201
|
Notaras M, Lodhi A, Dündar F, Collier P, Sayles NM, Tilgner H, Greening D, Colak D. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry 2022; 27:1416-1434. [PMID: 34789849 PMCID: PMC9095467 DOI: 10.1038/s41380-021-01316-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
Due to an inability to ethically access developing human brain tissue as well as identify prospective cases, early-arising neurodevelopmental and cell-specific signatures of Schizophrenia (Scz) have remained unknown and thus undefined. To overcome these challenges, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. This ultimately yielded fewer neurons within developing cortical fields of Scz organoids. Single-cell sequencing revealed that Scz progenitors were specifically depleted of neuronal programming factors leading to a remodeling of cell-lineages, altered differentiation trajectories, and distorted cortical cell-type diversity. While Scz organoids were similar in their macromolecular diversity to organoids generated from healthy controls (Ctrls), four GWAS factors (PTN, COMT, PLCL1, and PODXL) and peptide fragments belonging to the POU-domain transcription factor family (e.g., POU3F2/BRN2) were altered. This revealed that Scz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Single-cell sequencing subsequently identified cell-type specific alterations in neuronal programming factors as well as a developmental switch in neurotrophic growth factor expression, indicating that Scz neuropathology can be encoded on a cell-type-by-cell-type basis. Furthermore, single-cell sequencing also specifically replicated the depletion of BRN2 (POU3F2) and PTN in both Scz progenitors and neurons. Subsequently, in two mechanistic rescue experiments we identified that the transcription factor BRN2 and growth factor PTN operate as mechanistic substrates of neurogenesis and cellular survival, respectively, in Scz organoids. Collectively, our work suggests that multiple mechanisms of Scz exist in patient-derived organoids, and that these disparate mechanisms converge upon primordial brain developmental pathways such as neuronal differentiation, survival, and growth factor support, which may amalgamate to elevate intrinsic risk of Scz.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Paul Collier
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nicole M Sayles
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Hagen Tilgner
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Greening
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Institute & Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
202
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
203
|
Susaimanickam PJ, Kiral FR, Park IH. Region Specific Brain Organoids to Study Neurodevelopmental Disorders. Int J Stem Cells 2022; 15:26-40. [PMID: 35220290 PMCID: PMC8889336 DOI: 10.15283/ijsc22006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Region specific brain organoids are brain organoids derived by patterning protocols using extrinsic signals as opposed to cerebral organoids obtained by self-patterning. The main focus of this review is to discuss various region-specific brain organoids developed so far and their application in modeling neurodevelopmental disease. We first discuss the principles of neural axis formation by series of growth factors, such as SHH, WNT, BMP signalings, that are critical to generate various region-specific brain organoids. Then we discuss various neurodevelopmental disorders modeled so far with these region-specific brain organoids, and findings made on mechanism and treatment options for neurodevelopmental disorders (NDD).
Collapse
Affiliation(s)
- Praveen Joseph Susaimanickam
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
204
|
Tasnim K, Liu J. Emerging Bioelectronics for Brain Organoid Electrophysiology. J Mol Biol 2022; 434:167165. [PMID: 34293341 PMCID: PMC8766612 DOI: 10.1016/j.jmb.2021.167165] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023]
Abstract
Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.
Collapse
Affiliation(s)
- Kazi Tasnim
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Jia Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
| |
Collapse
|
205
|
Fan W, Christian KM, Song H, Ming GL. Applications of Brain Organoids for Infectious Diseases. J Mol Biol 2022; 434:167243. [PMID: 34536442 PMCID: PMC8810605 DOI: 10.1016/j.jmb.2021.167243] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
Brain organoids are self-organized three-dimensional aggregates generated from pluripotent stem cells. They exhibit complex cell diversities and organized architectures that resemble human brain development ranging from neural tube formation, neuroepithelium differentiation, neurogenesis and gliogenesis, to neural circuit formation. Rapid advancements in brain organoid culture technologies have allowed researchers to generate more accurate models of human brain development and neurological diseases. These models also allow for direct investigation of pathological processes associated with infectious diseases affecting the nervous system. In this review, we first briefly summarize recent advancements in brain organoid methodologies and neurodevelopmental processes that can be effectively modeled by brain organoids. We then focus on applications of brain organoids to investigate the pathogenesis of neurotropic viral infection. Finally, we discuss limitations of the current brain organoid methodologies as well as applications of other organ specific organoids in the infectious disease research.
Collapse
Affiliation(s)
- Wenqiang Fan
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. https://twitter.com/UPenn_SongMing
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
206
|
Fan P, Wang Y, Xu M, Han X, Liu Y. The Application of Brain Organoids in Assessing Neural Toxicity. Front Mol Neurosci 2022; 15:799397. [PMID: 35221913 PMCID: PMC8864968 DOI: 10.3389/fnmol.2022.799397] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
The human brain is a complicated and precisely organized organ. Exogenous chemicals, such as pollutants, drugs, and industrial chemicals, may affect the biological processes of the brain or its function and eventually lead to neurological diseases. Animal models may not fully recapitulate the human brain for testing neural toxicity. Brain organoids with self-assembled three-dimensional (3D) structures provide opportunities to generate relevant tests or predictions of human neurotoxicity. In this study, we reviewed recent advances in brain organoid techniques and their application in assessing neural toxicants. We hope this review provides new insights for further progress in brain organoid application in the screening studies of neural toxicants.
