151
|
MacAskill MG, Newby DE, Tavares AAS. Frontiers in positron emission tomography imaging of the vulnerable atherosclerotic plaque. Cardiovasc Res 2019; 115:1952-1962. [PMID: 31233100 PMCID: PMC6872971 DOI: 10.1093/cvr/cvz162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rupture of vulnerable atherosclerotic plaques leading to an atherothrombotic event is the primary driver of myocardial infarction and stroke. The ability to detect non-invasively the presence and evolution of vulnerable plaques could have a huge impact on the future identification and management of atherosclerotic cardiovascular disease. Positron emission tomography (PET) imaging with an appropriate radiotracer has the potential to achieve this goal. This review will discuss the biological hallmarks of plaque vulnerability before going on to evaluate and to present PET imaging approaches which target these processes. The focus of this review will be on techniques beyond [18F]FDG imaging, some of which are clinically advanced, and others which are on the horizon. As inflammation is the primary driving force behind atherosclerotic plaque development, we will predominantly focus on approaches which either directly, or indirectly, target this process.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
152
|
|
153
|
Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells 2019; 8:cells8111330. [PMID: 31661894 PMCID: PMC6912264 DOI: 10.3390/cells8111330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the “disappearance” of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.
Collapse
|
154
|
Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, Sommer IE, Howes OD. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Med 2019; 49:2186-2196. [PMID: 30355368 PMCID: PMC6366560 DOI: 10.1017/s0033291718003057] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Converging lines of evidence implicate an important role for the immune system in schizophrenia. Microglia are the resident immune cells of the central nervous system and have many functions including neuroinflammation, axonal guidance and neurotrophic support. We aimed to provide a quantitative review of in vivo PET imaging studies of microglia activation in patients with schizophrenia compared with healthy controls. METHODS Demographic, clinical and imaging measures were extracted from each study and meta-analysis was conducted using a random-effects model (Hedge's g). The difference in 18-kDa translocator protein (TSPO) binding between patients with schizophrenia and healthy controls, as quantified by either binding potential (BP) or volume of distribution (VT), was used as the main outcome. Sub-analysis and sensitivity analysis were carried out to investigate the effects of genotype, ligand and illness stage. RESULTS In total, 12 studies comprising 190 patients with schizophrenia and 200 healthy controls met inclusion criteria. There was a significant elevation in tracer binding in schizophrenia patients relative to controls when BP was used as an outcome measure, (Hedge's g = 0.31; p = 0.03) but no significant differences when VT was used (Hedge's g = -0.22; p = 0.29). CONCLUSIONS In conclusion, there is evidence for moderate elevations in TSPO tracer binding in grey matter relative to other brain tissue in schizophrenia when using BP as an outcome measure, but no difference when VT is the outcome measure. We discuss the relevance of these findings as well as the methodological issues that may underlie the contrasting difference between these outcomes.
Collapse
Affiliation(s)
- Tiago Reis Marques
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK
- Psychiatric Imaging Group, London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK
- Psychiatric Imaging Group, London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Paola Dazzan
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Iris E.C. Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK
- Psychiatric Imaging Group, London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| |
Collapse
|
155
|
Abstract
Sporadic Alzheimer's disease is the most common neurodegenerative disorder and represents a very important public healthcare problem with a devastating economic burden for industrialized countries. Recent knowledge acquired from experimental, epidemiological, radiological and genome-wide association studies (GWAS) underline the role of the innate immune system in the pathophysiology of this disease. This article reviews and discusses the function of the cerebral innate immune system, the newly discovered genes associated with the disease development and the experimental evidence around the role of microglia in the onset and progression of Alzheimer's disease. The discovery of different microglia phenotypes associated with the pathology as well as new molecular players will enable the development of new preventive and therapeutic strategies by modulating neuroinflammation in neurodegenerative diseases.
Collapse
|
156
|
Klee K, Storti F, Barben M, Samardzija M, Langmann T, Dunaief J, Grimm C. Systemic knockout of Tspo in mice does not affect retinal morphology, function and susceptibility to degeneration. Exp Eye Res 2019; 188:107816. [PMID: 31562844 DOI: 10.1016/j.exer.2019.107816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Translocator protein (18 kDa) (TSPO) is a mitochondrial protein expressed by reactive microglia and astrocytes at the site of neuronal injury. Although TSPO function has not been fully determined, synthetic TSPO ligands have beneficial effects on different pathologies of the central nervous system, including the retina. Here, we studied the pattern of Tspo expression in the aging human retina and in two mouse models of retinal degeneration. Using a newly generated Tspo-KO mouse, we investigated the impact of the lack of TSPO on retinal morphology, function and susceptibility to degeneration. We show that TSPO was expressed in both human and mouse retina and retinal pigment epithelium (RPE). Tspo was induced in the mouse retina upon degeneration, but constitutively expressed in the RPE. Similarly, TSPO expression levels in healthy human retina and RPE were not differentially regulated during aging. Tspo-KO mice had normal retinal morphology and function up to 48 weeks of age. Photoreceptor loss caused either by exposure to excessive light levels or by a mutation in the phosphodiesterase 6b gene was not affected by the absence of Tspo. The reactivity states of retinal mononuclear phagocytes following light-damage were comparable in Tspo-KO and control mice. Our data suggest that lack of endogenous TSPO does not directly influence the magnitude of photoreceptor degeneration or microglia activation in these two models of retinal degeneration. We therefore hypothesize that the interaction of TSPO with its ligands may be required to modulate disease progression.
Collapse
Affiliation(s)
- Katrin Klee
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Federica Storti
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Maya Barben
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Joshua Dunaief
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; Neuroscience Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
157
|
|
158
|
Chronic inflammation in multiple sclerosis - seeing what was always there. Nat Rev Neurol 2019; 15:582-593. [PMID: 31420598 DOI: 10.1038/s41582-019-0240-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Activation of innate immune cells and other compartmentalized inflammatory cells in the brains and spinal cords of people with relapsing-remitting multiple sclerosis (MS) and progressive MS has been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood-brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods can also be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations made with the use of these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS.
Collapse
|
159
|
Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2019; 46:2831-2847. [PMID: 31396666 PMCID: PMC6879435 DOI: 10.1007/s00259-019-04462-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation, as defined by the activation of microglia and astrocytes, has emerged in the last years as a key element of the pathogenesis of neurodegenerative diseases based on genetic findings and preclinical and human studies. This has raised the need for new methodologies to assess and follow glial activation in patients, prompting the development of PET ligands for molecular imaging of glial cells and novel structural MRI and DTI tools leading to a multimodal approach. The present review describes the recent advancements in microglia and astrocyte biology in the context of health, ageing, and Alzheimer's disease, the most common dementia worldwide. The review further delves in molecular imaging discussing the challenges associated with past and present targets, including conflicting findings, and finally, presenting novel methodologies currently explored to improve our in vivo knowledge of the neuroinflammatory patterns in Alzheimer's disease. With glial cell activation as a potential therapeutic target in neurodegenerative diseases, the translational research between cell biologists, chemists, physicists, radiologists, and neurologists should be strengthened.
Collapse
|
160
|
Bader S, Wolf L, Milenkovic VM, Gruber M, Nothdurfter C, Rupprecht R, Wetzel CH. Differential effects of TSPO ligands on mitochondrial function in mouse microglia cells. Psychoneuroendocrinology 2019; 106:65-76. [PMID: 30954920 DOI: 10.1016/j.psyneuen.2019.03.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
The translocator protein 18 kDa (TSPO), initially characterized as peripheral benzodiazepine receptor, is a conserved outer mitochondrial membrane protein, implicated in cholesterol transport thereby affecting steroid hormone biosynthesis, as well as in general mitochondrial function related to bioenergetics, oxidative stress, and Ca2+ homeostasis. TSPO is highly expressed in steroidogenic tissues such as adrenal glands, but shows low expression in the central nervous system. During various disease states such as inflammation, neurodegeneration or cancer, the expression of mitochondrial TSPO in affected tissues is upregulated. The expression of TSPO can be traced for diagnostic purpose by high affinity radio-ligands. Moreover, the function of TSPO is modulated by synthetic as well as endogenous ligands with agonistic or antagonistic properties. Thus, TSPO ligands serve functions as both important biomarkers and putative therapeutic agents. In the present study, we aimed to characterize the effects of TSPO ligands on mouse BV-2 microglia cells, which express significant levels of TSPO, and analyzed the effect of XBD173, PK11195, and Ro5-4864, as well as the inflammatory reagent Lipopolysaccharides (LPS) on neurosteroid synthesis and on basic mitochondrial functions such as oxidative phosphorylation, mitochondrial membrane potential and Ca2+ homeostasis. Specific TSPO-dependent effects were separated from off-target effects by comparing lentiviral TSPO knockdown with shRNA scramble-controls and wild-type BV-2 cells. Our data demonstrate ligand-specific effects on different cellular functions in a TSPO-dependent or independent manner, providing evidence for both specific TSPO-mediated, as well as off-target effects.
