201
|
Poon MML, Byington E, Meng W, Kubota M, Matsumoto R, Grifoni A, Weiskopf D, Dogra P, Lam N, Szabo PA, Ural BB, Wells SB, Rosenfeld AM, Brusko MA, Brusko TM, Connors TJ, Sette A, Sims PA, Luning Prak ET, Shen Y, Farber DL. Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Rep 2021; 37:110071. [PMID: 34852222 PMCID: PMC8719595 DOI: 10.1016/j.celrep.2021.110071] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
The persistence of anti-viral immunity is essential for protection and exhibits profound heterogeneity across individuals. Here, we elucidate the factors that shape maintenance and function of anti-viral T cell immunity in the body by comprehensive profiling of virus-specific T cells across blood, lymphoid organs, and mucosal tissues of organ donors. We use flow cytometry, T cell receptor sequencing, single-cell transcriptomics, and cytokine analysis to profile virus-specific CD8+ T cells recognizing the ubiquitous pathogens influenza and cytomegalovirus. Our results reveal that virus specificity determines overall magnitude, tissue distribution, differentiation, and clonal repertoire of virus-specific T cells. Age and sex influence T cell differentiation and dissemination in tissues, while T cell tissue residence and functionality are highly correlated with the site. Together, our results demonstrate how the covariates of virus, tissue, age, and sex impact the anti-viral immune response, which is important for targeting, monitoring, and predicting immune responses to existing and emerging viruses.
Collapse
Affiliation(s)
- Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eve Byington
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alba Grifoni
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Basak Burcu Ural
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Sette
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
202
|
Brauneck F, Seubert E, Wellbrock J, Schulze zur Wiesch J, Duan Y, Magnus T, Bokemeyer C, Koch-Nolte F, Menzel S, Fiedler W. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. Int J Mol Sci 2021; 22:ijms222312919. [PMID: 34884723 PMCID: PMC8657570 DOI: 10.3390/ijms222312919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 01/17/2023] Open
Abstract
This study aimed to characterize different natural killer (NK) cell phenotypes on bone marrow and peripheral blood cells from acute myeloid leukemia (AML) patients and healthy donors (HDs). Our data show that CD56dimCD16− and CD56brightCD16− NK cells represent the predominant NK cell subpopulations in AML, while the CD56dimCD16+ NK cells are significantly reduced compared to HDs. Moreover, TIGIT+ and PVRIG+ cells cluster on the CD56dimCD16+ subset whereas CD39+ and CD38+ cells do so on CD56brightCD16− NK cells in AML. Furthermore, functional effects of (co-)blockade of TIGIT and CD39 or A2AR on NK cell functionality were analyzed. These experiments revealed that the single blockade of the TIGIT receptor results in an increased NK-92 cell-mediated killing of AML cells in vitro. Combined targeting of CD39 or A2AR significantly augments the anti-TIGIT-mediated lysis of AML cells. Our data indicate that distinct NK cell subsets in AML exhibit different immunosuppressive patterns (via the TIGIT/PVRIG receptors and the purinergic pathway). In summary, we conclude that TIGIT, CD39, and A2AR constitute relevant inhibitory checkpoints of NK cells in AML patients. A combinatorial blockade synergistically strengthens NK-92 cell-mediated cytotoxicity. As inhibitors of TIGIT, CD39, and A2AR are clinically available, studies on their combined use could be conducted in the near future.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Elisa Seubert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (Y.D.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (Y.D.); (T.M.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stephan Menzel
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
- Correspondence:
| |
Collapse
|
203
|
Jacquelot N, Ghaedi M, Warner K, Chung DC, Crome SQ, Ohashi PS. Immune Checkpoints and Innate Lymphoid Cells-New Avenues for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5967. [PMID: 34885076 PMCID: PMC8657134 DOI: 10.3390/cancers13235967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular "brakes" are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
204
|
Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-Translating environmental cues into functional adaptations. Immunol Rev 2021; 305:111-136. [PMID: 34821397 DOI: 10.1111/imr.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
205
|
Poon MML, Rybkina K, Kato Y, Kubota M, Matsumoto R, Bloom NI, Zhang Z, Hastie KM, Grifoni A, Weiskopf D, Wells SB, Ural BB, Lam N, Szabo PA, Dogra P, Lee YS, Gray JI, Bradley MC, Brusko MA, Brusko TM, Saphire EO, Connors TJ, Sette A, Crotty S, Farber DL. SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Sci Immunol 2021; 6:eabl9105. [PMID: 34618554 DOI: 10.1126/sciimmunol.abl9105] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Kato
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nathaniel I Bloom
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zeli Zhang
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M Hastie
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Basak B Ural
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yoon S Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Marissa C Bradley
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Erica O Saphire
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Sette
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Shane Crotty
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
206
|
Barnes SA, Trew I, de Jong E, Foley B. Making a Killer: Selecting the Optimal Natural Killer Cells for Improved Immunotherapies. Front Immunol 2021; 12:765705. [PMID: 34777383 PMCID: PMC8578927 DOI: 10.3389/fimmu.2021.765705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past 20 years natural killer (NK) cell-based immunotherapies have emerged as a safe and effective treatment option for patients with relapsed or refractory leukemia. Unlike T cell-based therapies, NK cells harbor an innate capacity to eliminate malignant cells without prior sensitization and can be adoptively transferred between individuals without the need for extensive HLA matching. A wide variety of therapeutic NK cell sources are currently being investigated clinically, including allogeneic donor-derived NK cells, stem cell-derived NK cells and NK cell lines. However, it is becoming increasingly clear that not all NK cells are endowed with the same antitumor potential. Despite advances in techniques to enhance NK cell cytotoxicity and persistence, the initial identification and utilization of highly functional NK cells remains essential to ensure the future success of adoptive NK cell therapies. Indeed, little consideration has been given to the identification and selection of donors who harbor NK cells with potent antitumor activity. In this regard, there is currently no standard donor selection criteria for adoptive NK cell therapy. Here, we review our current understanding of the factors which govern NK cell functional fate, and propose a paradigm shift away from traditional phenotypic characterization of NK cell subsets towards a functional profile based on molecular and metabolic characteristics. We also discuss previous selection models for NK cell-based immunotherapies and highlight important considerations for the selection of optimal NK cell donors for future adoptive cell therapies.
Collapse
Affiliation(s)
- Samantha A Barnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Isabella Trew
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Bree Foley
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
207
|
Nano-engineered immune cells as "guided missiles" for cancer therapy. J Control Release 2021; 341:60-79. [PMID: 34785315 DOI: 10.1016/j.jconrel.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Immune cells can actively regulate tumors or inflammatory sites and have good biocompatibility and safety. Currently, they are one of the most promising candidates for drug delivery systems. Moreover, immune cells can significantly extend the circulation time of nanoparticles and have broad-spectrum tumor-targeting properties. This article first introduces the immune cell types most commonly used in recent years, analyzes their advantages and disadvantages, and elucidates their application in anti-tumor therapy. Next, the various ways of loading nanoparticles on immune cells that have been used in recent years are summarized and simply divided into two categories: backpacks and Trojan horses. Finally, the two "mountains" that stand in front of us when using immune cells as cell carriers, off-target problems and effective release strategies, are discussed.
Collapse
|
208
|
Activation status dictates the function of unlicensed natural killer cells in mice and humans. Blood Adv 2021; 5:4219-4232. [PMID: 34496010 PMCID: PMC8945636 DOI: 10.1182/bloodadvances.2021004589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The activation status of NK cell subsets is affected by viral load and immune context. Licensed NK cells dominate the antiviral response in mice after hematopoietic stem cell transplant.