Collapse
Affiliation(s)
- Pan Fan
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - YuanHao Wang
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Min Xu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
207
|
Challenges to, and prospects for, reverse engineering the gastrointestinal tract using organoids. Trends Biotechnol 2022; 40:932-944. [DOI: 10.1016/j.tibtech.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
|
208
|
Hou PS, Kuo HC. Central nervous system organoids for modeling neurodegenerative diseases. IUBMB Life 2022; 74:812-825. [PMID: 35102668 DOI: 10.1002/iub.2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/07/2022]
Abstract
Recent advances in induced pluripotent stem cell (iPSC) technology have allowed researchers to generate neurodegenerative disease-specific iPSCs and use the cells to derive a variety of relevant cell populations for laboratory modeling and drug testing. Nevertheless, these efforts have faced challenges related to immaturity and lack of complex developmental niches in the derived cell populations, limiting the utility of these in vitro models of neurodegenerative disease. Such limitations may be overcome by using human iPSC technology to generate three-dimensional (3D) brain organoids, which better recapitulate in vivo tissue architecture than traditional neuronal cultures to provide more complex and representative disease models and drug testing systems. In this review, we focus on the application of pluripotent stem cell-derived central nervous system (CNS) organoids to model neurodegenerative diseases. We first summarize recent progress in generating and characterizing various CNS organoids from pluripotent stem cells. We then review the application of CNS organoids for modeling several different human neurodegenerative diseases. We also describe several novel pathological mechanisms and drugs that were studied using patient iPSC-derived CNS organoids. Finally, we discuss remaining challenges and emerging opportunities for the use of 3D brain organoids for in vitro modeling of CNS development and neurodegeneration.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
209
|
Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells 2022; 11:cells11030460. [PMID: 35159270 PMCID: PMC8833927 DOI: 10.3390/cells11030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in human pluripotent stem cell (hPSC) technology allow one to deconstruct the human body into specific disease-relevant cell types or create functional units representing various organs. hPSC-based models present a unique opportunity for the study of co-occurring disorders where “cause and effect” can be addressed. Poor neurodevelopmental outcomes have been reported in children with congenital heart diseases (CHD). Intuitively, abnormal cardiac function or surgical intervention may stunt the developing brain, leading to neurodevelopmental disorders (NDD). However, recent work has uncovered several genetic variants within genes associated with the development of both the heart and brain that could also explain this co-occurrence. Given the scalability of hPSCs, straightforward genetic modification, and established differentiation strategies, it is now possible to investigate both CHD and NDD as independent events. We will first overview the potential for shared genetics in both heart and brain development. We will then summarize methods to differentiate both cardiac & neural cells and organoids from hPSCs that represent the developmental process of the heart and forebrain. Finally, we will highlight strategies to rapidly screen several genetic variants together to uncover potential phenotypes and how therapeutic advances could be achieved by hPSC-based models.
Collapse
|
210
|
Cakir B, Tanaka Y, Kiral FR, Xiang Y, Dagliyan O, Wang J, Lee M, Greaney AM, Yang WS, duBoulay C, Kural MH, Patterson B, Zhong M, Kim J, Bai Y, Min W, Niklason LE, Patra P, Park IH. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nat Commun 2022; 13:430. [PMID: 35058453 PMCID: PMC8776770 DOI: 10.1038/s41467-022-28043-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Microglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available. Here, we develop a method to generate functional microglia in human cortical organoids (hCOs) from human embryonic stem cells (hESCs). We apply this system to study the role of microglia during inflammation induced by amyloid-β (Aβ). The overexpression of the myeloid-specific transcription factor PU.1 generates microglia-like cells in hCOs, producing mhCOs (microglia-containing hCOs), that we engraft in the mouse brain. Single-cell transcriptomics reveals that mhCOs acquire a microglia cell cluster with an intact complement and chemokine system. Functionally, microglia in mhCOs protect parenchyma from cellular and molecular damage caused by Aβ. Furthermore, in mhCOs, we observed reduced expression of Aβ-induced expression of genes associated with apoptosis, ferroptosis, and Alzheimer's disease (AD) stage III. Finally, we assess the function of AD-associated genes highly expressed in microglia in response to Aβ using pooled CRISPRi coupled with single-cell RNA sequencing in mhCOs. In summary, we provide a protocol to generate mhCOs that can be used in fundamental and translational studies as a model to investigate the role of microglia in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, H1T 2M4, Canada
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan Wang
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Maria Lee
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Woo Sub Yang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Mehmet Hamdi Kural
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yalai Bai
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Laura E Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Prabir Patra
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, 06604, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
211
|
Miura Y, Li MY, Revah O, Yoon SJ, Narazaki G, Pașca SP. Engineering brain assembloids to interrogate human neural circuits. Nat Protoc 2022; 17:15-35. [PMID: 34992269 DOI: 10.1038/s41596-021-00632-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
Abstract
The development of neural circuits involves wiring of neurons locally following their generation and migration, as well as establishing long-distance connections between brain regions. Studying these developmental processes in the human nervous system remains difficult because of limited access to tissue that can be maintained as functional over time in vitro. We have previously developed a method to convert human pluripotent stem cells into brain region-specific organoids that can be fused and integrated to form assembloids and study neuronal migration. In contrast to approaches that mix cell lineages in 2D cultures or engineer microchips, assembloids leverage self-organization to enable complex cell-cell interactions, circuit formation and maturation in long-term cultures. In this protocol, we describe approaches to model long-range neuronal connectivity in human brain assembloids. We present how to generate 3D spheroids resembling specific domains of the nervous system and then how to integrate them physically to allow axonal projections and synaptic assembly. In addition, we describe a series of assays including viral labeling and retrograde tracing, 3D live imaging of axon projection and optogenetics combined with calcium imaging and electrophysiological recordings to probe and manipulate the circuits in assembloids. The assays take 3-4 months to complete and require expertise in stem cell culture, imaging and electrophysiology. We anticipate that these approaches will be useful in deciphering human-specific aspects of neural circuit assembly and in modeling neurodevelopmental disorders with patient-derived cells.
Collapse
Affiliation(s)
- Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Genta Narazaki
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA. .,Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
212
|
Lu X, Yang J, Xiang Y. Modeling human neurodevelopmental diseases with brain organoids. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:1. [PMID: 34982276 PMCID: PMC8727646 DOI: 10.1186/s13619-021-00103-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/24/2021] [Indexed: 04/25/2023]
Abstract
Studying the etiology of human neurodevelopmental diseases has long been a challenging task due to the brain's complexity and its limited accessibility. Human pluripotent stem cells (hPSCs)-derived brain organoids are capable of recapitulating various features and functionalities of the human brain, allowing the investigation of intricate pathogenesis of developmental abnormalities. Over the past years, brain organoids have facilitated identifying disease-associated phenotypes and underlying mechanisms for human neurodevelopmental diseases. Integrating with more cutting-edge technologies, particularly gene editing, brain organoids further empower human disease modeling. Here, we review the latest progress in modeling human neurodevelopmental disorders with brain organoids.
