201
|
Mannarelli D, Pauletti C, Petritis A, Delle Chiaie R, Currà A, Trompetto C, Fattapposta F. Effects of Cerebellar tDCS on Inhibitory Control: Evidence from a Go/NoGo Task. CEREBELLUM (LONDON, ENGLAND) 2020; 19:788-798. [PMID: 32666284 PMCID: PMC7588382 DOI: 10.1007/s12311-020-01165-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Response inhibition as an executive function refers to the ability to suppress inappropriate but prepotent responses. Several brain regions have been implicated in the process underlying inhibitory control, including the cerebellum. The aim of the present study was to explore the role of the cerebellum in executive functioning, particularly in response inhibition. For this purpose, we transitorily inhibited cerebellar activity by means of cathodal tDCS and studied the effects of this inhibition on ERP components elicited during a Go/NoGo task in healthy subjects. Sixteen healthy subjects underwent a Go/NoGo task prior to and after cathodal and sham cerebellar tDCS in separate sessions. A reduction in N2-NoGo amplitude and a prolongation in N2-NoGo latency emerged after cathodal tDCS whereas no differences were detected after sham stimulation. Moreover, commission errors in NoGo trials were significantly higher after cathodal tDCS than at the basal evaluation. No differences emerged between performances in Go trials and those after sham stimulation. These data indicate that cerebellar inhibition following cathodal stimulation alters the ability to allocate attentional resources to stimuli containing conflict information and the inhibitory control. The cerebellum may regulate the attentional mechanisms of stimulus orientation and inhibitory control both directly, by making predictions of errors or behaviors related to errors, and indirectly, by controlling the functioning of the cerebral cortical areas involved in the perception of conflict signals and of the basal ganglia involved in the inhibitory control of movement.
Collapse
Affiliation(s)
- Daniela Mannarelli
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Caterina Pauletti
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Alessia Petritis
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Roberto Delle Chiaie
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, A. Fiorini Hospital, Terracina, LT, Sapienza University of Rome, Polo Pontino, Latina, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
- Department of Neuroscience, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Fattapposta
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| |
Collapse
|
202
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
203
|
Control of response interference: caudate nucleus contributes to selective inhibition. Sci Rep 2020; 10:20977. [PMID: 33262369 PMCID: PMC7708449 DOI: 10.1038/s41598-020-77744-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
While the role of cortical regions in cognitive control processes is well accepted, the contribution of subcortical structures (e.g., the striatum), especially to the control of response interference, remains controversial. Therefore, the present study aimed to investigate the cortical and particularly subcortical neural mechanisms of response interference control (including selective inhibition). Thirteen healthy young participants underwent event-related functional magnetic resonance imaging while performing a unimanual version of the Simon task. In this task, successful performance required the resolution of stimulus–response conflicts in incongruent trials by selectively inhibiting interfering response tendencies. The behavioral results show an asymmetrical Simon effect that was more pronounced in the contralateral hemifield. Contrasting incongruent trials with congruent trials (i.e., the overall Simon effect) significantly activated clusters in the right anterior cingulate cortex, the right posterior insula, and the caudate nucleus bilaterally. Furthermore, a region of interest analysis based on previous patient studies revealed that activation in the bilateral caudate nucleus significantly co-varied with a parameter of selective inhibition derived from distributional analyses of response times. Our results corroborate the notion that the cognitive control of response interference is supported by a fronto-striatal circuitry, with a functional contribution of the caudate nucleus to the selective inhibition of interfering response tendencies.
Collapse
|
204
|
Longueville S, Nakamura Y, Brami-Cherrier K, Coura R, Hervé D, Girault JA. Long-lasting tagging of neurons activated by seizures or cocaine administration in Egr1-CreER T2 transgenic mice. Eur J Neurosci 2020; 53:1450-1472. [PMID: 33226686 DOI: 10.1111/ejn.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Permanent tagging of neuronal ensembles activated in specific experimental situations is an important objective to study their properties and adaptations. In the context of learning and memory, these neurons are referred to as engram neurons. Here, we describe and characterize a novel mouse line, Egr1-CreERT2 , which carries a transgene in which the promoter of the immediate early gene Egr1 drives the expression of the CreERT2 recombinase that is only active in the presence of tamoxifen metabolite, 4-hydroxy-tamoxifen (4-OHT). Egr1-CreERT2 mice were crossed with various reporter mice, Cre-dependently expressing a fluorescent protein. Without tamoxifen or 4-OHT, no or few tagged neurons were observed. Epileptic seizures induced by pilocarpine or pentylenetetrazol in the presence of tamoxifen or 4-OHT elicited the persistent tagging of many neurons and some astrocytes in the dentate gyrus of hippocampus, where Egr1 is transiently induced by seizures. One week after cocaine and 4-OHT administration, these mice displayed a higher number of tagged neurons in the dorsal striatum than saline/4-OHT controls, with differences between reporter lines. Cocaine-induced tagging required ERK activation and tagged neurons were more likely than others to exhibit ERK phosphorylation or Fos induction after a second injection. Interestingly neurons tagged in saline-treated mice also had an increased propensity to express Fos, suggesting the existence of highly responsive striatal neurons susceptible to be re-activated by cocaine repeated administration, which may contribute to the behavioral adaptations. Our report validates a novel transgenic mouse model for permanently tagging activated neurons and studying long-term alterations of Egr1-expressing cells.
Collapse
Affiliation(s)
- Sophie Longueville
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Karen Brami-Cherrier
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Renata Coura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
205
|
Affiliation(s)
- Scott D. Brown
- School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
206
|
Prefronto-Striatal Structural Connectivity Mediates Adult Age Differences in Action Selection. J Neurosci 2020; 41:331-341. [PMID: 33214318 DOI: 10.1523/jneurosci.1709-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
In complex everyday environments, action selection is critical for optimal goal-directed behavior. This refers to the process of choosing a proper action from the range of possible alternatives. The neural mechanisms underlying action selection and how these are affected by normal aging remain to be elucidated. In the present cross-sectional study, we studied processes of effector selection during a multilimb reaction time task in a lifespan sample of healthy human adults (N = 89; 20-75 years; 48 males, 41 females). Participants were instructed to react as quickly and accurately as possible to visually cued stimuli representing single-limb or combined upper and/or lower limb motions. Diffusion MRI was used to study structural connectivity between prefrontal and striatal regions as critical nodes for action selection. Behavioral findings revealed that increasing age was associated with slowing of action selection performance. At the neural level, aging had a negative impact on prefronto-striatal connectivity. Importantly, mediation analyses revealed that the negative association between action selection performance and age was mediated by prefronto-striatal connectivity, specifically the connections between left rostral medial frontal gyrus and left nucleus accumbens as well as right frontal pole and left caudate. These results highlight the potential role of prefronto-striatal white matter decline in poorer action selection performance of older adults.SIGNIFICANCE STATEMENT As a result of enhanced life expectancy, researchers have devoted increasing attention to the study of age-related alterations in cognitive and motor functions. Here we study associations between brain structure and behavior to reveal the impact of central neural white matter changes as a function of normal aging on action selection performance. We demonstrate the critical role of a reduction in prefronto-striatal structural connectivity in accounting for action selection performance deficits in healthy older adults. Preserving this cortico-subcortical pathway may be critical for behavioral flexibility and functional independence in older age.
Collapse
|
207
|
Lagière M, Bosc M, Whitestone S, Benazzouz A, Chagraoui A, Millan MJ, De Deurwaerdère P. A Subset of Purposeless Oral Movements Triggered by Dopaminergic Agonists Is Modulated by 5-HT 2C Receptors in Rats: Implication of the Subthalamic Nucleus. Int J Mol Sci 2020; 21:ijms21228509. [PMID: 33198169 PMCID: PMC7698107 DOI: 10.3390/ijms21228509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic medication for Parkinson’s disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03–0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2–0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the “hyperdirect” (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.
