151
|
Rana M, Devi S, Gourinath S, Goswami R, Tyagi RK. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1183-1197. [PMID: 26962022 DOI: 10.1016/j.bbagrm.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
Pregnane & Xenobiotic Receptor (PXR) acts as a xenosensing transcriptional regulator of many drug metabolizing enzymes and transporters of the 'detoxification machinery' that coordinate in elimination of xenobiotics and endobiotics from the cellular milieu. It is an accepted view that some individuals or specific populations display considerable differences in their ability to metabolize different drugs, dietary constituents, herbals etc. In this context we speculated that polymorphisms in PXR gene might contribute to variability in cytochrome P450 (CYP450) metabolizing enzymes of phase I, drug metabolizing components of phase II and efflux components of the detoxification machinery. Therefore, in this study, we have undertaken a comprehensive functional analysis of seventeen naturally occurring non-synonymous variants of human PXR. When compared, we observed that some of the PXR SNP variants exhibit distinct functional and dynamic responses on parameters which included transcriptional function, sub-cellular localization, mitotic chromatin binding, DNA-binding properties and other molecular interactions. One of the unique SNP located within the DNA-binding domain of PXR was found to be functionally null and distinct on other parameters. Similarly, some of the non-synonymous SNPs in PXR imparted reduced transactivation function as compared to wild type PXR. Interestingly, PXR is reported to be a mitotic chromatin binding protein and such an association has been correlated to an emerging concept of 'transcription memory' and altered transcription output. In view of the observations made herein our data suggest that some of the natural PXR variants may have adverse physiological consequences owing to its influence on the expression levels and functional output of drug-metabolizing enzymes and transporters. The present study is expected to explain not only the observed inter-individual responses to different drugs but may also highlight the mechanistic details and importance of PXR in drug clearance, drug-drug interactions and diverse metabolic disorders. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Manjul Rana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneeta Devi
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravinder Goswami
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
152
|
Zeng H, Li D, Qin X, Chen P, Tan H, Zeng X, Li X, Fan X, Jiang Y, Zhou Y, Chen Y, Wang Y, Huang M, Bi H. Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug Metab Dispos 2016; 44:337-42. [PMID: 26658429 DOI: 10.1124/dmd.115.066969] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/16/2015] [Indexed: 02/13/2025] Open
Abstract
We previously reported that the ethanol extract of Schisandra sphenanthera [Wuzhi (WZ) tablet] significantly protects against acetaminophen-induced hepatoxicity. However, whether WZ exerts a protective effect against cholestasis remains unclear. In this study, the protective effect of WZ on lithocholic acid (LCA)-induced intrahepatic cholestasis in mice was characterized and the involved mechanisms were investigated. WZ pretreatment (350 mg/kg) with LCA significantly reversed liver necrosis and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activity. More importantly, serum total bile acids and total bilirubin were also remarkably reduced. Quantitative reverse-transcription polymerase chain reaction and Western blot analysis showed that hepatic expression of pregnane X receptor (PXR) target genes such as CYP3A11 and UDP-glucuronosyltransferase (UGT) 1A1 were significantly increased by WZ treatment. Luciferase assays performed in LS174T cells illustrated that WZ extract and its six bioactive lignans could all activate human PXR. In addition, WZ treatment significantly promoted liver regeneration via inhibition of p53/p21 to induce cell proliferation-associated proteins such as cyclin D1 and proliferating cell nuclear antigen. In conclusion, WZ has a protective effect against LCA-induced intrahepatic cholestasis, partially owing to activation of the PXR pathway and promotion of liver regeneration.
Collapse
Affiliation(s)
- Hang Zeng
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Dongshun Li
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xiaoling Qin
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Pan Chen
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Huasen Tan
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xuezhen Zeng
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xi Li
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Xiaomei Fan
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Yiming Jiang
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Yawen Zhou
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Yixin Chen
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Ying Wang
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Min Huang
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| | - Huichang Bi
- School of Pharmaceutical Sciences (H.Z., D.L., H.T., X.Z., X.L., X.F., Y.J., Y.Z., Y.C., Y.W., M.H., H.B.) and First Affiliated Hospital (P.C.), Sun Yat-sen University, Guangzhou, China; and Guangdong Food and Drug Vocational College, Guangzhou, China (X.Q.)
| |
Collapse
|
153
|
Zhou C. Novel functions of PXR in cardiometabolic disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1112-1120. [PMID: 26924429 DOI: 10.1016/j.bbagrm.2016.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
Cardiometabolic disease emerges as a worldwide epidemic and there is urgent need to understand the molecular mechanisms underlying this chronic disease. The chemical environment to which we are exposed has significantly changed in the past few decades and recent research has implicated its contribution to the development of many chronic human diseases. However, the mechanisms of how exposure to chemicals contributes to the development of cardiometabolic disease are poorly understood. Numerous chemicals have been identified as ligands for the pregnane X receptor (PXR), a nuclear receptor functioning as a xenobiotic sensor to coordinately regulate xenobiotic metabolism via transcriptional regulation of xenobiotic-detoxifying enzymes and transporters. In the past decade, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied by many laboratories and the role of PXR as a xenobiotic sensor has been well-established. The identification of PXR as a xenobiotic sensor has provided an important tool for the study of new mechanisms through which xenobiotic exposure impacts human chronic diseases. Recent studies have revealed novel and unexpected roles of PXR in modulating obesity, insulin sensitivity, lipid homeostasis, atherogenesis, and vascular functions. These studies suggest that PXR signaling may contribute significantly to the pathophysiological effects of many known xenobiotics on cardiometabolic disease in humans. The discovery of novel functions of PXR in cardiometabolic disease not only contributes to our understanding of "gene-environment interactions" in predisposing individuals to chronic diseases but also provides strong evidence to inform future risk assessment for relevant chemicals. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
154
|
Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1155-1169. [PMID: 26855179 DOI: 10.1016/j.bbagrm.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 12/31/2022]
Abstract
Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug-drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC-MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
155
|
Sepe V, Renga B, Festa C, Finamore C, Masullo D, Carino A, Cipriani S, Distrutti E, Fiorucci S, Zampella A. Investigation on bile acid receptor regulators. Discovery of cholanoic acid derivatives with dual G-protein coupled bile acid receptor 1 (GPBAR1) antagonistic and farnesoid X receptor (FXR) modulatory activity. Steroids 2016; 105:59-67. [PMID: 26607331 DOI: 10.1016/j.steroids.2015.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
Bile acids, the end products of cholesterol metabolism, activate multiple mechanisms through the interaction with membrane G-protein coupled receptors including the bile acid receptor GPBAR1 and nuclear receptors such as the bile acid sensor, farnesoid X receptor (FXR). Even if dual FXR/GPBAR1 agonists are largely considered a novel opportunity in the treatment of several liver and metabolic diseases, selective targeting of one of these receptors represents an attractive therapeutic approach for a wide range of disorders in which dual modulation is associated to severe side effects. In the present study we have investigated around the structure of LCA generating a small library of cholane derivatives, endowed with dual FXR agonism/GPBAR1 antagonism. To the best of our knowledge, this is the first report of bile acid derivatives able to antagonize GPBAR1.