Collapse
Affiliation(s)
- Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajie Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
213
|
Liang J, Li X, Dong Y, Zhao B. Modeling Human Organ Development and Diseases With Fetal Tissue-Derived Organoids. Cell Transplant 2022; 31:9636897221124481. [PMID: 36121224 PMCID: PMC9490458 DOI: 10.1177/09636897221124481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent advances in human organoid technology have greatly facilitated the study of organ development and pathology. In most cases, these organoids are derived from either pluripotent stem cells or adult stem cells for the modeling of developmental events and tissue homeostasis. However, due to the lack of human fetal tissue references and research model, it is still challenging to capture early developmental changes and underlying mechanisms in human embryonic development. The establishment of fetal tissue–derived organoids in rigorous time points is necessary. Here we provide an overview of the strategies and applications of fetal tissue–derived organoids, mainly focusing on fetal organ development research, developmental defect disease modeling, and organ–organ interaction study. Discussion of the importance of fetal tissue research also highlights the prospects and challenges in this field.
Collapse
Affiliation(s)
- Jianqing Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yateng Dong
- bioGenous Biotechnology, Inc., Hangzhou, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
214
|
Wang Y, Liu L, Lin M. Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development. J Biomed Res 2022; 36:242-254. [PMID: 35965434 PMCID: PMC9376727 DOI: 10.7555/jbr.36.20220074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic variants within or near the transcription factor 4 gene (TCF4) are robustly implicated in psychiatric disorders including schizophrenia. However, the biological pleiotropy poses considerable obstacles to dissect the potential relationship between TCF4 and those highly heterogeneous diseases. Through integrative transcriptomic analysis, we demonstrated that TCF4 is preferentially expressed in cortical interneurons during early brain development. Therefore, disruptions of interneuron development might be the underlying contribution of TCF4 perturbation to a range of neurodevelopmental disorders. Here, we performed chromatin immunoprecipitation sequencing (ChIP-seq) of TCF4 on human medial ganglionic eminence-like organoids (hMGEOs) to identify genome-wide TCF4 binding sites, followed by integration of multi-omics data from human fetal brain. We observed preferential expression of the isoform TCF4-B over TCF4-A. De novo motif analysis found that the identified 5916 TCF4 binding sites are significantly enriched for the E-box sequence. The predicted TCF4 targets in general have positively correlated expression levels with TCF4 in the cortical interneurons, and are primarily involved in biological processes related to neurogenesis. Interestingly, we found that TCF4 interacts with non-bHLH proteins such as FOS/JUN, which may underlie the functional specificity of TCF4 in hMGEOs. This study highlights the regulatory role of TCF4 in interneuron development and provides compelling evidence to support the biological rationale linking TCF4 to the developing cortical interneuron and psychiatric disorders.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Mingyan Lin, Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869432, E-mail:
| |
Collapse
|
215
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
216
|
Chiola S, Edgar NU, Shcheglovitov A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 2022; 27:249-258. [PMID: 34497379 PMCID: PMC8901782 DOI: 10.1038/s41380-021-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.
Collapse
Affiliation(s)
- Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
217
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
218
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|
219
|
Robles DA, Boreland AJ, Pang ZP, Zahn JD. A Cerebral Organoid Connectivity Apparatus to Model Neuronal Tract Circuitry. MICROMACHINES 2021; 12:1574. [PMID: 34945423 PMCID: PMC8706388 DOI: 10.3390/mi12121574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Mental disorders have high prevalence, but the efficacy of existing therapeutics is limited, in part, because the pathogenic mechanisms remain enigmatic. Current models of neural circuitry include animal models and post-mortem brain tissue, which have allowed enormous progress in understanding the pathophysiology of mental disorders. However, these models limit the ability to assess the functional alterations in short-range and long-range network connectivity between brain regions that are implicated in many mental disorders, e.g., schizophrenia and autism spectrum disorders. This work addresses these limitations by developing an in vitro model of the human brain that models the in vivo cerebral tract environment. In this study, microfabrication and stem cell differentiation techniques were combined to develop an in vitro cerebral tract model that anchors human induced pluripotent stem cell-derived cerebral organoids (COs) and provides a scaffold to promote the formation of a functional connecting neuronal tract. Two designs of a Cerebral Organoid Connectivity Apparatus (COCA) were fabricated using SU-8 photoresist. The first design contains a series of spikes which anchor the CO to the COCA (spiked design), whereas the second design contains flat supporting structures with open holes in a grid pattern to anchor the organoids (grid design); both designs allow effective media exchange. Morphological and functional analyses reveal the expression of key neuronal markers as well as functional activity and signal propagation along cerebral tracts connecting CO pairs. The reported in vitro models enable the investigation of critical neural circuitry involved in neurodevelopmental processes and has the potential to help devise personalized and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Denise A. Robles
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA;
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA; (A.J.B.); (Z.P.P.)
| | - Andrew J. Boreland
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA; (A.J.B.); (Z.P.P.)
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA; (A.J.B.); (Z.P.P.)
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Pediatrics, Robert Wood Johnson Medical School, Rutgers University, One Robert Wood Johnson Place, MEB, New Brunswick, NJ 08903, USA
| | - Jeffrey D. Zahn
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
220
|
Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021; 9:780207. [PMID: 34888312 PMCID: PMC8650308 DOI: 10.3389/fcell.2021.780207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Function of the mature central nervous system (CNS) requires a substantial proportion of the body’s energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
221
|
Räsänen N, Tiihonen J, Koskuvi M, Lehtonen Š, Koistinaho J. The iPSC perspective on schizophrenia. Trends Neurosci 2021; 45:8-26. [PMID: 34876311 DOI: 10.1016/j.tins.2021.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
Over a decade of schizophrenia research using human induced pluripotent stem cell (iPSC)-derived neural models has provided substantial data describing neurobiological characteristics of the disorder in vitro. Simultaneously, translation of the results into general mechanistic concepts underlying schizophrenia pathophysiology has been trailing behind. Given that modeling brain function using cell cultures is challenging, the gap between the in vitro models and schizophrenia as a clinical disorder has remained wide. In this review, we highlight reproducible findings and emerging trends in recent schizophrenia-related iPSC studies. We illuminate the relevance of the results in the context of human brain development, with a focus on processes coinciding with critical developmental periods for schizophrenia.