Collapse
Affiliation(s)
- Mélanie Lagière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Marion Bosc
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Sara Whitestone
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
| | - Abdelhamid Benazzouz
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Mark J. Millan
- Institut de Recherche Servier, Center for Therapeutic Innovation in Neuropsychiatry, Croissy/Seine, 78290 Paris, France;
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Correspondence: ; Tel.: +33-(0)-557-57-12-90
| |
Collapse
|
208
|
Hu B, Xu M, Wang Z, Jiang D, Wang D, Zhang D. The theoretical mechanism of Parkinson's oscillation frequency bands: a computational model study. Cogn Neurodyn 2020; 15:721-731. [PMID: 34367370 DOI: 10.1007/s11571-020-09651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Excessive synchronous oscillation activities appear in the brain is a key pathological feature of Parkinson's disease, the mechanism of which is still unclear. Although some previous studies indicated that β oscillation (13-30 Hz) may directly originate in the network composed of the subthalamic nucleus (STN) and external globus pallidus (GPe) neurons, specific onset mechanisms of which are unclear, especially theoretical evidences in numerical simulation are still little. In this paper, we employ a STN-GPe mean-field model to explore the onset mechanism of Parkinson's oscillation. In addition to β oscillation, we find that some other common oscillation frequency bands can appear in this network, such as the α oscillation band (8-12 Hz), the θ oscillation band (4-7 Hz) and δ oscillation band (1-3 Hz). In addition to the coupling weight between the STN and GPe, the delay is also a critical factor to affect oscillatory activities, which can not be neglected compared to other parameters. Through simulation and analysis, we propose two possible theories may induce the system to transfer from the stable state to the oscillatory state in this model: (1). The oscillation activity can be induced when the firing activation level of the population increases to large enough; (2). In some special cases, the population may stay in the high firing rate stable state and the mean discharge rate of which is too large to induce oscillations, then oscillation activities may be induced as the MD decreases to moderate value. In most situations, the change trends of the MD and oscillation dominant frequency are contrary, which may be an important physiological phenomenon shown in this model. The delays and firing rates were obtained by simulating, which may be verified in the experiment in the future.
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China.,Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Danhua Jiang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dongmei Zhang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
209
|
Verstynen T, Dunovan K, Walsh C, Kuan CH, Manuck SB, Gianaros PJ. Adiposity covaries with signatures of asymmetric feedback learning during adaptive decisions. Soc Cogn Affect Neurosci 2020; 15:1145-1156. [PMID: 32608485 PMCID: PMC7657458 DOI: 10.1093/scan/nsaa088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Unhealthy weight gain relates, in part, to how people make decisions based on prior experience. Here we conducted post hoc analysis on an archival data set to evaluate whether individual differences in adiposity, an anthropometric construct encompassing a spectrum of body types, from lean to obese, associate with signatures of asymmetric feedback learning during value-based decision-making. In a sample of neurologically healthy adults (N = 433), ventral striatal responses to rewards, measured using fMRI, were not directly associated with adiposity, but rather moderated its relationship with feedback-driven learning in the Iowa gambling task, tested outside the scanner. Using a biologically inspired model of basal ganglia-dependent decision processes, we found this moderating effect of reward reactivity to be explained by an asymmetrical use of feedback to drive learning; that is, with more plasticity for gains than for losses, stronger reward reactivity leads to decisions that minimize exploration for maximizing long-term outcomes. Follow-up analysis confirmed that individual differences in adiposity correlated with signatures of asymmetric use of feedback cues during learning, suggesting that reward reactivity may especially relate to adiposity, and possibly obesity risk, when gains impact future decisions more than losses.
Collapse
Affiliation(s)
- Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kyle Dunovan
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Catherine Walsh
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chieh-Hsin Kuan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
210
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
211
|
van Wouwe NC, Neimat JS, van den Wildenberg WPM, Hughes SB, Lopez AM, Phibbs FT, Schall JD, Rodriguez WJ, Bradley EB, Dawant BM, Wylie SA. Subthalamic Nucleus Subregion Stimulation Modulates Inhibitory Control. Cereb Cortex Commun 2020; 1:tgaa083. [PMID: 33381760 PMCID: PMC7750129 DOI: 10.1093/texcom/tgaa083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022] Open
Abstract
Patients with Parkinson's disease (PD) often experience reductions in the proficiency to inhibit actions. The motor symptoms of PD can be effectively treated with deep brain stimulation (DBS) of the subthalamic nucleus (STN), a key structure in the frontal-striatal network that may be directly involved in regulating inhibitory control. However, the precise role of the STN in stopping control is unclear. The STN consists of functional subterritories linked to dissociable cortical networks, although the boundaries of the subregions are still under debate. We investigated whether stimulating the dorsal and ventral subregions of the STN would show dissociable effects on ability to stop. We studied 12 PD patients with STN DBS. Patients with two adjacent contacts positioned within the bounds of the dorsal and ventral STN completed two testing sessions (OFF medication) with low amplitude stimulation (0.4 mA) at either the dorsal or ventral contacts bilaterally, while performing the stop task. Ventral, but not dorsal, DBS improved stopping latencies. Go reactions were similar between dorsal and ventral DBS STN. Stimulation in the ventral, but not dorsal, subregion of the STN improved stopping speed, confirming the involvement of the STN in stopping control and supporting the STN functional subregions.
Collapse
Affiliation(s)
- Nelleke C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam 1018 WS, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam 1001 NK, The Netherlands
| | - Shelby B Hughes
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander M Lopez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey D Schall
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - William J Rodriguez
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Elise B Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Scott A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202 USA
| |
Collapse
|
212
|
Mollick JA, Hazy TE, Krueger KA, Nair A, Mackie P, Herd SA, O'Reilly RC. A systems-neuroscience model of phasic dopamine. Psychol Rev 2020; 127:972-1021. [PMID: 32525345 PMCID: PMC8453660 DOI: 10.1037/rev0000199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a neurobiologically informed computational model of phasic dopamine signaling to account for a wide range of findings, including many considered inconsistent with the simple reward prediction error (RPE) formalism. The central feature of this PVLV framework is a distinction between a primary value (PV) system for anticipating primary rewards (Unconditioned Stimuli [USs]), and a learned value (LV) system for learning about stimuli associated with such rewards (CSs). The LV system represents the amygdala, which drives phasic bursting in midbrain dopamine areas, while the PV system represents the ventral striatum, which drives shunting inhibition of dopamine for expected USs (via direct inhibitory projections) and phasic pausing for expected USs (via the lateral habenula). Our model accounts for data supporting the separability of these systems, including individual differences in CS-based (sign-tracking) versus US-based learning (goal-tracking). Both systems use competing opponent-processing pathways representing evidence for and against specific USs, which can explain data dissociating the processes involved in acquisition versus extinction conditioning. Further, opponent processing proved critical in accounting for the full range of conditioned inhibition phenomena, and the closely related paradigm of second-order conditioning. Finally, we show how additional separable pathways representing aversive USs, largely mirroring those for appetitive USs, also have important differences from the positive valence case, allowing the model to account for several important phenomena in aversive conditioning. Overall, accounting for all of these phenomena strongly constrains the model, thus providing a well-validated framework for understanding phasic dopamine signaling. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Jessica A Mollick
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Thomas E Hazy
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Kai A Krueger
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Ananta Nair
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Prescott Mackie
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Seth A Herd
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Randall C O'Reilly
- Department of Psychology and Neuroscience, University of Colorado Boulder
| |
Collapse
|
213
|
Liu W, Qin J, Tang Q, Han Y, Fang T, Zhang Z, Wang C, Lin X, Tian H, Zhuo C, Chen C. Disrupted pathways from the frontal-parietal cortices to basal nuclei and the cerebellum are a feature of the obsessive-compulsive disorder spectrum and can be used to aid in early differential diagnosis. Psychiatry Res 2020; 293:113436. [PMID: 32889343 DOI: 10.1016/j.psychres.2020.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022]
Abstract
A marker for distinguishing patients with obsessive-compulsive disorder (OCD) spectrum has not yet been identified. Whole-brain resting-state effective and functional connectivity (rsEC and rsFC, respectively) networks were constructed for 50 unmedicated OCD (U-OCD) patients, 45 OCD patients in clinical remission (COCD), 47 treatment-resistant OCD (T-OCD) patients, 42 chronic schizophrenia patients who exhibit OCD symptoms (SCHOCD), and 50 healthy controls (HCs). Multivariate pattern analysis (MVPA) was performed to investigate the accuracy of using connectivity alterations to distinguished among the aforementioned groups. Compared to HCs, rsEC connections were significantly disrupted in the U-OCD (n = 15), COCD (n = 8), and T-OCD (n = 19) groups. Additionally, 21 rsEC connections were significantly disrupted in the T-OCD group compared to the SCHOCD group. The disrupted rsEC networks were associated mainly with the frontal-parietal cortex, basal ganglia, limbic regions, and the cerebellum. Classification accuracies for distinguishing OCD patients from HCs and SCHOCD patients ranged from 66.6% to 98.0%. In conclusion, disrupted communication from the frontal-parietal cortices to subcortical basal nuclei and the cerebellum may represent a functional pathological feature of the OCD spectrum. MVPA based on both abnormal rsEC and rsFC patterns may aid in early differential diagnosis of OCD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Jun Qin
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Qiuju Tang
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Yunyi Han
- Department of Psychiatry, Harbin Medical University Affiliated First Hospital, Harbin, 150036, China
| | - Tao Fang
- Key Labotorary of Real Time Brian Circuits Tracing of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin, 300024, China
| | - Zhengqing Zhang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, 361000, China
| | - Chunxiang Wang
- Department of Medical Imaging Center, Tianjin Children Hospital, Tianjin, 300305, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory (PNG-Lab), Wenzhou Seventh Hospital, Wenzhou, 325000, Zhejiang Province, China
| | - Hongjun Tian
- Key Labotorary of Real Time Brian Circuits Tracing of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin, 300024, China
| | - Chuanjun Zhuo
- Key Labotorary of Real Time Brian Circuits Tracing of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin, 300024, China; Department of Psychiatry, Tianjin Fourth Centre Hospital, Tianjin, 300024, Tianjin, China; Department of Psychiatry, Wenzhou Seventh Peolples Hospital, Wenzhou, 325000, China.