Natural killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class 1 molecules, resulting in differential responses upon activation in a process called “licensing” or “arming.” NK cells expressing receptors that bind self-MHC are considered licensed due to an augmented effector lytic function capability compared with unlicensed subsets. However, we demonstrated that unlicensed NK subsets instead positively regulate the adaptive T-cell response during viral infections that are related to localization and cytokine production. In this study, the differential effects of the two types of NK subsets were contingent on the environment in viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) murine cytomegalovirus (MCMC) led to a loss of licensing-associated differences, as compared with mice with low-dose (LD) infection: the unlicensed NK subset no longer localized in lymph nodes (LNs), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled the phenotypes of both human and mouse NK cells in an HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to the effects of subset depletion in T-cell replete models, the licensed NK cell subsets still dominated antiviral responses after HSCT. Overall, our results highlight the intricate tuning of NK cells and how it affects overall immune responses with regard to licensing patterns and their dependency on the level of stimulation and activation status.
Collapse
|
209
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
210
|
Krabbendam L, Heesters BA, Kradolfer CMA, Haverkate NJE, Becker MAJ, Buskens CJ, Bemelman WA, Bernink JH, Spits H. CD127+ CD94+ innate lymphoid cells expressing granulysin and perforin are expanded in patients with Crohn's disease. Nat Commun 2021; 12:5841. [PMID: 34615883 PMCID: PMC8494908 DOI: 10.1038/s41467-021-26187-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Phenotypic definition of helper ILC1 and NK cells is problematic due to overlapping markers. Recently we showed the identification of cytotoxic ILC3s characterized by expression of CD94. Here we analyse CD127+ ILCs and NK cells in intestinal lamina propria from healthy donors and Crohn's disease patients and identify two populations of CD127+CD94+ ILCs, designated population A and B, that can be distinguished on the expression of CD117, CD18 and cytotoxic molecules. Population B expresses granulysin, a cytotoxic molecule linked to bacterial lysis and/or chemotaxis of monocytes. Granulysin protein is secreted by population B cells upon stimulation with IL-15. Activation of population B in the presence of TGF-β strongly reduces the expression of cytotoxic effector molecules of population B. Strikingly, samples from individuals that suffer from active Crohn's disease display enhanced frequencies of granulysin-expressing effector CD127+CD94+ ILCs in comparison to controls. Thus this study identifies group 1 ILC populations which accumulate in inflamed intestinal tissue of Crohn's disease patients and may play a role in the pathology of the disease.
Collapse
Affiliation(s)
- L Krabbendam
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - B A Heesters
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - C M A Kradolfer
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - N J E Haverkate
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M A J Becker
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - C J Buskens
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology & Metabolism (AG&M), Meibergdreef 9, Amsterdam, The Netherlands
| | - W A Bemelman
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology & Metabolism (AG&M), Meibergdreef 9, Amsterdam, The Netherlands
| | - J H Bernink
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584, CT, Utrecht, The Netherlands
| | - H Spits
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
211
|
Tan S, Guo X, Li M, Wang T, Wang Z, Li C, Wu Z, Li N, Gao L, Liang X, Ma C. Transcription factor Zhx2 restricts NK cell maturation and suppresses their antitumor immunity. J Exp Med 2021; 218:e20210009. [PMID: 34279541 PMCID: PMC8292132 DOI: 10.1084/jem.20210009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023] Open
Abstract
The maturation and functional competence of natural killer (NK) cells is a tightly controlled process that relies on transcription factors (TFs). Here, we identify transcriptional repressor zinc fingers and homeoboxes 2 (Zhx2) as a novel regulator that restricts NK cell maturation and function. Mice with Zhx2 conditional deletion in NK cells (Zhx2Δ/Δ) showed accumulation of matured NK cells. Loss of Zhx2 enhanced NK cell survival and NK cell response to IL-15. Transcriptomic analysis revealed Zeb2, a key TF in NK cell terminal maturation, as a direct downstream target of Zhx2. Therapeutically, transfer of Zhx2-deficient NK cells resulted in inhibition of tumor growth and metastasis in different murine models. Our findings collectively unmask a previously unrecognized role of Zhx2 as a novel negative regulator in NK cell maturation and highlight its therapeutic potential as a promising strategy to enhance NK cell-mediated tumor surveillance.
Collapse
Affiliation(s)
- Siyu Tan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Nailin Li
- Clinical Pharmacology Group, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| |
Collapse
|
212
|
Host genetic control of natural killer cell diversity revealed in the Collaborative Cross. Proc Natl Acad Sci U S A 2021; 118:2018834118. [PMID: 33649222 DOI: 10.1073/pnas.2018834118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells are innate effectors armed with cytotoxic and cytokine-secreting capacities whose spontaneous antitumor activity is key to numerous immunotherapeutic strategies. However, current mouse models fail to mirror the extensive immune system variation that exists in the human population which may impact on NK cell-based therapies. We performed a comprehensive profiling of NK cells in the Collaborative Cross (CC), a collection of novel recombinant inbred mouse strains whose genetic diversity matches that of humans, thereby providing a unique and highly diverse small animal model for the study of immune variation. We demonstrate that NK cells from CC strains displayed a breadth of phenotypic and functional variation reminiscent of that reported for humans with regards to cell numbers, key marker expression, and functional capacities. We took advantage of the vast genetic diversity of the CC and identified nine genomic loci through quantitative trait locus mapping driving these phenotypic variations. SNP haplotype patterns and variant effect analyses identified candidate genes associated with lung NK cell numbers, frequencies of CD94+ NK cells, and expression levels of NKp46. Thus, we demonstrate that the CC represents an outstanding resource to study NK cell diversity and its regulation by host genetics.
Collapse
|
213
|
Cho E, Theall B, Stampley J, Granger J, Johannsen NM, Irving BA, Spielmann G. Cytomegalovirus Infection Impairs the Mobilization of Tissue-Resident Innate Lymphoid Cells into the Peripheral Blood Compartment in Response to Acute Exercise. Viruses 2021; 13:v13081535. [PMID: 34452400 PMCID: PMC8402764 DOI: 10.3390/v13081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Circulating immune cell numbers and phenotypes are impacted by high-intensity acute bouts of exercise and infection history with the latent herpesviruses cytomegalovirus (CMV). In particular, CMV infection history impairs the exercise-induced mobilization of cytotoxic innate lymphoid cells 1 (ILC1) cells, also known as NK cells, in the blood. However, it remains unknown whether exercise and CMV infection modulate the mobilization of traditionally tissue-resident non-cytotoxic ILCs into the peripheral blood compartment. To address this question, 22 healthy individuals with or without CMV (20–35 years—45% CMVpos) completed 30 min of cycling at 70% VO2 max, and detailed phenotypic analysis of circulating ILCs was performed at rest and immediately post-exercise. We show for the first time that a bout of high-intensity exercise is associated with an influx of ILCs that are traditionally regarded as tissue-resident. In addition, this is the first study to highlight that latent CMV infection blunts the exercise-response of total ILCs and progenitor ILCs (ILCPs). These promising data suggest that acute exercise facilitates the circulation of certain ILC subsets, further advocating for the improvements in health seen with exercise by enhancing cellular mobilization and immunosurveillance, while also highlighting the indirect deleterious effects of CMV infection in healthy adults.
Collapse
Affiliation(s)
- Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - Bailey Theall
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - James Stampley
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - Joshua Granger
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
| | - Neil M. Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Brian A. Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA; (E.C.); (B.T.); (J.S.); (J.G.); (N.M.J.); (B.A.I.)