Collapse
Affiliation(s)
- Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Barbara Renga
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Dario Masullo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Sabrina Cipriani
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Eleonora Distrutti
- Hospital S. Maria della Misericordia, S. Andrea delle Fratte, 06126 Perugia, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, 1-06132 Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy.
| |
Collapse
|
156
|
Zazuli Z, Barliana MI, Mulyani UA, Perwitasari DA, Ng H, Abdulah R. Polymorphism of PXR gene associated with the increased risk of drug-induced liver injury in Indonesian pulmonary tuberculosis patients. J Clin Pharm Ther 2015; 40:680-4. [PMID: 26417664 DOI: 10.1111/jcpt.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/25/2015] [Indexed: 01/28/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tuberculosis is still a major infectious disease in Indonesia. Patients are treated mostly using fixed-dose combination treatment in primary public health facilities. The incidence of antituberculosis drug-induced liver injury (AT-DILI) is approximately 10% among Indonesian tuberculosis patients who used standard fixed combination regimens during the intensive phase of treatment. However, information regarding genetic polymorphism associated with the increase risk of drug-induced liver injury is still limited. The aim of this study was to investigate pregnane X receptor (PXR) gene polymorphisms as one of the risk factors of AT-DILI. METHODS In this prospective cohort study, we recruited 106 adult patients diagnosed with pulmonary tuberculosis and treated with category I FDC (fixed-dose combination). The identification of SNP -25385C>T (rs3814055) was conducted by ARMS (amplification refractory mutation system). Hepatotoxicity was defined as ALT and/or AST levels above the normal threshold on the second, fourth and sixth months of monitoring during tuberculosis treatment. RESULTS AND DISCUSSION The logistic regression analysis showed that patients with the TT genotype of PXR gene (rs3814055) significantly had a greater risk of AT-DILI (OR 8·89; 95% CI 1·36-57·93, P < 0·05), compared with those of wild-type CC genotype. WHAT IS NEW AND CONCLUSION The result suggests that in Indonesian patients with tuberculosis, the risk of having AT-DILI was associated with TT genotype of the PXR gene.
Collapse
Affiliation(s)
- Z Zazuli
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - M I Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - U A Mulyani
- Center for Applied Health Technology and Clinical Epidemiology, National Institute of Health Research and Development, Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | - D A Perwitasari
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - H Ng
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - R Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
157
|
Hu H, Yu T, Arpiainen S, Lang MA, Hakkola J, Abu-Bakar A. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6. Toxicol Appl Pharmacol 2015; 289:30-9. [PMID: 26343999 DOI: 10.1016/j.taap.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6.
Collapse
Affiliation(s)
- Hao Hu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Ting Yu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Satu Arpiainen
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Matti A Lang
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Jukka Hakkola
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - A'edah Abu-Bakar
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| |
Collapse
|
158
|
Geng T, Xia L, Russo S, Kamara D, Cowart LA. Prosteatotic genes are associated with unsaturated fat suppression of saturated fat-induced hepatic steatosis in C57BL/6 mice. Nutr Res 2015; 35:812-822. [PMID: 26277244 PMCID: PMC5520982 DOI: 10.1016/j.nutres.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/21/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
Both high sugar and fat diets can induce prosteatotic genes, leading to obesity and obesity-associated diseases, including hepatic steatosis. Unsaturated fat/fatty acid (USFA) reduces high sugar-induced hepatic steatosis by inhibiting the induced prosteatotic genes. In contrast, it is still unclear how USFA ameliorates saturated fat/fatty acid (SFA)-induced hepatic steatosis. As sugar and fat have different transport and metabolic pathways, we hypothesized that USFA suppressed SFA-induced hepatic steatosis via a different set of prosteatotic genes. To test this, we implemented high SFA vs USFA diets and a control diet in C57BL/6 mice for 16 weeks. Severe hepatic steatosis was induced in mice fed the SFA diet. Among a nearly complete set of prosteatotic genes, only the stearoyl-coenzyme a desaturase 1 (Scd1), cluster of differentiation 36 (Cd36), and peroxisome proliferator-activated receptor γ (Pparγ) genes that were differentially expressed in the liver could contribute to SFA-induced steatosis or the alleviative effect of USFA. That is, the SFA diet induced the expression of Cd36 and Pparγ but not Scd1, and the USFA diet suppressed Scd1 expression and the induction of Cd36 and Pparγ. These findings were mainly recapitulated in cultured hepatocytes. The essential roles of SCD1 and CD36 were confirmed by the observation that the suppression of SCD1 and CD36 with small interfering RNA or drug treatment ameliorated SFA-induced lipid accumulation in hepatocytes. We thus concluded that SCD1, CD36, and PPARγ were essential to the suppression of SFA-induced hepatic steatosis by main dietary USFA, which may provide different therapeutic targets for reducing high-fat vs sugar-induced hepatic steatosis.
Collapse
Affiliation(s)
- Tuoyu Geng
- Institute of Epigenetics and Epigenomics, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China; College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA.
| | - Lili Xia
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Sarah Russo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA
| | - Davida Kamara
- Union Hospital of Cecil County, 106 Bow St, Elkton, MD 21921, USA
| | - Lauren Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA; Ralph H Johnson Veteran's Affairs Medical Center, 109 Bee St, 29403, Charleston, SC, USA
| |
Collapse
|
159
|
Zhang Y, Kim DK, Lee JM, Park SB, Jeong WI, Kim SH, Lee IK, Lee CH, Chiang JYL, Choi HS. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression. Biochem J 2015; 470:181-93. [PMID: 26348907 PMCID: PMC5333639 DOI: 10.1042/bj20141494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/29/2015] [Indexed: 12/30/2022]
Abstract
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Cells, Cultured
- Cholesterol 7-alpha-Hydroxylase/biosynthesis
- Cholesterol 7-alpha-Hydroxylase/genetics
- Drug Inverse Agonism
- Ethanol/pharmacology
- Gene Expression
- Glycerides/pharmacology
- HEK293 Cells
- Hepatocytes/metabolism
- Humans
- Liver/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Promoter Regions, Genetic
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Yaochen Zhang
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Bum Park
- Chemical Biology Laboratory, School of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-338, Republic of Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio University's Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, U.S.A
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
160
|
Abstract
Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome.
Collapse
|
161
|
Chen P, Li J, Fan X, Zeng H, Deng R, Li D, Huang M, Bi H. Oleanolic acid attenuates obstructive cholestasis in bile duct-ligated mice, possibly via activation of NRF2-MRPs and FXR antagonism. Eur J Pharmacol 2015; 765:131-9. [PMID: 26297978 DOI: 10.1016/j.ejphar.2015.08.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
Obstructive cholestasis is characterized by impairment of hepatic canalicular bile efflux and there are no clinically effective drugs to cure except surgeries. Previously we revealed that oleanolic acid (OA) protected against lithocholic acid (LCA)-induced intrahepatic cholestasis in mice. Cholestasis caused by LCA is characterized by segmental bile duct obstruction, whether OA possesses the beneficial effect on completed obstructive cholestasis induced by bile duct ligation (BDL) remains unknown. In this study, we demonstrated that BDL-induced mice liver pathological change, and increase in serum levels of ALT, AST and ALP were all significantly reduced by OA (20 mg/kg, i.p.). Meanwhile, OA also lowered total bilirubin and total bile acids levels in serum, as well as total bile acids level in liver, in contrast, urinary total bile acids output was remarkably up-regulated by OA. Gene expression analysis showed that OA caused significant increased mRNA expression of MRP3 and MRP4 located at hepatic basolateral membrane, and restoration of MRP2 and BSEP located at hepatic cannalicular membrane. Furthermore, significant NRF2 protein accumulation in nucleus was also observed in OA treated mice. In mice primary cultured hepatocytes, the effects of OA on MRP2, MRP3 and MRP4 expression were directly proved to be mediated via NRF2 activation, and BSEP downregulation induced by OA was in part due to FXR antagonism. Luciferase assay performed in Hep G2 cells also illustrated that OA was a partial FXR antagonist. Taken together, we conclude that OA attenuates obstructive cholestasis in BDL mice, possibly via activation of NRF2-MRPs and FXR antagonism.
