201
|
Cheng X, Yamauchi J, Lee S, Zhang T, Gong Z, Muzumdar R, Qu S, Dong HH. APOC3 Protein Is Not a Predisposing Factor for Fat-induced Nonalcoholic Fatty Liver Disease in Mice. J Biol Chem 2017; 292:3692-3705. [PMID: 28115523 DOI: 10.1074/jbc.m116.765917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in liver, is prevalent in obesity. Genetic factors that link obesity to NAFLD remain obscure. Apolipoprotein C3 (APOC3) is a lipid-binding protein with a pivotal role in triglyceride metabolism. Humans with APOC3 gain-of-function mutations and mice with APOC3 overproduction are associated with hypertriglyceridemia. Nonetheless, it remains controversial whether APOC3 is culpable for diet-induced NAFLD. To address this fundamental issue, we fed APOC3-transgenic and wild-type littermates a high fructose diet or high fat diet, followed by determination of the effect of APOC3 on hepatic lipid metabolism and inflammation and the progression of NAFLD. To gain mechanistic insight into NAFLD, we determined the impact of APOC3 on hepatic triglyceride synthesis and secretion versus fatty acid oxidation. APOC3-transgenic mice were hypertriglyceridemic, culminating in marked elevation of triglycerides, cholesterols, and non-esterified fatty acids in plasma. Despite the prevailing hypertriglyceridemia, APOC3-transgenic mice, relative to wild-type littermates, had similar weight gain and hepatic lipid content without alterations in hepatic expression of key genes involved in triglyceride synthesis and secretion and fatty acid oxidation. APOC3-transgenic and wild-type mice had similar Kupffer cell content without alterations in hepatic expression of pro- and anti-inflammatory cytokines. APOC3 neither exacerbated diet-induced adiposity nor aggravated the degree of steatosis in high fructose or high fat-fed APOC3-transgenic mice. These effects ensued independently of weight gain even after 10-month high fat feeding. We concluded that APOC3, whose dysregulation is liable for hypertriglyceridemia, is not a predisposing factor for linking overnutrition to NAFLD in obesity.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- From the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China and.,the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Jun Yamauchi
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sojin Lee
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ting Zhang
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Zhenwei Gong
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Radhika Muzumdar
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shen Qu
- From the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China and
| | - H Henry Dong
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
202
|
Stafeev IS, Vorotnikov AV, Ratner EI, Menshikov MY, Parfyonova YV. Latent Inflammation and Insulin Resistance in Adipose Tissue. Int J Endocrinol 2017; 2017:5076732. [PMID: 28912810 PMCID: PMC5585607 DOI: 10.1155/2017/5076732] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is a growing problem in modern society and medicine. It closely associates with metabolic disorders such as type 2 diabetes mellitus (T2DM) and hepatic and cardiovascular diseases such as nonalcoholic fatty liver disease, atherosclerosis, myocarditis, and hypertension. Obesity is often associated with latent inflammation; however, the link between inflammation, obesity, T2DM, and cardiovascular diseases is still poorly understood. Insulin resistance is the earliest feature of metabolic disorders. It mostly develops as a result of dysregulated insulin signaling in insulin-sensitive cells, as compared to inactivating mutations in insulin receptor or signaling proteins that occur relatively rare. Here, we argue that inflammatory signaling provides a link between latent inflammation, obesity, insulin resistance, and metabolic disorders. We further hypothesize that insulin-activated PI3-kinase pathway and inflammatory signaling mediated by several IκB kinases may constitute negative feedback leading to insulin resistance at least in the fat tissue. Finally, we discuss perspectives for anti-inflammatory therapies in treating the metabolic diseases.
Collapse
Affiliation(s)
- I. S. Stafeev
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow 119192, Russia
- *I. S. Stafeev:
| | - A. V. Vorotnikov
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- M.V. Lomonosov Moscow State University Medical Center, Moscow 119192, Russia
| | - E. I. Ratner
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- Endocrinology Research Centre, Moscow 117031, Russia
| | - M. Y. Menshikov
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
| | - Ye. V. Parfyonova
- Russian Cardiology Research and Production Centre, Moscow 121552, Russia
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow 119192, Russia
| |
Collapse
|
203
|
Guo C, Asamitsu S, Kashiwazaki G, Sato S, Bando T, Sugiyama H. DNA Interstrand Crosslinks by H-pin Polyamide (S
)-seco
-CBI Conjugates. Chembiochem 2016; 18:166-170. [DOI: 10.1002/cbic.201600425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Chuanxin Guo
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Sefan Asamitsu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Gengo Kashiwazaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo-ku Kyoto Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo-ku Kyoto Japan
| |
Collapse
|
204
|
CCL5/RANTES contributes to hypothalamic insulin signaling for systemic insulin responsiveness through CCR5. Sci Rep 2016; 6:37659. [PMID: 27898058 PMCID: PMC5127185 DOI: 10.1038/srep37659] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 11/08/2022] Open
Abstract
Many neurodegenerative diseases are accompanied by metabolic disorders. CCL5/RANTES, and its receptor CCR5 are known to contribute to neuronal function as well as to metabolic disorders such as type 2 diabetes mellitus, obesity, atherosclerosis and metabolic changes after HIV infection. Herein, we found that the lack of CCR5 or CCL5 in mice impaired regulation of energy metabolism in hypothalamus. Immunostaining and co-immunoprecipitation revealed the specific expression of CCR5, associated with insulin receptors, in the hypothalamic arcuate nucleus (ARC). Both ex vivo stimulation and in vitro tissue culture studies demonstrated that the activation of insulin, and PI3K-Akt pathways were impaired in CCR5 and CCL5 deficient hypothalamus. The inhibitory phosphorylation of insulin response substrate-1 at Ser302 (IRS-1S302) but not IRS-2, by insulin was markedly increased in CCR5 and CCL5 deficient animals. Elevating CCR5/CCL5 activity induced GLUT4 membrane translocation and reduced phospho-IRS-1S302 through AMPKα-S6 Kinase. Blocking CCR5 using the antagonist, MetCCL5, abolished the de-phosphorylation of IRS-1S302 and insulin signal activation. In addition, intracerebroventricular delivery of MetCCL5 interrupted hypothalamic insulin signaling and elicited peripheral insulin responsiveness and glucose intolerance. Taken together, our data suggest that CCR5 regulates insulin signaling in hypothalamus which contributes to systemic insulin sensitivity and glucose metabolism.