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Correspondence:
| |
Collapse
|
214
|
Kumar A, Cao W, Endrias K, Kuchipudi SV, Mittal SK, Sambhara S. Innate lymphoid cells (ILC) in SARS-CoV-2 infection. Mol Aspects Med 2021; 80:101008. [PMID: 34399986 PMCID: PMC8361007 DOI: 10.1016/j.mam.2021.101008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
Innate Lymphoid Cells (ILCs) are a class of innate immune cells that form the first line of defense against internal or external abiotic and biotic challenges in the mammalian hosts. As they reside in both the lymphoid and non-lymphoid tissues, they are involved in clearing the pathogens through direct killing or by secretion of cytokines that modulate the adaptive immune responses. There is burgeoning evidence that these cells are important in clearing viral infections; therefore, it is critical to understand their role in the resolution or exacerbation of the disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this review, we summarize the recent findings related to ILCs in response to SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Weiping Cao
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kedan Endrias
- College of Arts and Sciences, Georgia State University, Atlanta, GA, USA
| | - Suresh V Kuchipudi
- Department of Veterinary and Biomedical Sciences and the HUCJ Institutes of Life Sciences, Penn State University, University Park, PA, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
215
|
Zhai Y, He X, Li Y, Han R, Ma Y, Gao P, Qian Z, Gu Y, Li S. A splenic-targeted versatile antigen courier: iPSC wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. SCIENCE ADVANCES 2021; 7:eabi6326. [PMID: 34433569 PMCID: PMC8386930 DOI: 10.1126/sciadv.abi6326] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/01/2021] [Indexed: 05/05/2023]
Abstract
The major obstacles for tumor vaccine to be surmounted are the lack of versatile property and immunity-inducing effectiveness. Induced pluripotent stem cells (iPSCs) expressed various antigens the same as multiple types of tumors, providing a promising source of wide-spectrum cancer vaccines. The damaged erythrocyte membrane entrapped by spleen could be developed as antigen deliverer for enhancing acquired immunity. Here, the modified lipid materials were used to dilate erythrocyte membrane to fabricate coalescent nanovector, which not only preserved the biological characteristics of erythrocyte membrane but also remedied the defect of insufficient drug loading capacity. After wrapping iPSC protein, the nanovaccine iPSC@RBC-Mlipo exhibited obvious splenic accumulation, systemic specific antitumor immunity evocation, and effective tumor expansion and metastasis inhibition in mice. Hence, our research may provide a prospective strategy of efficient tumor vaccine for clinical practice.
Collapse
Affiliation(s)
- Yuewen Zhai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Xiaorong He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Ran Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Yuying Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Peng Gao
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Jiangsu Province, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, 29th JiangJun Street, Jiangsu Province, Nanjing 211106, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China.
| | - Siwen Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China.
| |
Collapse
|
216
|
Fortes-Andrade T, Almeida JS, Sousa LM, Santos-Rosa M, Freitas-Tavares P, Casanova JM, Rodrigues-Santos P. The Role of Natural Killer Cells in Soft Tissue Sarcoma: Prospects for Immunotherapy. Cancers (Basel) 2021; 13:cancers13153865. [PMID: 34359767 PMCID: PMC8345358 DOI: 10.3390/cancers13153865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Soft-tissue sarcomas (STS) represent about 80% of sarcomas, and are a heterogeneous group of rare and malignant tumors. Morphological evaluation has been the standard model for the diagnosis of sarcomas, and even in samples with similar characteristics, they present genetic differences, which further increases the diversity of sarcomas. This variety is one of the main challenges for the classification and understanding of STS patterns, as well as for the respective treatments, which further decreases patient survival (<5 years). Natural Killer (NK) cells have a fundamental role in the control and immune surveillance of cancer development, progression and metastases. Notwithstanding the scarcity of studies to characterize NK cells in STS, it is noteworthy that the progression of these malignancies is associated with altered NK cells. These findings support the additional need to explore NK cell-based immunotherapy in STS; some clinical trials, although very tentatively, are already underway. Abstract Soft-tissue sarcomas (STS) represent about 80% of sarcomas, and are a heterogeneous group of rare and malignant tumors. STS arise from mesenchymal tissues and can grow into structures such as adipose tissue, muscles, nervous tissue and blood vessels. Morphological evaluation has been the standard model for the diagnosis of sarcomas, and even in samples with similar characteristics, they present a diversity in cytogenetic and genetic sequence alterations, which further increases the diversity of sarcomas. This variety is one of the main challenges for the classification and understanding of STS patterns, as well as for their respective treatments, which further decreases patient survival (<5 years). Despite some studies, little is known about the immunological profile of STS. As for the immunological profile of STS in relation to NK cells, there is also a shortage of studies. Observations made in solid tumors show that the infiltration of NK cells in tumors is associated with a good prognosis of the disease. Notwithstanding the scarcity of studies to characterize NK cells, their receptors, and ligands in STS, it is noteworthy that the progression of these malignancies is associated with altered NK phenotypes. Despite the scarcity of information on the function of NK cells, their phenotypes and their regulatory pathways in STS, the findings of this study support the additional need to explore NK cell-based immunotherapy in STS further. Some clinical trials, very tentatively, are already underway. STS clinical trials are still the basis for adoptive NK-cell and cytokine-based therapy.
Collapse
Affiliation(s)
- Tânia Fortes-Andrade
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
| | - Jani Sofia Almeida
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
- Faculty of Medicine, Immunology Institute, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luana Madalena Sousa
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
| | - Manuel Santos-Rosa
- Faculty of Medicine, Immunology Institute, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Coimbra Hospital and University Center (CHUC), Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, 3000-075 Coimbra, Portugal;
| | - José Manuel Casanova
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Hospital and University Center (CHUC), Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, 3000-075 Coimbra, Portugal;
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, 3004-504 Coimbra, Portugal; (T.F.-A.); (J.S.A.); (L.M.S.)
- Faculty of Medicine, Immunology Institute, University of Coimbra, 3004-504 Coimbra, Portugal;
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-85-77-77 (ext. 24-28-44)
| |
Collapse
|
217
|
|
218
|
Hegewisch-Solloa E, Seo S, Mundy-Bosse BL, Mishra A, Waldman EH, Maurrasse S, Grunstein E, Connors TJ, Freud AG, Mace EM. Differential Integrin Adhesome Expression Defines Human NK Cell Residency and Developmental Stage. THE JOURNAL OF IMMUNOLOGY 2021; 207:950-965. [PMID: 34282002 DOI: 10.4049/jimmunol.2100162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune cells that reside within tissue and circulate in peripheral blood. They interact with a variety of microenvironments, yet how NK cells engage with these varied microenvironments is not well documented. The adhesome represents a molecular network of defined and predicted integrin-mediated signaling interactions. In this study, we define the integrin adhesome expression profile of NK cells from human tonsil, peripheral blood, and those derived from human hematopoietic precursors through stromal cell coculture systems. We report that the site of cell isolation and NK cell developmental stage dictate differences in expression of adhesome associated genes and proteins. Furthermore, we define differences in cortical actin content associated with differential expression of actin regulating proteins, suggesting that differences in adhesome expression are associated with differences in cortical actin homeostasis. These data provide understanding of the diversity of human NK cell populations and how they engage with their microenvironment.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Seungmae Seo
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Anjali Mishra
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Erik H Waldman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Sarah Maurrasse
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Eli Grunstein
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Thomas J Connors
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - Aharon G Freud
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Department of Pathology, The Ohio State University, Columbus, OH
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY;
| |
Collapse
|
219
|
Yang L, Feng Y, Wang S, Jiang S, Tao L, Li J, Wang X. Siglec-7 is an indicator of natural killer cell function in acute myeloid leukemia. Int Immunopharmacol 2021; 99:107965. [PMID: 34273636 DOI: 10.1016/j.intimp.2021.107965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Immune dysfunction is an established risk factor in acute myeloid leukemia (AML). The cytotoxicity of natural killer (NK) cells is greatly impaired in AML, and the profile of NK cell receptors is markedly altered in AML; however, this is not yet well characterized. In this study, we found the downregulation of Siglec-7 could be utilized as a potential marker of NK cell dysfunction in AML. The absolute numbers and percentages of NK cells were declined in the peripheral blood of patients with AML, and the levels of activating receptors NKG2D, NKp46, and NKp30 were reduced in NK cells from patients with AML compared with healthy controls. In contrast, the levels of inhibitory receptors TIM-3, ILT-4, ILT-5, and PD-1 were increased in NK cells from patients with AML. Of note, the level of Siglec-7 in NK cells from patients with AML was significantly lower than that in NK cells from healthy controls, and Siglec-7+ NK cells displayed higher levels of activating receptors and stronger cytotoxicity when compared with Siglec-7- NK cells. Our data indicate that decreased Siglec-7 level may predict NK cell dysfunction in AML, and NK cells may be promising targets of immunotherapy for AML.