Collapse
Affiliation(s)
- Noora Räsänen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Tiihonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden; Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden; Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Marja Koskuvi
- Neuroscience Center, University of Helsinki, Helsinki, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
222
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
223
|
Kiaee K, Jodat YA, Bassous NJ, Matharu N, Shin SR. Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models. Cells 2021; 10:3422. [PMID: 34943930 PMCID: PMC8700452 DOI: 10.3390/cells10123422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Experimental models of the central nervous system (CNS) are imperative for developmental and pathophysiological studies of neurological diseases. Among these models, three-dimensional (3D) induced pluripotent stem cell (iPSC)-derived brain organoid models have been successful in mitigating some of the drawbacks of 2D models; however, they are plagued by high organoid-to-organoid variability, making it difficult to compare specific gene regulatory pathways across 3D organoids with those of the native brain. Single-cell RNA sequencing (scRNA-seq) transcriptome datasets have recently emerged as powerful tools to perform integrative analyses and compare variability across organoids. However, transcriptome studies focusing on late-stage neural functionality development have been underexplored. Here, we combine and analyze 8 brain organoid transcriptome databases to study the correlation between differentiation protocols and their resulting cellular functionality across various 3D organoid and exogenous brain models. We utilize dimensionality reduction methods including principal component analysis (PCA) and uniform manifold approximation projection (UMAP) to identify and visualize cellular diversity among 3D models and subsequently use gene set enrichment analysis (GSEA) and developmental trajectory inference to quantify neuronal behaviors such as axon guidance, synapse transmission and action potential. We showed high similarity in cellular composition, cellular differentiation pathways and expression of functional genes in human brain organoids during induction and differentiation phases, i.e., up to 3 months in culture. However, during the maturation phase, i.e., 6-month timepoint, we observed significant developmental deficits and depletion of neuronal and astrocytes functional genes as indicated by our GSEA results. Our results caution against use of organoids to model pathophysiology and drug response at this advanced time point and provide insights to tune in vitro iPSC differentiation protocols to achieve desired neuronal functionality and improve current protocols.
Collapse
Affiliation(s)
- Kiavash Kiaee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yasamin A. Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Nicole J. Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
| | - Navneet Matharu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA;
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California San Francisco, San Francisco, CA 94720, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
| |
Collapse
|
224
|
Bonafina A, Javier-Torrent M, Nguyen L. Classics never get old: neurotransmitters shape human cortical interneuron migration. EMBO J 2021; 40:e109935. [PMID: 34751964 DOI: 10.15252/embj.2021109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
While key developmental functions of neurotransmitters have been described in rodent neural progenitors, there is a lack of understanding of their roles in the human fetal brain. A new study published in The EMBO Journal demonstrates that human cortical interneurons that are moving in fused brain organoids express a large repertoire of neurotransmitter receptors whose activation fine tunes selective migration strategies.
Collapse
Affiliation(s)
- Antonela Bonafina
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Míriam Javier-Torrent
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| |
Collapse
|
225
|
Chandrasekaran A, Jensen P, Mohamed FA, Lancaster M, Benros ME, Larsen MR, Freude KK. A protein-centric view of in vitro biological model systems for schizophrenia. Stem Cells 2021; 39:1569-1578. [PMID: 34431581 DOI: 10.1002/stem.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
Schizophrenia (SCZ) is a severe brain disorder, characterized by psychotic, negative, and cognitive symptoms, affecting 1% of the population worldwide. The precise etiology of SCZ is still unknown; however, SCZ has a high heritability and is associated with genetic, environmental, and social risk factors. Even though the genetic contribution is indisputable, the discrepancies between transcriptomics and proteomics in brain tissues are consistently challenging the field to decipher the disease pathology. Here we provide an overview of the state of the art of neuronal two-dimensional and three-dimensional model systems that can be combined with proteomics analyses to decipher specific brain pathology and detection of alternative entry points for drug development.
Collapse
Affiliation(s)
- Abinaya Chandrasekaran
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Fadumo A Mohamed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Madeline Lancaster
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Michael E Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Hellerup, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
226
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
227
|
Kashirina A, Gavrina A, Kryukov E, Elagin V, Kolesova Y, Artyuhov A, Momotyuk E, Abdyyev V, Meshcheryakova N, Zagaynova E, Dashinimaev E, Kashina A. Energy Metabolism and Intracellular pH Alteration in Neural Spheroids Carrying Down Syndrome. Biomedicines 2021; 9:1741. [PMID: 34829971 PMCID: PMC8615730 DOI: 10.3390/biomedicines9111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Brain diseases including Down syndrome (DS/TS21) are known to be characterized by changes in cellular metabolism. To adequately assess such metabolic changes during pathological processes and to test drugs, methods are needed that allow monitoring of these changes in real time with minimally invasive effects. Thus, the aim of our work was to study the metabolic status and intracellular pH of spheroids carrying DS using fluorescence microscopy and FLIM. For metabolic analysis we measured the fluorescence intensities, fluorescence lifetimes and the contributions of the free and bound forms of NAD(P)H. For intracellular pH assay we measured the fluorescence intensities of SypHer-2 and BCECF. Data were processed with SPCImage and Fiji-ImageJ. We demonstrated the predominance of glycolysis in TS21 spheroids compared with normal karyotype (NK) spheroids. Assessment of the intracellular pH indicated a more alkaline intracellular pH in the TS21 spheroids compared to NK spheroids. Using fluorescence imaging, we performed a comprehensive comparative analysis of the metabolism and intracellular pH of TS21 spheroids and showed that fluorescence microscopy and FLIM make it possible to study living cells in 3D models in real time with minimally invasive effects.
Collapse
Affiliation(s)
- Alena Kashirina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Emil Kryukov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Yuliya Kolesova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Ekaterina Momotyuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Vepa Abdyyev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
| | - Natalia Meshcheryakova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603022 Nizhny Novgorod, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Aleksandra Kashina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| |
Collapse
|
228
|
Hopkins HK, Traverse EM, Barr KL. Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS. Pathogens 2021; 10:1510. [PMID: 34832665 PMCID: PMC8625030 DOI: 10.3390/pathogens10111510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background: The human brain is of interest in viral research because it is often the target of viruses. Neurological infections can result in consequences in the CNS, which can result in death or lifelong sequelae. Organoids modeling the CNS are notable because they are derived from stem cells that differentiate into specific brain cells such as neural progenitors, neurons, astrocytes, and glial cells. Numerous protocols have been developed for the generation of CNS organoids, and our goal was to describe the various CNS organoid models available for viral pathogenesis research to serve as a guide to determine which protocol might be appropriate based on research goal, timeframe, and budget. (2) Methods: Articles for this review were found in Pubmed, Scopus and EMBASE. The search terms used were "brain + organoid" and "CNS + organoid" (3) Results: There are two main methods for organoid generation, and the length of time for organoid generation varied from 28 days to over 2 months. The costs for generating a population of organoids ranged from USD 1000 to 5000. (4) Conclusions: There are numerous methods for generating organoids representing multiple regions of the brain, with several types of modifications for fine-tuning the model to a researcher's specifications. Organoid models of the CNS can serve as a platform for characterization and mechanistic studies that can reduce or eliminate the use of animals, especially for viruses that only cause disease in the human CNS.