Collapse
|
205
|
Chakkera HA, Kudva Y, Kaplan B. Calcineurin Inhibitors: Pharmacologic Mechanisms Impacting Both Insulin Resistance and Insulin Secretion Leading to Glucose Dysregulation and Diabetes Mellitus. Clin Pharmacol Ther 2016; 101:114-120. [DOI: 10.1002/cpt.546] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/06/2023]
Affiliation(s)
- HA Chakkera
- Division of Transplantation; Mayo Clinic; Phoenix Arizona USA
| | - Y Kudva
- Division of Endocrinology; Mayo Clinic; Rochester Minnesota USA
| | - B Kaplan
- Division of Transplantation; Mayo Clinic; Phoenix Arizona USA
| |
Collapse
|
206
|
Zhou X, Zhu J, Bao Z, Shang Z, Wang T, Song J, Sun J, Li W, Adelusi TI, Wang Y, Lv D, Lu Q, Yin X. A variation in KCNQ1 gene is associated with repaglinide efficacy on insulin resistance in Chinese Type 2 Diabetes Mellitus Patients. Sci Rep 2016; 6:37293. [PMID: 27857189 PMCID: PMC5114551 DOI: 10.1038/srep37293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/28/2016] [Indexed: 01/19/2023] Open
Abstract
Repaglinide is an insulin secretagogue that often exhibits considerable interindividual variability in therapeutic efficacy. The current study was designed to investigate the impact of KCNQ1 genetic polymorphism on the efficacy of repaglinide and furthermore to identify the potential mechanism of action in patients with type 2 diabetes. A total of 305 patients and 200 healthy subjects were genotyped for the KCNQ1 rs2237892 polymorphism, and 82 patients with T2DM were randomized for the oral administration of repaglinide for 8 weeks. HepG2 cells were incubated with repaglinide in the absence or presence of a KCNQ1 inhibitor or the pcDNA3.1-hKCNQ1 plasmid, after which the levels of Akt, IRS-2 and PI(3)K were determined. Our data showed that repaglinide significantly decreased HOMA-IR in patients with T2DM. Furthermore, the level of HOMA-IR was significantly reduced in those patients with CT or TT genotypes than CC homozygotes. The KCNQ1 inhibitor enhanced repaglinide efficacy on insulin resistance, with IRS-2/PI(3)K/Akt signaling being up-regulated markedly. As in our clinical experiment, these data strongly suggest that KCNQ1 genetic polymorphism influences repaglinide response due to the pivotal role of KCNQ1 in regulating insulin resistance through the IRS-2/PI(3)K/Akt signaling pathway. This study was registered in the Chinese Clinical Trial Register on May 14, 2013. (No. ChiCTR-CCC13003536).
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jing Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zejun Bao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhenhai Shang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jinfang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Juan Sun
- Department of Endocrinology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wei Li
- Department of Endocrinology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yan Wang
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dongmei Lv
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
207
|
Dai B, Wu Q, Zeng C, Zhang J, Cao L, Xiao Z, Yang M. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:382-389. [PMID: 27401286 DOI: 10.1016/j.jep.2016.07.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/17/2016] [Accepted: 07/07/2016] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei Dihaung decoction (LWDHT) is a well-known classic traditional Chinese medicine formula, consists of six herbs including Rehmannia glutinosa Libosch.(family: Scrophulariaceae), Cornus officinalis Sieb.(family: Cornaceae), Dioscorea opposite Thunb.(family: Dioscoreaceae), Alisma orientale(G. Samuelsson) Juz (family: Alismataceae), Poria cocos (Schw.) Wolf (family: Polyporaceae) and Paeonia suffruticosa Andrews (family: Paeoniaceae). It has been used in the treatment of many types of diseases with signs of deficiency of Yin in the kidneys in China clinically. This study is aimed at investigating the effect of Liuwei dihuang decoction on PI3K/Akt signaling pathway in liver of T2DM rats with insulin resistance. MATERIALS AND METHODS T2DM model was induced in male Sprague-Dawley (SD) rats by high sugar and high fat diets combined with small dose of streptozocin (STZ) injection. The successful T2DM rats were randomly allocated three group--vehicle group, positive control group and Liuwei Dihuang decoction group. After 12-weeks treatment with distilled water, rosiglitazone and LWDHT by intragastric administration respectively, the rats were put to death in batches. The variance of fasting blood glucose (FBG) and fasting insulin (FINS) in serum were determined, the pathological changes of each rats' liver were observed by hematoxylin-eosin (HE) staining, the expression of insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase (PI3K) and protein kinas B (Akt) involving the canonical PI3K/Akt signaling pathway were detected by Real-time fluorescent quantitative PCR (RT-PCR), and the expression level of IRS2, PI3K, Akt protein and phosphorylated IRS2, PI3K, Akt protein were evaluated by Western Blot. All the data were analyzed by SPSS 17.0. RESULTS Four weeks of treatment with LWDHT could significantly decrease the level of FBG and FINS in serum, improve the cellular morphology of liver, kidney, pancreas tissue, and the expression of IRS2, PI3K, Akt mRNA and phosphorylated IRS2, PI3K, Akt protein involved in the canonical PI3K/Akt signaling pathway of T2DM rats in liver were significantly up-regulated, while the total IRS2, PI3K, and Akt protein had no obvious changes. CONCLUSIONS The results suggest that Liuwei Dihuang decoction could intervene insulin resistance of T2DM, in part, through regulation of canonical PI3K/Akt signaling pathway of T2DM rats in liver.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/enzymology