Collapse
Affiliation(s)
- Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jingjie Li
- Center of Reproductive Medicine, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, PR China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Rongrong Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
162
|
Sharanek A, Burban A, Humbert L, Bachour-El Azzi P, Felix-Gomes N, Rainteau D, Guillouzo A. Cellular Accumulation and Toxic Effects of Bile Acids in Cyclosporine A-Treated HepaRG Hepatocytes. Toxicol Sci 2015. [DOI: 10.1093/toxsci/kfv155] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
163
|
Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Med Chem 2015; 7:1109-35. [DOI: 10.4155/fmc.15.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bile acids (BAs) are experiencing a new life. Next to their ancestral roles in lipid digestion and solubilization, BAs are today recognized signaling molecules involved in many physiological functions. These signaling pathways involve the activation of metabolic nuclear receptors, mainly the BA sensor FXR, and the dedicated membrane G protein-coupled receptor, GPBAR1 (TGR5). As a consequence, the discovery of GPBAR1/FXR selective or dual modulators represents an important answer to the urgent demand of new pharmacological opportunity for several human diseases including dyslipidemia, cholestasis, nonalcoholic steatohepatitis, Type 2 diabetes and inflammation. Targeted oriented discovery of natural compounds and medicinal chemistry manipulation have allowed the development of promising drug candidates.
Collapse
|
164
|
Asemi Z, Karamali M, Esmaillzadeh A. Favorable effects of vitamin D supplementation on pregnancy outcomes in gestational diabetes: a double blind randomized controlled clinical trial. Horm Metab Res 2015; 47:565-70. [PMID: 25372774 DOI: 10.1055/s-0034-1394414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gestational diabetes mellitus (GDM) has been recognized as a significant risk factor for unfavorable pregnancy outcomes. Prevalence of vitamin D deficiency is highly prevalent among women with GDM. This study was designed to assess the effect of vitamin D supplementation on pregnancy outcomes of pregnant women with GDM who were not on oral hypoglycemic agents. This randomized controlled clinical trial was performed among 45 pregnant women diagnosed with GDM at 24-28 weeks' gestation. Subjects were randomly assigned to consume either vitamin D supplements (cholecalciferol) or placebo. Individuals in the vitamin D group (n=22) received 50 000 IU vitamin D3 pearl 2 times during the study: at study baseline and day 21 of intervention and those in placebo group (n=23) received 2 placebos at the mentioned times. Fasting blood samples were taken at baseline to measure fasting plasma glucose. Participants underwent a 3-h oral glucose tolerance tests (OGTT) and the blood samples were collected at time 60, 120, and 180 min to measure plasma glucose levels. Newborn's weight, height, head circumference, Apgar score, and hyperbilirubinemia were determined. Taking vitamin D supplements, compared with placebo, resulted in improved pregnancy outcomes; such that those in the vitamin D group had no case of polyhydramnios, while 17.4% of subjects in placebo group had this condition (p=0.04). In addition, newborn's hyperbilirubinemia was significantly lower in vitamin D group than that in placebo group (27.3% vs. 60.9%, p=0.02). In conclusion, vitamin D supplementation for 6 weeks among pregnant women with GDM resulted in decreased maternal polyhydramnios and infant hyperbilirubinemia compared with placebo. Clinical trial registration number www.irct.ir:IRCT201305115623N7.
Collapse
Affiliation(s)
- Z Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | - M Karamali
- Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences, Arak, I. R. Iran
| | - A Esmaillzadeh
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| |
Collapse
|
165
|
Mo L, He J. Nuclear hormone receptors PXR and CAR and metabolic diseases. Horm Mol Biol Clin Investig 2015; 19:129-40. [PMID: 25390021 DOI: 10.1515/hmbci-2014-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022]
Abstract
Nuclear receptors (NRs) belong to a superfamily of evolutionarily related DNA-binding transcription factors that can be activated by steroid and thyroid hormones, and other lipid metabolites. Ligand activated NRs can regulate target gene expression by binding to DNA response elements present in the target gene promoters. Through this regulation, NRs are broadly implicated in physiology and metabolism. In this chapter, we will focus on the xenobiotic receptors and their recently discovered functions in metabolic diseases.
Collapse
|
166
|
Calcium plus vitamin D supplementation affects pregnancy outcomes in gestational diabetes: randomized, double-blind, placebo-controlled trial. Public Health Nutr 2015; 19:156-63. [PMID: 25790761 DOI: 10.1017/s1368980015000609] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The present study was designed to assess the effects of Ca+vitamin D supplementation on pregnancy outcomes in women with gestational diabetes mellitus (GDM). DESIGN A randomized, double-blind, placebo-controlled trial was conducted among sixty women with GDM. Participants were divided into two groups to receive Ca+vitamin D supplements or placebo. Individuals in the Ca+vitamin D group (n 30) received 1000 mg Ca/d and two pearls containing 1250 µg (50 000 IU) of cholecalciferol (vitamin D(3)) during the intervention (one at study baseline and another at day 21 of the intervention); those in the placebo group (n 30) received two placebos of vitamin D at the mentioned times and placebos of Ca every day for 6 weeks. Pregnancy outcomes were determined. SETTING A urban community setting in Arak, Iran. SUBJECTS Sixty women with GDM and their newborns, living in Arak, Iran were enrolled. RESULTS Women treated with Ca+vitamin D had a significant decrease in caesarean section rate (23·3 % v. 63·3 %, P=0·002) and maternal hospitalization (0 v. 13·3 %, P=0·03) compared with those receiving placebo. In addition, newborns of GDM women randomized to Ca+vitamin D had no case of macrosomia, while the prevalence of macrosomia among those randomized to placebo was 13·3 % (P=0·03). Lower rates of hyperbilirubinaemia (20·0 % v. 56·7 %, P=0·03) and hospitalization (20·0 % v. 56·7 %, P=0·03) were also seen in the supplemented group of newborns than in the placebo group. CONCLUSIONS Ca+vitamin D supplementation for 6 weeks among pregnant women with GDM led to decreased caesarean section rate and maternal hospitalization, and decreased macrosomia, hyperbilirubinaemia and hospitalization in newborns.
Collapse
|
167
|
Sun M, Cui W, Woody SK, Staudinger JL. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes. Drug Metab Dispos 2015; 43:335-43. [PMID: 25527709 PMCID: PMC4352581 DOI: 10.1124/dmd.114.062307] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022] Open
Abstract
Bacterial sepsis is characterized by a rapid increase in the expression of inflammatory mediators to initiate the acute phase response in liver. Inflammatory mediator release is counterbalanced by the coordinated expression of anti-inflammatory molecules such as interleukin 1 receptor antagonist (IL1-Ra) through time. This study determined whether activation of pregnane X receptor (PXR, NR1I2) alters the lipopolysaccharide (LPS)-inducible gene expression program in primary cultures of hepatocytes (PCHs). Preactivation of PXR for 24 hours in PCHs isolated from wild-type mice suppressed the subsequent LPS-inducible expression of the key inflammatory mediators interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNFα) but not in PCHs isolated from Pxr-null (PXR-knockout [KO]) mice. Basal expression of key inflammatory cytokines was elevated in PCHs from PXR-KO mice. Stimulation of PCHs from PXR-KO mice with LPS alone produced enhanced levels of IL-1β when compared with wild-type mice. Experiments performed using PCHs from both humanized-PXR transgenic mice as well as human donors indicate that prolonged activation of PXR produces an increased secretion of IL1-Ra from cells through time. Our data reveal a working model that describes a pivotal role for PXR in both inhibiting as well as in resolving the inflammatory response in hepatocytes. Understanding the molecular details of how PXR is converted from a positive regulator of drug-metabolizing enzymes into a transcriptional suppressor of inflammation in liver will provide new pharmacologic strategies for modulating inflammatory-related diseases in the liver and intestine.