Collapse
Affiliation(s)
| | | | - Kelli L. Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (H.K.H.); (E.M.T.)
| |
Collapse
|
229
|
Lipopolysaccharide-induced neuroinflammation disrupts functional connectivity and community structure in primary cortical microtissues. Sci Rep 2021; 11:22303. [PMID: 34785714 PMCID: PMC8595892 DOI: 10.1038/s41598-021-01616-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) neural microtissues are a powerful in vitro paradigm for studying brain development and disease under controlled conditions, while maintaining many key attributes of the in vivo environment. Here, we used primary cortical microtissues to study the effects of neuroinflammation on neural microcircuits. We demonstrated the use of a genetically encoded calcium indicator combined with a novel live-imaging platform to record spontaneous calcium transients in microtissues from day 14-34 in vitro. We implemented graph theory analysis of calcium activity to characterize underlying functional connectivity and community structure of microcircuits, which are capable of capturing subtle changes in network dynamics during early disease states. We found that microtissues cultured for 34 days displayed functional remodeling of microcircuits and that community structure strengthened over time. Lipopolysaccharide, a neuroinflammatory agent, significantly increased functional connectivity and disrupted community structure 5-9 days after exposure. These microcircuit-level changes have broad implications for the role of neuroinflammation in functional dysregulation of neural networks.
Collapse
|
230
|
Kelley KW, Pașca SP. Human brain organogenesis: Toward a cellular understanding of development and disease. Cell 2021; 185:42-61. [PMID: 34774127 DOI: 10.1016/j.cell.2021.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
The construction of the human nervous system is a distinctly complex although highly regulated process. Human tissue inaccessibility has impeded a molecular understanding of the developmental specializations from which our unique cognitive capacities arise. A confluence of recent technological advances in genomics and stem cell-based tissue modeling is laying the foundation for a new understanding of human neural development and dysfunction in neuropsychiatric disease. Here, we review recent progress on uncovering the cellular and molecular principles of human brain organogenesis in vivo as well as using organoids and assembloids in vitro to model features of human evolution and disease.
Collapse
Affiliation(s)
- Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA.
| |
Collapse
|
231
|
Chen Y, Shao Y. Stem Cell-Based Embryo Models: En Route to a Programmable Future. J Mol Biol 2021; 434:167353. [PMID: 34774563 DOI: 10.1016/j.jmb.2021.167353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023]
Abstract
Early-stage human embryogenesis, such as implantation, gastrulation, and neurulation, are critical for successful pregnancy. For decades, our knowledge about these stages has been limited by the inaccessibility to such embryo specimens in vivo and the difficulty in rebuilding them in vitro. Although human embryos could be cultured in vitro beyond implantation, it remains challenging for the cultured embryos to recapitulate the continuous, coordinated morphogenesis and cytodifferentiation as seen in vivo. Stem cell-based embryo models, mainly derived from human pluripotent stem cells, are organized structures mimicking essential developmental processes in the early-stage human embryos. Despite their invaluable potentials, most embryo models are based on the self-organization of human pluripotent stem cells, which are limited in controllability, reproducibility, and developmental fidelity. Recently, the integration of bioengineered tools and stem cell biology has fueled a technological transformation towards programmable, highly complex, high-fidelity stem cell-based embryo models. Given its scientific and clinical significance, we present an overview of recent paradigm-shifting advances as well as historical perspectives regarding the past, present, and future of synthetic human embryology. Following the developmental roadmap of human embryogenesis, we critically review existing stem cell-based models for implantation, gastrulation, and neurulation, respectively. We highlight the limitations encountered by autonomous self-organization strategy and discuss the concept and application of guided cell organization as a game-changer for innovating next-generation embryo models. Future endeavors in synthetic human embryology should rationally leverage both the self-organizing power and programmable microenvironmental guidance to secure faithful reconstructions of the hierarchical orders of human embryogenesis in vitro.
Collapse
Affiliation(s)
- Yunping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
232
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
233
|
Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021; 122:5277-5316. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in materials chemistry and engineering serve as the basis for multifunctional neural interfaces that span length scales from individual neurons to neural networks, neural tissues, and complete neural systems. Such technologies exploit electrical, electrochemical, optical, and/or pharmacological modalities in sensing and neuromodulation for fundamental studies in neuroscience research, with additional potential to serve as routes for monitoring and treating neurodegenerative diseases and for rehabilitating patients. This review summarizes the essential role of chemistry in this field of research, with an emphasis on recently published results and developing trends. The focus is on enabling materials in diverse device constructs, including their latest utilization in 3D bioelectronic frameworks formed by 3D printing, self-folding, and mechanically guided assembly. A concluding section highlights key challenges and future directions.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
234
|
McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Front Genome Ed 2021; 3:630600. [PMID: 34713254 PMCID: PMC8525405 DOI: 10.3389/fgeed.2021.630600] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic advances for neurological disorders are challenging due to limited accessibility of the human central nervous system and incomplete understanding of disease mechanisms. Many neurological diseases lack precision treatments, leading to significant disease burden and poor outcome for affected patients. Induced pluripotent stem cell (iPSC) technology provides human neuronal cells that facilitate disease modeling and development of therapies. The use of genome editing, in particular CRISPR-Cas9 technology, has extended the potential of iPSCs, generating new models for a number of disorders, including Alzheimers and Parkinson Disease. Editing of iPSCs, in particular with CRISPR-Cas9, allows generation of isogenic pairs, which differ only in the disease-causing mutation and share the same genetic background, for assessment of phenotypic differences and downstream effects. Moreover, genome-wide CRISPR screens allow high-throughput interrogation for genetic modifiers in neuronal phenotypes, leading to discovery of novel pathways, and identification of new therapeutic targets. CRISPR-Cas9 has now evolved beyond altering gene expression. Indeed, fusion of a defective Cas9 (dCas9) nuclease with transcriptional repressors or activation domains allows down-regulation or activation of gene expression (CRISPR interference, CRISPRi; CRISPR activation, CRISPRa). These new tools will improve disease modeling and facilitate CRISPR and cell-based therapies, as seen for epilepsy and Duchenne muscular dystrophy. Genome engineering holds huge promise for the future understanding and treatment of neurological disorders, but there are numerous barriers to overcome. The synergy of iPSC-based model systems and gene editing will play a vital role in the route to precision medicine and the clinical translation of genome editing-based therapies.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Giada Rossignoli