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation, Enzymologic
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Resistance
- Liver/drug effects
- Liver/enzymology
- Liver/pathology
- Male
- Pancreas/drug effects
- Pancreas/enzymology
- Pancreas/pathology
- Phosphatidylinositol 3-Kinase/genetics
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Streptozocin
- Time Factors
Collapse
Affiliation(s)
- Bing Dai
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Qinxuan Wu
- Changsha Medical University, Changsha, Hunan 410219, China
| | - Chengxi Zeng
- Changsha Social Work College, Changsha, Hunan 410000, China
| | - Jiani Zhang
- Changsha Medical University, Changsha, Hunan 410219, China
| | - Luting Cao
- Changsha Medical University, Changsha, Hunan 410219, China
| | - Zizeng Xiao
- Changsha Social Work College, Changsha, Hunan 410000, China.
| | - Menglin Yang
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208
| |
Collapse
|
208
|
Chandra S, Pandey J, Tamrakar AK, Siddiqi MI. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors. J Mol Graph Model 2016; 71:242-256. [PMID: 28006676 DOI: 10.1016/j.jmgm.2016.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/27/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
Abstract
In insulin and leptin signaling pathway, Protein-Tyrosine Phosphatase 1B (PTP1B) plays a crucial controlling role as a negative regulator, which makes it an attractive therapeutic target for both Type-2 Diabetes (T2D) and obesity. In this work, we have generated classification models by using the inhibition data set of known PTP1B inhibitors to identify new inhibitors of PTP1B utilizing multiple machine learning techniques like naïve Bayesian, random forest, support vector machine and k-nearest neighbors, along with structural fingerprints and selected molecular descriptors. Several models from each algorithm have been constructed and optimized, with the different combination of molecular descriptors and structural fingerprints. For the training and test sets, most of the predictive models showed more than 90% of overall prediction accuracies. The best model was obtained with support vector machine approach and has Matthews Correlation Coefficient of 0.82 for the external test set, which was further employed for the virtual screening of Maybridge small compound database. Five compounds were subsequently selected for experimental assay. Out of these two compounds were found to inhibit PTP1B with significant inhibitory activity in in-vitro inhibition assay. The structural fragments which are important for PTP1B inhibition were identified by naïve Bayesian method and can be further exploited to design new molecules around the identified scaffolds. The descriptive and predictive modeling strategy applied in this study is capable of identifying PTP1B inhibitors from the large compound libraries.
Collapse
Affiliation(s)
- Sharat Chandra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Resaerch Institute, Campus, Lucknow 226031, India; Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jyotsana Pandey
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Resaerch Institute, Campus, Lucknow 226031, India; Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
209
|
Abstract
IRS proteins are cellular adaptor molecules that mediate many of the key metabolic actions of insulin. When tyrosine is phosphorylated by the activated insulin receptor, IRS proteins recruit downstream effectors, such as phosphoinositide 3-kinase and mitogen-activated protein kinase, in order to elicit cellular responses such as glucose uptake, lipid metabolism and cell proliferation. There are two main IRS proteins in humans (IRS1 and IRS2), both of which are widely expressed. Given their central role in the insulin signalling pathway, it is not surprising that male mice lacking Irs1 or Irs2 present with elevated blood glucose or type 2 diabetes, respectively. For reasons yet to be identified, female Irs2 (-/-) mice do not develop type 2 diabetes. A number of organs are affected by complications of diabetes; macrovascular complications include stroke and coronary artery disease, while nephropathy, neuropathy and retinopathy fall into the category of microvascular complications. Given the serious consequences of these complications on patient morbidity and mortality, it is essential to identify the molecular pathogenesis underlying diabetic complications, with a view to improving therapeutic intervention and patient outcomes. A number of recently published papers have converged on the hypothesis that the loss of insulin signalling and IRS proteins is instrumental to the development and/or progression of diabetic complications. This review will summarise some highlights from the published work in which this hypothesis is discussed.
Collapse
Affiliation(s)
- Deborah P Lavin
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Morris F White
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Derek P Brazil
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
210
|
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol 2016; 28:10.1111/jne.12433. [PMID: 27631195 PMCID: PMC5129466 DOI: 10.1111/jne.12433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably different effects on brain size and physiology, thus highlighting the unique effects of the corresponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative diseases such as Alzheimer's disease. The intricacy of brain insulin and IGF1 signalling represents a challenge for the identification of specific IR and IGF1R signalling differences in pathophysiological conditions. The present perspective sheds light on signalling differences and methodologies for specifically deciphering brain IR and IGF1R signalling.