| | - Ce Chen
- PNGC_Lab, Tianjin Anding Hospital, Tianjin Medical Affiliated Mental Health Center, 300300, China
| |
Collapse
|
214
|
An integrative model of Parkinson's disease treatment including levodopa pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor action throughout disease progression. J Pharmacokinet Pharmacodyn 2020; 48:133-148. [PMID: 33084988 DOI: 10.1007/s10928-020-09723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Levodopa is considered the gold standard treatment of Parkinson's disease. Although very effective in alleviating symptoms at their onset, its chronic use with the progressive neuronal denervation in the basal ganglia leads to a decrease in levodopa's effect duration and to the appearance of motor complications. This evolution challenges the establishment of optimal regimens to manage the symptoms as the disease progresses. Based on up-to-date pathophysiological and pharmacological knowledge, we developed an integrative model for Parkinson's disease to evaluate motor function in response to levodopa treatment as the disease progresses. We combined a pharmacokinetic model of levodopa to a model of dopamine's kinetics and a neurocomputational model of basal ganglia. The parameter values were either measured directly or estimated from human and animal data. The concentrations and behaviors predicted by our model were compared to available information and data. Using this model, we were able to predict levodopa plasma concentration, its related dopamine concentration in the brain and the response performance of a motor task for different stages of disease.
Collapse
|
215
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
216
|
Abstract
Animals frequently need to choose the best alternative from a set of possibilities, whether it is which direction to swim in or which food source to favor. How long should a network of neurons take to choose the best of N options? Theoretical results suggest that the optimal time grows as log(N), if the values of each option are imperfectly perceived. However, standard self-terminating neural network models of decision-making cannot achieve this optimal behavior. We show how using certain additional nonlinear response properties in neurons, which are ignored in standard models, results in a decision-making architecture that both achieves the optimal scaling of decision time and accounts for multiple experimentally observed features of neural decision-making. An elemental computation in the brain is to identify the best in a set of options and report its value. It is required for inference, decision-making, optimization, action selection, consensus, and foraging. Neural computing is considered powerful because of its parallelism; however, it is unclear whether neurons can perform this max-finding operation in a way that improves upon the prohibitively slow optimal serial max-finding computation (which takes ∼Nlog(N) time for N noisy candidate options) by a factor of N, the benchmark for parallel computation. Biologically plausible architectures for this task are winner-take-all (WTA) networks, where individual neurons inhibit each other so only those with the largest input remain active. We show that conventional WTA networks fail the parallelism benchmark and, worse, in the presence of noise, altogether fail to produce a winner when N is large. We introduce the nWTA network, in which neurons are equipped with a second nonlinearity that prevents weakly active neurons from contributing inhibition. Without parameter fine-tuning or rescaling as N varies, the nWTA network achieves the parallelism benchmark. The network reproduces experimentally observed phenomena like Hick’s law without needing an additional readout stage or adaptive N-dependent thresholds. Our work bridges scales by linking cellular nonlinearities to circuit-level decision-making, establishes that distributed computation saturating the parallelism benchmark is possible in networks of noisy, finite-memory neurons, and shows that Hick’s law may be a symptom of near-optimal parallel decision-making with noisy input.
Collapse
|
217
|
Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, Chalasani S, Hantman AW, Lerner TN, Boca SM, Chan CS. Parvalbumin + and Npas1 + Pallidal Neurons Have Distinct Circuit Topology and Function. J Neurosci 2020; 40:7855-7876. [PMID: 32868462 PMCID: PMC7548687 DOI: 10.1523/jneurosci.0361-20.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/23/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
The external globus pallidus (GPe) is a critical node within the basal ganglia circuit. Phasic changes in the activity of GPe neurons during movement and their alterations in Parkinson's disease (PD) argue that the GPe is important in motor control. Parvalbumin-positive (PV+) neurons and Npas1+ neurons are the two principal neuron classes in the GPe. The distinct electrophysiological properties and axonal projection patterns argue that these two neuron classes serve different roles in regulating motor output. However, the causal relationship between GPe neuron classes and movement remains to be established. Here, by using optogenetic approaches in mice (both males and females), we showed that PV+ neurons and Npas1+ neurons promoted and suppressed locomotion, respectively. Moreover, PV+ neurons and Npas1+ neurons are under different synaptic influences from the subthalamic nucleus (STN). Additionally, we found a selective weakening of STN inputs to PV+ neurons in the chronic 6-hydroxydopamine lesion model of PD. This finding reinforces the idea that the reciprocally connected GPe-STN network plays a key role in disease symptomatology and thus provides the basis for future circuit-based therapies.SIGNIFICANCE STATEMENT The external pallidum is a key, yet an understudied component of the basal ganglia. Neural activity in the pallidum goes awry in neurologic diseases, such as Parkinson's disease. While this strongly argues that the pallidum plays a critical role in motor control, it has been difficult to establish the causal relationship between pallidal activity and motor function/dysfunction. This was in part because of the cellular complexity of the pallidum. Here, we showed that the two principal neuron types in the pallidum have opposing roles in motor control. In addition, we described the differences in their synaptic influence. Importantly, our research provides new insights into the cellular and circuit mechanisms that explain the hypokinetic features of Parkinson's disease.
Collapse
Affiliation(s)
- Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Harry S Xenias
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Elizabeth C Augustine
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Isabel Fan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Saivasudha Chalasani
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Talia N Lerner
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
218
|
Activation of Subthalamic Nucleus Stop Circuit Disrupts Cognitive Performance. eNeuro 2020; 7:ENEURO.0159-20.2020. [PMID: 32887694 PMCID: PMC7545431 DOI: 10.1523/eneuro.0159-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
Much evidence supports a fundamental role for the subthalamic nucleus (STN) in rapidly stopping behavior when a stop signal or surprising event occurs, but the extent to which the STN may be involved in stopping cognitive processes is less clear. Here, we used an optogenetic approach to control STN activity in a delayed-match-to-position (DMTP) task where mice had to recall a response location after a delay. We first demonstrated that a surprising event impaired performance by both slowing the latency to respond and increasing the rate of errors. We next showed that these effects could be mimicked by brief optogenetic activation of the STN. Further, inhibiting STN during surprise blocked surprise-induced slowing, although without changing surprise-induced errors. These data are consistent with the hypothesis that STN is recruited by surprise to slow responding and that this can also interrupt cognitive processes. Under normal conditions STN-mediated stopping of behavior may slow or stop ongoing cognition to facilitate cognitive reorienting and adaptive responses to unexpected sensory information, but when malfunctioning, it could produce pathologies related to over-rigidity or increased distractibility.