Collapse
Affiliation(s)
- Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Luisa Wolf
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University of Regensburg, 93953 Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany.
| |
Collapse
|
161
|
Hofford RS, Russo SJ, Kiraly DD. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci 2019; 50:2562-2573. [PMID: 30179286 PMCID: PMC6531363 DOI: 10.1111/ejn.14143] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Substance use disorders are global health problems with few effective treatment options. Unfortunately, most potential pharmacological treatments are hindered by abuse potential of their own, limited efficacy, or adverse side effects. As a consequence, there is a pressing need for the development of addiction treatments with limited abuse potential and fewer off target effects. Given the difficulties in developing new pharmacotherapies for substance use disorders, there has been growing interest in medications that act on non-traditional targets. Recent evidence suggests a role for dysregulated immune signaling in the pathophysiology of multiple psychiatric diseases. While there is evidence that immune responses in the periphery and the central nervous system are altered by exposure to drugs of abuse, the contributions of neuroimmune interactions to addictive behaviors are just beginning to be appreciated. In this review, we discuss the data on immunological changes seen in clinical populations with substance use disorders, as well as in translational animal models of addiction. Importantly, we highlight those mechanistic findings showing causal roles for central or peripheral immune mediators in substance use disorder and appropriate animal models. Based on the literature reviewed here, it is clear that brain-immune system interactions in substance use disorders are much more complex and important than previously understood. While much work remains to be done, there are tremendous potential therapeutic implications for immunomodulatory treatments in substance use disorders.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
162
|
Effects of age, BMI and sex on the glial cell marker TSPO - a multicentre [ 11C]PBR28 HRRT PET study. Eur J Nucl Med Mol Imaging 2019; 46:2329-2338. [PMID: 31363804 PMCID: PMC6717599 DOI: 10.1007/s00259-019-04403-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023]
Abstract
Purpose The purpose of this study was to investigate the effects of ageing, sex and body mass index (BMI) on translocator protein (TSPO) availability in healthy subjects using positron emission tomography (PET) and the radioligand [11C]PBR28. Methods [11C]PBR28 data from 140 healthy volunteers (72 males and 68 females; N = 78 with HAB and N = 62 MAB genotype; age range 19–80 years; BMI range 17.6–36.9) were acquired with High Resolution Research Tomograph at three centres: Karolinska Institutet (N = 53), Turku PET centre (N = 62) and Yale University PET Center (N = 25). The total volume of distribution (VT) was estimated in global grey matter, frontal, temporal, occipital and parietal cortices, hippocampus and thalamus using multilinear analysis 1. The effects of age, BMI and sex on TSPO availability were investigated using linear mixed effects model, with TSPO genotype and PET centre specified as random intercepts. Results There were significant positive correlations between age and VT in the frontal and temporal cortex. BMI showed a significant negative correlation with VT in all regions. Additionally, significant differences between males and females were observed in all regions, with females showing higher VT. A subgroup analysis revealed a positive correlation between VT and age in all regions in male subjects, whereas age showed no effect on TSPO levels in female subjects. Conclusion These findings provide evidence that individual biological properties may contribute significantly to the high variation shown in TSPO binding estimates, and suggest that age, BMI and sex can be confounding factors in clinical studies. Electronic supplementary material The online version of this article (10.1007/s00259-019-04403-7) contains supplementary material, which is available to authorized users.
Collapse
|
163
|
Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer's disease brains. Brain Pathol 2019; 30:151-164. [PMID: 31276244 PMCID: PMC6904423 DOI: 10.1111/bpa.12763] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is a widely used target for microglial PET imaging radioligands, but its expression in post-mortem normal and diseased human brain is not well described. We aimed at characterizing the TSPO expression in human control (CTRL) and Alzheimer's disease (AD) brains. Specifically, we sought to: (1) define the cell type(s) expressing TSPO; (2) compare tspo mRNA and TSPO levels between AD and CTRL brains; (3) correlate TSPO levels with quantitative neuropathological measures of reactive glia and AD neuropathological changes; and (4) investigate the effects of the TSPO rs6971 SNP on tspo mRNA and TSPO levels, glial responses and AD neuropathological changes. We performed quantitative immunohistochemistry and Western blot in post-mortem brain samples from CTRL and AD subjects, as well as analysis of publicly available mouse and human brain RNA-Seq datasets. We found that: (1) TSPO is expressed not just in microglia, but also in astrocytes, endothelial cells and vascular smooth muscle cells; (2) there is substantial overlap of tspo mRNA and TSPO levels between AD and CTRL subjects and in TSPO levels between temporal neocortex and white matter in both groups; (3) TSPO cortical burden does not correlate with the burden of activated microglia or reactive astrocytes, Aβ plaques or neurofibrillary tangles, or the cortical thickness; (4) the TSPO rs6971 SNP does not significantly impact tspo mRNA or TSPO levels, the magnitude of glial responses, the cortical thickness, or the burden of AD neuropathological changes. These results could inform ongoing efforts toward the development of reactive glia-specific PET radioligands.
Collapse
Affiliation(s)
- Yaxing Gui
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Department of Neurology, Sir Run Run Shaw Hospital of Zhejiang University, Zhejiang, China
| | - Jordan D Marks
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
164
|
Hieu Tran V, Park H, Park J, Kwon YD, Kang S, Ho Jung J, Chang KA, Chul Lee B, Lee SY, Kang S, Kim HK. Synthesis and evaluation of novel potent TSPO PET ligands with 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide. Bioorg Med Chem 2019; 27:4069-4080. [PMID: 31353076 DOI: 10.1016/j.bmc.2019.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022]
Abstract
Translocator protein (TSPO) expression is closely related with neuroinflammation and neuronal damage which might cause several central nervous system diseases. Herein, a series of TSPO ligands (11a-c and 13a-d) with a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide structure were prepared and evaluated via an in vitro binding assay. Most of the novel ligands exhibited a nano-molar affinity for TSPO, which was better than that of DPA-714. Particularly, 11a exhibited a subnano-molar TSPO binding affinity with suitable lipophilicity for in vivo brain studies. After radiolabeling with fluorine-18, [18F]11a was used for a dynamic positron emission tomography (PET) study in a rat LPS-induced neuroinflammation model; the inflammatory lesion was clearly visualized with a superior target-to-background ratio compared to [18F]DPA-714. An immunohistochemical examination of the dissected brains confirmed that the uptake location of [18F]11a in the PET study was consistent with a positively activated microglia region. This study proved that [18F]11a could be employed as a potential PET tracer for detecting neuroinflammation and could give possibility for diagnosis of other diseases, such as cancers related with TSPO expression.
Collapse
Affiliation(s)
- Van Hieu Tran
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Jaekyung Park
- Gachon Advanced Institute for Health Sciences and Technology, Graduate School, Gachon University, Incheon 21936, Republic of Korea
| | - Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Gachon Advanced Institute for Health Sciences and Technology, Graduate School, Gachon University, Incheon 21936, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
165
|
Milenkovic VM, Slim D, Bader S, Koch V, Heinl ES, Alvarez-Carbonell D, Nothdurfter C, Rupprecht R, Wetzel CH. CRISPR-Cas9 Mediated TSPO Gene Knockout alters Respiration and Cellular Metabolism in Human Primary Microglia Cells. Int J Mol Sci 2019; 20:ijms20133359. [PMID: 31323920 PMCID: PMC6651328 DOI: 10.3390/ijms20133359] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is an evolutionary conserved cholesterol binding protein localized in the outer mitochondrial membrane. It has been implicated in the regulation of various cellular processes including oxidative stress, proliferation, apoptosis, and steroid hormone biosynthesis. Since the expression of TSPO in activated microglia is upregulated in various neuroinflammatory and neurodegenerative disorders, we set out to examine the role of TSPO in an immortalized human microglia C20 cell line. To this end, we performed a dual approach and used (i) lentiviral shRNA silencing to reduce TSPO expression, and (ii) the CRISPR/Cas9 technology to generate complete TSPO knockout microglia cell lines. Functional characterization of control and TSPO knockdown as well as knockout cells, revealed only low de novo steroidogenesis in C20 cells, which was not dependent on the level of TSPO expression or influenced by the treatment with TSPO-specific ligands. In contrast to TSPO knockdown C20 cells, which did not show altered mitochondrial function, the TSPO deficient knockout cells displayed a significantly decreased mitochondrial membrane potential and cytosolic Ca2+ levels, as well as reduced respiratory function. Performing the rescue experiment by lentiviral overexpression of TSPO in knockout cells, increased oxygen consumption and restored respiratory function. Our study provides further evidence for a significant role of TSPO in cellular and mitochondrial metabolism and demonstrates that different phenotypes of mitochondrial function are dependent on the level of TSPO expression.