Collapse
Affiliation(s)
- Mengxi Sun
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Wenqi Cui
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Jeff L Staudinger
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| |
Collapse
|
168
|
Bathena SPR, Thakare R, Gautam N, Mukherjee S, Olivera M, Meza J, Alnouti Y. Urinary bile acids as biomarkers for liver diseases II. Signature profiles in patients. Toxicol Sci 2015; 143:308-318. [PMID: 25344563 DOI: 10.1093/toxsci/kfu228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatobiliary diseases result in the accumulation of bile acids (BAs) in the liver, systemic blood, and other tissues leading to an unfavorable prognosis. The BA profile was characterized by the calculation of indices that describe the composition, sulfation, and amidation of total and individual BAs. Comparison of the urinary BA profiles between healthy subjects and patients with hepatobiliary diseases demonstrated significantly higher absolute concentrations of individual and total BAs in patients. The percentage sulfation of some individual BAs were different between the two groups. The percentage amidation of overall and most individual BAs was higher in patients than controls. The percentage of primary BAs (CDCA and CA) was higher in patients, whereas the percentage of secondary BAs (DCA and LCA) was lower in patients. BA indices belonging to percentage amidation and percentage composition were better associated with the severity of the liver disease as determined by the model for end-stage liver disease (MELD) score and disease compensation status compared with the absolute concentrations of individual and total BAs. In addition, BA indices corresponding to percentage amidation and percentage composition of certain BAs demonstrated the highest area under the receiver operating characteristic (ROC) curve suggesting their utility as diagnostic biomarkers in clinic. Furthermore, significant increase in the risk of having liver diseases was associated with changes in BA indices.
Collapse
Affiliation(s)
- Sai Praneeth R Bathena
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Rhishikesh Thakare
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Nagsen Gautam
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Sandeep Mukherjee
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Marco Olivera
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jane Meza
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Yazen Alnouti
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
169
|
Shi H, Tian S, Li Y, Li D, Yu H, Zhen X, Hou T. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Chem Res Toxicol 2014; 28:116-25. [DOI: 10.1021/tx500389q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huali Shi
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Sheng Tian
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Youyong Li
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Dan Li
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Huidong Yu
- Crystal Pharmatech Inc., 707
Alexander Road, Building 2, Suite 208, Princeton, New Jersey 08540, United States
| | - Xuechu Zhen
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Tingjun Hou
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|
170
|
Lieu T, Jayaweera G, Bunnett NW. GPBA: a GPCR for bile acids and an emerging therapeutic target for disorders of digestion and sensation. Br J Pharmacol 2014; 171:1156-66. [PMID: 24111923 DOI: 10.1111/bph.12426] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 01/04/2023] Open
Abstract
Bile acids (BAs) are digestive secretions that are necessary for the emulsification and absorption of dietary fats. Given the episodic nature of BA secretion and intestinal re-absorption, the circulating and tissue levels of BAs, like those of the gut hormones, fluctuate in fasting and fed states, and BA levels and forms are markedly affected by disease. BAs exert widespread hormonal-like effects by activating receptors in the nucleus and at the plasma membrane. The nuclear steroid receptors mediate the genomic actions of BAs on BA, glucose and lipid homeostasis. GPBA (TGR5) is a G-protein coupled plasma membrane receptor for BAs that mediates many of the rapid, non-genomic actions of BAs. GPBA has been implicated in the control of glucose homeostasis, inflammation and liver functions. Recent observations have revealed an unexpected role for GPBA in the nervous system. GPBA is expressed by enteric neurons and enterochromaffin cells that control peristalsis, and GPBA mediates the prokinetic actions of BAs in the colon that have been known for millennia. GPBA is also present on primary spinal afferent and spinal neurons that are necessary for sensory transduction. BA-induced activation of GPBA in the sensory nervous system promotes scratching behaviours and analgesia, which may contribute to the pruritus and painless jaundice that are observed in some patients with chronic cholestatic disease, where circulating BA concentrations are markedly increased. Thus, GPBA has emerged as an intriguing target for diverse metabolic, inflammatory, digestive and sensory disorders, where agonists and antagonists may be of value.
Collapse
Affiliation(s)
- T Lieu
- Monash Institute of Pharmaceutical Sciences, Parkville, Vic., Australia
| | | | | |
Collapse
|
171
|
Chen J, Zhao KN, Chen C. The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:7. [PMID: 25332983 DOI: 10.3978/j.issn.2305-5839.2013.03.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/11/2013] [Indexed: 12/23/2022]
Abstract
CYP3A4 is a major cytochrome P450. It catalyses a broad range of substrates including xenobiotics such as clinically used drugs and endogenous compounds bile acids. Its function to detoxify bile acids could be used for treating cholestasis, which is a condition characterised by accumulation of bile acids. Although bile acids have important physiological functions, they are very toxic when their concentrations are excessively high. The accumulated bile acids in cholestasis can cause liver and other tissue injuries. Thus, control of the concentrations of bile acids is critical for treatment of cholestasis. CYP3A4 is responsively upregulated in cholestasis mediated by the nuclear receptors farnesol X receptor (FXR) and pregnane X receptor (PXR) as a defence mechanism. However, the regulation of CYP3A4 is complicated by estrogen, which is increased in cholestasis and down regulates CYP3A4 expression. The activity of CYP3A4 is also inhibited by accumulated bile acids due to their property of detergent effect. In some cholestasis cases, genetic polymorphisms of the CYP3A4 and PXR genes may interfere with the adaptive response. Further stimulation of CYP3A4 activity in cholestasis could be an effective approach for treatment of the disease. In this review, we summarise recent progress about the roles of CYP3A4 in the metabolism of bile acids, its regulation and possible implication in the treatment of cholestasis.
Collapse
Affiliation(s)
- Jiezhong Chen
- 1 School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia ; 2 Centre for Kidney Disease-Venomics Research, School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Kong-Nan Zhao
- 1 School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia ; 2 Centre for Kidney Disease-Venomics Research, School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Chen Chen
- 1 School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia ; 2 Centre for Kidney Disease-Venomics Research, School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
172
|
Festa C, Renga B, D’Amore C, Sepe V, Finamore C, De Marino S, Carino A, Cipriani S, Monti MC, Zampella A, Fiorucci S. Exploitation of Cholane Scaffold for the Discovery of Potent and Selective Farnesoid X Receptor (FXR) and G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1) Ligands. J Med Chem 2014; 57:8477-95. [DOI: 10.1021/jm501273r] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Carmen Festa
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Barbara Renga
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Claudio D’Amore
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Valentina Sepe
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Claudia Finamore
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Simona De Marino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Adriana Carino
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Sabrina Cipriani
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| | - Maria Chiara Monti
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, Salerno, Italy
| | - Angela Zampella
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, I-80131 Naples, Italy
| | - Stefano Fiorucci
- Department
of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi, I-06132 Perugia, Italy
| |
Collapse
|
173
|
Centuori SM, Martinez JD. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci 2014; 59:2367-80. [PMID: 25027205 PMCID: PMC4163523 DOI: 10.1007/s10620-014-3190-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.