Collapse
|
219
|
Sjöbom J, Tamtè M, Halje P, Brys I, Petersson P. Cortical and striatal circuits together encode transitions in natural behavior. SCIENCE ADVANCES 2020; 6:eabc1173. [PMID: 33036974 PMCID: PMC11209674 DOI: 10.1126/sciadv.abc1173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
In natural behavior, we fluidly change from one type of activity to another in a sequence of motor actions. Corticostriatal circuits are thought to have a particularly important role in the construction of action sequences, but neuronal coding of a sequential behavior consisting of different motor programs has not been investigated at the circuit level in corticostriatal networks, making the exact nature of this involvement elusive. Here, we show, by analyzing spontaneous self-grooming in rats, that neuronal modulation in motor cortex and dorsal striatum is strongly related to transitions between behaviors. Our data suggest that longer action sequences in rodent grooming behavior emerge from stepwise control of individual behavioral transitions, where future actions are encoded differently depending on current motor state. This state-dependent motor coding was found to differentiate between rare behavioral transitions and as opposed to more habitual sequencing of actions.
Collapse
Affiliation(s)
- Joel Sjöbom
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Martin Tamtè
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Pär Halje
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Ivani Brys
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden.
| | - Per Petersson
- Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden.
- Department of Integrative Medical Biology, Umeå University, Sweden
| |
Collapse
|
220
|
Schwab BC, Kase D, Zimnik A, Rosenbaum R, Codianni MG, Rubin JE, Turner RS. Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication. PLoS Biol 2020; 18:e3000829. [PMID: 33048920 PMCID: PMC7584254 DOI: 10.1371/journal.pbio.3000829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/23/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.
Collapse
Affiliation(s)
- Bettina C. Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Technical Medical Center, University of Twente, Enschede, the Netherlands
| | - Daisuke Kase
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
| | - Marcello G. Codianni
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
221
|
Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci 2020; 23:1421-1432. [PMID: 32989295 DOI: 10.1038/s41593-020-00711-6] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Brain atlases are fundamental to understanding the topographic organization of the human brain, yet many contemporary human atlases cover only the cerebral cortex, leaving the subcortex a terra incognita. We use functional MRI (fMRI) to map the complex topographic organization of the human subcortex, revealing large-scale connectivity gradients and new areal boundaries. We unveil four scales of subcortical organization that recapitulate well-known anatomical nuclei at the coarsest scale and delineate 27 new bilateral regions at the finest. Ultrahigh field strength fMRI corroborates and extends this organizational structure, enabling the delineation of finer subdivisions of the hippocampus and the amygdala, while task-evoked fMRI reveals a subtle subcortical reorganization in response to changing cognitive demands. A new subcortical atlas is delineated, personalized to represent individual differences and used to uncover reproducible brain-behavior relationships. Linking cortical networks to subcortical regions recapitulates a task-positive to task-negative axis. This new atlas enables holistic connectome mapping and characterization of cortico-subcortical connectivity.
Collapse
Affiliation(s)
- Ye Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 8002, Integrative Neuroscience and Cognition Center, Université de Paris, Paris, France
| | - Michael Breakspear
- Discipline of Psychiatry, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,School of Psychology, Faculty of Science, University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia. .,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
222
|
Okamoto S, Sohn J, Tanaka T, Takahashi M, Ishida Y, Yamauchi K, Koike M, Fujiyama F, Hioki H. Overlapping Projections of Neighboring Direct and Indirect Pathway Neostriatal Neurons to Globus Pallidus External Segment. iScience 2020; 23:101409. [PMID: 32877648 PMCID: PMC7520896 DOI: 10.1016/j.isci.2020.101409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Indirect pathway medium-sized spiny neurons (iMSNs) in the neostriatum are well known to project to the external segment of the globus pallidus (GPe). Although direct MSNs (dMSNs) also send axon collaterals to the GPe, it remains unclear how dMSNs and iMSNs converge within the GPe. Here, we selectively labeled neighboring dMSNs and iMSNs with green and red fluorescent proteins using an adeno-associated virus vector and examined axonal projections of dMSNs and iMSNs to the GPe in mice. Both dMSNs and iMSNs formed two axonal arborizations displaying topographical projections in the dorsoventral and mediolateral planes. iMSNs displayed a wider and denser axon distribution, which included that of dMSNs. Density peaks of dMSN and iMSN axons almost overlapped, revealing convergence of dMSN axons in the center of iMSN projection fields. These overlapping projections suggest that dMSNs and iMSNs may work cooperatively via interactions within the GPe.
Collapse
Affiliation(s)
- Shinichiro Okamoto
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takuma Tanaka
- Graduate School of Data Science, Shiga University, 1-1-1 Banba, Hikone, Shiga 522-8522, Japan
| | - Megumu Takahashi
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Ishida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
223
|
Grillner S, Robertson B, Kotaleski JH. Basal Ganglia—A Motion Perspective. Compr Physiol 2020; 10:1241-1275. [DOI: 10.1002/cphy.c190045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
224
|
Mueller K, Urgošík D, Ballarini T, Holiga Š, Möller HE, Růžička F, Roth J, Vymazal J, Schroeter ML, Růžička E, Jech R. Differential effects of deep brain stimulation and levodopa on brain activity in Parkinson's disease. Brain Commun 2020; 2:fcaa005. [PMID: 32954278 PMCID: PMC7425344 DOI: 10.1093/braincomms/fcaa005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Levodopa is the first-line treatment for Parkinson’s disease, although the precise mechanisms mediating its efficacy remain elusive. We aimed to elucidate treatment effects of levodopa on brain activity during the execution of fine movements and to compare them with deep brain stimulation of the subthalamic nuclei. We studied 32 patients with Parkinson’s disease using functional MRI during the execution of finger-tapping task, alternating epochs of movement and rest. The task was performed after withdrawal and administration of a single levodopa dose. A subgroup of patients (n = 18) repeated the experiment after electrode implantation with stimulator on and off. Investigating levodopa treatment, we found a significant interaction between both factors of treatment state (off, on) and experimental task (finger tapping, rest) in bilateral putamen, but not in other motor regions. Specifically, during the off state of levodopa medication, activity in the putamen at rest was higher than during tapping. This represents an aberrant activity pattern probably indicating the derangement of basal ganglia network activity due to the lack of dopaminergic input. Levodopa medication reverted this pattern, so that putaminal activity during finger tapping was higher than during rest, as previously described in healthy controls. Within-group comparison with deep brain stimulation underlines the specificity of our findings with levodopa treatment. Indeed, a significant interaction was observed between treatment approach (levodopa, deep brain stimulation) and treatment state (off, on) in bilateral putamen. Our functional MRI study compared for the first time the differential effects of levodopa treatment and deep brain stimulation on brain motor activity. We showed modulatory effects of levodopa on brain activity of the putamen during finger movement execution, which were not observed with deep brain stimulation.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dušan Urgošík
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Josef Vymazal
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
225
|
Mantel T, Altenmüller E, Li Y, Lee A, Meindl T, Jochim A, Zimmer C, Haslinger B. Structure-function abnormalities in cortical sensory projections in embouchure dystonia. NEUROIMAGE-CLINICAL 2020; 28:102410. [PMID: 32932052 PMCID: PMC7495104 DOI: 10.1016/j.nicl.2020.102410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Embouchure dystonia (ED) is a task-specific focal dystonia in professional brass players leading to abnormal orofacial muscle posturing/spasms during performance. Previous studies have outlined abnormal cortical sensorimotor function during sensory/motor tasks and in the resting state as well as abnormal cortical sensorimotor structure. Yet, potentially underlying white-matter tract abnormalities in this network disease are unknown. OBJECTIVE To delineate structure-function abnormalities within cerebral sensorimotor trajectories in ED. METHOD Probabilistic tractography and seed-based functional connectivity analysis were performed in 16/16 ED patients/healthy brass players within a simple literature-informed network model of cortical sensorimotor processing encompassing supplementary motor, superior parietal, primary somatosensory and motor cortex as well as the putamen. Post-hoc grey matter volumetry was performed within cortices of abnormal trajectories. RESULTS ED patients showed average axial diffusivity reduction within projections between the primary somatosensory cortex and putamen, with converse increases within projections between supplementary motor and superior parietal cortex in both hemispheres. Increase in the mode of anisotropy in patients was accompanying the latter left-hemispheric projection, as well as in the supplementary motor area's projection to the left primary motor cortex. Patient's left primary somatosensory functional connectivity with the putamen was abnormally reduced and significantly associated with the axial diffusivity reduction. Left primary somatosensory grey matter volume was increased in patients. CONCLUSION Correlates of abnormal tract integrity within primary somatosensory cortico-subcortical projections and higher-order sensorimotor projections support the key role of dysfunctional sensory information propagation in ED pathophysiology. Differential directionality of cortico-cortical and cortico-subcortical abnormalities hints at non-uniform sensory system changes.