Collapse
Affiliation(s)
- Vladimir M Milenkovic
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Dounia Slim
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Stefanie Bader
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Victoria Koch
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Elena-Sofia Heinl
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
166
|
Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20133161. [PMID: 31261683 PMCID: PMC6650818 DOI: 10.3390/ijms20133161] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is an inflammatory response in the brain and spinal cord, which can involve the activation of microglia and astrocytes. It is a common feature of many central nervous system disorders, including a range of neurodegenerative disorders. An overlap between activated microglia, pro-inflammatory cytokines and translocator protein (TSPO) ligand binding was shown in early animal studies of neurodegeneration. These findings have been translated in clinical studies, where increases in TSPO positron emission tomography (PET) signal occur in disease-relevant areas across a broad spectrum of neurodegenerative diseases. While this supports the use of TSPO PET as a biomarker to monitor response in clinical trials of novel neurodegenerative therapeutics, the clinical utility of current TSPO PET radioligands has been hampered by the lack of high affinity binding to a prevalent form of polymorphic TSPO (A147T) compared to wild type TSPO. This review details recent developments in exploration of ligand-sensitivity to A147T TSPO that have yielded ligands with improved clinical utility. In addition to developing a non-discriminating TSPO ligand, the final frontier of TSPO biomarker research requires developing an understanding of the cellular and functional interpretation of the TSPO PET signal. Recent insights resulting from single cell analysis of microglial phenotypes are reviewed.
Collapse
|
167
|
Oh SJ, Fan X. The Possible Role of the Angiotensin System in the Pathophysiology of Schizophrenia: Implications for Pharmacotherapy. CNS Drugs 2019; 33:539-547. [PMID: 30993607 DOI: 10.1007/s40263-019-00632-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A growing body of literature has elucidated the involvement of the central renin-angiotensin system (RAS) in various neuropsychiatric diseases. While consensus on the exact mechanism of the central RAS in schizophrenia pathophysiology does not currently exist, increasing evidence reveals promise in harnessing the therapeutic potential of RAS modulation in the treatment of schizophrenia. In this review, we examine how the central RAS affects inflammation, glutamate, dopamine, gamma-aminobutyric acid (GABA), and peroxisome proliferator-activated receptor (PPAR)-γ, all of which are associated with schizophrenia etiology. In addition, a recent study has demonstrated the therapeutic potential of RAS modulators, especially angiotensin II type 1 receptor blockers (ARBs), as adjunctive therapy to the currently available antipsychotic medications for schizophrenia treatment. With a greater understanding of how RAS inhibition directly modulates neurotransmitter balance in the brain, it is possible that compounds with RAS-inhibiting properties could be used to optimize physiological levels of glutamate, dopamine, and GABA, and the balance among the three neurotransmitters, analogously to how antipsychotic medications mediate the dopaminergic pathways. It can be hoped that a novel approach based on this concept, such as adjunctive telmisartan therapy, may offer practical interventional strategies to address currently unmet therapeutic needs in patients with schizophrenia, especially those with treatment-resistant schizophrenia.
Collapse
Affiliation(s)
| | - Xiaoduo Fan
- Psychotic Disorders Program, UMASS Memorial Medical Center, Biotech One, Suite 100, 365 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
168
|
Woodcock EA, Hillmer AT, Mason GF, Cosgrove KP. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review. MOLECULAR NEUROPSYCHIATRY 2019; 5:125-146. [PMID: 31312635 PMCID: PMC6597912 DOI: 10.1159/000499621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
There is tremendous interest in the role of the neuroimmune system and inflammatory processes in substance use disorders (SUDs). Imaging biomarkers of the neuroimmune system in vivo provide a vital translational bridge between preclinical and clinical research. Herein, we examine two imaging techniques that measure putative indices of the neuroimmune system and review their application among SUDs. Positron emission tomography (PET) imaging of 18 kDa translocator protein availability is a marker associated with microglia. Proton magnetic resonance spectroscopy quantification of myo-inositol levels is a putative glial marker found in astrocytes. Neuroinflammatory responses are initiated and maintained by microglia and astrocytes, and thus represent important imaging markers. The goal of this review is to summarize neuroimaging findings from the substance use literature that report data using these markers and discuss possible mechanisms of action. The extant literature indicates abused substances exert diverse and complex neuroimmune effects. Moreover, drug effects may change across addiction stages, i.e. the neuroimmune effects of acute drug administration may differ from chronic use. This burgeoning field has considerable potential to improve our understanding and treatment of SUDs. Future research is needed to determine how targeting the neuroimmune system may improve treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Kelly P. Cosgrove
- Departments of Psychiatry, and of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
169
|
Ghadery C, Best LA, Pavese N, Tai YF, Strafella AP. PET Evaluation of Microglial Activation in Non-neurodegenerative Brain Diseases. Curr Neurol Neurosci Rep 2019; 19:38. [PMID: 31139952 PMCID: PMC6538572 DOI: 10.1007/s11910-019-0951-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF THE REVIEW Microglial cell activation is an important component of neuroinflammation, and it is generally well accepted that chronic microglial activation is indicative of accumulating tissue damage in neurodegenerative conditions, particularly in the earlier stages of disease. Until recently, there has been less focus on the role of neuroinflammation in other forms of neurological and neuropsychiatric conditions. Through this review, we hope to demonstrate the important role TSPO PET imaging has played in illuminating the pivotal role of neuroinflammation and microglial activation underpinning these conditions. RECENT FINDINGS TSPO is an 18 kDa protein found on the outer membrane of mitochondria and can act as a marker of microglial activation using nuclear imaging. Through the development of radiopharmaceuticals targeting TSPO, researchers have been able to better characterise the spatial-temporal evolution of chronic neurological conditions, ranging from the focal autoimmune reactions seen in multiple sclerosis to the Wallerian degeneration at remote parts of the brain months following acute cerebral infarction. Development of novel techniques to investigate neuroinflammation within the central nervous system, for the purposes of diagnosis and therapeutics, has flourished over the past few decades. TSPO has proven itself a robust and sensitive biomarker of microglial activation and neuroimaging affords a minimally invasive technique to characterise neuroinflammatory processes in vivo.
Collapse
Affiliation(s)
- Christine Ghadery
- The Edmond J. Safra Program in Parkinson's Disease & Movement Disorder Unit, Toronto Western Hospital & Krembil Research Institute, University Health Network; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Best
- Clinical Ageing Research Unit, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, UK.
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, UK
- PET centre, University of Aarhus Denmark, Aarhus, Denmark
| | - Yen Foung Tai
- Imperial College London South Kensington Campus, London, UK
| | - Antonio P Strafella
- The Edmond J. Safra Program in Parkinson's Disease & Movement Disorder Unit, Toronto Western Hospital & Krembil Research Institute, University Health Network; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
170
|
Kreisl WC. Discerning the relationship between microglial activation and Alzheimer's disease. Brain 2019; 140:1825-1828. [PMID: 29177498 DOI: 10.1093/brain/awx151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
171
|
Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, Lavisse S, Bottlaender M, Bloomfield PS, Howes O, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities. J Cereb Blood Flow Metab 2019; 39:874-885. [PMID: 29135382 PMCID: PMC6501510 DOI: 10.1177/0271678x17742004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation and the main target of positron emission tomography (PET) ligands for neuroinflammation. Previous works showed that accounting for TSPO endothelial binding improves PET quantification for [11C]PBR28, [18F]DPA714 and [11C]-R-PK11195. It is still unclear, however, whether the vascular signal is tracer-dependent. This work aims to explore the relationship between the TSPO vascular and tissue components for PET tracers with varying affinity, also assessing the impact of affinity towards the differentiability amongst kinetics and the ensuing ligand amenability to cluster analysis for the extraction of a reference region. First, we applied the compartmental model accounting for vascular binding to [11C]-R-PK11195 data from six healthy subjects. Then, we compared the [11C]-R-PK11195 vascular binding estimates with previously published values for [18F]DPA714 and [11C]PBR28. Finally, we determined the suitability for reference region extraction by calculating the angle between grey and white matter kinetics. Our results showed that endothelial binding is common to all TSPO tracers and proportional to their affinity. By consequence, grey and white matter kinetics were most similar for the radioligand with the highest affinity (i.e. [11C]PBR28), hence poorly suited for the extraction of a reference region using supervised clustering.