Collapse
Affiliation(s)
- A. Kleinridders
- German Institute of Human Nutrition Potsdam‐RehbrueckeCentral Regulation of MetabolismNuthetalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
211
|
Guo P, Paul A, Kumar A, Farahat AA, Kumar D, Wang S, Boykin DW, Wilson WD. The Thiophene "Sigma-Hole" as a Concept for Preorganized, Specific Recognition of G⋅C Base Pairs in the DNA Minor Groove. Chemistry 2016; 22:15404-15412. [PMID: 27624927 PMCID: PMC5214980 DOI: 10.1002/chem.201603422] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
In spite of its importance in cell function, targeting DNA is under-represented in the design of small molecules. A barrier to progress in this area is the lack of a variety of modules that recognize G⋅C base pairs (bp) in DNA sequences. To overcome this barrier, an entirely new design concept for modules that can bind to mixed G⋅C and A⋅T sequences of DNA is reported herein. Because of their successes in biological applications, minor-groove-binding heterocyclic cations were selected as the platform for design. Binding to A⋅T sequences requires hydrogen-bond donors whereas recognition of the G-NH2 requires an acceptor. The concept that we report herein uses pre-organized N-methylbenzimidazole (N-MeBI) thiophene modules for selective binding with mixed bp DNA sequences. The interaction between the thiophene sigma hole (positive electrostatic potential) and the electron-donor nitrogen of N-MeBI preorganizes the conformation for accepting an hydrogen bond from G-NH2 . The compound-DNA interactions were evaluated with a powerful array of biophysical methods and the results show that N-MeBI-thiophene monomer compounds can strongly and selectively recognize single G⋅C bp sequences. Replacing the thiophene with other moieties significantly reduces binding affinity and specificity, as predicted by the design concept. These results show that the use of molecular features, such as sigma-holes, can lead to new approaches for small molecules in biomolecular interactions.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dhiraj Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - Siming Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303-3083, USA.
| |
Collapse
|
212
|
Imidazolyl-Naphthalenediimide-Based Threading Intercalators of DNA. Chembiochem 2016; 17:2162-2171. [DOI: 10.1002/cbic.201600478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 12/22/2022]
|
213
|
Shirakawa J, Kulkarni RN. Novel factors modulating human β-cell proliferation. Diabetes Obes Metab 2016; 18 Suppl 1:71-7. [PMID: 27615134 PMCID: PMC5021183 DOI: 10.1111/dom.12731] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
Abstract
β-Cell dysfunction in type 1 and type 2 diabetes is accompanied by a progressive loss of β-cells, and an understanding of the cellular mechanism(s) that regulate β-cell mass will enable approaches to enhance hormone secretion. It is becoming increasingly recognized that enhancement of human β-cell proliferation is one potential approach to restore β-cell mass to prevent and/or cure type 1 and type 2 diabetes. While several reports describe the factor(s) that enhance β-cell replication in animal models or cell lines, promoting effective human β-cell proliferation continues to be a challenge in the field. In this review, we discuss recent studies reporting successful human β-cell proliferation including WS6, an IkB kinase and EBP1 inhibitor; harmine and 5-IT, both DYRK1A inhibitors; GNF7156 and GNF4877, GSK-3β and DYRK1A inhibitors; osteoprotegrin and Denosmab, receptor activator of NF-kB (RANK) inhibitors; and SerpinB1, a protease inhibitor. These studies provide important examples of proteins and pathways that may prove useful for designing therapeutic strategies to counter the different forms of human diabetes.
Collapse
Affiliation(s)
- J Shirakawa
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - R N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
214
|
Liu J, Wang L, Wang W, Li Y, Jia X, Zhai S, Shi J, Dang S. Application of network construction to estimate functional changes to insulin receptor substrates 1 and 2 in Huh7 cells following infection with the hepatitis C virus. Mol Med Rep 2016; 14:2379-2388. [PMID: 27432476 PMCID: PMC4991679 DOI: 10.3892/mmr.2016.5527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/03/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is closely associated with insulin resistance (IS), acting primarily by interfering with insulin signaling pathways, increasing cytokine-mediated (tumor necrosis factor α, interleukin 6) inflammatory responses and enhancing oxidative stress. In the insulin signaling pathways, the insulin receptor substrate (IRS) is one of the key regulatory factors. The present study constructed gene regulatory sub‑networks specific for IRS1 and IRS2 in Huh7 cells and HCV‑infected Huh7 (HCV‑Huh7) cells using linear programming and a decomposition algorithm, and investigated the possible mechanisms underlying the function of IRS1/2 in HCV‑induced IS in Huh7 cells. All data were obtained from GSE20948 of the Gene Expression Omnibus database from the National Center for Biotechnology Information. Genes which were significantly differentially expressed between Huh7 and HCV‑Huh7 cells were analyzed using the significance analysis of microarray algorithm. The top 50 genes, including IRS1/2, were used as target genes to determine the gene regulatory networks and next the sub‑networks of IRS1 and IRS2 in HCV‑Huh7 and Huh7 cells using Gene Regulatory Network Inference Tool, an algorithm based on linear programming and the decomposition process. The IRS1/2 sub‑networks were divided into upstream/downstream groups and activation/suppression clusters, and were further analyzed using Molecule Annotation System 3.0 and Database for Annotation, Visualization, and Integrated Discovery software, two online platforms for enrichment and clustering analysis and visualization. The results indicated that in Huh7 cells, the downstream network of IRS2 is more complex than that of IRS1, indicating that the insulin metabolism in Huh7 cells may be primarily mediated by IRS2. In HCV‑Huh7 cells, the downstream pathway of IRS2 is blocked, suggesting that this may be the underlying mechanism in HCV infection that leads to insulin resistance. The present findings add a further dimension to the understanding of the pathological mechanisms of HCV infection-associated insulin resistance, and provide novel concepts for insulin resistance and glucose metabolism research.