Collapse
Affiliation(s)
- Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Eckart Altenmüller
- Hochschule für Musik, Theater und Medien Hannover, Emmichplatz 1, Hanover, Germany
| | - Yong Li
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - André Lee
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany; Hochschule für Musik, Theater und Medien Hannover, Emmichplatz 1, Hanover, Germany
| | - Tobias Meindl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany.
| |
Collapse
|
226
|
Véronneau-Veilleux F, Ursino M, Robaey P, Lévesque D, Nekka F. Nonlinear pharmacodynamics of levodopa through Parkinson's disease progression. CHAOS (WOODBURY, N.Y.) 2020; 30:093146. [PMID: 33003902 DOI: 10.1063/5.0014800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The effect of levodopa in alleviating the symptoms of Parkinson's disease is altered in a highly nonlinear manner as the disease progresses. This can be attributed to different compensation mechanisms taking place in the basal ganglia where the dopaminergic neurons are progressively lost. This alteration in the effect of levodopa complicates the optimization of a drug regimen. The present work aims at investigating the nonlinear dynamics of Parkinson's disease and its therapy through mechanistic mathematical modeling. Using a holistic approach, a pharmacokinetic model of levodopa was combined to a dopamine dynamics and a neurocomputational model of basal ganglia. The influence of neuronal death on these different mechanisms was also integrated. Using this model, we were able to investigate the nonlinear relationships between the levodopa plasma concentration, the dopamine brain concentration, and a response to a motor task. Variations in dopamine concentrations in the brain for different levodopa doses were also studied. Finally, we investigated the narrowing of a levodopa therapeutic index with the progression of the disease as a result of these nonlinearities. In conclusion, various consequences of nonlinear dynamics in Parkinson's disease treatment were studied by developing an integrative model. This model paves the way toward individualization of a dosing regimen. Using sensor based information, the parameters of the model could be fitted to individual data to propose optimal individual regimens.
Collapse
Affiliation(s)
| | - Mauro Ursino
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, 40136 Bologna, Italy
| | - Philippe Robaey
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Daniel Lévesque
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Fahima Nekka
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
227
|
Valsky D, Heiman Grosberg S, Israel Z, Boraud T, Bergman H, Deffains M. What is the true discharge rate and pattern of the striatal projection neurons in Parkinson's disease and Dystonia? eLife 2020; 9:e57445. [PMID: 32812870 PMCID: PMC7462612 DOI: 10.7554/elife.57445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Dopamine and striatal dysfunctions play a key role in the pathophysiology of Parkinson's disease (PD) and Dystonia, but our understanding of the changes in the discharge rate and pattern of striatal projection neurons (SPNs) remains limited. Here, we recorded and examined multi-unit signals from the striatum of PD and dystonic patients undergoing deep brain stimulation surgeries. Contrary to earlier human findings, we found no drastic changes in the spontaneous discharge of the well-isolated and stationary SPNs of the PD patients compared to the dystonic patients or to the normal levels of striatal activity reported in healthy animals. Moreover, cluster analysis using SPN discharge properties did not characterize two well-separated SPN subpopulations, indicating no SPN subpopulation-specific (D1 or D2 SPNs) discharge alterations in the pathological state. Our results imply that small to moderate changes in spontaneous SPN discharge related to PD and Dystonia are likely amplified by basal ganglia downstream structures.
Collapse
Affiliation(s)
- Dan Valsky
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
| | - Shai Heiman Grosberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Thomas Boraud
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
- CHU de Bordeaux, IMN CliniqueBordeauxFrance
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Marc Deffains
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
| |
Collapse
|
228
|
Yang L, Masmanidis SC. Differential encoding of action selection by orbitofrontal and striatal population dynamics. J Neurophysiol 2020; 124:634-644. [PMID: 32727312 PMCID: PMC7500377 DOI: 10.1152/jn.00316.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Survival relies on the ability to flexibly choose between different actions according to varying environmental circumstances. Many lines of evidence indicate that action selection involves signaling in corticostriatal circuits, including the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS). While choice-specific responses have been found in individual neurons from both areas, it is unclear whether populations of OFC or DMS neurons are better at encoding an animal's choice. To address this, we trained head-fixed mice to perform an auditory guided two-alternative choice task, which required moving a joystick forward or backward. We then used silicon microprobes to simultaneously measure the spiking activity of OFC and DMS ensembles, allowing us to directly compare population dynamics between these areas within the same animals. Consistent with previous literature, both areas contained neurons that were selective for specific stimulus-action associations. However, analysis of concurrently recorded ensemble activity revealed that the animal's trial-by-trial behavior could be decoded more accurately from DMS dynamics. These results reveal substantial regional differences in encoding action selection, suggesting that DMS neural dynamics are more specialized than OFC at representing an animal's choice of action.NEW & NOTEWORTHY While previous literature shows that both orbitofrontal cortex (OFC) and dorsomedial striatum (DMS) represent information relevant to selecting specific actions, few studies have directly compared neural signals between these areas. Here we compared OFC and DMS dynamics in mice performing a two-alternative choice task. We found that the animal's choice could be decoded more accurately from DMS population activity. This work provides among the first evidence that OFC and DMS differentially represent information about an animal's selected action.
Collapse
Affiliation(s)
- Long Yang
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
229
|
David FJ, Munoz MJ, Corcos DM. The effect of STN DBS on modulating brain oscillations: consequences for motor and cognitive behavior. Exp Brain Res 2020; 238:1659-1676. [PMID: 32494849 PMCID: PMC7415701 DOI: 10.1007/s00221-020-05834-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
In this review, we highlight Professor John Rothwell's contribution towards understanding basal ganglia function and dysfunction, as well as the effects of subthalamic nucleus deep brain stimulation (STN DBS). The first section summarizes the rate and oscillatory models of basal ganglia dysfunction with a focus on the oscillation model. The second section summarizes the motor, gait, and cognitive mechanisms of action of STN DBS. In the final section, we summarize the effects of STN DBS on motor and cognitive tasks. The studies reviewed in this section support the conclusion that high-frequency STN DBS improves the motor symptoms of Parkinson's disease. With respect to cognition, STN DBS can be detrimental to performance especially when the task is cognitively demanding. Consolidating findings from many studies, we find that while motor network oscillatory activity is primarily correlated to the beta-band, cognitive network oscillatory activity is not confined to one band but is subserved by activity in multiple frequency bands. Because of these findings, we propose a modified motor and associative/cognitive oscillatory model that can explain the consistent positive motor benefits and the negative and null cognitive effects of STN DBS. This is clinically relevant because STN DBS should enhance oscillatory activity that is related to both motor and cognitive networks to improve both motor and cognitive performance.