Collapse
Affiliation(s)
- Gaia Rizzo
- 1 Department of Information Engineering, Padova University, Padova, Italy
| | - Mattia Veronese
- 2 Department of Neuroimaging, King's College London, London, UK
| | - Matteo Tonietto
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France
| | - Benedetta Bodini
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France
| | - Bruno Stankoff
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France.,5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Catriona Wimberley
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Sonia Lavisse
- 6 Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Fontenay-aux-Roses, France.,7 Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Michel Bottlaender
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France.,8 Neurospin, CEA, Gif-sur-Yvette, France
| | | | - Oliver Howes
- 9 Institute of Clinical Sciences, Imperial College London, London, UK.,10 Department of Psychosis Studies, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- 11 Houston Methodist Hospital, PET Core Facility, Research Institute, Stanley H. Appel Department of Neurology, Houston, Texas, USA
| | | | - Alessandra Bertoldo
- 1 Department of Information Engineering, Padova University, Padova, Italy.,12 Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
172
|
Aiello M, Cavaliere C, Fiorenza D, Duggento A, Passamonti L, Toschi N. Neuroinflammation in Neurodegenerative Diseases: Current Multi-modal Imaging Studies and Future Opportunities for Hybrid PET/MRI. Neuroscience 2019; 403:125-135. [DOI: 10.1016/j.neuroscience.2018.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
|
173
|
Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, Zürcher NR, Akeju O, Bonnier G, Price J, Hooker JM, Napadow V, Loggia ML, Hadjikhani N. Imaging of neuroinflammation in migraine with aura: A [ 11C]PBR28 PET/MRI study. Neurology 2019; 92:e2038-e2050. [PMID: 30918090 DOI: 10.1212/wnl.0000000000007371] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine if migraine with aura is associated with neuroinflammation, which has been suggested by preclinical models of cortical spreading depression (CSD) as well as imaging of human pain conditions. METHODS Thirteen migraineurs with aura and 16 healthy controls received integrated PET/MRI brain scans with [11C]PBR28, a radioligand that binds to the 18 kDa translocator protein, a marker of glial activation. Standardized uptake value ratio (SUVR) was compared between groups, and regressed against clinical variables, using region of interest and whole-brain voxelwise analyses. RESULTS Compared to healthy controls, migraineurs demonstrated SUVR elevations in nociceptive processing areas (e.g., thalamus and primary/secondary somatosensory and insular cortices) as well as in areas previously shown to be involved in CSD generation (visual cortex). SUVR levels in frontoinsular cortex, primary/secondary somatosensory cortices, and basal ganglia were correlated with frequency of migraine attacks. CONCLUSIONS These findings demonstrate that migraine with aura is associated with neuroimmune activation/neuroinflammation, and support a possible link between CSD and glial activation, previously observed in animals.
Collapse
Affiliation(s)
- Daniel S Albrecht
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Caterina Mainero
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Eri Ichijo
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Noreen Ward
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Cristina Granziera
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Nicole R Zürcher
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Oluwaseun Akeju
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Guillaume Bonnier
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Julie Price
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Jacob M Hooker
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Vitaly Napadow
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Marco L Loggia
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Nouchine Hadjikhani
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
| |
Collapse
|
174
|
Etifoxine, a TSPO Ligand, Worsens Hepatitis C-Related Insulin Resistance but Relieves Lipid Accumulation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3102414. [PMID: 30984779 PMCID: PMC6432734 DOI: 10.1155/2019/3102414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/22/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022]
Abstract
Etifoxine, an 18 kDa translocator protein (TSPO) agonist for the treatment of anxiety disorders in clinic, may be able to cause acute liver injury or cytolytic hepatitis. TSPO has been demonstrated to participate in inflammatory responses in infective diseases as well as to modulate glucose and lipid homeostasis. Hepatitis C virus (HCV) infection disrupts glucose and lipid homoeostasis, leading to insulin resistance (IR). Whether TSPO affects the HCV-induced IR remains unclear. Here, we found that the administration of etifoxine increased the TSPO protein expression and recovered the HCV-mediated lower mitochondrial membrane potential (MMP) without affecting HCV infection. Moreover, etifoxine reversed the HCV-induced lipid accumulation by modulating the expressions of sterol regulatory element-binding protein-1 and apolipoprotein J. On the other hand, in infected cells pretreated with etifoxine, the insulin-mediated insulin receptor substrate-1/Akt signals, forkhead box protein O1 translocation, and glucose uptake were blocked. Taken together, our results pointed out that etifoxine relieved the HCV-retarded MMP and reduced the lipid accumulation but deteriorated the HCV-induced IR by interfering with insulin signal molecules.
Collapse
|
175
|
De Picker L, Ottoy J, Verhaeghe J, Deleye S, Wyffels L, Fransen E, Kosten L, Sabbe B, Coppens V, Timmers M, de Boer P, Van Nueten L, Op De Beeck K, Oberacher H, Vanhoenacker F, Ceyssens S, Stroobants S, Staelens S, Morrens M. State-associated changes in longitudinal [ 18F]-PBR111 TSPO PET imaging of psychosis patients: Evidence for the accelerated ageing hypothesis? Brain Behav Immun 2019; 77:46-54. [PMID: 30503836 DOI: 10.1016/j.bbi.2018.11.318] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To determine whether state-associated changes in microglial activity, measured with translocator-protein positron emission tomography (TSPO PET), can be identified in psychosis patients through longitudinal evaluation of their regional tracer uptake over the clinical course from acute psychosis to post-treatment follow-up, and comparison to healthy controls. We also evaluated the relation between tracer uptake, clinical symptoms and peripheral immunological markers. METHOD Second-generation radioligand [18F]-PBR111 TSPO PET-CT was used for longitudinal dynamic imaging in 14 male psychosis patients and 17 male age-matched healthy control subjects. Patients were first scanned during an acute psychotic episode followed by a second scan after treatment. Prior genotyping of subjects for the rs6917 polymorphism distinguished high- and mixed-affinity binders. The main outcome was regional volume of distribution (VT), representing TSPO binding. Plasma concentrations of CRP, cytokines and kynurenines were measured at each timepoint. RESULTS We found a significant three-way interaction between time of scan, age and cohort (cortical grey matter F6.50, p.020). Age-dependent differences in VT existed between cohorts during the psychotic state, but not at follow-up. Patients' relative change in VT over time correlated with age (cortical grey matter Pearson's r.574). PANSS positive subscale scores correlated with regional VT during psychosis (cortical grey matter r.767). Plasma CRP and quinolinic acid were independently associated with lower VT. CONCLUSIONS We identified a differential age-dependent pattern of TSPO binding from psychosis to follow-up in our cohort of male psychosis patients. We recommend future TSPO PET studies in psychosis patients to differentiate between clinical states and consider potential age-related effects.
Collapse
Affiliation(s)
- Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; University Psychiatric Hospital Antwerp, Campus Duffel, Duffel, Belgium.
| | - Julie Ottoy
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Steven Deleye
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Belgium
| | - Lauren Kosten
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; University Psychiatric Hospital Antwerp, Campus Duffel, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; University Psychiatric Hospital Antwerp, Campus Duffel, Duffel, Belgium
| | - Maarten Timmers
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium; Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter de Boer
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Luc Van Nueten
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Ken Op De Beeck
- Medical Genetics Research Group, University of Antwerp, Antwerp, Belgium
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Filip Vanhoenacker
- Department of Radiology, Sint-Maarten General Hospital, Mechelen, Belgium; Faculty of Medicine and Health Sciences, Universities of Antwerp and Ghent, Belgium
| | - Sarah Ceyssens
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; University Psychiatric Hospital Antwerp, Campus Duffel, Duffel, Belgium
| |
Collapse
|
176
|
Correale J, Marrodan M, Ysrraelit MC. Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines 2019; 7:biomedicines7010014. [PMID: 30791637 PMCID: PMC6466454 DOI: 10.3390/biomedicines7010014] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple Sclerosis (MS) is a major cause of neurological disability, which increases predominantly during disease progression as a result of cortical and grey matter structures involvement. The gradual accumulation of disability characteristic of the disease seems to also result from a different set of mechanisms, including in particular immune reactions confined to the Central Nervous System such as: (a) B-cell dysregulation, (b) CD8+ T cells causing demyelination or axonal/neuronal damage, and (c) microglial cell activation associated with neuritic transection found in cortical demyelinating lesions. Other potential drivers of neurodegeneration are generation of oxygen and nitrogen reactive species, and mitochondrial damage, inducing impaired energy production, and intra-axonal accumulation of Ca2+, which in turn activates a variety of catabolic enzymes ultimately leading to progressive proteolytic degradation of cytoskeleton proteins. Loss of axon energy provided by oligodendrocytes determines further axonal degeneration and neuronal loss. Clearly, these different mechanisms are not mutually exclusive and could act in combination. Given the multifactorial pathophysiology of progressive MS, many potential therapeutic targets could be investigated in the future. This remains however, an objective that has yet to be undertaken.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, FLENI, Buenos Aires 1428, Argentina.