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Arianna Ferrini
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
235
|
Ebrahimi N, Nasr Esfahani A, Samizade S, Mansouri A, Ghanaatian M, Adelian S, Shadman Manesh V, Hamblin MR. The potential application of organoids in breast cancer research and treatment. Hum Genet 2021; 141:193-208. [PMID: 34713317 DOI: 10.1007/s00439-021-02390-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022]
Abstract
Tumor heterogeneity is a major challenge for breast cancer researchers who have struggled to find effective treatments despite recent advances in oncology. Although the use of 2D cell culture methods in breast cancer research has been effective, it cannot model the heterogeneity of breast cancer as found within the body. The development of 3D culture of tumor cells and breast cancer organoids has provided a new approach in breast cancer research, allowing the identification of biomarkers, study of the interaction of tumor cells with the microenvironment, and for drug screening and discovery. In addition, the possibility of gene editing in organoids, especially using the CRISPR/Cas9 system, is convenient, and has allowed a more detailed study of tumor behavior in models closer to the physiological condition. The present review covers the application of organoids in breast cancer research. The recent use of gene-editing systems to provide insights into therapeutic approaches for breast cancer, is highlighted. The study of organoids and the possibility of gene manipulation may be a step towards the personalized treatment of breast cancer, which has so far remained unattainable due to the high heterogeneity of breast cancer.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of Cell, Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Alireza Nasr Esfahani
- Department of Cellular and Molecular Biology, School of Biological Sciences, Islamic Azad University of Falavarjan, Falavarjan, Iran
| | - Setare Samizade
- Department of Cellular and Molecular Biology, School of Biological Sciences, Islamic Azad University of Falavarjan, Falavarjan, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Ghanaatian
- Department of Microbiology, Islamic Azad University of Jahrom, Jahrom, Fars, Iran
| | - Samaneh Adelian
- Department of Genetics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vida Shadman Manesh
- Medical Engineering Tissue Engineering, Department of Medical Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Faculty of Health Science, Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa.
| |
Collapse
|
236
|
Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Harn HJ, Lin SZ, Ho TJ. Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplant 2021; 30:9636897211017829. [PMID: 34665040 PMCID: PMC8529300 DOI: 10.1177/09636897211017829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are sources of several somatic cell
types for human developmental studies, in vitro disease modeling, and
cell transplantation therapy. Improving strategies of derivation of
high-purity specific neural and glial lineages from hPSCs is critical
for application to the study and therapy of the nervous system. Here,
we will focus on the principles behind establishment of neuron and
glia differentiation methods according to developmental studies. We
will also highlight the limitations and challenges associated with the
differentiation of several “difficult” neural lineages and delay in
neuronal maturation and functional integration. To overcome these
challenges, we will introduce strategies and novel technologies aimed
at improving the differentiation of various neural lineages to expand
the application potential of hPSCs to the study of the nervous
system.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hsiao-Chien Ting
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
237
|
Bajaj S, Bagley JA, Sommer C, Vertesy A, Nagumo Wong S, Krenn V, Lévi-Strauss J, Knoblich JA. Neurotransmitter signaling regulates distinct phases of multimodal human interneuron migration. EMBO J 2021; 40:e108714. [PMID: 34661293 PMCID: PMC8634123 DOI: 10.15252/embj.2021108714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Inhibitory GABAergic interneurons migrate over long distances from their extracortical origin into the developing cortex. In humans, this process is uniquely slow and prolonged, and it is unclear whether guidance cues unique to humans govern the various phases of this complex developmental process. Here, we use fused cerebral organoids to identify key roles of neurotransmitter signaling pathways in guiding the migratory behavior of human cortical interneurons. We use scRNAseq to reveal expression of GABA, glutamate, glycine, and serotonin receptors along distinct maturation trajectories across interneuron migration. We develop an image analysis software package, TrackPal, to simultaneously assess 48 parameters for entire migration tracks of individual cells. By chemical screening, we show that different modes of interneuron migration depend on distinct neurotransmitter signaling pathways, linking transcriptional maturation of interneurons with their migratory behavior. Altogether, our study provides a comprehensive quantitative analysis of human interneuron migration and its functional modulation by neurotransmitter signaling.
Collapse
Affiliation(s)
- Sunanjay Bajaj
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.,University of Heidelberg, Heidelberg, Germany
| | - Joshua A Bagley
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Abel Vertesy
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Sakurako Nagumo Wong
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Veronica Krenn
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Julie Lévi-Strauss
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| |
Collapse
|
238
|
Three-dimensional culture models to study glioblastoma - current trends and future perspectives. Curr Opin Pharmacol 2021; 61:91-97. [PMID: 34656940 DOI: 10.1016/j.coph.2021.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is the most prevalent form of primary malignant brain tumor in adults and remains almost invariably lethal owing to its aggressive and invasive nature. There have only been marginal improvements in its bleak survival rate of 12-15 months over the last four decades. The lack of preclinical models that efficiently recapitulate tumor biology and the tumor microenvironment is also in part responsible for the slow phase of translational GBM research. Emerging three-dimensional (3D) organoids and cell culture systems offer new and innovative possibilities for GBM modelling. These 3D models find their application to engineer the disease, screen drugs, establishing live biobank, and explore personalized therapy. Furthermore, these models can also be genetically modified by using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which would allow one to study the specific role of key genes associated with gliomagenesis. Establishment of a coculture system with GBM cells to understand its invasive behavior is yet another major application of this model. Despite these merits, the organoid models also have certain limitations, including the absence of immune responses and vascular systems. In recent years, major progress has been made in the development and refinement of 3D models of GBM. In this review, we intend to highlight these recent advances and the potential future implications of this rapidly evolving field, which should facilitate a better understanding of GBM biology.