Collapse
Affiliation(s)
- Liu Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Feng
- Department of Hematology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Shanshan Wang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Shanyue Jiang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Longxiang Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Xuefu Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
220
|
Dębska-Zielkowska J, Moszkowska G, Zieliński M, Zielińska H, Dukat-Mazurek A, Trzonkowski P, Stefańska K. KIR Receptors as Key Regulators of NK Cells Activity in Health and Disease. Cells 2021; 10:1777. [PMID: 34359951 PMCID: PMC8303609 DOI: 10.3390/cells10071777] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are part of the cellular immune response. They target mainly cancer and virally infected cells. To a high extent cytotoxic activity of NK cells is regulated inter alia by signals from killer immunoglobulin-like receptors (KIR). The major histocompatibility complex (MHC) class I molecules are important ligands for KIR receptors. Binding of ligands (such as MHC I) to the KIR receptors has the important role in solid organ or hematopoietic cell transplantation. Of note, the understanding of the relationship between KIR and MHC receptors may contribute to the improvement of transplant results. Donor-recipient matching, which also includes the KIR typing, may improve monitoring, individualize the treatment and allow for predicting possible effects after transplantation, such as the graft-versus-leukemia effect (GvL) or viral re-infection. There are also less evident implications of KIR/MHC matching, such as with pregnancy and cancer. In this review, we present the most relevant literature reports on the importance of the KIR/MHC relationship on NK cell activity and hematopoietic stem cell transplantation (HSCT)/solid organ transplantation (SOT) effects, the risk of allograft rejection, protection against post-transplant cytomegalovirus (CMV) infection, pregnancy complications, cancer and adoptive therapy with NK cells.
Collapse
Affiliation(s)
- Joanna Dębska-Zielkowska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Grażyna Moszkowska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Hanna Zielińska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Katarzyna Stefańska
- Department of Obstetrics, Medical University of Gdańsk, 80-214 Gdansk, Poland;
| |
Collapse
|
221
|
Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proc Natl Acad Sci U S A 2021; 118:2101169118. [PMID: 34244432 DOI: 10.1073/pnas.2101169118] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells comprise one subset of the innate lymphoid cell (ILC) family. Despite reported antitumor functions of NK cells, their tangible contribution to tumor control in humans remains controversial. This is due to incomplete understanding of the NK cell states within the tumor microenvironment (TME). Here, we demonstrate that peripheral circulating NK cells differentiate down two divergent pathways within the TME, resulting in different end states. One resembles intraepithelial ILC1s (ieILC1) and possesses potent in vivo antitumor activity. The other expresses genes associated with immune hyporesponsiveness and has poor antitumor functional capacity. Interleukin-15 (IL-15) and direct contact between the tumor cells and NK cells are required for the differentiation into CD49a+CD103+ cells, resembling ieILC1s. These data explain the similarity between ieILC1s and tissue-resident NK cells, provide insight into the origin of ieILC1s, and identify the ieILC1-like cell state within the TME to be the NK cell phenotype with the greatest antitumor activity. Because the proportions of the different ILC states vary between tumors, these findings provide a resource for the clinical study of innate immune responses against tumors and the design of novel therapy.
Collapse
|
222
|
Highton AJ, Schuster IS, Degli-Esposti MA, Altfeld M. The role of natural killer cells in liver inflammation. Semin Immunopathol 2021; 43:519-533. [PMID: 34230995 PMCID: PMC8260327 DOI: 10.1007/s00281-021-00877-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The liver is an important immunological site that can promote immune tolerance or activation. Natural killer (NK) cells are a major immune subset within the liver, and therefore understanding their role in liver homeostasis and inflammation is crucial. Due to their cytotoxic function, NK cells are important in the immune response against hepatotropic viral infections but are also involved in the inflammatory processes of autoimmune liver diseases and fatty liver disease. Whether NK cells primarily promote pro-inflammatory or tolerogenic responses is not known for many liver diseases. Understanding the involvement of NK cells in liver inflammation will be crucial in effective treatment and future immunotherapeutic targeting of NK cells in these disease settings. Here, we explore the role that NK cells play in inflammation of the liver in the context of viral infection, autoimmunity and fatty liver disease.
Collapse
Affiliation(s)
- A J Highton
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - I S Schuster
- Experimental and Viral Immunology, Department of Microbiology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - M A Degli-Esposti
- Experimental and Viral Immunology, Department of Microbiology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - M Altfeld
- Institute for Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
223
|
Mattiola I. Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers (Basel) 2021; 13:cancers13133225. [PMID: 34203391 PMCID: PMC8267947 DOI: 10.3390/cancers13133225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are circulating innate lymphocytes endowed with antitumoral functions. NK cells are the innate counterpart of effector T cells and among the first cells responding to infections and tumors. In this review, the immune circuits regulating the NK cell antitumoral functions and the possible strategies to shape natural killing in cancer will be discussed. Abstract Natural killer (NK) cells are innate lymphoid cells playing an important role in anti-cancer immunity. NK cells are efficient in controlling the spreading of metastasis but are not very powerful in fighting against primary tumors. The NK cell capability to infiltrate and persist in the tumor microenvironment and to exert their antitumoral functions is often limited by tumor escape mechanisms. These tumor-mediated strategies not only induce NK cell tolerance but also interfere with the NK cell-dependent immune networking. This review will provide an overview of the tumor escape mechanisms impacting NK cells, identify the immune circuits regulating the NK cell-dependent antitumor immunity and revise the emerging therapeutic approaches to unleash NK cells in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany;
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
224
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
225
|
Miron M, Meng W, Rosenfeld AM, Dvorkin S, Poon MML, Lam N, Kumar BV, Louzoun Y, Luning Prak ET, Farber DL. Maintenance of the human memory T cell repertoire by subset and tissue site. Genome Med 2021; 13:100. [PMID: 34127056 PMCID: PMC8204429 DOI: 10.1186/s13073-021-00918-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Immune-mediated protection is mediated by T cells expressing pathogen-specific T cell antigen receptors (TCR) that are maintained at diverse sites of infection as tissue-resident memory T cells (TRM) or that disseminate as circulating effector-memory (TEM), central memory (TCM), or terminal effector (TEMRA) subsets in blood and tissues. The relationship between circulating and tissue resident T cell subsets in humans remains elusive, and is important for promoting site-specific protective immunity. METHODS We analyzed the TCR repertoire of the major memory CD4+ and CD8+T cell subsets (TEM, TCM, TEMRA, and TRM) isolated from blood and/or lymphoid organs (spleen, lymph nodes, bone marrow) and lungs of nine organ donors, and blood of three living individuals spanning five decades of life. High-throughput sequencing of the variable (V) portion of individual TCR genes for each subset, tissue, and individual were analyzed for clonal diversity, expansion and overlap between lineage, T cell subsets, and anatomic sites. TCR repertoires were further analyzed for TRBV gene usage and CDR3 edit distance. RESULTS Across blood, lymphoid organs, and lungs, human memory, and effector CD8+T cells exhibit greater clonal expansion and distinct TRBV usage compared to CD4+T cell subsets. Extensive sharing of clones between tissues was observed for CD8+T cells; large clones specific to TEMRA cells were present in all sites, while TEM cells contained clones shared between sites and with TRM. For CD4+T cells, TEM clones exhibited the most sharing between sites, followed by TRM, while TCM clones were diverse with minimal sharing between sites and subsets. Within sites, TRM clones exhibited tissue-specific expansions, and maintained clonal diversity with age, compared to age-associated clonal expansions in circulating memory subsets. Edit distance analysis revealed tissue-specific biases in clonal similarity. CONCLUSIONS Our results show that the human memory T cell repertoire comprises clones which persist across sites and subsets, along with clones that are more restricted to certain subsets and/or tissue sites. We also provide evidence that the tissue plays a key role in maintaining memory T cells over age, bolstering the rationale for site-specific targeting of memory reservoirs in vaccines and immunotherapies.