| | | | | |
Collapse
|
177
|
Illes P, Rubini P, Huang L, Tang Y. The P2X7 receptor: a new therapeutic target in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:165-176. [DOI: 10.1080/14728222.2019.1575811] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Patrizia Rubini
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Lumei Huang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
178
|
Zinnhardt B, Belloy M, Fricke IB, Orije J, Guglielmetti C, Hermann S, Wagner S, Schäfers M, Van der Linden A, Jacobs AH. Molecular Imaging of Immune Cell Dynamics During De- and Remyelination in the Cuprizone Model of Multiple Sclerosis by [ 18F]DPA-714 PET and MRI. Theranostics 2019; 9:1523-1537. [PMID: 31037121 PMCID: PMC6485187 DOI: 10.7150/thno.32461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Activation and dysregulation of innate, adaptive and resident immune cells in response to damage determine the pathophysiology of demyelinating disorders. Among the plethora of involved cells, microglia/macrophages and astrocytes play an important role in the pathogenesis of demyelinating disorders. The in-depth investigation of the spatio-temporal profile of these cell types in vivo may inform about the exact disease state and localization as well as may allow to monitor therapeutic modulation of the components of the neuroinflammatory response during the course of multiple sclerosis (MS). In this study, we aimed to non-invasively decipher the degree and temporal profile of neuroinflammation (TSPO - [18F]DPA-714 PET) in relation to selected magnetic resonance imaging (MRI) parameters (T2 maps) in the cuprizone (CPZ)-induced model of demyelination. Methods: C57Bl6 (n=30) mice were fed with a standard chow mixed with 0.2% (w/w) CPZ for 4 (n=10; demyelination) and 6 weeks (n=10; spontaneous remyelination). The degree of neuroinflammation at de- and remyelination was assessed by [18F]DPA-714 PET, multi-echo T2 MRI, autoradiography and immunohistochemistry. Results: CPZ-induced brain alterations were confirmed by increase of T2 relaxation times in both white and grey matter after 3 and 5 weeks of CPZ. Peak [18F]DPA-714 was found in the corpus callosum (CC, white matter), the hippocampus (HC, grey matter) and thalamus (grey matter) after 4 weeks of CPZ treatment and declined after 6 weeks of CPZ. Ex vivo autoradiography and dedicated immunofluorescence showed demyelination/remyelination with corresponding increased/decreased TSPO levels in the CC and hippocampus, confirming the spatial distribution of [18F]DPA-714 in vivo. The expression of TSPO microglia and astrocytes is time-dependent in this model. Microglia predominantly express TSPO at demyelination, while the majority of astrocytes express TSPO during remyelination. The combination of PET- and MRI-based imaging biomarkers demonstrated the regional and temporal development of the CPZ model-associated neuroinflammatory response in grey and white matter regions. Conclusions: The combination of [18F]DPA-714 PET and T2 mapping may allow to further elucidate the regional and temporal profile of inflammatory signals depending on the myelination status, although the underlying inflammatory microenvironment changes. A combination of the described imaging biomarkers may facilitate the development of patient-tailored strategies for immunomodulatory and neuro-restorative therapies in MS.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- PET Imaging in Drug Design and Development (PET3D)
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Michaël Belloy
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Inga B. Fricke
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- Current affiliation: TECHNA Institute for the Advancement of Technology for Health, University Health Network; Institute of Biomaterials and Biomedical Engineering, University of Toronto; both Toronto, Ontario, Canada
| | - Jasmien Orije
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Caroline Guglielmetti
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- PET Imaging in Drug Design and Development (PET3D)
- Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| |
Collapse
|
179
|
Mages K, Grassmann F, Jägle H, Rupprecht R, Weber BHF, Hauck SM, Grosche A. The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 2019; 16:43. [PMID: 30777091 PMCID: PMC6378755 DOI: 10.1186/s12974-019-1424-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ligand-driven modulation of the mitochondrial translocator protein 18 kDa (TSPO) was recently described to dampen the neuroinflammatory response of microglia in a retinal light damage model resulting in protective effects on photoreceptors. We characterized the effects of the TSPO ligand XBD173 in the postischemic retina focusing on changes in the response pattern of the major glial cell types of the retina-microglia and Müller cells. METHODS Retinal ischemia was induced by increasing the intraocular pressure for 60 min followed by reperfusion of the tissue in mice. On retinal cell types enriched via immunomagnetic separation expression analysis of TSPO, its ligand diazepam-binding inhibitor (DBI) and markers of glial activation were performed at transcript and protein level using RNA sequencing, qRT-PCR, lipid chromatography-mass spectrometry, and immunofluorescent labeling. Data on cell morphology and numbers were assessed in retinal slice and flatmount preparations. The retinal functional integrity was determined by electroretinogram recordings. RESULTS We demonstrate that TSPO is expressed by Müller cells, microglia, vascular cells, retinal pigment epithelium (RPE) of the healthy and postischemic retina, but only at low levels in retinal neurons. While an alleviated neurodegeneration upon XBD173 treatment was found in postischemic retinae as compared to vehicle controls, this neuroprotective effect of XBD173 is mediated putatively by its action on retinal glia. After transient ischemia, TSPO as a marker of activation was upregulated to similar levels in microglia as compared to their counterparts in healthy retinae irrespective of the treatment regimen. However, less microglia were found in XBD173-treated postischemic retinae at 3 days post-surgery (dps) which displayed a more ramified morphology than in retinae of vehicle-treated mice indicating a dampened microglia activation. Müller cells, the major retinal macroglia, show upregulation of the typical gliosis marker GFAP. Importantly, glutamine synthetase was more stably expressed in Müller glia of XBD173-treated postischemic retinae and homeostatic functions such as cellular volume regulation typically diminished in gliotic Müller cells remained functional. CONCLUSIONS In sum, our data imply that beneficial effects of XBD173 treatment on the postischemic survival of inner retinal neurons were primarily mediated by stabilizing neurosupportive functions of glial cells.
Collapse
Affiliation(s)
- Kristin Mages
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm, Sweden
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Heidemannstraße 1, 80939, Munich, Germany
| | - Antje Grosche
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
180
|
Nack A, Brendel M, Nedelcu J, Daerr M, Nyamoya S, Beyer C, Focke C, Deussing M, Hoornaert C, Ponsaerts P, Schmitz C, Bartenstein P, Rominger A, Kipp M. Expression of Translocator Protein and [18F]-GE180 Ligand Uptake in Multiple Sclerosis Animal Models. Cells 2019; 8:cells8020094. [PMID: 30696113 PMCID: PMC6406715 DOI: 10.3390/cells8020094] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Positron emission tomography (PET) ligands targeting the translocator protein (TSPO) represent promising tools to visualize neuroinflammation in multiple sclerosis (MS). Although it is known that TSPO is expressed in the outer mitochondria membrane, its cellular localization in the central nervous system under physiological and pathological conditions is not entirely clear. The purpose of this study was to assess the feasibility of utilizing PET imaging with the TSPO tracer, [18F]-GE180, to detect histopathological changes during experimental demyelination, and to determine which cell types express TSPO. C57BL/6 mice were fed with cuprizone for up to 5 weeks to induce demyelination. Groups of mice were investigated by [18F]-GE180 PET imaging at week 5. Recruitment of peripheral immune cells was triggered by combining cuprizone intoxication with MOG35–55 immunization (i.e., Cup/EAE). Immunofluorescence double-labelling and transgene mice were used to determine which cell types express TSPO. [18F]-GE180-PET reliably detected the cuprizone-induced pathology in various white and grey matter regions, including the corpus callosum, cortex, hippocampus, thalamus and caudoputamen. Cuprizone-induced demyelination was paralleled by an increase in TSPO expression, glia activation and axonal injury. Most of the microglia and around one-third of the astrocytes expressed TSPO. TSPO expression induction was more severe in the white matter corpus callosum compared to the grey matter cortex. Although mitochondria accumulate at sites of focal axonal injury, these mitochondria do not express TSPO. In Cup/EAE mice, both microglia and recruited monocytes contribute to the TSPO expressing cell populations. These findings support the notion that TSPO is a valuable marker for the in vivo visualization and quantification of neuropathological changes in the MS brain. The pathological substrate of an increase in TSPO-ligand binding might be diverse including microglia activation, peripheral monocyte recruitment, or astrocytosis, but not axonal injury.
Collapse
MESH Headings
- Animals
- Astrocytes/pathology
- Astrocytes/ultrastructure
- Axons/metabolism
- Axons/ultrastructure
- Biomarkers/metabolism
- Carbazoles/metabolism
- Cuprizone
- Demyelinating Diseases/diagnostic imaging
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammation/pathology
- Ligands
- Mice, Inbred C57BL
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Monocytes/metabolism
- Multiple Sclerosis/diagnostic imaging
- Neuroglia/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
Collapse
Affiliation(s)
- Anne Nack
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Julia Nedelcu
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Markus Daerr
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Stella Nyamoya
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, 80336 Munich, Germany.
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland.
| | - Markus Kipp
- Department of Anatomy, 39071 Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
181
|
Kohno M, Link J, Dennis LE, McCready H, Huckans M, Hoffman WF, Loftis JM. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav 2019; 179:34-42. [PMID: 30695700 DOI: 10.1016/j.pbb.2019.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Addiction is a worldwide public health problem and this article reviews scientific advances in identifying the role of neuroinflammation in the genesis, maintenance, and treatment of substance use disorders. With an emphasis on neuroimaging techniques, this review examines human studies of addiction using positron emission tomography to identify binding of translocator protein (TSPO), which is upregulated in reactive glial cells and activated microglia during pathological states. High TSPO levels have been shown in methamphetamine use but exhibits variable patterns in cocaine use. Alcohol and nicotine use, however, are associated with lower TSPO levels. We discuss how mechanistic differences at the neurotransmitter and circuit level in the neural effects of these agents and subsequent immune response may explain these observations. Finally, we review the potential of anti-inflammatory drugs, including ibudilast, minocycline, and pioglitazone, to ameliorate the behavioral and cognitive consequences of addiction.