Collapse
Affiliation(s)
- Sara M. Centuori
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| | - Jesse D. Martinez
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| |
Collapse
|
174
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
175
|
Cai JS, Chen JH. The mechanism of enterohepatic circulation in the formation of gallstone disease. J Membr Biol 2014; 247:1067-82. [PMID: 25107305 PMCID: PMC4207937 DOI: 10.1007/s00232-014-9715-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
Abstract
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95 % BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5 % (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.
Collapse
Affiliation(s)
- Jian-Shan Cai
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, People's Republic of China,
| | | |
Collapse
|
176
|
Bile acids, obesity, and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014; 28:573-83. [PMID: 25194176 PMCID: PMC4159616 DOI: 10.1016/j.bpg.2014.07.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Bile acids are increasingly recognized as key regulators of systemic metabolism. While bile acids have long been known to play important and direct roles in nutrient absorption, bile acids also serve as signalling molecules. Bile acid interactions with the nuclear hormone receptor farnesoid X receptor (FXR) and the membrane receptor G-protein-coupled bile acid receptor 5 (TGR5) can regulate incretin hormone and fibroblast growth factor 19 (FGF19) secretion, cholesterol metabolism, and systemic energy expenditure. Bile acid levels and distribution are altered in type 2 diabetes and increased following bariatric procedures, in parallel with reduced body weight and improved insulin sensitivity and glycaemic control. Thus, modulation of bile acid levels and signalling, using bile acid binding resins, TGR5 agonists, and FXR agonists, may serve as a potent therapeutic approach for the treatment of obesity, type 2 diabetes, and other components of the metabolic syndrome in humans.
Collapse
|
177
|
Wang J, Dai S, Guo Y, Xie W, Zhai Y. Biology of PXR: role in drug-hormone interactions. EXCLI JOURNAL 2014; 13:728-39. [PMID: 26417296 PMCID: PMC4464432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 12/02/2022]
Abstract
Hormonal homeostasis is essential for a variety of physiological and pathological processes. Elimination and detoxification of xenobiotics, such as drugs introduced into the human body, could disrupt the balance of hormones due to the induction of drug metabolizing enzymes (DMEs) and transporters. Pregnane X receptor (PXR, NR1I2) functions as a master xenobiotic receptor involved in drug metabolism and drug-drug interactions by its coordinated transcriptional regulation of phase I and phase II DMEs and transporters. Recently, increasing evidences indicate that PXR can also mediate the endocrine disruptor function and thus impact the integrity of the endocrine system. This review focuses primarily on the recent advances in our understanding of the function of PXR in glucocorticoid, mineralocorticoid, androgen and estrogen homeostasis. The elucidation of PXR-mediated drug-hormone interactions might have important therapeutic implications in dealing with hormone-dependent diseases and safety assessment of drugs.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development and College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China
| | - Shu Dai
- Beijing Key Laboratory of Gene Resource and Molecular Development and College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China
| | - Yan Guo
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, PA 15261, Pittsburgh,Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, PA 15261, Pittsburgh
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development and College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China,*To whom correspondence should be addressed: Yonggong Zhai, College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China. Telephone: +86-10-58806656; Fax: +86-10-58807721, E-mail:
| |
Collapse
|
178
|
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 2014; 37:57-76. [PMID: 24333169 PMCID: PMC4045202 DOI: 10.1016/j.mam.2013.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
179
|
Niu Y, Wang Z, Huang H, Zhong S, Cai W, Xie Y, Shi G. Activated pregnane X receptor inhibits cervical cancer cell proliferation and tumorigenicity by inducing G2/M cell-cycle arrest. Cancer Lett 2014; 347:88-97. [PMID: 24486740 DOI: 10.1016/j.canlet.2014.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/02/2014] [Accepted: 01/24/2014] [Indexed: 02/05/2023]
Abstract
Pregnane X receptor (PXR) regulates cell proliferation and carcinogenesis in female reproductive tissue. We showed that PXR was expressed in cervical cells and tissue samples. PXR were lower or greatly diminished in cancer tissues compared to normal control. Functionally, activation of human PXR by rifampicin or ectopic expression of constitutively-activated human VP-PXR inhibited cervical cell proliferation. Constitutively-activated VP-PXR attenuated CaSki and HeLa xenograft tumor growth in nude mice compared with control. The cellular proliferation inhibition of PXR by causing G2/M cell-cycle arrest is involved up-regulation of Cullin1-3, MAD2L1, and down-regulation of ANAPC2 and CDKN1A. Our data suggests that PXR signaling inhibits tumor cell proliferation in vitro and cervical carcinoma growth in vivo.
Collapse
Affiliation(s)
- Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Guangdong, China
| | - Ziliang Wang
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Fudan University, Shanghai, China
| | - Haihua Huang
- Department of Pathology, Second Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wenfeng Cai
- Department of Pharmacology, Shantou University Medical College, Guangdong, China
| | - Yangmin Xie
- Department of Experimental Animal Center, Medical College of Shantou University, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Guangdong, China.
| |
Collapse
|
180
|
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR), 2 closely related and liver-enriched members of the nuclear receptor superfamily, and aryl hydrocarbon receptor (AhR), a nonnuclear receptor transcription factor (TF), are major receptors/TFs regulating the expression of genes for the clearance and detoxification of xenobiotics. They are hence defined as "xenobiotic receptors". Recent studies have demonstrated that PXR, CAR and AhR also regulate the expression of key proteins involved in endobiotic responses such as the metabolic homeostasis of lipids, glucose, and bile acid, and inflammatory processes. It is suggested that the functions of PXR, CAR and AhR may be closely implicated in the pathogeneses of metabolic vascular diseases, such as hyperlipidemia, atherogenesis, and hypertension. Therefore, manipulation of the activities of these receptors may provide novel strategies for the treatment of vascular diseases. Here, we review the pathophysiological roles of PXR, CAR and AhR in the vascular system.
Collapse
Affiliation(s)
- Lei Xiao
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University
| | | | | |
Collapse
|
181
|
Chen P, Zeng H, Wang Y, Fan X, Xu C, Deng R, Zhou X, Bi H, Huang M. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug Metab Dispos 2014; 42:844-52. [PMID: 24510383 DOI: 10.1124/dmd.113.056549] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oleanolic acid (OA) is a natural triterpenoid and has been demonstrated to protect against varieties of hepatotoxicants. Recently, however, OA at high doses was reported to produce apparent cholestasis in mice. In this study, we characterized the protective effect of OA at low doses against lithocholic acid (LCA)-induced cholestasis in mice and explored further mechanisms. OA cotreatment (5, 10, and 20 mg/kg, i.p.) significantly improved mouse survival rate, attenuated liver necrosis, and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; more importantly, serum total bile acids and bilirubin, as well as hepatic total bile acids were also remarkably reduced. Gene and protein expression analysis showed that hepatic expression of multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4 was significantly increased by OA cotreatment, whereas other bile acid metabolism- and transport-related genes, including Na+/taurocholate cotransporter, organic anion transporter 1b2, bile salt export pump, multidrug resistance protein 3, Cyp3a11, Cyp2b10, Sulfotransferase 2a1 (Sult2a1), and UDP-glucuronosyltransferase 1a1 (Ugt1a1), were only slightly changed. OA also caused increased nuclear factor-E2-related factor (Nrf2) mRNA expression and nuclear protein accumulation, whereas nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor were not significantly influenced by OA. Luciferase (Luc) assays performed in HepG2 cells illustrated that OA was a strong Nrf2 agonist with moderate PXR and weak FXR agonism. Finally, in mouse primary cultured hepatocytes, OA dose- and time-dependently induced expression of Mrp2, Mrp3, and Mrp4; however, this upregulation was abrogated when Nrf2 was silenced. In conclusion, OA produces a protective effect against LCA-induced hepatotoxicity and cholestasis, possibly due to Nrf2-mediated upregulation of Mrp2, Mrp3, and Mrp4.