Collapse
Affiliation(s)
- Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.
| | - Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
230
|
Castela I, Hernandez LF. Shedding light on dyskinesias. Eur J Neurosci 2020; 53:2398-2413. [DOI: 10.1111/ejn.14777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Ivan Castela
- HM‐CINAC Hospital Universitario HM Puerta del Sur Fundación de Investigación HM Hospitales Madrid Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) Carlos III Health Institute Madrid Spain
| | - Ledia F. Hernandez
- HM‐CINAC Hospital Universitario HM Puerta del Sur Fundación de Investigación HM Hospitales Madrid Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) Carlos III Health Institute Madrid Spain
| |
Collapse
|
231
|
Zhang F, Iwaki S. Correspondence Between Effective Connections in the Stop-Signal Task and Microstructural Correlations. Front Hum Neurosci 2020; 14:279. [PMID: 32848664 PMCID: PMC7396500 DOI: 10.3389/fnhum.2020.00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fan Zhang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sunao Iwaki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Sunao Iwaki
| |
Collapse
|
232
|
van Wijk BCM, Alkemade A, Forstmann BU. Functional segregation and integration within the human subthalamic nucleus from a micro- and meso-level perspective. Cortex 2020; 131:103-113. [PMID: 32823130 DOI: 10.1016/j.cortex.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022]
Abstract
The subthalamic nucleus (STN) is a core basal ganglia structure involved in the control of motor, cognitive, motivational and affective functions. The (challenged) tripartite subdivision hypothesis places these functions into distinct sensorimotor, cognitive/associative, and limbic subregions based on the topography of cortical projections. To a large extent, this hypothesis is used to motivate the choice of target coordinates for implantation of deep brain stimulation electrodes for treatment of neurological and psychiatric disorders. Yet, the parallel organization of basal ganglia circuits has been known to allow considerable cross-talk, which might contribute to the occurrence of neuropsychiatric side effects when stimulating the dorsolateral, putative sensorimotor, part of the STN for treatment of Parkinson's disease. Any functional segregation within the STN is expected to be reflected both at micro-level microscopy and meso-level neural population activity. As such, we review the current empirical evidence from anterograde tracing and immunocytochemistry studies and from local field potential recordings for delineating the STN into distinct subregions. The spatial distribution of immunoreactivity presents as a combination of gradients, and although neural activity in distinct frequency bands appears spatially clustered, there is substantial overlap in peak locations. We argue that regional specialization without sharply defined borders is likely most representative of the STN's functional organization.
Collapse
Affiliation(s)
- Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands.
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, the Netherlands
| |
Collapse
|
233
|
Jahfari S, Ridderinkhof KR, Collins AGE, Knapen T, Waldorp LJ, Frank MJ. Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing. Cereb Cortex 2020; 29:1969-1983. [PMID: 29912363 DOI: 10.1093/cercor/bhy076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/12/2022] Open
Abstract
Why are we so slow in choosing the lesser of 2 evils? We considered whether such slowing relates to uncertainty about the value of these options, which arises from the tendency to avoid them during learning, and whether such slowing relates to frontosubthalamic inhibitory control mechanisms. In total, 49 participants performed a reinforcement-learning task and a stop-signal task while fMRI was recorded. A reinforcement-learning model was used to quantify learning strategies. Individual differences in lose-lose slowing related to information uncertainty due to sampling, and independently, to less efficient response inhibition in the stop-signal task. Neuroimaging analysis revealed an analogous dissociation: subthalamic nucleus (STN) BOLD activity related to variability in stopping latencies, whereas weaker frontosubthalamic connectivity related to slowing and information sampling. Across tasks, fast inhibitors increased STN activity for successfully canceled responses in the stop task, but decreased activity for lose-lose choices. These data support the notion that fronto-STN communication implements a rapid but transient brake on response execution, and that slowing due to decision uncertainty could result from an inefficient release of this "hold your horses" mechanism.
Collapse
Affiliation(s)
- Sara Jahfari
- Spinoza Centre for Neuroimaging, 1105 BK Amsterdam, The Netherlands.,Amsterdam Brain & Cognition (ABC), University of Amsterdam, 1018 WB Amsterdam, The Netherlands
| | - K Richard Ridderinkhof
- Amsterdam Brain & Cognition (ABC), University of Amsterdam, 1018 WB Amsterdam, The Netherlands.,Department of Psychology, University of Amsterdam, 1018 WB Amsterdam, The Netherlands
| | - Anne G E Collins
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, 1105 BK Amsterdam, The Netherlands.,Department of Cognitive Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Lourens J Waldorp
- Amsterdam Brain & Cognition (ABC), University of Amsterdam, 1018 WB Amsterdam, The Netherlands
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, and Brown Institute for Brain Sciences, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
234
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
235
|
Quartarone A, Cacciola A, Milardi D, Ghilardi MF, Calamuneri A, Chillemi G, Anastasi G, Rothwell J. New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. Brain 2020; 143:396-406. [PMID: 31628799 DOI: 10.1093/brain/awz310] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
The current model of the basal ganglia system based on the 'direct', 'indirect' and 'hyperdirect' pathways provides striking predictions about basal ganglia function that have been used to develop deep brain stimulation approaches for Parkinson's disease and dystonia. The aim of this review is to challenge this scheme in light of new tract tracing information that has recently become available from the human brain using MRI-based tractography, thus providing a novel perspective on the basal ganglia system. We also explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum in the pathophysiology of movement disorders.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi 'Bonino Pulejo', Messina, Italy
| | | | | | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
236
|
Girard B, Lienard J, Gutierrez CE, Delord B, Doya K. A biologically constrained spiking neural network model of the primate basal ganglia with overlapping pathways exhibits action selection. Eur J Neurosci 2020; 53:2254-2277. [PMID: 32564449 PMCID: PMC8246891 DOI: 10.1111/ejn.14869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Action selection has been hypothesized to be a key function of the basal ganglia, yet the nuclei involved, their interactions and the importance of the direct/indirect pathway segregation in such process remain debated. Here, we design a spiking computational model of the monkey basal ganglia derived from a previously published population model, initially parameterized to reproduce electrophysiological activity at rest and to embody as much quantitative anatomical data as possible. As a particular feature, both models exhibit the strong overlap between the direct and indirect pathways that has been documented in non-human primates. Here, we first show how the translation from a population to an individual neuron model was achieved, with the addition of a minimal number of parameters. We then show that our model performs action selection, even though it was built without any assumption on the activity carried out during behaviour. We investigate the mechanisms of this selection through circuit disruptions and found an instrumental role of the off-centre/on-surround structure of the MSN-STN-GPi circuit, as well as of the MSN-MSN and FSI-MSN projections. This validates their potency in enabling selection. We finally study the pervasive centromedian and parafascicular thalamic inputs that reach all basal ganglia nuclei and whose influence is therefore difficult to anticipate. Our model predicts that these inputs modulate the responsiveness of action selection, making them a candidate for the regulation of the speed-accuracy trade-off during decision-making.
Collapse
Affiliation(s)
- Benoît Girard
- Institut des Systèmes Intelligent et de Robotique (ISIR), Sorbonne Université, CNRS, Paris, France
| | - Jean Lienard
- Neural Computation Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Japan
| | | | - Bruno Delord
- Institut des Systèmes Intelligent et de Robotique (ISIR), Sorbonne Université, CNRS, Paris, France
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Japan
| |
Collapse
|
237
|
Florio TM. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas? AIMS Neurosci 2020; 7:136-152. [PMID: 32607417 PMCID: PMC7321770 DOI: 10.3934/neuroscience.2020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Comprehensive knowledge about higher executive functions of motor control has been covered in the last decades. Critical goals have been targeted through many different technological approaches. An abundant flow of new results greatly progressed our ability to respond at better-posited answers to look more than ever at the challenging neural system functioning. Behaviour is the observable result of the invisible, as complex cerebral functioning. Many pathological states are approached after symptomatology categorisation of behavioural impairments is achieved. Motor, non-motor and psychiatric signs are greatly shared by many neurological/psychiatric disorders. Together with the cerebral cortex, the basal ganglia contribute to the expression of behaviour promoting the correct action schemas and the selection of appropriate sub-goals based on the evaluation of action outcomes. The present review focus on the basic classification of higher motor control functioning, taking into account the recent advances in basal ganglia structural knowledge and the computational model of basal ganglia functioning. We discuss about the basal ganglia capability in executing ordered motor patterns in which any single movement is linked to each other into an action, and many actions are ordered into each other, giving them a syntactic value to the final behaviour. The stereotypic, automatized and habitual behaviour's constructs and controls are the expression of successive stages of rule internalization and categorisation aimed in producing the perfect spatial-temporal control of motor command.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| |
Collapse
|
238
|
A neural network model of basal ganglia's decision-making circuitry. Cogn Neurodyn 2020; 15:17-26. [PMID: 33786076 DOI: 10.1007/s11571-020-09609-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
The basal ganglia have been increasingly recognized as an important structure involved in decision making. Neurons in the basal ganglia were found to reflect the evidence accumulation process during decision making. However, it is not well understood how the direct and indirect pathways of the basal ganglia work together for decision making. Here, we create a recurrent neural network model that is composed of the direct and indirect pathways and test it with the classic random dot motion discrimination task. The direct pathway drives the outputs, which are modulated through a gating mechanism controlled by the indirect pathway. We train the network to learn the task and find that the network reproduces the accuracy and reaction time patterns of previous animal studies. Units in the model exhibit ramping activities that reflect evidence accumulation. Finally, we simulate manipulations of the direct and indirect pathways and find that the manipulations of the direct pathway mainly affect the choice while the manipulations of the indirect pathway affect the model's reaction time. These results suggest a potential circuitry mechanism of the basal ganglia's role in decision making with predictions that can be tested experimentally in the future.