Collapse
Affiliation(s)
- Milky Kohno
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jeanne Link
- Center for Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - Laura E Dennis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Holly McCready
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Marilyn Huckans
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - William F Hoffman
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
182
|
Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer's Disease. Trends Mol Med 2019; 25:77-95. [PMID: 30611668 DOI: 10.1016/j.molmed.2018.11.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Astrocytic contributions to Alzheimer's disease (AD) progression were, until recently, largely overlooked. Astrocytes are integral to normal brain function and astrocyte reactivity is an early feature of AD, potentially providing a promising target for preclinical diagnosis and treatment. Several in vivo AD biomarkers already exist, but presently there is a paucity of specific and sensitive in vivo astrocyte biomarkers that can accurately measure preclinical AD. Measuring monoamine oxidase-B with neuroimaging and glial fibrillary acidic protein from bodily fluids are biomarkers that are currently available. Developing novel, more specific, and sensitive astrocyte biomarkers will make it possible to pharmaceutically target chemical pathways that preserve beneficial astrocytic functions in response to AD pathology. This review discusses astrocyte biomarkers in the context of AD.
Collapse
Affiliation(s)
- Stephen F Carter
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Douglas Hospital Research Centre, Montreal, Canada; Montreal Neurological Institute, Montreal, Canada
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil; Website: www.zimmer-lab.org.
| |
Collapse
|
183
|
Tournier BB, Tsartsalis S, Rigaud D, Fossey C, Cailly T, Fabis F, Pham T, Grégoire MC, Kövari E, Moulin-Sallanon M, Savioz A, Millet P. TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer’s disease. Neurobiol Dis 2019; 121:95-105. [PMID: 30261283 DOI: 10.1016/j.nbd.2018.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/03/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022] Open
|
184
|
Schnieder TP, Zhou Qin ID, Trencevska-Ivanovska I, Rosoklija G, Stankov A, Pavlovski G, Mann JJ, Dwork AJ. Blood Vessels and Perivascular Phagocytes of Prefrontal White and Gray Matter in Suicide. J Neuropathol Exp Neurol 2019; 78:15-30. [PMID: 30496451 PMCID: PMC6289219 DOI: 10.1093/jnen/nly103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inflammatory processes may contribute to psychiatric disorders and suicide. Earlier, we reported greater densities of perivascular phagocytes in dorsal prefrontal white matter (DPFWM) in suicide than in non-suicide deaths. To distinguish between greater vascularity and greater coverage of vessels by perivascular phagocytes, and to determine whether the excess of perivascular phagocytes is derived from microglia or from non-parenchymal immune cells, we made stereological estimates of vascular surface area density (AVTOTAL) by staining for glucose transporter Glut-1, and the fraction of vascular surface area (AF) immunoreactive (IR) for CD163 (CD163 AF) in dorsal and ventral prefrontal white and gray matter. Manner of death or psychiatric diagnosis showed no association with CD163 AF in any region. Suicide was associated with a lower AVTOTAL compared with non-suicides in DPFWM (p = 0.018) but not with AVTOTAL in the 3 other regions of interest. Thus, the earlier observation of increased density of perivascular phagocytes in DPFWM after suicide cannot be attributed to infiltration by peripheral monocytes or to increased vascularity. Greater AVTOTAL ventrally than dorsally (p = 0.002) was unique to suicide and white matter.
Collapse
Affiliation(s)
- Tatiana P Schnieder
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - Isaiah D Zhou Qin
- Columbia University School of Professional Studies, Columbia University, New York, New York
| | | | - Gorazd Rosoklija
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York, New York
- Macedonian Academy of Sciences and Arts, Skopje, R. Macedonia
| | - Aleksandar Stankov
- School of Medicine, University “Ss.Cyril and Methodius”, Skopje, R. Macedonia
| | - Goran Pavlovski
- School of Medicine, University “Ss.Cyril and Methodius”, Skopje, R. Macedonia
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - Andrew J Dwork
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York, New York
- Macedonian Academy of Sciences and Arts, Skopje, R. Macedonia
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
185
|
Albrecht DS, Forsberg A, Sandstrom A, Bergan C, Kadetoff D, Protsenko E, Lampa J, Lee YC, Olgart Höglund C, Catana C, Cervenka S, Akeju O, Lekander M, Cohen G, Halldin C, Taylor N, Kim M, Hooker JM, Edwards RR, Napadow V, Kosek E, Loggia ML. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Behav Immun 2019; 75:72-83. [PMID: 30223011 PMCID: PMC6541932 DOI: 10.1016/j.bbi.2018.09.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [11C]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [11C]PBR28 PET. 11 FM patients and 11 HC were scanned using [11C]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (VT) were computed from the [11C]PBR28 data. [11C]-L-deprenyl-D2 was quantified using λ k3. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [11C]PBR28 VT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [11C]-L-deprenyl-D2 signal, including those demonstrating elevated [11C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [11C]PBR28 VT and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [11C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [11C]PBR28 signal were not also accompanied by increased [11C]-L-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [11C]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
Collapse
Affiliation(s)
- Daniel S. Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anton Forsberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Angelica Sandstrom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Courtney Bergan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Ekaterina Protsenko
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Yvonne C. Lee
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Ciprian Catana
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden.
| | - George Cohen
- Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Norman Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | | | | | | | - Vitaly Napadow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Marco L. Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
186
|
Kaunzner UW, Kang Y, Zhang S, Morris E, Yao Y, Pandya S, Hurtado Rua SM, Park C, Gillen KM, Nguyen TD, Wang Y, Pitt D, Gauthier SA. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain 2019; 142:133-145. [PMID: 30561514 PMCID: PMC6308309 DOI: 10.1093/brain/awy296] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic active multiple sclerosis lesions, characterized by a hyperintense rim of iron-enriched, activated microglia and macrophages, have been linked to greater tissue damage. Post-mortem studies have determined that chronic active lesions are primarily related to the later stages of multiple sclerosis; however, the occurrence of these lesions, and their relationship to earlier disease stages may be greatly underestimated. Detection of chronic active lesions across the patient spectrum of multiple sclerosis requires a validated imaging tool to accurately identify lesions with persistent inflammation. Quantitative susceptibility mapping provides efficient in vivo quantification of susceptibility changes related to iron deposition and the potential to identify lesions harbouring iron-laden inflammatory cells. The PET tracer 11C-PK11195 targets the translocator protein expressed by activated microglia and infiltrating macrophages. Accordingly, this study aimed to validate that lesions with a hyperintense rim on quantitative susceptibility mapping from both relapsing and progressive patients demonstrate a higher level of innate immune activation as measured on 11C-PK11195 PET. Thirty patients were enrolled in this study, 24 patients had relapsing remitting multiple sclerosis, six had progressive multiple sclerosis, and all patients had concomitant MRI with a gradient echo sequence and PET with 11C-PK11195. A total of 406 chronic lesions were detected, and 43 chronic lesions with a hyperintense rim on quantitative susceptibility mapping were identified as rim+ lesions. Susceptibility (relative to CSF) was higher in rim+ (2.42 ± 17.45 ppb) compared to rim- lesions (-14.6 ± 19.3 ppb, P < 0.0001). Among rim+ lesions, susceptibility within the rim (20.04 ± 14.28 ppb) was significantly higher compared to the core (-5.49 ± 14.44 ppb, P < 0.0001), consistent with the presence of iron. In a mixed-effects model, 11C-PK11195 uptake, representing activated microglia/macrophages, was higher in rim+ lesions compared to rim- lesions (P = 0.015). Validating our in vivo imaging results, multiple sclerosis brain slabs were imaged with quantitative susceptibility mapping and processed for immunohistochemistry. These results showed a positive translocator protein signal throughout the expansive hyperintense border of rim+ lesions, which co-localized with iron containing CD68+ microglia and macrophages. In conclusion, this study provides evidence that suggests that a hyperintense rim on quantitative susceptibility measure within a chronic lesion is a correlate for persistent inflammatory activity and that these lesions can be identified in the relapsing patients. Utilizing quantitative susceptibility measure to differentiate chronic multiple sclerosis lesion subtypes, especially chronic active lesions, would provide a method to assess the impact of these lesions on disease progression.
Collapse
Affiliation(s)
- Ulrike W Kaunzner
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yeona Kang
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shun Zhang
- Cornell MRI Research Lab, New York City, NY, USA
| | - Eric Morris
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yihao Yao
- Cornell MRI Research Lab, New York City, NY, USA
| | - Sneha Pandya
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Sandra M Hurtado Rua
- Department of Mathematics, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| | - Calvin Park
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | | | | | - Yi Wang
- Cornell MRI Research Lab, New York City, NY, USA
| | - David Pitt
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
187
|
Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 2018; 175:1-19. [PMID: 30590095 DOI: 10.1016/j.pneurobio.2018.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
The developing brain is sensitive to a variety of insults. Epidemiological studies have identified prenatal exposure to infection as a risk factor for a range of neurological disorders, including autism spectrum disorder and schizophrenia. Animal models corroborate this association and have been used to probe the contribution of gene-environment interactions to the etiology of neurodevelopmental disorders. Here we review the behavior and brain phenotypes that have been characterized in MIA offspring, including the studies that have looked at the interaction between maternal immune activation and genetic risk factors for autism spectrum disorder or schizophrenia. These phenotypes include behaviors relevant to autism, schizophrenia, and other neurological disorders, alterations in brain anatomy, and structural and functional neuronal impairments. The link between maternal infection and these phenotypic changes is not fully understood, but there is increasing evidence that maternal immune activation induces prolonged immune alterations in the offspring's brain which could underlie epigenetic alterations which in turn may mediate the behavior and brain changes. These concepts will be discussed followed by a summary of the pharmacological interventions that have been tested in the maternal immune activation model.