Collapse
Affiliation(s)
- Pan Chen
- School of Pharmaceutical Sciences (P.C., H.Z., Y.W., X.F., R.D., X.Z., H.B., M.H.) and The First Affiliated Hospital (C.X.), Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Cuperus FJC, Claudel T, Gautherot J, Halilbasic E, Trauner M. The role of canalicular ABC transporters in cholestasis. Drug Metab Dispos 2014; 42:546-60. [PMID: 24474736 DOI: 10.1124/dmd.113.056358] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis, a hallmark feature of hepatobiliary disease, is characterized by the retention of biliary constituents. Some of these constituents, such as bile acids, inflict damage to hepatocytes and bile duct cells. This damage may lead to inflammation, fibrosis, cirrhosis, and eventually carcinogenesis, sequelae that aggravate the underlying disease and deteriorate clinical outcome. Canalicular ATP-binding cassette (ABC) transporters, which mediate the excretion of individual bile constituents, play a key role in bile formation and cholestasis. The study of these transporters and their regulatory nuclear receptors has revolutionized our understanding of cholestatic disease. This knowledge has served as a template to develop novel treatment strategies, some of which are currently already undergoing phase III clinical trials. In this review we aim to provide an overview of the structure, function, and regulation of canalicular ABC transporters. In addition, we will focus on the role of these transporters in the pathogenesis and treatment of cholestatic bile duct and liver diseases.
Collapse
Affiliation(s)
- Frans J C Cuperus
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
183
|
Ong SS, Goktug AN, Elias A, Wu J, Saunders D, Chen T. Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2. Biochem J 2014; 459:193-203. [PMID: 24438055 PMCID: PMC3959618 DOI: 10.1042/bj20130558] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hPXR (human pregnane X receptor), a major chemical toxin sensor, is a ligand-induced transcription factor activated by various xenobiotics and toxins, resulting in the transcriptional up-regulation of detoxifying enzymes. To date, little is known about the upstream regulation of hPXR. Using MS analysis and a kinome-wide siRNA screen, we report that the E3 ligase UBR5 (ubiquitin protein ligase E3 component n-recognin 5) and DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2) regulate hPXR stability. UBR5 knockdown resulted in accumulation of cellular hPXR and a concomitant increase in hPXR activity, whereas the rescue of UBR5 knockdown decreased the cellular hPXR level and activity. Importantly, UBR5 exerted its effect in concert with the serine/threonine kinase DYRK2, as the knockdown of DYRK2 phenocopied UBR5 knockdown. hPXR was shown to be a substrate for DYRK2, and DYRK2-dependent phosphorylation of hPXR facilitated its subsequent ubiquitination by UBR5. This is the first report of the post-translational regulation of hPXR via phosphorylation-facilitated ubiquitination by DYRK2 and UBR5. The results of the present study reveal the role of the ubiquitin-proteasomal pathway in modulating hPXR activity and indicate that pharmacological inhibitors of the ubiquitin-proteasomal pathway that regulate hPXR stability may negatively affect treatment outcome from unintended hPXR-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Asli N. Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Ayesha Elias
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Darren Saunders
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst NSW 2010, Australia
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
184
|
Rodrigues AD, Lai Y, Cvijic ME, Elkin LL, Zvyaga T, Soars MG. Drug-induced perturbations of the bile acid pool, cholestasis, and hepatotoxicity: mechanistic considerations beyond the direct inhibition of the bile salt export pump. Drug Metab Dispos 2014; 42:566-74. [PMID: 24115749 DOI: 10.1124/dmd.113.054205] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bile salt export pump (BSEP) is located on the canalicular plasma membrane of hepatocytes and plays an important role in the biliary clearance of bile acids (BAs). Therefore, any drug or new chemical entity that inhibits BSEP has the potential to cause cholestasis and possibly liver injury. In reality, however, one must consider the complexity of the BA pool, BA enterohepatic recirculation (EHR), extrahepatic (renal) BA clearance, and the interplay of multiple participant transporters and enzymes (e.g., sulfotransferase 2A1, multidrug resistance-associated protein 2, 3, and 4). Moreover, BAs undergo extensive enzyme-catalyzed amidation and are subjected to metabolism by enterobacteria during EHR. Expression of the various enzymes and transporters described above is governed by nuclear hormone receptors (NHRs) that mount an adaptive response when intracellular levels of BAs are increased. The intracellular trafficking of transporters, and their ability to mediate the vectorial transport of BAs, is governed by specific kinases also. Finally, bile flow, micelle formation, canalicular membrane integrity, and BA clearance can be influenced by the inhibition of multidrug resistant protein 3- or ATPase-aminophospholipid transporter-mediated phospholipid flux. Consequently, when screening compounds in a discovery setting or conducting mechanistic studies to address clinical findings, one has to consider the direct (inhibitory) effect of the parent drug and metabolites on multiple BA transporters, as well as inhibition of BA sulfation and amidation and NHR function. Vectorial BA transport, in addition to BA EHR and homoeostasis, could also be impacted by drug-dependent modulation of kinases and enterobacteria.
Collapse
Affiliation(s)
- A David Rodrigues
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (A.D.R., Y.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey (M.E.C.); and Leads Discovery and Optimization, Bristol-Myers Squibb, Wallingford, Connecticut (L.E., T.Z.)
| | | | | | | | | | | |
Collapse
|
185
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
186
|
Hrycay E, Forrest D, Liu L, Wang R, Tai J, Deo A, Ling V, Bandiera S. Hepatic bile acid metabolism and expression of cytochrome P450 and related enzymes are altered in Bsep (-/-) mice. Mol Cell Biochem 2014; 389:119-32. [PMID: 24399466 DOI: 10.1007/s11010-013-1933-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023]
Abstract
The bile salt export pump (BSEP/Bsep; gene symbol ABCB11/Abcb11) translocates bile salts across the hepatocyte canalicular membrane into bile in humans and mice. In humans, mutations in the ABCB11 gene cause a severe childhood liver disease known as progressive familial intrahepatic cholestasis type 2. Targeted inactivation of mouse Bsep produces milder persistent cholestasis due to detoxification of bile acids through hydroxylation and alternative transport pathways. The purpose of the present study was to determine whether functional expression of hepatic cytochrome P450 (CYP) and microsomal epoxide hydrolase (mEH) is altered by Bsep inactivation in mice and whether bile acids regulate CYP and mEH expression in Bsep (-/-) mice. CYP expression was determined by measuring protein levels of Cyp2b, Cyp2c and Cyp3a enzymes and CYP-mediated activities including lithocholic acid hydroxylation, testosterone hydroxylation and alkoxyresorufin O-dealkylation in hepatic microsomes prepared from female and male Bsep (-/-) mice fed a normal or cholic acid (CA)-enriched diet. The results indicated that hepatic lithocholic acid hydroxylation was catalyzed by Cyp3a/Cyp3a11 enzymes in Bsep (-/-) mice and that 3-ketocholanoic acid and murideoxycholic acid were major metabolites. CA feeding of Bsep (-/-) mice increased hepatic Cyp3a11 protein levels and Cyp3a11-mediated testosterone 2β-, 6β-, and 15β-hydroxylation activities, increased Cyp2b10 protein levels and Cyp2b10-mediated benzyloxyresorufin O-debenzylation activity, and elevated Cyp2c29 and mEH protein levels. We propose that bile acids upregulate expression of hepatic Cyp3a11, Cyp2b10, Cyp2c29 and mEH in Bsep (-/-) mice and that Cyp3a11 and multidrug resistance-1 P-glycoproteins (Mdr1a/1b) are vital components of two distinct pathways utilized by mouse hepatocytes to expel bile acids.