Collapse
|
239
|
Sen D, Voulgaropoulos A, Keung AJ. Effects of early geometric confinement on the transcriptomic profile of human cerebral organoids. BMC Biotechnol 2021; 21:59. [PMID: 34641840 PMCID: PMC8507123 DOI: 10.1186/s12896-021-00718-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background Human cerebral organoids (hCO) are attractive systems due to their ability to model important brain regions and transcriptomics of early in vivo brain development. To date, they have been used to understand the effects of genetics and soluble factors on neurodevelopment. Interestingly, one of the main advantages of hCOs are that they provide three dimensionality that better mimics the in vivo environment; yet, despite this central feature it remains unclear how spatial and mechanical properties regulate hCO and neurodevelopment. While biophysical factors such as shape and mechanical forces are known to play crucial roles in stem cell differentiation, embryogenesis and neurodevelopment, much of this work investigated two dimensional systems or relied on correlative observations of native developing tissues in three dimensions. Using hCOs to establish links between spatial factors and neurodevelopment will require the use of new approaches and could reveal fundamental principles of brain organogenesis as well as improve hCOs as an experimental model. Results Here, we investigated the effects of early geometric confinements on transcriptomic changes during hCO differentiation. Using a custom and tunable agarose microwell platform we generated embryoid bodies (EB) of diverse shapes mimicking several structures from embryogenesis and neurodevelopment and then further differentiated those EBs to whole brain hCOs. Our results showed that the microwells did not have negative gross impacts on the ability of the hCOs to differentiate towards neural fates, and there were clear shape dependent effects on neural lineage specification. In particular we observed that non-spherical shapes showed signs of altered neurodevelopmental kinetics and favored the development of medial ganglionic eminence-associated brain regions and cell types over cortical regions. Transcriptomic analysis suggests these mechanotransducive effects may be mediated by integrin and Wnt signaling. Conclusions The findings presented here suggest a role for spatial factors in brain region specification during hCO development. Understanding these spatial patterning factors will not only improve understanding of in vivo development and differentiation, but also provide important handles with which to advance and improve control over human model systems for in vitro applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00718-2.
Collapse
Affiliation(s)
- Dilara Sen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC, 27695-7905, USA
| | - Alexis Voulgaropoulos
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC, 27695-7905, USA
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
240
|
Fernandes S, Klein D, Marchetto MC. Unraveling Human Brain Development and Evolution Using Organoid Models. Front Cell Dev Biol 2021; 9:737429. [PMID: 34692694 PMCID: PMC8529117 DOI: 10.3389/fcell.2021.737429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Brain organoids are proving to be physiologically relevant models for studying human brain development in terms of temporal transcriptional signature recapitulation, dynamic cytoarchitectural development, and functional electrophysiological maturation. Several studies have employed brain organoid technologies to elucidate human-specific processes of brain development, gene expression, and cellular maturation by comparing human-derived brain organoids to those of non-human primates (NHPs). Brain organoids have been established from a variety of NHP pluripotent stem cell (PSC) lines and many protocols are now available for generating brain organoids capable of reproducibly representing specific brain region identities. Innumerous combinations of brain region specific organoids derived from different human and NHP PSCs, with CRISPR-Cas9 gene editing techniques and strategies to promote advanced stages of maturation, will successfully establish complex brain model systems for the accurate representation and elucidation of human brain development. Identified human-specific processes of brain development are likely vulnerable to dysregulation and could result in the identification of therapeutic targets or disease prevention strategies. Here, we discuss the potential of brain organoids to successfully model human-specific processes of brain development and explore current strategies for pinpointing these differences.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Davis Klein
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, United States
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
241
|
Gabriel E, Albanna W, Pasquini G, Ramani A, Josipovic N, Mariappan A, Schinzel F, Karch CM, Bao G, Gottardo M, Suren AA, Hescheler J, Nagel-Wolfrum K, Persico V, Rizzoli SO, Altmüller J, Riparbelli MG, Callaini G, Goureau O, Papantonis A, Busskamp V, Schneider T, Gopalakrishnan J. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 2021; 28:1740-1757.e8. [PMID: 34407456 DOI: 10.1016/j.stem.2021.07.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.
Collapse
Affiliation(s)
- Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany; Department of Neurosurgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anand Ramani
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Friedrich Schinzel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63116, USA
| | - Guobin Bao
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Marco Gottardo
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Ata Alp Suren
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Veronica Persico
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Silvio O Rizzoli
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Universität zu Köln, Köln, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | | | - Giuliano Callaini
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|
242
|
Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, Li Z, Liu S, Feng H, Huang W, Duan R, Xu T, Raj N, Zhang F, Dou J, Xu C, Wu H, Bassell GJ, Warren ST, Allen EG, Jin P, Wen Z. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci 2021; 24:1377-1391. [PMID: 34413513 PMCID: PMC8484073 DOI: 10.1038/s41593-021-00913-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA-binding protein that can regulate the translation of specific mRNAs. In this study, we developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability. Bulk and single-cell gene expression analyses of FXS forebrain organoids revealed that the loss of FMRP altered gene expression in a cell-type-specific manner. The developmental deficits in FXS forebrain organoids could be rescued by inhibiting the phosphoinositide 3-kinase pathway but not the metabotropic glutamate pathway disrupted in the FXS mouse model. We identified a large number of human-specific mRNAs bound by FMRP. One of these human-specific FMRP targets, CHD2, contributed to the altered gene expression in FXS organoids. Collectively, our study revealed molecular, cellular and electrophysiological abnormalities associated with the loss of FMRP during human brain development.