Collapse
|
239
|
Doi T, Fan Y, Gold JI, Ding L. The caudate nucleus contributes causally to decisions that balance reward and uncertain visual information. eLife 2020; 9:56694. [PMID: 32568068 PMCID: PMC7308093 DOI: 10.7554/elife.56694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Our decisions often balance what we observe and what we desire. A prime candidate for implementing this complex balancing act is the basal ganglia pathway, but its roles have not yet been examined experimentally in detail. Here, we show that a major input station of the basal ganglia, the caudate nucleus, plays a causal role in integrating uncertain visual evidence and reward context to guide adaptive decision-making. In monkeys making saccadic decisions based on motion cues and asymmetric reward-choice associations, single caudate neurons encoded both sources of information. Electrical microstimulation at caudate sites during motion viewing affected the monkeys’ decisions. These microstimulation effects included coordinated changes in multiple computational components of the decision process that mimicked the monkeys’ similarly coordinated voluntary strategies for balancing visual and reward information. These results imply that the caudate nucleus plays causal roles in coordinating decision processes that balance external evidence and internal preferences.
Collapse
Affiliation(s)
- Takahiro Doi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Department of Psychology, University of Pennsylvania, Philadelphia, United States
| | - Yunshu Fan
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
240
|
Busan P. Developmental stuttering and the role of the supplementary motor cortex. JOURNAL OF FLUENCY DISORDERS 2020; 64:105763. [PMID: 32361030 DOI: 10.1016/j.jfludis.2020.105763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Developmental stuttering is a frequent neurodevelopmental disorder with a complex neurobiological basis. Robust neural markers of stuttering include imbalanced activity of speech and motor related brain regions, and their impaired structural connectivity. The dynamic interaction of cortical regions is regulated by the cortico-basal ganglia-thalamo-cortical system with the supplementary motor area constituting a crucial cortical site. The SMA integrates information from different neural circuits, and manages information about motor programs such as self-initiated movements, motor sequences, and motor learning. Abnormal functioning of SMA is increasingly reported in stuttering, and has been recently indicated as an additional "neural marker" of DS: anatomical and functional data have documented abnormal structure and activity of the SMA, especially in motor and speech networks. Its connectivity is often impaired, especially when considering networks of the left hemisphere. Compatibly, recent data suggest that, in DS, SMA is part of a poorly synchronized neural network, thus resulting in a likely substrate for the appearance of DS symptoms. However, as evident when considering neural models of stuttering, the role of SMA has not been fully clarified. Herein, the available evidence is reviewed, which highlights the role of the SMA in DS as a neural "hub", receiving and conveying altered information, thus "gating" the release of correct or abnormal motor plans.
Collapse
|
241
|
O'Reilly RC. Unraveling the Mysteries of Motivation. Trends Cogn Sci 2020; 24:425-434. [PMID: 32392468 PMCID: PMC7219631 DOI: 10.1016/j.tics.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/24/2022]
Abstract
Motivation plays a central role in human behavior and cognition but is not well captured by widely used artificial intelligence (AI) and computational modeling frameworks. This Opinion article addresses two central questions regarding the nature of motivation: what are the nature and dynamics of the internal goals that drive our motivational system and how can this system be sufficiently flexible to support our ability to rapidly adapt to novel situations, tasks, etc.? In reviewing existing systems and neuroscience research and theorizing on these questions, a wealth of insights to constrain the development of computational models of motivation can be found.
Collapse
Affiliation(s)
- Randall C O'Reilly
- Department of Psychology and Computer Science Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, CA 95816, USA.
| |
Collapse
|
242
|
Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E. The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striatum. Curr Neuropharmacol 2020; 18:34-50. [PMID: 31210112 PMCID: PMC7327935 DOI: 10.2174/1570159x17666190618121859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
The dorsal striatum, apart from controlling voluntary movement, displays a recently demonstrated pain inhibition. It is connected to the descending pain modulatory system and in particular to the rostral ventromedial medulla through the medullary dorsal reticular nucleus. Diseases of the basal ganglia, such as Parkinson's disease, in addition to being characterized by motor disorders, are associated with pain and hyperactivation of the excitatory transmission. A way to counteract glutamatergic hyperactivation is through the activation of group III metabotropic glutamate receptors (mGluRs), which are located on presynaptic terminals inhibiting neurotransmitter release. So far the mGluRs of group III have been the least investigated, owing to a lack of selective tools. More recently, selective ligands for each mGluR of group III, in particular positive and negative allosteric modulators, have been developed and the role of each subtype is starting to emerge. The neuroprotective potential of group III mGluRs in pathological conditions, such as those characterized by elevate glutamate, has been recently shown. In the dorsal striatum, mGluR7 and mGluR8 are located at glutamatergic corticostriatal terminals and their stimulation inhibits pain in pathological conditions such as neuropathic pain. The two receptors in the dorsal striatum have instead a different role in pain control in normal conditions. This review will discuss recent results focusing on the contribution of mGluR7 and mGluR8 in the dorsal striatal control of pain. The role of mGluR4, whose antiparkinsonian activity is widely reported, will also be addressed.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
243
|
Abstract
The neurotransmitter acetylcholine influences how male finches perform courtship songs by acting on a region of the premotor cortex called HVC.
Collapse
Affiliation(s)
- Erin M Wall
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
- Center for Research on Brain, Language, and Music, McGill UniversityMontrealCanada
| | - Sarah C Woolley
- Center for Research on Brain, Language, and Music, McGill UniversityMontrealCanada
- Department of Biology, McGill UniversityMontrealCanada
| |
Collapse
|
244
|
Mullié Y, Arto I, Yahiaoui N, Drew T. Contribution of the Entopeduncular Nucleus and the Globus Pallidus to the Control of Locomotion and Visually Guided Gait Modifications in the Cat. Cereb Cortex 2020; 30:5121-5146. [PMID: 32377665 DOI: 10.1093/cercor/bhaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that the entopeduncular (EP) nucleus (feline equivalent of the primate GPi) and the globus pallidus (GPe) contribute to both the planning and execution of locomotion and voluntary gait modifications in the cat. We recorded from 414 cells distributed throughout these two nuclei (referred to together as the pallidum) while cats walked on a treadmill and stepped over an obstacle that advanced towards them. Neuronal activity in many cells in both structures was modulated on a step-by-step basis during unobstructed locomotion and was modified in the step over the obstacle. On a population basis, the most frequently observed change, in both the EP and the GPe, was an increase in activity prior to and/or during the swing phase of the step over the obstacle by the contralateral forelimb, when it was the first limb to pass over the obstacle. Our results support a contribution of the pallidum, in concert with cortical structures, to the control of both the planning and the execution of the gait modifications. We discuss the results in the context of current models of pallidal action on thalamic activity, including the possibility that cells in the EP with increased activity may sculpt thalamo-cortical activity.