Collapse
Affiliation(s)
- Eugene Hrycay
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Zhu Y, Ding X, Fang C, Zhang QY. Regulation of intestinal cytochrome P450 expression by hepatic cytochrome P450: possible involvement of fibroblast growth factor 15 and impact on systemic drug exposure. Mol Pharmacol 2014; 85:139-47. [PMID: 24184963 PMCID: PMC3868902 DOI: 10.1124/mol.113.088914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/01/2013] [Indexed: 12/24/2022] Open
Abstract
Tissue-specific deletion of the gene for NADPH-cytochrome P450 (P450) reductase (CPR), the essential electron donor to all microsomal P450 enzymes, in either liver or intestine, leads to upregulation of many P450 genes in the tissue with the Cpr deletion. Here, by studying the liver-specific Cpr-null (LCN) mouse, we examined whether an interorgan regulatory pathway exists, such that a loss of hepatic CPR would cause compensatory changes in intestinal P450 expression and capacity for first-pass metabolism of oral drugs. We show for the first time that intestinal expression of CYP2B, 2C, and 3A proteins was increased in LCN mice by 2- to 3-fold compared with wild-type (WT) mice, accompanied by significant increases in small intestinal microsomal lovastatin-hydroxylase activity and systemic clearance of oral lovastatin (at 5 mg/kg). Additional studies showed that the hepatic Cpr deletion, which caused large decreases in bile acid (BA) levels in the liver, intestine, plasma, and intestinal content, led to drastic decreases in the mRNA levels of intestinal fibroblast growth factor 15 (FGF15), a target gene of the BA receptor farnesoid X receptor. Furthermore, treatment of mice with FGF19 (the human counterpart of mouse FGF15) abolished the difference between WT and LCN mice in small intestinal (SI) CYP3A levels at 6 hours after the treatment. Our findings reveal a previously unrecognized direct role of intestinal FGF15/19 in the regulation of SI P450 expression and may have profound implications for the prediction of drug exposure in patients with compromised hepatic P450 function.
Collapse
Affiliation(s)
- Yi Zhu
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York
| | | | | | | |
Collapse
|
188
|
Bathena SPR, Mukherjee S, Olivera M, Alnouti Y. The profile of bile acids and their sulfate metabolites in human urine and serum. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943:53-62. [PMID: 24212143 DOI: 10.1016/j.jchromb.2013.10.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
The role of sulfation in ameliorating the hepatotoxicity of bile acids (BAs) in humans remains unknown due to the lack of proper analytical methods to quantify individual BAs and their sulfate metabolites in biological tissues and fluids. To this end, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to characterize the detailed BA profile in human urine and serum. The limit of quantification was 1ng/mL and baseline separation of all analytes was achieved within in a run time of 32min. The method was validated over the dynamic range of 1-1000ng/mL. The LC-MS/MS method was more accurate, precise, and selective than the commercially available kits for the quantification of sulfated and unsulfated BAs, and the indirect quantification of individual sulfated BAs after solvolysis. The LC-MS/MS method was applied to characterize the BA profile in urine and serum of healthy subjects. Thirty three percent of serum BAs were sulfated, whereas 89% of urinary BAs existed in the sulfate form, indicating the role of sulfation in enhancing the urinary excretion of BAs. The percentage of sulfation of individual BAs increased with the decrease in the number of hydroxyl groups indicating the role of sulfation in the detoxification of the more hydrophobic and toxic BA species. Eighty percent of urinary BAs and 55% of serum BAs were present in the glycine-amidated form, whereas 8% of urinary BAs and 13% of serum BAs existed in the taurine-amidated form.
Collapse
Affiliation(s)
- Sai Praneeth R Bathena
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | | | | | | |
Collapse
|
189
|
Spruiell K, Richardson RM, Cullen JM, Awumey EM, Gonzalez FJ, Gyamfi MA. Role of pregnane X receptor in obesity and glucose homeostasis in male mice. J Biol Chem 2013; 289:3244-61. [PMID: 24362030 DOI: 10.1074/jbc.m113.494575] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Clinical obesity is a complex metabolic disorder affecting one in three adults. Recent reports suggest that pregnane X receptor (PXR), a xenobiotic nuclear receptor important for defense against toxic agents and for eliminating drugs and other xenobiotics, may be involved in obesity. Noting differences in ligand specificities between human and mouse PXRs, the role of PXR in high fat diet (HFD)-induced obesity was examined using male PXR-humanized (hPXR) transgenic and PXR-knock-out (PXR-KO) mice in comparison to wild-type (WT) mice. After 16 weeks on either a control diet or HFD, WT mice showed greater weight gain, whereas PXR-KO mice gained less weight due to their resistance to HFD-induced decreases in adipose tissue peroxisome proliferator-activated receptor α and induction of hepatic carnitine palmitoyltransferase 1, suggesting increased energy metabolism. Interestingly, control-fed PXR-KO mice exhibited hepatomegaly, hyperinsulinemia, and hyperleptinemia but hypoadiponectinemia and lower adiponectin receptor R2 mRNA levels relative to WT mice. Evaluation of these biologic indicators in hPXR mice fed a control diet or HFD revealed further differences between the mouse and human receptors. Importantly, although HFD-fed hPXR mice were resistant to HFD-induced obesity, both PXR-KO and hPXR mice exhibited impaired induction of glucokinase involved in glucose utilization and displayed elevated fasting glucose levels and severely impaired glucose tolerance. Moreover, the basal hepatic levels of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 were increased in hPXR mice compared with WT mice. Altogether, although the mouse PXR promotes HFD-induced obesity, the hPXR mouse carries a genetic predisposition for type 2 diabetes and thus provides a model for exploring the role of human PXR in the metabolic syndrome.