Collapse
Affiliation(s)
- Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Emory University, GA 30322, USA
| | - Weibo Niu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shiying Liu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Nisha Raj
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| |
Collapse
|
243
|
Shibata M, Pattabiraman K, Lorente-Galdos B, Andrijevic D, Kim SK, Kaur N, Muchnik SK, Xing X, Santpere G, Sousa AMM, Sestan N. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature 2021; 598:483-488. [PMID: 34599305 PMCID: PMC9018119 DOI: 10.1038/s41586-021-03953-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kartik Pattabiraman
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Navjot Kaur
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sydney K Muchnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andre M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
244
|
Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021; 22:593-615. [PMID: 34376834 PMCID: PMC8612873 DOI: 10.1038/s41583-021-00496-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivian R Feig
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Henry T Greely
- Stanford Law School, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
245
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
246
|
Samarasinghe RA, Miranda OA, Buth JE, Mitchell S, Ferando I, Watanabe M, Allison TF, Kurdian A, Fotion NN, Gandal MJ, Golshani P, Plath K, Lowry WE, Parent JM, Mody I, Novitch BG. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat Neurosci 2021; 24:1488-1500. [PMID: 34426698 PMCID: PMC9070733 DOI: 10.1038/s41593-021-00906-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations. We demonstrate highly abnormal and epileptiform-like activity in organoids derived from induced pluripotent stem cells from individuals with Rett syndrome, accompanied by transcriptomic differences revealed by single-cell analyses. We also rescue key physiological activities with an unconventional neuroregulatory drug, pifithrin-α. Together, these findings provide an essential foundation for the utilization of brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Osvaldo A Miranda
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jessie E Buth
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Simon Mitchell
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Isabella Ferando
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Momoko Watanabe
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Anatomy & Neurobiology, Sue & Bill Gross Stem Cell Research Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Thomas F Allison
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Arinnae Kurdian
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- CIRM CSUN-UCLA Stem Cell Training Program, California State University, Northridge, CA, USA
| | - Namie N Fotion
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael J Gandal
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Kathrin Plath
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William E Lowry
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor VA Healthcare System, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Istvan Mody
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
247
|
Saleh J, Mercier B, Xi W. Bioengineering methods for organoid systems. Biol Cell 2021; 113:475-491. [PMID: 34580889 DOI: 10.1111/boc.202000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Organoids have been widely used in fundamental, biomimetic, and therapeutic studies. These multicellular systems form via cell-autonomous self-organization where a cohort of stem cells undergoes in vivo-like proliferation, differentiation, and morphogenesis. They also recapitulate a series of physiological cell organization, complexity and functions that are untouchable by conventional bio-model systems using immortal cell lines. However, the development of organoids is often not easily controlled and their shape and size are yet fully physiological. Recent research has demonstrated that multiple bioengineering tools could be harnessed to control important internal and external cues that dictate stem cell behavior and stem-cell based organoid development. In this review, we introduce the current development of organoid systems and their potentials, as well as their limitations that impede their further utility in research and clinical fields. In comparison to conventional autonomous organoid system, we then review bioengineering approaches that offer improved control over organoid growth and development. We focus on the genetic editing tools that allow the program of build-in responses and phenotypes for organoid systems with enhanced physiological relevance. We also highlight the advances in bioengineering methods to modify cellular external milieus to generate desirable cell composition, 3D micro-architectures, and complex microfluidic systems. We conclude that the emerging biomimetic methods that employ multidisciplinary approaches could prevail in the future development of organoid systems.
Collapse
Affiliation(s)
- Jad Saleh
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Barbara Mercier
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Wang Xi
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
248
|
De Los Angeles A, Fernando MB, Hall NAL, Brennand KJ, Harrison PJ, Maher BJ, Weinberger DR, Tunbridge EM. Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biol Psychiatry 2021; 90:362-372. [PMID: 34176589 PMCID: PMC8375580 DOI: 10.1016/j.biopsych.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
A key challenge in psychiatry research is the development of high-fidelity model systems that can be experimentally manipulated to explore and test pathophysiological mechanisms of illness. In this respect, the emerging capacity to derive neural cells and circuits from human induced pluripotent stem cells (iPSCs) has generated significant excitement. This review aims to provide a critical appraisal of the potential for iPSCs in illuminating pathophysiological mechanisms in the context of other available technical approaches. We discuss the selection of iPSC phenotypes relevant to psychiatry, the information that researchers can draw on to help guide these decisions, and how researchers choose between the use of 2-dimensional cultures and the use of more complex 3-dimensional model systems. We discuss the strengths and limitations of current models and the challenges and opportunities that they present. Finally, we discuss the potential of iPSC-based model systems for clarifying the mechanisms underlying genetic risk for psychiatry and the steps that will be needed to ensure that robust and reliable conclusions can be drawn. We argue that while iPSC-based models are ideally placed to study fundamental processes occurring within and between neural cells, they are often less well suited for case-control studies, given issues relating to statistical power and the challenges in identifying which cellular phenotypes are meaningful at the level of the whole individual. Our aim is to highlight the importance of considering the hypotheses of a given study to guide decisions about which, if any, iPSC-based system is most appropriate to address it.
Collapse
Affiliation(s)
- Alejandro De Los Angeles
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
249
|
Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021; 132:37-51. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
As life expectancy improves and the number of people suffering from various diseases increases, the need for developing effective personalized disease models is rapidly rising. The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce key elements for disease modeling and recent engineering advances using both liver and lung organoids. Due to the importance of personalized medicine, we also emphasize patient-derived cancer organoid models and their engineering approaches. These organoid-based disease models combined with microfluidics, biomaterials, and co-culture systems will provide a powerful research platform for understanding disease mechanisms and developing precision medicine; enabling preclinical drug screening and drug development. STATEMENT OF SIGNIFICANCE: The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce liver, lung, and cancer organoids integrated with various engineering approaches as a novel platform for personalized disease modeling. These engineered organoid-based disease models will provide a powerful research platform for understanding disease mechanisms and developing precision medicine.
Collapse
|
250
|
Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM. An Individual Patient's "Body" on Chips-How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach. Front Med (Lausanne) 2021; 8:728866. [PMID: 34589503 PMCID: PMC8473633 DOI: 10.3389/fmed.2021.728866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
The first concepts for reproducing human systemic organismal biology in vitro were developed over 12 years ago. Such concepts, then called human- or body-on-a-chip, claimed that microphysiological systems would become the relevant technology platform emulating the physiology and morphology of human organisms at the smallest biologically acceptable scale in vitro and, therefore, would enable the selection of personalized therapies for any patient at unprecedented precision. Meanwhile, the first human organoids-stem cell-derived complex three-dimensional organ models that expand and self-organize in vitro-have proven that in vitro self-assembly of minute premature human organ-like structures is feasible, once the respective stimuli of ontogenesis are provided to human stem cells. Such premature organoids can precisely reflect a number of distinct physiological and pathophysiological features of their respective counterparts in the human body. We now develop the human-on-a-chip concepts of the past into an organismoid theory. We describe the current concept and principles to create a series of organismoids-minute, mindless and emotion-free physiological in vitro equivalents of an individual's mature human body-by an artificially short process of morphogenetic self-assembly mimicking an individual's ontogenesis from egg cell to sexually mature organism. Subsequently, we provide the concept and principles to maintain such an individual's set of organismoids at a self-sustained functional healthy homeostasis over very long time frames in vitro. Principles how to perturb a subset of healthy organismoids by means of the natural or artificial induction of diseases are enrolled to emulate an individual's disease process. Finally, we discuss using such series of healthy and perturbed organismoids in predictively selecting, scheduling and dosing an individual patient's personalized therapy or medicine precisely. The potential impact of the organismoid theory on our healthcare system generally and the rapid adoption of disruptive personalized T-cell therapies particularly is highlighted.
Collapse
Affiliation(s)
- Uwe Marx
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- TissUse GmbH, Berlin, Germany
| | | | - Rhiannon David
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Roland Lauster
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|