Collapse
Affiliation(s)
- Jingkun Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Linbang Wang
- The First Clinical Department, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Song Zhai
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Juan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| |
Collapse
|
215
|
A sequence-specific DNA binding small molecule triggers the release of immunogenic signals and phagocytosis in a model of B-cell lymphoma. Q Rev Biophys 2016; 48:453-64. [PMID: 26537405 PMCID: PMC4743504 DOI: 10.1017/s0033583515000104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Means to cause an immunogenic cell death could lead to significant insight into how cancer escapes immune control. In this study, we screened a library of five pyrrole–imidazole polyamides coding for different DNA sequences in a model of B-cell lymphoma for the upregulation of surface calreticulin, a pro-phagocytosis signal implicated in immunogenic cell death. We found that hairpin polyamide 1 triggers the release of the damage-associated molecular patterns calreticulin, ATP and HMGB1 in a slow necrotic-type cell death. Consistent with this signaling, we observed an increase in the rate of phagocytosis by macrophages after the cancer cells were exposed to polyamide 1. The DNA sequence preference of polyamide 1 is 5′-WGGGTW-3′ (where W = A/T), indicated by the pairing rules and confirmed by the Bind-n-Seq method. The close correspondence of this sequence with the telomere-repeat sequence suggests a potential mechanism of action through ligand binding at the telomere. This study reveals a chemical means to trigger an inflammatory necrotic cell death in cancer cells.
Collapse
|
216
|
Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival. Sci Rep 2016; 6:31222. [PMID: 27526875 PMCID: PMC4985653 DOI: 10.1038/srep31222] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/14/2016] [Indexed: 12/03/2022] Open
Abstract
Type 2 Diabetes (T2DM) affects more than 300 million people worldwide. One of the hallmarks of T2DM is peripheral insulin resistance, in part due to unproductive insulin signaling through the insulin receptor. The insulin receptor (INSR) exists as two isoforms, INSR-A and INSR-B, which results from skipping or inclusion of exon 11 respectively. What determines the relative abundance of the different insulin receptor splice variants is unknown. Moreover, it is not yet clear what the physiological roles of each of the isoforms are in normal and diseased beta cells. In this study, we show that insulin induces INSR exon 11 inclusion in pancreatic beta cells in both human and mouse. This occurs through activation of the Ras-MAPK/ERK signaling pathway and up-regulation of the splicing factor SRSF1. Induction of exon 11 skipping by a splice-site competitive antisense oligonucleotide inhibited the MAPK-ERK signaling pathway downstream of the insulin receptor, sensitizing the pancreatic β-cell line MIN6 to stress-induced apoptosis and lipotoxicity. These results assign to insulin a regulatory role in INSR alternative splicing through the Ras-MAPK/ERK signaling pathway. We suggest that in beta cells, INSR-B has a protective role, while INSR-A expression sensitizes beta cells to programmed cell death.
Collapse
|
217
|
Kashiwazaki G, Chandran A, Asamitsu S, Kawase T, Kawamoto Y, Sawatani Y, Hashiya K, Bando T, Sugiyama H. Comparative Analysis of DNA-Binding Selectivity of Hairpin and Cyclic Pyrrole-Imidazole Polyamides Based on Next-Generation Sequencing. Chembiochem 2016; 17:1752-8. [DOI: 10.1002/cbic.201600282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Gengo Kashiwazaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Anandhakumar Chandran
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Sefan Asamitsu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Takashi Kawase
- Department of Systems Science; Graduate School of Informatics; Kyoto University; Yoshida-Honmachi 36-1 Sakyo Kyoto 606-8501 Japan
| | - Yusuke Kawamoto
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Yoshito Sawatani
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Kaori Hashiya
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawaoiwakecho Sakyo Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
218
|
Yu L, Wang H, Guo Z, Li F, Cui H. Role of nucleolar protein NOM1 in pancreatic islet β cell apoptosis in diabetes. Exp Ther Med 2016; 12:2275-2280. [PMID: 27698723 DOI: 10.3892/etm.2016.3576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a metabolic disease that results from impairment in insulin secretion. The present study aimed to investigate the potential role of NOM1 in the function of pancreatic islet β cells and insulin secretion. MIN6 cells isolated from mice were transfected with siRNA-NOM1 to assess the influence of NOM1 on the expression of the cell apoptosis-associated proteins, such as caspase-3. In addition, MIN6 cells were cultured in medium containing different glucose concentrations in order to assess the sensitivity of MIN6 cells to glucose. The effect of NOM1 expression and glucose on MIN6 cell proliferation was also analyzed using an MTT assay. Furthermore, the mRNA expression levels of insulin 1 and 2 in MIN6 cells were detected using reverse transcription-quantitative polymerase chain reaction, while the expression levels of various cell apoptosis-associated proteins, Bcl-2 and Bax, were analyzed using western blot analysis. Compared with the control group, downregulation NOM1 and high glucose concentration of 25 mM significantly increased the cleaved caspase-3 level in MIN6 cells (P<0.05). In addition, downregulation of NOM1 significantly inhibited the MIN6 cell proliferation ability and reduced the insulin 2 mRNA expression (P<0.05). NOM1 knockdown also resulted in significantly increased Bax2 level and decreased Bcl-2 level in MIN6 cells (P<0.05). However no significant difference in insulin mRNA expression was observed between the control and siRNA-NOM1-transfected group (P>0.05). In conclusion, the present study suggested that NOM1 expression may be affected by blood glucose, and that NOM1 may be associated with pancreatic islet β cell apoptosis. In addition, NOM1 may serve a pivotal role in diabetes by affecting insulin synthesis and secretion in pancreatic islet β cells.