Collapse
Affiliation(s)
- Lara Bergdolt
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States
| | - Anna Dunaevsky
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States.
| |
Collapse
|
188
|
Beckers L, Ory D, Geric I, Declercq L, Koole M, Kassiou M, Bormans G, Baes M. Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration. Mol Imaging Biol 2018; 20:94-102. [PMID: 28695372 DOI: 10.1007/s11307-017-1099-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Activation of the innate immune system plays a significant role in pathologies of the central nervous system (CNS). In order to follow disease progression and evaluate effectiveness of potential treatments involved in neuroinflammation, it is important to track neuroinflammatory markers in vivo longitudinally. The translocator protein (TSPO) is used as a target to image neuroinflammation as its expression is upregulated in reactive glial cells during CNS pathologies. However, it remains unclear in which microglial phenotypes TSPO levels are upregulated, as microglia can display a plethora of activation states that can be protective or detrimental to the CNS. PROCEDURES We assessed the levels of TSPO transcripts in cultured microglia that were polarized into pro- and anti-inflammatory states in vitro and in the brain of mice in which an anti-inflammatory environment was induced in vivo. In addition, we used a mouse model of peroxisomal multifunctional protein-2 (MFP2) deficiency that exhibits widespread neuroinflammation despite no neuronal loss and monitored TSPO expression by immunohistochemistry and by imaging using the TSPO radiotracer [18F]DPA-714. RESULTS TSPO expression was selectively increased in so-called classically activated or M1 microglia but not in alternatively activated or M2 microglia in vitro. In agreement, TSPO transcript levels were not induced in an anti-inflammatory brain environment. We found that both transcript and protein levels of TSPO are significantly increased in the brain of Mfp2 -/- compared to those of the control mice and TSPO immunoreactivity colocalized predominantly with microglia in Mfp2 -/- brain. In vitro and ex vivo autoradiography in Mfp2 -/- mice using the TSPO radiotracer [18F]DPA-714 confirmed increased expression of TSPO. These data demonstrate that TSPO imaging reveals microgliosis in non-neurodegenerative brain pathologies. CONCLUSIONS We show that induced TSPO expression marks a pro-inflammatory brain environment that is not necessarily accompanied by neuronal loss.
Collapse
Affiliation(s)
- Lien Beckers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, 3000, Leuven, Belgium
| | - Dieter Ory
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Radiopharmacy, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ivana Geric
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, 3000, Leuven, Belgium
| | - Lieven Declercq
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Radiopharmacy, KU Leuven - University of Leuven, Leuven, Belgium
| | - Michel Koole
- Department of Nuclear Medicine and Molecular Imaging, KU Leuven- University of Leuven, Leuven, Belgium
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Guy Bormans
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Radiopharmacy, KU Leuven - University of Leuven, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
189
|
Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord 2018; 241:305-310. [PMID: 30142589 DOI: 10.1016/j.jad.2018.08.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/14/2018] [Accepted: 08/07/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Evidence suggests that microglia-mediated processes are implicated in the pathophysiology of major depressive disorder (MDD). The relationship between these processes and cognitive dysfunctions has not been explored. METHODS We recruited 50 never-medicated patients with MDD and 30 healthy control subjects. We used [18F]-FEPPA positron emission tomography (PET) to examine translocator protein total distribution volume (TSPO VT), a marker of microglia. Cognitive functions were evaluated with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) (attention, immediate and delyed memory, language, and visuospatial functions). RESULTS Patients with MDD showed elevated TSPO VT in all regions of interest (white matter, grey matter, frontal cortex, temporal cortex, and hippocampus) and were impaired on the attention and delayed memory domains of the RBANS. In the frontal cortex, increased TSPO VT was associated with lower scores on the RBANS attention domain when the analysis was corrected for age, gender, education, and depressive symptoms. LIMITATIONS Affective functions were not investigated, the specificity of [18F]-FEPPA binding is limited, TSPO may reflect microglia/macrophage density rather than activation, and the sample was not balanced (more patients were included than controls). CONCLUSIONS Attentional dysfunctions may be associated with microglial pathology in the frontal cortex of untreated patients with MDD.
Collapse
|
190
|
Petracca M, Margoni M, Bommarito G, Inglese M. Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques. Neurol Ther 2018; 7:265-285. [PMID: 29956263 PMCID: PMC6283788 DOI: 10.1007/s40120-018-0103-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Margoni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Multiple Sclerosis Centre, Department of Neurosciences DNS, University Hospital, University of Padua, Padua, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genoa, Italy.
- Departments of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
191
|
Chaney A, Williams SR, Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer's disease. J Neurochem 2018; 149:438-451. [PMID: 30339715 PMCID: PMC6563454 DOI: 10.1111/jnc.14615] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
It has become increasingly evident that neuroinflammation plays a critical role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased glial cell activation is consistently reported in both rodent models of AD and in AD patients. Moreover, recent genome wide association studies have revealed multiple genes associated with inflammation and immunity are significantly associated with an increased risk of AD development (e.g. TREM2). Non‐invasive in vivo detection and tracking of neuroinflammation is necessary to enhance our understanding of the contribution of neuroinflammation to the initiation and progression of AD. Importantly, accurate methods of quantifying neuroinflammation may aid early diagnosis and serve as an output for therapeutic monitoring and disease management. This review details current in vivo imaging biomarkers of neuroinflammation being explored and summarizes both pre‐clinical and clinical results from molecular imaging studies investigating the role of neuroinflammation in AD, with a focus on positron emission tomography and magnetic resonance spectroscopy (MRS). ![]()
Collapse
Affiliation(s)
- Aisling Chaney
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK.,Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Steve R Williams
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK
| | - Herve Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
192
|
TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells. Int J Mol Sci 2018; 19:ijms19123740. [PMID: 30477223 PMCID: PMC6321017 DOI: 10.3390/ijms19123740] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Choroidal endothelial cells supply oxygen and nutrients to retinal pigment epithelial (RPE) cells and photoreceptors, recycle metabolites, and dispose of metabolic waste through the choroidal blood circulation. Death of the endothelial cells of the choroid may cause abnormal deposits including unesterified and esterified cholesterol beneath RPE cells and within Bruch’s membrane that contribute to the progression of age-related macular degeneration (AMD), the most prevalent cause of blindness in older people. Translocator protein (TSPO) is a cholesterol-binding protein that is involved in mitochondrial cholesterol transport and other cellular functions. We have investigated the role of TSPO in choroidal endothelial cells. Immunocytochemistry showed that TSPO was localized to the mitochondria of choroidal endothelial cells. Choroidal endothelial cells exposed to TSPO ligands (Etifoxine or XBD-173) had significantly increased cholesterol efflux, higher expression of cholesterol homeostasis genes (LXRα, CYP27A1, CYP46A1, ABCA1 and ABCG1), and reduced biosynthesis of cholesterol and phospholipids from [14C]acetate, when compared to untreated controls. Treatment with TSPO ligands also resulted in reduced production of reactive oxygen species (ROS), increased antioxidant capacity, and reduced release of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and VEGF) induced by oxidized LDL. These data suggest TSPO ligands may offer promise for the treatment of AMD.
Collapse
|
193
|
Blume T, Focke C, Peters F, Deussing M, Albert NL, Lindner S, Gildehaus FJ, von Ungern-Sternberg B, Ozmen L, Baumann K, Bartenstein P, Rominger A, Herms J, Brendel M. Microglial response to increasing amyloid load saturates with aging: a longitudinal dual tracer in vivo μPET-study. J Neuroinflammation 2018; 15:307. [PMID: 30400912 PMCID: PMC6220478 DOI: 10.1186/s12974-018-1347-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Causal associations between microglia activation and β-amyloid (Aβ) accumulation during the progression of Alzheimer's disease (AD) remain a matter of controversy. Therefore, we used longitudinal dual tracer in vivo small animal positron emission tomography (μPET) imaging to resolve the progression of the association between Aβ deposition and microglial responses during aging of an Aβ mouse model. METHODS APP-SL70 mice (N = 17; baseline age 3.2-8.5 months) and age-matched C57Bl/6 controls (wildtype (wt)) were investigated longitudinally for 6 months using Aβ (18F-florbetaben) and 18 kDa translocator protein (TSPO) μPET (18F-GE180). Changes in cortical binding were transformed to Z-scores relative to wt mice, and microglial activation relative to amyloidosis was defined as the Z-score difference (TSPO-Aβ). Using 3D immunohistochemistry for activated microglia (Iba-1) and histology for fibrillary Aβ (methoxy-X04), we measure microglial brain fraction relative to plaque size and the distance from plaque margins. RESULTS Aβ-PET binding increased exponentially as a function of age in APP-SL70 mice, whereas TSPO binding had an inverse U-shape growth function. Longitudinal Z-score differences declined with aging, suggesting that microglial response declined relative to increasing amyloidosis in aging APP-SL70 mice. Microglial brain volume fraction was inversely related to adjacent plaque size, while the proximity to Aβ plaques increased with age. CONCLUSIONS Microglial activity decreases relative to ongoing amyloidosis with aging in APP-SL70 mice. The plaque-associated microglial brain fraction saturated and correlated negatively with increasing plaque size with aging.