Collapse
Affiliation(s)
- Krisstonia Spruiell
- From the Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | | | | | | | | | | |
Collapse
|
190
|
Baptissart M, Vega A, Martinot E, Baron S, Lobaccaro JMA, Volle DH. Farnesoid X receptor alpha: a molecular link between bile acids and steroid signaling? Cell Mol Life Sci 2013; 70:4511-26. [PMID: 23784309 PMCID: PMC11113643 DOI: 10.1007/s00018-013-1387-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Bile acids are cholesterol metabolites that have been extensively studied in recent decades. In addition to having ancestral roles in digestion and fat solubilization, bile acids have recently been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor farnesoid X receptor (FXRα) or of the G protein-coupled receptor TGR5. In this review, we will focus on the emerging role of FXRα, suggesting important functions for the receptor in steroid metabolism. It has been described that FXRα is expressed in the adrenal glands and testes, where it seems to control steroid production. FXRα also participates in steroid catabolism in the liver and interferes with the steroid signaling pathways in target tissues via crosstalk with steroid receptors. In this review, we discuss the potential impacts of bile acid (BA), through its interactions with steroid metabolism, on glucose metabolism, sexual function, and prostate and breast cancers. Although several of the published reports rely on in vitro studies, they highlight the need to understand the interactions that may affect health. This effect is important because BA levels are increased in several pathophysiological conditions related to liver injuries. Additionally, BA receptors are targeted clinically using therapeutics to treat liver diseases, diabetes, and cancers.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Aurelie Vega
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Silvère Baron
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - David H. Volle
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
191
|
Niu Y, Wu Z, Shen Q, Song J, Luo Q, You H, Shi G, Qin W. Hepatitis B virus X protein co-activates pregnane X receptor to induce the cytochrome P450 3A4 enzyme, a potential implication in hepatocarcinogenesis. Dig Liver Dis 2013; 45:1041-8. [PMID: 23891548 DOI: 10.1016/j.dld.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatitis B virus X protein is a key regulator of hepatocarcinogenesis. The pregnane X receptor is a xenobiotic nuclear receptor that plays a role in the regulation of drug-metabolizing enzymes including the cytochrome P450 3A4, an enzyme important for the bioactivation of the liver carcinogen aflatoxin B1. AIMS To identify novel host factor that interacts with hepatitis B virus X protein and the functional interaction between hepatitis B virus X protein and pregnane X receptor in hepatocarcinogenesis. METHODS Co-immunoprecipitation, glutathione S-transferase pull-down, and chromatin immunoprecipitation were utilized to assess the interaction between hepatitis B virus X protein and pregnane X receptor. The functional relevance of hepatitis B virus X protein-pregnane X receptor interaction was investigated in cell cultures and hepatocellular carcinoma samples. RESULTS We observed that hepatitis B virus X protein and pregnane X receptor co-localize in hepatic cells. Pregnane X receptor interacted with hepatitis B virus X protein via the ligand-binding domain of pregnane X receptor. Functionally, hepatitis B virus X protein increased the transcriptional activity of pregnane X receptor. Pregnane X receptor was able to recruit hepatitis B virus X protein to the CYP3A4 gene promoter. In clinic samples, the expression of pregnane X receptor was high in hepatitis B virus-associated liver cirrhosis and stage I hepatocellular carcinoma, but low in state II and stage III hepatocellular carcinoma. CONCLUSION We revealed a novel function of hepatitis B virus X protein in co-activating pregnane X receptor. The increased expression of pregnane X receptor and its target gene CYP3A4 are potential biomarkers for the early stage of hepatitis B virus-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yongdong Niu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pharmacology, Shantou University Medical College, Guangdong, China.
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
193
|
Abstract
Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans.
Collapse
|
194
|
Lyoumi S, Lefebvre T, Karim Z, Gouya L, Puy H. PXR-ALAS1: a key regulatory pathway in liver toxicity induced by isoniazid-rifampicin antituberculosis treatment. Clin Res Hepatol Gastroenterol 2013; 37:439-41. [PMID: 23916555 DOI: 10.1016/j.clinre.2013.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Said Lyoumi
- Université Versailles-Saint-Quentin-en-Yvelines, Guyancourt, France; Inserm U773, université Paris-Diderot, centre de recherche biomédicale Bichat-Beaujon, site Bichat, Paris, France
| | | | | | | | | |
Collapse
|
195
|
Fang ZZ, He RR, Cao YF, Tanaka N, Jiang C, Krausz KW, Qi Y, Dong PP, Ai CZ, Sun XY, Hong M, Ge GB, Gonzalez FJ, Ma XC, Sun HZ. A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders. J Lipid Res 2013; 54:3334-44. [PMID: 24115227 DOI: 10.1194/jlr.m040519] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Long MD, Thorne JL, Russell J, Battaglia S, Singh PK, Sucheston-Campbell LE, Campbell MJ. Cooperative behavior of the nuclear receptor superfamily and its deregulation in prostate cancer. Carcinogenesis 2013; 35:262-71. [PMID: 24104552 DOI: 10.1093/carcin/bgt334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current study aimed to assess the topology of the nuclear receptor (NR) superfamily in normal prostate epithelial cells and its distortion in prostate cancer. Both in vitro and in silico approaches were utilized to profile NRs expressed in non-malignant RWPE-1 cells, which were subsequently investigated by treating cells with 132 binary NR ligand combinations. Nine significant cooperative interactions emerged including both superadditive [22(R)-hydroxycholesterol and eicosatetraenoic acid] and subadditive [1α,25(OH)2D3 and chenodeoxycholic acid] cellular responses, which could be explained in part by cooperative control of cell-cycle progression and candidate gene expression. In addition, publicly available data were employed to assess NR expression in human prostate tissue. Common and significant loss of NR superfamily expression was established in publicly available data from prostate tumors, in part predicting parallel distortion of targeting microRNA. These findings suggest that the NR superfamily in the prostate cooperatively integrates signals from dietary, hormonal and metabolic cues, and is significantly distorted in prostate cancer.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Takigawa T, Miyazaki H, Kinoshita M, Kawarabayashi N, Nishiyama K, Hatsuse K, Ono S, Saitoh D, Seki S, Yamamoto J. Glucocorticoid receptor-dependent immunomodulatory effect of ursodeoxycholic acid on liver lymphocytes in mice. Am J Physiol Gastrointest Liver Physiol 2013; 305:G427-38. [PMID: 23868404 DOI: 10.1152/ajpgi.00205.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although ursodeoxycholic acid (UDCA) has long been used for patients with chronic cholestatic liver diseases, particularly primary biliary cirrhosis, it may modulate the host immune response. This study investigated the effect of UDCA feeding on experimental hepatitis, endotoxin shock, and bacterial infection in mice. C57BL/6 mice were fed a diet supplemented with or without 0.3% (wt/vol) UDCA for 4 wk. UDCA improved hepatocyte injury and survival in concanavalin-A (Con-A)-induced hepatitis by suppressing IFN-γ production by liver mononuclear cells (MNC), especially NK and NKT cells. UDCA also increased survival after lipopolysaccharide (LPS)-challenge; however, it increased mortality of mice following Escherichia coli infection due to the worsening of infection. UDCA-fed mice showed suppressed serum IL-18 levels and production of IL-18 from liver Kupffer cells, which together with IL-12 potently induce IFN-γ production. However, unlike normal mice, exogenous IL-18 pretreatment did not increase the serum IFN-γ levels after E. coli, LPS, or Con-A challenge in the UDCA-fed mice. Interestingly, however, glucocorticoid receptor (GR) expression was significantly upregulated in the liver MNC of the UDCA-fed mice but not in their whole liver tissue homogenates. Silencing GR in the liver MNC abrogated the suppressive effect of UDCA on LPS- or Con-A-induced IFN-γ production. Furthermore, RU486, a GR antagonist, restored the serum IFN-γ level in UDCA-fed mice after E. coli, LPS, or Con-A challenge. Taken together, these results suggest that IFN-γ-reducing immunomodulatory property of UDCA is mediated by elevated GR in the liver lymphocytes in an IL-12/18-independent manner.
Collapse
Affiliation(s)
- Toshimichi Takigawa
- Dept. of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Kodama S, Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metab Rev 2013; 45:441-9. [PMID: 24025090 DOI: 10.3109/03602532.2013.835630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan and
| | | |
Collapse
|
199
|
Kotta-Loizou I, Patsouris E, Theocharis S. Pregnane X receptor polymorphisms associated with human diseases. Expert Opin Ther Targets 2013; 17:1167-77. [DOI: 10.1517/14728222.2013.823403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
200
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 967] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|