Collapse
Affiliation(s)
- Leilei Yu
- Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Huifeng Wang
- Department of Reproduction and Genetics, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Zhongxiu Guo
- Department of Cardiology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Fenghua Li
- Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Hong Cui
- Department of Reproduction and Genetics, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
219
|
Park HJ, Kim SK, Kang WS, Park JK, Kim YJ, Nam M, Kim JW, Chung JH. Association between IRS1 Gene Polymorphism and Autism Spectrum Disorder: A Pilot Case-Control Study in Korean Males. Int J Mol Sci 2016; 17:ijms17081227. [PMID: 27483248 PMCID: PMC5000625 DOI: 10.3390/ijms17081227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
The insulin-like growth factor (IGF) pathway is thought to play an important role in brain development. Altered levels of IGFs and their signaling regulators have been shown in autism spectrum disorder (ASD) patients. In this study, we investigated whether coding region single-nucleotide polymorphisms (cSNPs) of the insulin receptor substrates (IRS1 and IRS2), key mediators of the IGF pathway, were associated with ASD in Korean males. Two cSNPs (rs1801123 of IRS1, and rs4773092 of IRS2) were genotyped using direct sequencing in 180 male ASD patients and 147 male control subjects. A significant association between rs1801123 of IRS1 and ASD was shown in additive (p = 0.022, odds ratio (OR) = 0.66, 95% confidence interval (CI) = 0.46–0.95) and dominant models (p = 0.013, OR = 0.57, 95% CI = 0.37–0.89). Allele frequency analysis also showed an association between rs1801123 and ASD (p = 0.022, OR = 0.66, 95% CI = 0.46–0.94). These results suggest that IRS1 may contribute to the susceptibility of ASD in Korean males.
Collapse
Affiliation(s)
- Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jin Kyung Park
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Young Jong Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Min Nam
- Seoul Metropolitan Eunpyeong Hospital, Seoul 06801, Korea.
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
220
|
Takatani T, Shirakawa J, Roe MW, Leech CA, Maier BF, Mirmira RG, Kulkarni RN. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation. Sci Rep 2016; 6:28177. [PMID: 27378176 PMCID: PMC4932502 DOI: 10.1038/srep28177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca2+) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca2+ storage in the ER.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jun Shirakawa
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael W Roe
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Bernhard F Maier
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Department of Biochemistry and Molecular Biology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
221
|
Dasgupta P, Dorsey NJ, Li J, Qi X, Smith EP, Yamaji-Kegan K, Keegan AD. The adaptor protein insulin receptor substrate 2 inhibits alternative macrophage activation and allergic lung inflammation. Sci Signal 2016; 9:ra63. [PMID: 27330190 DOI: 10.1126/scisignal.aad6724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin receptor substrate 2 (IRS2) is an adaptor protein that becomes tyrosine-phosphorylated in response to the cytokines interleukin-4 (IL-4) and IL-13, which results in activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. IL-4 and IL-13 contribute to allergic lung inflammation. To examine the role of IRS2 in allergic disease, we evaluated the responses of IRS2-deficient (IRS2(-/-)) mice. Unexpectedly, loss of IRS2 resulted in a substantial increase in the expression of a subset of genes associated with the generation of alternatively activated macrophages (AAMs) in response to IL-4 or IL-13 in vitro. AAMs secrete factors that enhance allergic responses and promote airway remodeling. Moreover, compared to IRS2(+/+) mice, IRS2(+/-) and IRS2(-/-) mice developed enhanced pulmonary inflammation, accumulated eosinophils and AAMs, and exhibited airway and vascular remodeling upon allergen stimulation, responses that partially depended on macrophage-intrinsic IRS2 signaling. Both in unstimulated and IL-4-stimulated macrophages, lack of IRS2 enhanced phosphorylation of Akt and ribosomal S6 protein. Thus, we identified a critical inhibitory loop downstream of IRS2, demonstrating an unanticipated and previously unrecognized role for IRS2 in suppressing allergic lung inflammation and remodeling.
Collapse
Affiliation(s)
- Preeta Dasgupta
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicolas J Dorsey
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jiaqi Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Xiulan Qi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Elizabeth P Smith
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Research and Development Service, U.S. Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA.
| |
Collapse
|
222
|
Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders. Mediators Inflamm 2016; 2016:3634948. [PMID: 27413253 PMCID: PMC4931075 DOI: 10.1155/2016/3634948] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.