Collapse
Affiliation(s)
- Yannick Mullié
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Irène Arto
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Nabiha Yahiaoui
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Trevor Drew
- Département de Neurosciences, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
245
|
Rubin JE, Vich C, Clapp M, Noneman K, Verstynen T. The credit assignment problem in cortico‐basal ganglia‐thalamic networks: A review, a problem and a possible solution. Eur J Neurosci 2020; 53:2234-2253. [DOI: 10.1111/ejn.14745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan E. Rubin
- Department of Mathematics Center for the Neural Basis of Cognition University of Pittsburgh Pittsburgh PA USA
| | - Catalina Vich
- Department de Matemàtiques i Informàtica Institute of Applied Computing and Community Code Universitat de les Illes Balears Palma Spain
| | - Matthew Clapp
- Carnegie Mellon Neuroscience Institute Carnegie Mellon University Pittsburgh PA USA
| | - Kendra Noneman
- Micron School of Materials Science and Engineering Boise State University Boise ID USA
| | - Timothy Verstynen
- Carnegie Mellon Neuroscience Institute Carnegie Mellon University Pittsburgh PA USA
- Department of Psychology Center for the Neural Basis of Cognition Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
246
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
247
|
Chen M, Summers RLS, Prudente CN, Goding GS, Samargia-Grivette S, Ludlow CL, Kimberley TJ. Transcranial magnetic stimulation and functional magnet resonance imaging evaluation of adductor spasmodic dysphonia during phonation. Brain Stimul 2020; 13:908-915. [PMID: 32289724 PMCID: PMC7213049 DOI: 10.1016/j.brs.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Reduced intracortical inhibition is a neurophysiologic finding in focal dystonia that suggests a broader problem of impaired cortical excitability within the brain. A robust understanding of the neurophysiology in dystonia is essential to elucidate the pathophysiology of the disorder and develop new treatments. The cortical silent period (cSP) is a reliable, non-invasive method to measure intracortical inhibition in the primary motor cortex associated with a muscle of interest. In adductor spasmodic dysphonia (AdSD), cSP of the laryngeal motor cortex (LMC) which directly corresponds to the affected musculature, the thyroarytenoid (TA), has not been examined. OBJECTIVE This work evaluated the cSP of the LMC and the relationship between cSP and functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent (BOLD) activation in people with AdSD (n = 12) compared to healthy controls (CTL, n = 14). RESULTS Shortened LMC cSP were observed bilaterally in people with AdSD vs CTL (F(1, 99) = 19.5226, p < 0.0001), with a large effect size (η2 = 0.1834). Between-group fMRI analysis revealed greater activation in bilateral LMC in the AdSD > CTL contrast as compared to CTL > AdSD contrast. Correlation analysis showed that people with AdSD have positive correlation of left LMC BOLD activation and the cSP. Further, the right LMC cSP lacks either positive or negative associations with BOLD activation. CTL individuals displayed both positive and negative correlations between cSP and BOLD activation in the left LMC. In CTL, the LMC cSP and BOLD activation showed exclusively negative correlations in both hemispheres. CONCLUSION In AdSD, the cortical activation during phonation may not be efficiently or effectively associated with inhibitory processes, leading to muscular dysfunction. These findings may give insight into the maladaptive cortical control during phonation in people with AdSD.
Collapse
Affiliation(s)
- Mo Chen
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota. 426 Church St. SE, Minneapolis, MN, 55455, USA; Non-invasive Neuromodulation Laboratory, MnDRIVE Initiative, University of Minnesota. 247, 717 Delaware St. SE, Minneapolis, MN, 55414, USA
| | - Rebekah L S Summers
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota. 426 Church St. SE, Minneapolis, MN, 55455, USA; Department of Neurology, School of Medicine, University of Minnesota, 717 Delaware St., SE. Minneapolis, MN, 55414, USA
| | - Cecília N Prudente
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota. 426 Church St. SE, Minneapolis, MN, 55455, USA
| | - George S Goding
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Sharyl Samargia-Grivette
- Department of Communication Sciences and Disorders, University of Wisconsin River Falls Campus. 220 Wyman Teacher Education Bldg, 410 South Third Street, River Falls, WI, 54022, USA
| | - Christy L Ludlow
- Department of Communication Sciences and Disorders, James Madison University, MSC 4304, MLK Drive, Harrisonburg, VA, 22807, USA
| | - Teresa J Kimberley
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota. 426 Church St. SE, Minneapolis, MN, 55455, USA; School of Health and Rehabilitation Sciences, Department of Physical Therapy, Massachusetts General Hospital, Institute of Health Professions, 36 First Ave, Boston, MA, 02129, USA.
| |
Collapse
|
248
|
Lee Y, Han NE, Kim W, Kim JG, Lee IB, Choi SJ, Chun H, Seo M, Lee CJ, Koh HY, Kim JH, Baik JH, Bear MF, Choi SY, Yoon BJ. Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice. Mol Cells 2020; 43:360-372. [PMID: 31940718 PMCID: PMC7191043 DOI: 10.14348/molcells.2019.0279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022] Open
Abstract
The basal ganglia network has been implicated in the control of adaptive behavior, possibly by integrating motor learning and motivational processes. Both positive and negative reinforcement appear to shape our behavioral adaptation by modulating the function of the basal ganglia. Here, we examined a transgenic mouse line (G2CT) in which synaptic transmissions onto the medium spiny neurons (MSNs) of the basal ganglia are depressed. We found that the level of collaterals from direct pathway MSNs in the external segment of the globus pallidus (GPe) ('bridging collaterals') was decreased in these mice, and this was accompanied by behavioral inhibition under stress. Furthermore, additional manipulations that could further decrease or restore the level of the bridging collaterals resulted in an increase in behavioral inhibition or active behavior in the G2CT mice, respectively. Collectively, our data indicate that the striatum of the basal ganglia network integrates negative emotions and controls appropriate coping responses in which the bridging collateral connections in the GPe play a critical regulatory role.
Collapse
Affiliation(s)
- Young Lee
- Department of Life Sciences, Korea University, Seoul 0284, Korea
| | - Na-Eun Han
- Department of Life Sciences, Korea University, Seoul 0284, Korea
| | - Wonju Kim
- Department of Life Sciences, Korea University, Seoul 0284, Korea
| | - Jae Gon Kim
- Department of Life Sciences, Korea University, Seoul 0284, Korea
| | - In Bum Lee
- Department of Life Sciences, Korea University, Seoul 0284, Korea
| | - Su Jeong Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Korea
| | - Heejung Chun
- Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 3416, Korea
| | - Misun Seo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Neuroscience, University of Science and Technology (UST), Daejeon 3113, Korea
| | - C. Justin Lee
- Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 3416, Korea
| | - Hae-Young Koh
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Neuroscience, University of Science and Technology (UST), Daejeon 3113, Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul 0284, Korea
| | - Mark F. Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Korea
| | - Bong-June Yoon
- Department of Life Sciences, Korea University, Seoul 0284, Korea
| |
Collapse
|
249
|
Bakhurin KI, Li X, Friedman AD, Lusk NA, Watson GDR, Kim N, Yin HH. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. eLife 2020; 9:e54831. [PMID: 32324535 PMCID: PMC7180055 DOI: 10.7554/elife.54831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia have been implicated in action selection and timing, but the relative contributions of the striatonigral (direct) and striatopallidal (indirect) pathways to these functions remain unclear. We investigated the effects of optogenetic stimulation of D1+ (direct) and A2A+ (indirect) neurons in the ventrolateral striatum in head-fixed mice on a fixed time reinforcement schedule. Direct pathway stimulation initiates licking, whereas indirect pathway stimulation suppresses licking and results in rebound licking after stimulation. Moreover, direct and indirect pathways also play distinct roles in timing. Direct pathway stimulation produced a resetting of the internal timing process, whereas indirect pathway stimulation transiently paused timing, and proportionally delayed the next bout of licking. Our results provide evidence for the continuous and opposing contributions of the direct and indirect pathways in the production and timing of reward-guided behavior.
Collapse
Affiliation(s)
| | - Xiaoran Li
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | | | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Glenn DR Watson
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
250
|
Lahiri AK, Bevan MD. Dopaminergic Transmission Rapidly and Persistently Enhances Excitability of D1 Receptor-Expressing Striatal Projection Neurons. Neuron 2020; 106:277-290.e6. [PMID: 32075716 PMCID: PMC7182485 DOI: 10.1016/j.neuron.2020.01.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Substantia nigra dopamine neurons have been implicated in the initiation and invigoration of movement, presumably through their modulation of striatal projection neuron (SPN) activity. However, the impact of native dopaminergic transmission on SPN excitability has not been directly demonstrated. Using perforated patch-clamp recording, we found that optogenetic stimulation of nigrostriatal dopamine axons rapidly and persistently elevated the excitability of D1 receptor-expressing SPNs (D1-SPNs). The evoked firing of D1-SPNs increased within hundreds of milliseconds of stimulation and remained elevated for ≥ 10 min. Consistent with the negative modulation of depolarization- and Ca2+-activated K+ currents, dopaminergic transmission accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, and transiently diminished action potential afterhyperpolarization. Persistent modulation was protein kinase A dependent and associated with a reduction in action potential threshold. Together, these data demonstrate that dopaminergic transmission potently increases D1-SPN excitability with a time course that could support subsecond and sustained behavioral control.
Collapse
Affiliation(s)
- Asha K Lahiri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|