Collapse
Affiliation(s)
- Tanja Blume
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Finn Peters
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | | | - Laurence Ozmen
- Roche, Pharma Research and Early Development, NORD DTA / Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Karlheinz Baumann
- Roche, Pharma Research and Early Development, NORD DTA / Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,Department of Nuclear Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 4, 3010, Bern, Switzerland.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany.,Center of Neuropathology and Prion Research, Feodor-Lynen-Straße 23, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
194
|
Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure. Sci Rep 2018; 8:16213. [PMID: 30385779 PMCID: PMC6212397 DOI: 10.1038/s41598-018-34451-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/18/2018] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is characterized by abnormal mitochondrial calcium (Ca2+) handling, energy failure and impaired mitophagy resulting in contractile dysfunction and myocyte death. We have previously shown that the 18-kDa mitochondrial translocator protein of the outer mitochondrial membrane (TSPO) can modulate mitochondrial Ca2+ uptake. Experiments were designed to test the role of the TSPO in a murine pressure-overload model of HF induced by transverse aortic constriction (TAC). Conditional, cardiac-specific TSPO knockout (KO) mice were generated using the Cre-loxP system. TSPO-KO and wild-type (WT) mice underwent TAC for 8 weeks. TAC-induced HF significantly increased TSPO expression in WT mice, associated with a marked reduction in systolic function, mitochondrial Ca2+ uptake, complex I activity and energetics. In contrast, TSPO-KO mice undergoing TAC had preserved ejection fraction, and exhibited fewer clinical signs of HF and fibrosis. Mitochondrial Ca2+ uptake and energetics were restored in TSPO KO mice, associated with decreased ROS, improved complex I activity and preserved mitophagy. Thus, HF increases TSPO expression, while preventing this increase limits the progression of HF, preserves ATP production and decreases oxidative stress, thereby preventing metabolic failure. These findings suggest that pharmacological interventions directed at TSPO may provide novel therapeutics to prevent or treat HF.
Collapse
|
195
|
Powrie YSL, Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? J Neuroinflammation 2018; 15:289. [PMID: 30326923 PMCID: PMC6192186 DOI: 10.1186/s12974-018-1324-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
It is a well-known fact that DHEA declines on ageing and that it is linked to ageing-related neurodegeneration, which is characterised by gradual cognitive decline. Although DHEA is also associated with inflammation in the periphery, the link between DHEA and neuroinflammation in this context is less clear. This review drew from different bodies of literature to provide a more comprehensive picture of peripheral vs central endocrine shifts with advanced age—specifically in terms of DHEA. From this, we have formulated the hypothesis that DHEA decline is also linked to neuroinflammation and that increased localised availability of DHEA may have both therapeutic and preventative benefit to limit neurodegeneration. We provide a comprehensive discussion of literature on the potential for extragonadal DHEA synthesis by neuroglial cells and reflect on the feasibility of therapeutic manipulation of localised, central DHEA synthesis.
Collapse
Affiliation(s)
- Y S L Powrie
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - C Smith
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
196
|
Shen Z, Bao X, Wang R. Clinical PET Imaging of Microglial Activation: Implications for Microglial Therapeutics in Alzheimer's Disease. Front Aging Neurosci 2018; 10:314. [PMID: 30349474 PMCID: PMC6186779 DOI: 10.3389/fnagi.2018.00314] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
In addition to extracellular β-amyloid plaques and intracellular neurofibrillary tangles, neuroinflammation has been identified as a key pathological characteristic of Alzheimer's disease (AD). Once activated, neuroinflammatory cells called microglia acquire different activation phenotypes. At the early stage of AD, activated microglia are mainly dominated by the neuroprotective and anti-inflammatory M2 phenotype. Conversely, in the later stage of AD, the excessive activation of microglia is considered detrimental and pro-inflammatory, turning into the M1 phenotype. Therapeutic strategies targeting the modulation of microglia may regulate their specific phenotype. Fortunately, with the rapid development of in vivo imaging methodologies, visualization of microglial activation has been well-explored. In this review, we summarize the critical role of activated microglia during the pathogenesis of AD and current studies concerning imaging of microglial activation in AD patients. We explore the possibilities for identifying activated microglial phenotypes with imaging techniques and highlight promising therapies that regulate the microglial phenotype in AD mice.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
197
|
Mendell AL, MacLusky NJ. Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front Mol Neurosci 2018; 11:359. [PMID: 30344476 PMCID: PMC6182082 DOI: 10.3389/fnmol.2018.00359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gonadal steroid hormones are neurotrophic and neuroprotective. These effects are modulated by local metabolism of the hormones within the brain. Such control is necessary to maintain normal function, as several signaling pathways that are activated by gonadal steroid hormones in the brain can also become dysregulated in disease. Metabolites of the gonadal steroid hormones—particularly 3α-hydroxy, 5α-reduced neurosteroids—are synthesized in the brain and can act through different mechanisms from their parent steroids. These metabolites may provide a mechanism for modulating the responses to their precursor hormones, thereby providing a regulatory influence on cellular responses. In addition, there is evidence that the 3α-hydroxy, 5α-reduced neurosteroids are neuroprotective in their own right, and therefore may contribute to the overall protection conferred by their precursors. In this review article, the rapidly growing body of evidence supporting a neuroprotective role for this class of neurosteroids will be considered, including a discussion of potential mechanisms that may be involved. In addition, we explore the hypothesis that differences between males and females in local neurosteroid production may contribute to sex differences in the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
198
|
Betlazar C, Harrison-Brown M, Middleton RJ, Banati R, Liu GJ. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci 2018; 19:ijms19092707. [PMID: 30208620 PMCID: PMC6163555 DOI: 10.3390/ijms19092707] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
The inducible expression of the mitochondrial translocator protein 18 kDa (TSPO) by activated microglia is a prominent, regular feature of acute and chronic-progressive brain pathology. This expression is also the rationale for the continual development of new TSPO binding molecules for the diagnosis of "neuroinflammation" by molecular imaging. However, there is in the normal brain an ill-defined, low-level constitutive expression of TSPO. Taking advantage of healthy TSPO knockout mouse brain tissue to validate TSPO antibody specificity, this study uses immunohistochemistry to determine the regional distribution and cellular sources of TSPO in the normal mouse brain. Fluorescence microscopy revealed punctate TSPO immunostaining in vascular endothelial cells throughout the brain. In the olfactory nerve layers and glomeruli of the olfactory bulb, choroid plexus and ependymal layers, we confirm constitutive TSPO expression levels similar to peripheral organs, while some low TSPO expression is present in regions of known neurogenesis, as well as cerebellar Purkinje cells. The distributed-sparse expression of TSPO in endothelial mitochondria throughout the normal brain can be expected to give rise to a low baseline signal in TSPO molecular imaging studies. Finally, our study emphasises the need for valid and methodologically robust verification of the selectivity of TSPO ligands through the use of TSPO knockout tissues.
Collapse
Affiliation(s)
- Calina Betlazar
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Meredith Harrison-Brown
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|
199
|
TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther 2018; 194:44-58. [PMID: 30189290 DOI: 10.1016/j.pharmthera.2018.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.
Collapse
|
200
|
Abstract
Background Central nervous system (CNS) tumors are a rare but devastating malignancy, often robbing patients of the basic quality of life. Despite advances in our understanding of the CNS tumor disease processes, the prognosis for patients with CNS tumors remains poor. Better characterization and diagnostic and monitoring approaches are necessary to assist in diagnosis and treatment of CNS tumors. One important tool in the neuro-oncology armamentarium is the use of advanced imaging techniques. Methods We searched PubMed using the keywords neuro-oncology imaging, pseudoprogression, molecular imaging, and biomarkers. We limited our search to full-text English articles and identified other relevant articles from the reference lists of previously identified articles. Results Advances in imaging techniques have allowed investigators to explore various imaging modalities, from tumor characterization to differentiating pseudoprogression from tumor progression. Better imaging can result in better diagnostic approaches, greater and safer resection techniques, and improved monitoring of tumor progression. Conclusion This review highlights advances in neuro-oncology imaging techniques and their clinical utility in the treatment and management of primary brain tumors.
Collapse
|