Collapse
|
223
|
Xi P, Liu RH. Whole food approach for type 2 diabetes prevention. Mol Nutr Food Res 2016; 60:1819-36. [PMID: 27159643 DOI: 10.1002/mnfr.201500963] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/18/2022]
Abstract
Diet is intimately associated with the risk of type 2 diabetes (T2D). Recently, attention has focused on the contributions of individual nutrients, food groups and eating patterns to the outcome of T2D. High consumption of coffee, whole grains, fruits and vegetables, and nuts are each independently associated with the reduced risk of T2D in high risk, glucose intolerant individuals. Experimental and clinical trials have given insight to the diverse mechanisms that may be responsible for the observed protective effects of certain foods on T2D, including nutrients, phytochemicals and dietary fiber, weight control, enhanced satiety and improvement in glucose tolerance and insulin sensitivity in diabetic patients. Elevated consumption of refined grains and sugar-sweetened beverages has shown to significantly elevate the risk of incident T2D. An overall healthy diet primarily comprising whole plant-based foods, together with regular physical activity and weight manage, could significantly reduce the risk of T2D. The present review consolidates current research and delineates major food groups shown to significantly influence risk of T2D. Documenting and quantifying the effects of diet on the outcome of T2D are of great scientific and public health importance as there is urgent need to implement dietary strategies to prevent and manage the outcome of T2D.
Collapse
Affiliation(s)
- Pan Xi
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, NY, USA.,Institute of Comparative and Environmental Toxicology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
224
|
Liu YZ, Cheng X, Zhang T, Lee S, Yamauchi J, Xiao X, Gittes G, Qu S, Jiang CL, Dong HH. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice. J Biol Chem 2016; 291:14695-705. [PMID: 27226540 DOI: 10.1074/jbc.m115.707885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice.
Collapse
Affiliation(s)
- Yun-Zi Liu
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and the Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, China, and
| | - Xiaoyun Cheng
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Zhang
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| | - Sojin Lee
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| | - Jun Yamauchi
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| | - Xiangwei Xiao
- the Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - George Gittes
- the Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shen Qu
- the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Lei Jiang
- the Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, China, and
| | - H Henry Dong
- From the Department of Pediatrics, Division of Pediatric Endocrinology, and
| |
Collapse
|
225
|
Ye C, Driver JP. Suppressors of Cytokine Signaling in Sickness and in Health of Pancreatic β-Cells. Front Immunol 2016; 7:169. [PMID: 27242781 PMCID: PMC4860527 DOI: 10.3389/fimmu.2016.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) are a family of eight proteins that negatively regulate Janus kinase and signal transducers and activators of transcription signaling in cells that utilize this pathway to respond to extracellular stimuli. SOCS are best known for attenuating cytokine signaling in the immune system. However, they are also expressed in many other cell types, including pancreatic β-cells, where there is considerable interest in harnessing SOCS molecules to prevent cytokine-mediated apoptosis during diabetes and allogeneic transplantation. Apart from their potential as therapeutic targets, SOCS molecules play a central role for regulating important functions in β-cells, including growth, glucose sensing, and insulin secretion. This review will discuss SOCS proteins as central regulators for diverse cellular processes important for normal β-cell function as well as their protective anti-apoptotic effects during β-cell stress.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| | - John P Driver
- Department of Animal Sciences, University of Florida , Gainesville, FL , USA
| |
Collapse
|
226
|
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annu Rev Nutr 2016; 36:241-73. [PMID: 27146016 DOI: 10.1146/annurev-nutr-071715-050939] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Ingrid Wahl Moen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jakob Bondo Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
227
|
Baquedano E, Burgos-Ramos E, Canelles S, González-Rodríguez A, Chowen JA, Argente J, Barrios V, Valverde AM, Frago LM. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model. Dis Model Mech 2016; 9:573-83. [PMID: 27013528 PMCID: PMC4892662 DOI: 10.1242/dmm.023515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/11/2016] [Indexed: 01/12/2023] Open
Abstract
Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.
Collapse
Affiliation(s)
- Eva Baquedano
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Emma Burgos-Ramos
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Sandra Canelles
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Agueda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid E-28029, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Julie A Chowen
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Jesús Argente
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Vicente Barrios
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid E-28029, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Laura M Frago
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| |
Collapse
|
228
|
Interleukin-4 receptor signaling and its binding mechanism: A therapeutic insight from inhibitors tool box. Cytokine Growth Factor Rev 2016; 32:3-15. [PMID: 27165851 DOI: 10.1016/j.cytogfr.2016.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
Abstract
Studies on Interlukin-4 (IL-4) disclosed great deal of information about its various physiological and pathological roles. All these roles depend upon its interaction and signaling through either type-I (IL-4Rα/common γ-chain) or type-II (IL-4Rα/IL-13Rα) receptors. Another cytokine, IL-13, shares some of the functions of IL-4, because both cytokines use a common receptor subunit, IL-4Rα. Here in this review, we discuss the structural details of IL-4 and IL-4Rα subunit and the structural similarities between IL-4 and IL-13. We also describe detailed chemistry of type-I and type-II receptor complexes and their signaling pathways. Furthermore, we elaborate the strength of type-II hetero dimer signals in response to IL-4 and IL-13. These cytokines are prime players in pathogenesis of allergic asthma, allergic hypersensitivity, different cancers, and HIV infection. Recent advances in the structural and binding chemistry of these cytokines various types of inhibitors were designed to block the interaction of IL-4 and IL-13 with their receptor, including several IL-4 mutant analogs and IL-4 antagonistic antibodies. Moreover, different targeted immunotoxins, which is a fusion of cytokine protein with a toxin or suicidal gene, are the new class of inhibitors to prevent cancer progression. In addition few small molecular inhibitors such as flavonoids have also been developed which are capable of binding with high affinity to IL-4Rα and, therefore, can be very effective in blocking IL-4-mediated responses.