Collapse
Affiliation(s)
- Michelle Miron
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirit Dvorkin
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| | - Maya Meimei Li Poon
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Brahma V Kumar
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
- Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
226
|
NKG2D Natural Killer Cell Receptor-A Short Description and Potential Clinical Applications. Cells 2021; 10:cells10061420. [PMID: 34200375 PMCID: PMC8229527 DOI: 10.3390/cells10061420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are natural cytotoxic, effector cells of the innate immune system. They can recognize transformed or infected cells. NK cells are armed with a set of activating and inhibitory receptors which are able to bind to their ligands on target cells. The right balance between expression and activation of those receptors is fundamental for the proper functionality of NK cells. One of the best known activating receptors is NKG2D, a member of the CD94/NKG2 family. Due to a specific NKG2D binding with its eight different ligands, which are overexpressed in transformed, infected and stressed cells, NK cells are able to recognize and attack their targets. The NKG2D receptor has an enormous significance in various, autoimmune diseases, viral and bacterial infections as well as for transplantation outcomes and complications. This review focuses on the NKG2D receptor, the mechanism of its action, clinical relevance of its gene polymorphisms and a potential application in various clinical settings.
Collapse
|
227
|
Ziblat A, Iraolagoitia XLR, Nuñez SY, Torres NI, Secchiari F, Sierra JM, Spallanzani RG, Rovegno A, Secin FP, Fuertes MB, Domaica CI, Zwirner NW. Circulating and Tumor-Infiltrating NK Cells From Clear Cell Renal Cell Carcinoma Patients Exhibit a Predominantly Inhibitory Phenotype Characterized by Overexpression of CD85j, CD45, CD48 and PD-1. Front Immunol 2021; 12:681615. [PMID: 34149719 PMCID: PMC8212993 DOI: 10.3389/fimmu.2021.681615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023] Open
Abstract
Although natural killer (NK) cells infiltrate clear cell renal cell carcinomas (ccRCC), the most frequent malignancy of the kidney, tumor progression suggests that they become dysfunctional. As ccRCC-driven subversion of NK cell effector functions is usually accompanied by phenotypic changes, analysis of such alterations might lead to the identification of novel biomarkers and/or targets in immuno-oncology. Consequently, we performed a phenotypic analysis of peripheral blood NK cells (PBNK) and tumor-infiltrating NK cells (TINK) from ccRCC patients. Compared to HD, PBNK from ccRCC patients exhibited features of activated cells as shown by CD25, CD69 and CD62L expression. They also displayed increased expression of DNAM-1, CD48, CD45, MHC-I, reduced expression of NKG2D, and higher frequencies of CD85j+ and PD-1+ cells. In addition, compared to PBNK from ccRCC patients, TINK exhibited higher expression of activation markers, tissue residency features and decreased expression of the activating receptors DNAM-1, NKp30, NKp46, NKp80 and CD16, suggesting a more inhibitory phenotype. Analysis of The Cancer Genome Atlas (TCGA) revealed that CD48, CD45, CD85j and PD-1 are significantly overexpressed in ccRCC and that their expression is associated with an NK cell infiltration signature. Calculation of z-scores revealed that their expression on PBNK, alone or combined, distinguished ccRCC patients from HD. Therefore, these molecules emerge as novel potential biomarkers and our results suggest that they might constitute possible targets for immunotherapy in ccRCC patients.
Collapse
Affiliation(s)
- Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Ximena Lucía Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Sol Yanel Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nicolás Ignacio Torres
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Jessica Mariel Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Raúl Germán Spallanzani
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Agustín Rovegno
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Servicio de Urología, Buenos Aires, Argentina
| | - Fernando Pablo Secin
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Servicio de Urología, Buenos Aires, Argentina
| | - Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
228
|
Quatrini L, Della Chiesa M, Sivori S, Mingari MC, Pende D, Moretta L. Human NK cells, their receptors and function. Eur J Immunol 2021; 51:1566-1579. [PMID: 33899224 PMCID: PMC9292411 DOI: 10.1002/eji.202049028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Immunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Pende
- Immunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
229
|
Dogra P, Farber DL. Stealth Killing by Uterine NK Cells for Tolerance and Tissue Homeostasis. Cell 2021; 182:1074-1076. [PMID: 32888492 DOI: 10.1016/j.cell.2020.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human natural killer (NK) cells are critical for innate defense against pathogens through direct cytotoxicity of infected cells and are the predominant immune cell at the maternal-fetal interface. In this issue of Cell, Crespo et al. show that human NK cells in the decidual region of the uterus can clear a bacterial infection from the developing fetus by infusion of granulysin into placental trophoblast cells via nanotubes, thus removing the intracellular pathogen without damage to the placental cell. These findings reveal a mechanism for targeted immune protection of the developing fetus that maintains tolerance at the maternal-fetal interface.
Collapse
Affiliation(s)
- Pranay Dogra
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
230
|
Xia M, Wang B, Wang Z, Zhang X, Wang X. Epigenetic Regulation of NK Cell-Mediated Antitumor Immunity. Front Immunol 2021; 12:672328. [PMID: 34017344 PMCID: PMC8129532 DOI: 10.3389/fimmu.2021.672328] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are critical innate lymphocytes that can directly kill target cells without prior immunization. NK cell activation is controlled by the balance of multiple germline-encoded activating and inhibitory receptors. NK cells are a heterogeneous and plastic population displaying a broad spectrum of functional states (resting, activating, memory, repressed, and exhausted). In this review, we present an overview of the epigenetic regulation of NK cell-mediated antitumor immunity, including DNA methylation, histone modification, transcription factor changes, and microRNA expression. NK cell-based immunotherapy has been recognized as a promising strategy to treat cancer. Since epigenetic alterations are reversible and druggable, these studies will help identify new ways to enhance NK cell-mediated antitumor cytotoxicity by targeting intrinsic epigenetic regulators alone or in combination with other strategies.
