflammatory doses of DPM had the capacity to increase silica-induced lung injury, inflammation and onset/incidence of fibrosis.
Collapse
Affiliation(s)
- Breanne Y. Farris
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | - James M. Antonini
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Jeffrey S. Fedan
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Robert R. Mercer
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Bean T. Chen
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Michael L. Kashon
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark W. Barger
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|