Collapse
Affiliation(s)
- Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Bingbing Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Zihan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China.,Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
231
|
Rao Y, Le Y, Xiong J, Pei Y, Sun Y. NK Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 12:666045. [PMID: 34017339 PMCID: PMC8130558 DOI: 10.3389/fimmu.2021.666045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic airway disease with varied frequencies of acute exacerbations, which are the main cause of morbidity and mortality of the disease. It is, therefore, urgent to develop novel therapies for COPD and its exacerbations, which rely heavily on understanding of the pathogenesis and investigation for potential targets. Current evidence indicates that natural killer (NK) cells play important roles in the pathological processes of COPD. Although novel data are revealing the significance of NK cells in maintaining immune system homeostasis and their involvement in pathogenesis of COPD, the specific mechanisms are largely unknown. Specific and in-depth studies elucidating the underlying mechanisms are therefore needed. In this review, we provided a brief overview of the biology of NK cells, from its development to receptors and functions, and outlined their subsets in peripheral blood and lungs. Then we reviewed published findings highlighting the important roles played by NK cells in COPD and its exacerbations, with a view of providing the current state of knowledge in this area to facilitate related in-depth research.
Collapse
Affiliation(s)
- Yafei Rao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yuqiang Pei
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
232
|
Melsen JE, Lugthart G, van Ostaijen-Ten Dam MM, Schilham MW. Comment to: Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cell Mol Immunol 2021; 18:1348-1349. [PMID: 33893392 PMCID: PMC8093192 DOI: 10.1038/s41423-021-00653-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Janine E Melsen
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| | - Gertjan Lugthart
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco W Schilham
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
233
|
KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection. Cell Rep 2021; 35:109056. [PMID: 33951431 DOI: 10.1016/j.celrep.2021.109056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus infections shape the human natural killer (NK) cell compartment. While Epstein-Barr virus (EBV) expands immature NKG2A+ NK cells, human cytomegalovirus (CMV) drives accumulation of adaptive NKG2C+ NK cells. Kaposi sarcoma-associated herpesvirus (KSHV) is a close relative of EBV, and both are associated with lymphomas, including primary effusion lymphoma (PEL), which nearly always harbors both viruses. In this study, KSHV dual infection of mice with reconstituted human immune system components leads to the accumulation of CD56-CD16+CD38+CXCR6+ NK cells. CD56-CD16+ NK cells were also more frequently found in KSHV-seropositive Kenyan children. This NK cell subset is poorly cytotoxic against otherwise-NK-cell-susceptible and antibody-opsonized targets. Accordingly, NK cell depletion does not significantly alter KSHV infection in humanized mice. These data suggest that KSHV might escape NK-cell-mediated immune control by driving CD56-CD16+ NK cell differentiation.
Collapse
|
234
|
Ghaedi M, Takei F. Innate lymphoid cell development. J Allergy Clin Immunol 2021; 147:1549-1560. [PMID: 33965092 DOI: 10.1016/j.jaci.2021.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Innate lymphoid cells (ILCs) mainly reside at barrier surfaces and regulate tissue homeostasis and immunity. ILCs are divided into 3 groups, group 1 ILCs, group 2 ILCs, and group 3 ILC3, on the basis of their similar effector programs to T cells. The development of ILCs from lymphoid progenitors in adult mouse bone marrow has been studied in detail, and multiple ILC progenitors have been characterized. ILCs are mostly tissue-resident cells that develop in the perinatal period. More recently, ILC progenitors have also been identified in peripheral tissues. In this review, we discuss the stepwise transcription factor-directed differentiation of mouse ILC progenitors into mature ILCs, the critical time windows in ILC development, and the contribution of bone marrow versus tissue ILC progenitors to the pool of mature ILCs in tissues.
Collapse
Affiliation(s)
- Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fumio Takei
- the Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada; Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada.
| |
Collapse
|
235
|
Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol 2021; 22:639-653. [PMID: 33907320 PMCID: PMC8102391 DOI: 10.1038/s41590-021-00922-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
White adipose tissue (WAT) is an essential regulator of energy storage and systemic metabolic homeostasis. Regulatory networks consisting of immune and structural cells are necessary to maintain WAT metabolism, which can become impaired during obesity in mammals. Using single-cell transcriptomics and flow cytometry, we unveil a large-scale comprehensive cellular census of the stromal vascular fraction of healthy lean and obese human WAT. We report new subsets and developmental trajectories of adipose-resident innate lymphoid cells, dendritic cells and monocyte-derived macrophage populations that accumulate in obese WAT. Analysis of cell-cell ligand-receptor interactions and obesity-enriched signaling pathways revealed a switch from immunoregulatory mechanisms in lean WAT to inflammatory networks in obese WAT. These results provide a detailed and unbiased cellular landscape of homeostatic and inflammatory circuits in healthy human WAT.
Collapse
|
236
|
Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021; 21:298-312. [PMID: 33750922 DOI: 10.1038/s41568-021-00339-z] [Citation(s) in RCA: 699] [Impact Index Per Article: 174.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.
Collapse
|
237
|
van Gisbergen KPJM, Zens KD, Münz C. T-cell memory in tissues. Eur J Immunol 2021; 51:1310-1324. [PMID: 33837521 DOI: 10.1002/eji.202049062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kyra D Zens
- Viral Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
238
|
Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunology 2021; 10:e1274. [PMID: 33959279 PMCID: PMC8080297 DOI: 10.1002/cti2.1274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) have revolutionised the field of cellular therapy for cancer. Despite its success, this strategy has some recognised limitations and toxicities. Hence, there is growing interest in developing novel cellular therapies based on non-αβ T-cell immune effector cells, including NK cells that offer clear advantages in cancer immunotherapy. As a result, NK cells are being explored as an alternative platform for CAR engineering and are becoming recognised as important players in the next generation of cellular therapies targeting cancer. In this review, we highlight preclinical and clinical studies of CAR-NK cells derived from different sources and discuss strategies under investigation to enhance the antitumor activity of these engineered innate immune cells.
Collapse
Affiliation(s)
- May Daher
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy The University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
239
|
Zuo W, Zhao X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application. Clin Immunol 2021; 227:108727. [PMID: 33887436 PMCID: PMC8055501 DOI: 10.1016/j.clim.2021.108727] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
With the global spread of coronavirus disease 2019 (COVID-19), the important role of natural killer (NK) cells in the control of various viral infections attracted more interest, via non-specific activation, such as antibody-dependent cell-mediated cytotoxicity (ADCC) and activating receptors, as well as specific activation, such as memory-like NK generation. In response to different viral infections, NK cells fight viruses in different ways, and different NK subsets proliferate. For instance, cytomegalovirus (CMV) induces NKG2C + CD57 + KIR+ NK cells to expand 3-6 months after hematopoietic stem cell transplantation (HSCT), but human immunodeficiency virus (HIV) induces KIR3DS1+/KIR3DL1 NK cells to expand in the acute phase of infection. However, the similarities and differences among these processes and their molecular mechanisms have not been fully discussed. In this article, we provide a summary and comparison of antiviral mechanisms, unique subset expansion and time periods in peripheral blood and tissues under different conditions of CMV, HIV, Epstein-Barr virus (EBV), COVID-19 and hepatitis B virus (HBV) infections. Accordingly, we also discuss current clinical NK-associated antiviral applications, including cell therapy and NK-related biological agents, and we state the progress and future prospects of NK cell antiviral treatment.
Collapse
Affiliation(s)
- Wei Zuo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
240
|
Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ, Weisberg SP, Krupska I, Matsumoto R, Poon MML, Idzikowski E, Morris SE, Pasin C, Yates AJ, Ku A, Chait M, Davis-Porada J, Guo XV, Zhou J, Steinle M, Mackay S, Saqi A, Baldwin MR, Sims PA, Farber DL. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 2021; 54:797-814.e6. [PMID: 33765436 PMCID: PMC7951561 DOI: 10.1016/j.immuni.2021.03.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stuart P Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Izabela Krupska
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University, New York, NY 10032, USA
| | - Emma Idzikowski
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sinead E Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chloé Pasin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amy Ku
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Chait
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Davis-Porada
- Medical Scientist Training Program, Columbia University, New York, NY 10032, USA
| | - Xinzheng V Guo
- Human Immune Monitoring Core, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT 06405, USA
| | | | - Sean Mackay
- IsoPlexis Corporation, Branford, CT 06405, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew R Baldwin
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
241
|
Perera Molligoda Arachchige AS. Human NK cells: From development to effector functions. Innate Immun 2021; 27:212-229. [PMID: 33761782 PMCID: PMC8054151 DOI: 10.1177/17534259211001512] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.
Collapse
|
242
|
Huang Y, Oldham JM, Ma SF, Unterman A, Liao SY, Barros AJ, Bonham CA, Kim JS, Vij R, Adegunsoye A, Strek ME, Molyneaux PL, Maher TM, Herazo-Maya JD, Kaminski N, Moore BB, Martinez FJ, Noth I. Blood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells. Am J Respir Crit Care Med 2021; 204:197-208. [PMID: 33689671 DOI: 10.1164/rccm.202008-3093oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Disease activity in idiopathic pulmonary fibrosis (IPF) remains highly variable, poorly understood, and difficult to predict. Objectives: To identify a predictor using short-term longitudinal changes in gene expression that forecasts future FVC decline and to characterize involved pathways and cell types. Methods: Seventy-four patients from COMET (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in IPF) cohort were dichotomized as progressors (≥10% FVC decline) or stable. Blood gene-expression changes within individuals were calculated between baseline and 4 months and regressed with future FVC status, allowing determination of expression variations, sample size, and statistical power. Pathway analyses were conducted to predict downstream effects and identify new targets. An FVC predictor for progression was constructed in COMET and validated using independent cohorts. Peripheral blood mononuclear single-cell RNA-sequencing data from healthy control subjects were used as references to characterize cell type compositions from bulk peripheral blood mononuclear RNA-sequencing data that were associated with FVC decline. Measurements and Main Results: The longitudinal model reduced gene-expression variations within stable and progressor groups, resulting in increased statistical power when compared with a cross-sectional model. The FVC predictor for progression anticipated patients with future FVC decline with 78% sensitivity and 86% specificity across independent IPF cohorts. Pattern recognition receptor pathways and mTOR pathways were downregulated and upregulated, respectively. Cellular deconvolution using single-cell RNA-sequencing data identified natural killer cells as significantly correlated with progression. Conclusions: Serial transcriptomic change predicts future FVC decline. An analysis of cell types involved in the progressor signature supports the novel involvement of natural killer cells in IPF progression.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Justin M Oldham
- Division of Pulmonary, Critical Care, and Sleep Medicine, The University of California at Davis, Sacramento, California
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Avraham Unterman
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Andrew J Barros
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Catherine A Bonham
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - John S Kim
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Rekha Vij
- Section of Pulmonary and Critical Care Medicine and
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine and.,Department of Human Genetics, Genetics, Genomic and Systems Biology, University of Chicago, Chicago, Illinois
| | - Mary E Strek
- Section of Pulmonary and Critical Care Medicine and
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom.,Division of Pulmonary, Critical Care and Sleep Medicine, Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tampa General Hospital, University of South Florida, Tampa, Florida
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Fernando J Martinez
- Internal Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| |
Collapse
|
243
|
Jiang Y, Jiang H, Wang K, Liu C, Man X, Fu Q. Hypoxia enhances the production and antitumor effect of exosomes derived from natural killer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:473. [PMID: 33850870 PMCID: PMC8039676 DOI: 10.21037/atm-21-347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Exosomes are a subgroup of extracellular vesicles that are naturally released by almost all types of cells. However, the factors that promote the capacity of natural killer (NK) cells to release exosomes are unclear. In this study, we investigated whether hypoxia can enhance the yield of NK cell-derived exosomes and improve the immunotherapeutic effects of these cells. Methods Exosomes from NK92 or NK92-hIL-15 cells were isolated from culture medium under normoxic (NK92-Exo and NK92-hIL-15-Exo) or hypoxic (hypoxic NK92-Exo and hypoxic NK92-hIL-15-Exo) conditions. NK92-Exo and hypoxic NK92-Exo were characterized by transmission electron microscopy (TEM), nanoparticle-tracking analysis (NTA), and western blot. Real-time cell assay, wound healing assay, flow cytometry, and western blot were then performed to assess cytotoxicity, cell proliferation, cell migration, apoptosis, and the expression levels of cytotoxicity-associated proteins. Results After 48 hours of hypoxic treatment, NK92-Exo exhibited significantly increased cytotoxicity, enhanced inhibition of cell proliferation, and elevated levels of molecules associated with NK cell cytotoxicity. The hypoxia-treated NK92-Exo and NK92-hIL-15-Exo showed increased expression of three functional proteins of NK cells-specifically FasL, perforin, and granzyme B-as compared with their NK92-Exo counterparts exposed to normoxia. Conclusions As an approach that supports overproduction of exosomes, hypoxic treatment of NK cells may serve as a promising therapeutic option for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Immunology, Binzhou Medical University, Yantai, China
| | - Haiming Jiang
- Intensive Care Unit, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Kun Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunling Liu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xuejing Man
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, China
| | - Qiang Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China.,School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA.,Shandong Cellogene Pharamaceutics Co. LTD, Yantai, China
| |
Collapse
|
244
|
Tissue-specific immunity for a changing world. Cell 2021; 184:1517-1529. [PMID: 33740452 DOI: 10.1016/j.cell.2021.01.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Our immune system has evolved to protect us from pathogens and maintain homeostasis through localization in diverse tissue sites throughout the body. Immune responses are orchestrated by T cells, which direct pathogen clearance at the infection site and establish tissue-resident memory T cells (TRMs) for protection immunity. Here, we discuss how tissue immune responses are influenced by various stressors (e.g., metabolic, environmental, aging) that are rapidly changing due to climate fluctuations and globalization. We propose potential strategies for targeting tissue immunity to mitigate future pathogenic and environmental challenges and areas of investigation that can elucidate mechanisms for adapting and restoring homeostasis.
Collapse
|
245
|
The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses 2021; 13:v13020300. [PMID: 33671917 PMCID: PMC7918975 DOI: 10.3390/v13020300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the population worldwide are asymptomatic carriers of Epstein-Barr Virus (EBV). However, some infected individuals eventually develop EBV-related cancers, including Nasopharyngeal Carcinoma (NPC). NPC is one of the most common EBV-associated epithelial cancers, and is highly prevalent in Southern China and Southeast Asia. While NPC is highly sensitive to radiotherapy and chemotherapy, there is a lack of effective and durable treatment among the 15%–30% of patients who subsequently develop recurrent disease. Natural Killer (NK) cells are natural immune lymphocytes that are innately primed against virus-infected cells and nascent aberrant transformed cells. As EBV is found in both virally infected and cancer cells, it is of interest to examine the NK cells’ role in both EBV infection and EBV-associated NPC. Herein, we review the current understanding of how EBV-infected cells are cleared by NK cells, and how EBV can evade NK cell-mediated elimination in the context of type II latency in NPC. Next, we summarize the current literature about NPC and NK cell biology. Finally, we discuss the translational potential of NK cells in NPC. This information will deepen our understanding of host immune interactions with EBV-associated NPC and facilitate development of more effective NK-mediated therapies for NPC treatment.
Collapse
|
246
|
The immune potential of decidua-resident CD16 +CD56 + NK cells in human pregnancy. Hum Immunol 2021; 82:332-339. [PMID: 33583640 DOI: 10.1016/j.humimm.2021.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Human CD56+CD3- NK cells can be subdivided into two different subsets according to the expression pattern of CD56 and CD16. CD56+/brightCD16- (CD16-) NK cells are prominently cytokine producers with little cytotoxicity whereas CD56+/dimCD16+ (CD16+) NK cells are efficient killers with poorer cytokine production potential. In human pregnancy, CD56+ decidual (d)NK cells accumulate in the maternal fetal interface to regulate placental immunity and development. Unlike peripheral blood (pb)NK cells, the majority of dNK cells are CD56 positive with limited CD16 reactivity. Our results demonstrated that in normal and pathological pregnancies, CD16+ dNK cells are a unique population in comparison to CD16- dNK subset. The expression of NK activation receptors CD335, CD336, CD244 and CD314 on CD16+ dNK subpopulation was lower than that on CD16- dNK cells. Upon cytokine stimulation with rhIL-12/15/18 or TGFβ blockade, the CD16+ dNK subset exhibited more robust response on the expression of IFNG, IL-8 and CD107a, compared to that of the CD16- dNK subpopulation. Functions of the CD16+ dNK subset were shown to be independent of cellular interaction with trophoblast cells. Studies of preeclamptic patients revealed lower proportions of CD16+ dNK cells, suggesting potential protective roles of these cells during normal gestations.. Therefore, we suggest that the CD16+ dNK subset, through compensating CD16- dNK cell function, is an indispensable componentto regulate decidual immune response and to support placentation.
Collapse
|
247
|
Krabbendam L, Heesters BA, Kradolfer CMA, Spits H, Bernink JH. Identification of human cytotoxic ILC3s. Eur J Immunol 2021; 51:811-823. [PMID: 33300130 PMCID: PMC8248192 DOI: 10.1002/eji.202048696] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Human ILCs are classically categorized into five subsets; cytotoxic CD127−CD94+ NK cells and non‐cytotoxic CD127+CD94−, ILC1s, ILC2s, ILC3s, and LTi cells. Here, we identify a previously unrecognized subset within the CD127+ ILC population, characterized by the expression of the cytotoxic marker CD94. These CD94+ ILCs resemble conventional ILC3s in terms of phenotype, transcriptome, and cytokine production, but are highly cytotoxic. IL‐15 was unable to induce differentiation of CD94+ ILCs toward mature NK cells. Instead, CD94+ ILCs retained RORγt, CD127 and CD200R1 expression and produced IL‐22 in response to IL‐15. Culturing non‐cytotoxic ILC3s with IL‐12 induced upregulation of CD94 and cytotoxic activity, effects that were not observed with IL‐15 stimulation. Thus, human helper ILCs can acquire a cytotoxic program without differentiating into NK cells.
Collapse
Affiliation(s)
- Lisette Krabbendam
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Balthasar A Heesters
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Chantal M A Kradolfer
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hergen Spits
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jochem H Bernink
- Amsterdam UMC, Department of Experimental Immunology, University of Amsterdam, Amsterdam Infection & Immunity Institute (AI&II), Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
248
|
Millan AJ, Hom BA, Libang JB, Sindi S, Manilay JO. Evidence for Prescribed NK Cell Ly-49 Developmental Pathways in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 206:1215-1227. [PMID: 33495236 DOI: 10.4049/jimmunol.2000613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Previous studies of NK cell inhibitory Ly-49 genes showed their expression is stochastic. However, relatively few studies have examined the mechanisms governing acquisition of inhibitory receptors in conjunction with activating Ly-49 receptors and NK cell development. We hypothesized that the surface expression of activating Ly-49 receptors is nonrandom and is influenced by inhibitory Ly-49 receptors. We analyzed NK cell "clusters" defined by combinatorial expression of activating (Ly-49H and Ly-49D) and inhibitory (Ly-49I and Ly-49G2) receptors in C57BL/6 mice. Using the product rule to evaluate the interdependencies of the Ly-49 receptors, we found evidence for a tightly regulated expression at the immature NK cell stage, with the highest interdependencies between clusters that express at least one activating receptor. Further analysis demonstrated that certain NK clusters predominated at the immature (CD27+CD11b-), transitional (CD27+CD11b+), and mature (CD27-CD11b-) NK cell stages. Using parallel in vitro culture and in vivo transplantation of sorted NK clusters, we discovered nonrandom expression of Ly-49 receptors, suggesting that prescribed pathways of NK cluster differentiation exist. Our data infer that surface expression of Ly-49I is an important step in NK cell maturation. Ki-67 expression and cell counts confirmed that immature NK cells proliferate more than mature NK cells. We found that MHC class I is particularly important for regulation of Ly-49D and Ly-49G2, even though no known MHC class I ligand for these receptors is present in B6 mice. Our data indicate that surface expression of both activating and inhibitory Ly-49 receptors on NK cell clusters occurs in a nonrandom process correlated to their maturation stage.
Collapse
Affiliation(s)
- Alberto J Millan
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343.,Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Bryan A Hom
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Jeremy B Libang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Suzanne Sindi
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and.,Quantitative and Systems Biology Graduate Group, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Jennifer O Manilay
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; .,Quantitative and Systems Biology Graduate Group, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| |
Collapse
|
249
|
Goodier MR, Riley EM. Regulation of the human NK cell compartment by pathogens and vaccines. Clin Transl Immunology 2021; 10:e1244. [PMID: 33505682 PMCID: PMC7813579 DOI: 10.1002/cti2.1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self‐MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine‐induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen‐, tumor‐ or stress‐induced innate pathways and from antigen‐specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen‐ and vaccine‐derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology London School of Hygiene and Tropical Medicine London UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
250
|
Wang F, Lau JKC, Yu J. The role of natural killer cell in gastrointestinal cancer: killer or helper. Oncogene 2021; 40:717-730. [PMID: 33262461 PMCID: PMC7843415 DOI: 10.1038/s41388-020-01561-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer is one of the leading health problems worldwide, with a high morbidity and mortality. To date, harnessing both the innate and adaptive immune system against cancer provides a selective and effective therapeutic strategy for patients. As a first line defense against cancer, natural killer (NK) cells can swiftly target and lyse tumor cells without prior activation. In addition to its pivotal role in innate immunity, NK cells also play unique roles in the adaptive immune system as it enhance anti-tumor adaptive immune responses through secretion of cytokines and retaining an immunological memory. All these characteristics make NK cell a promising anti-cancer agent for patients. In spite of scarce infiltration and impaired function of NK cells in tumors, and the fact that tumors easily develop resistant mechanisms to evade the attacks from endogenous NK cells, multiple strategies have been developed to boost anti-tumor effect of NK cells and abolish tumor resistance. Some examples include adoptive transfer of NK cells after ex vivo activation and expansion; restoration of NK cell function using immune checkpoint inhibitors, and monoclonal antibody or cytokine treatment. Preclinical data have shown encouraging results, suggesting that NK cells hold great potential in cancer therapy. In this review, we discuss NK cells' cytotoxicity and modulation function in GI cancer and the current application in clinical therapy.
Collapse
Affiliation(s)
- Feixue Wang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jennie Ka Ching Lau
- Faculty of Medicine, SHHO College, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|