Collapse
|
229
|
Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int J Mol Sci 2016; 17:569. [PMID: 27092490 PMCID: PMC4849025 DOI: 10.3390/ijms17040569] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Yingfu Yin
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
230
|
Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 2016; 73:1457-77. [PMID: 26786898 PMCID: PMC11108307 DOI: 10.1007/s00018-016-2133-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.
Collapse
Affiliation(s)
- Obin Kwon
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Ki Woo Kim
- Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
| |
Collapse
|
231
|
Kuznetsova A, Yu Y, Hollister-Lock J, Opare-Addo L, Rozzo A, Sadagurski M, Norquay L, Reed JE, El Khattabi I, Bonner-Weir S, Weir GC, Sharma A, White MF. Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice. JCI Insight 2016; 1. [PMID: 27152363 PMCID: PMC4854304 DOI: 10.1172/jci.insight.80749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes.
Collapse
Affiliation(s)
- Alexandra Kuznetsova
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yue Yu
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Hollister-Lock
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Opare-Addo
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aldo Rozzo
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianna Sadagurski
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Norquay
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Reed
- Housey Pharmaceutical Research Laboratories, Southfield, Michigan, USA
| | - Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon C Weir
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Morris F White
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
232
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
233
|
Kim J, Lee KJ, Kim JS, Rho JG, Shin JJ, Song WK, Lee EK, Egan JM, Kim W. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells. PLoS One 2016; 11:e0150981. [PMID: 26967640 PMCID: PMC4788443 DOI: 10.1371/journal.pone.0150981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Recent reports have shown that cannabinoid 1 receptors (CB1Rs) are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212–2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Jung Seok Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Jun Gi Rho
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Jung Jae Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Woo Keun Song
- Department of Life Science, Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
234
|
Zhang T, Kim DH, Xiao X, Lee S, Gong Z, Muzumdar R, Calabuig-Navarro V, Yamauchi J, Harashima H, Wang R, Bottino R, Alvarez-Perez JC, Garcia-Ocaña A, Gittes G, Dong HH. FoxO1 Plays an Important Role in Regulating β-Cell Compensation for Insulin Resistance in Male Mice. Endocrinology 2016; 157:1055-70. [PMID: 26727107 PMCID: PMC4769368 DOI: 10.1210/en.2015-1852] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β-Cell compensation is an essential mechanism by which β-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of β-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of β-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in β-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved β-cell compensation via 3 distinct mechanisms by increasing β-cell mass, enhancing β-cell glucose sensing, and augmenting β-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in β-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, β-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased β-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological β-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of β-cell mass and function to overnutrition and obesity.
Collapse
Affiliation(s)
- Ting Zhang
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Dae Hyun Kim
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Xiangwei Xiao
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Sojin Lee
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Zhenwei Gong
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Radhika Muzumdar
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Virtu Calabuig-Navarro
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Jun Yamauchi
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Hideyoshi Harashima
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Rennian Wang
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Rita Bottino
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Juan Carlos Alvarez-Perez
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - Adolfo Garcia-Ocaña
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - George Gittes
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| | - H Henry Dong
- Division of Pediatric Endocrinology (T.Z., D.H.K., S.L., Z.G., R.M., V.C.-N., J.Y., H.H.D.), Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Molecular Inflammation Research Center for Aging Intervention (D.H.K.), College of Pharmacy, Pusan National University, Busan, 609-735 Korea; Division of Pediatric Surgery (X.X., G.G.), Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Laboratory for Molecular Design of Pharmaceutics (J.Y., H.H.), Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812 Japan; Department of Physiology and Pharmacology (R.W.), University of Western Ontario, London, Ontario, N6C 2V5 Canada; Institute of Cellular Therapeutics (R.B.), Allegheny Health Network, Pittsburgh, Pennsylvania 15212; and Diabetes, Obesity and Metabolism Institute (J.C.A.-P., A.G.-O.), Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine Mt Sinai, New York, New York 10029
| |
Collapse
|
235
|
Tao H, Wang MM, Zhang M, Zhang SP, Wang CH, Yuan WJ, Sun T, He LJ, Hu QK. MiR-126 Suppresses the Glucose-Stimulated Proliferation via IRS-2 in INS-1 β Cells. PLoS One 2016; 11:e0149954. [PMID: 26919700 PMCID: PMC4769223 DOI: 10.1371/journal.pone.0149954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Background Increasing evidence suggests that miR-126 participates in the glucose homeostasis through its target molecules. Although bioinformatics analysis predicts that miR-126 can bind with the insulin receptor substrate-2(IRS-2) mRNA at the “seed sequence”, but there are still no definitely reports to support it. In this study, we provided evidences that IRS-2 was one of the target genes of miR-126. And miR-126 has a proliferation inhibiting effects in INS-1 β cells, mainly through the suppression of IRS-2. Methods The 3’-UTR of IRS-2 regulated by miR-126 was analyzed by the luciferase assay and western blot. Furthermore, proliferation of INS-1 β cells stimulated by glucose was tested, and the association between IRS-2 and miR-126 were analyzed. Results We found that mutation of only three of the 6 “seed sequences” can eliminate the inhibition effect of miR-126. In INS-1 β cells, administration of miR-126 suppresses the proliferation, together with the unbalanced down-regulation of IRS-2 and IRS-1. Over-expression of IRS-2 can reverse the proliferation effect of miR-126, while not of IRS-1. These results suggested that miR-126 inhibited the β-cell proliferation via the inhibition of IRS-2 instead of IRS-1.Additionally, we also found that high glucose and insulin could stimulate the rapid production of endogenous miR-126 within 6 hours, together with the short term suppression of IRS-1 and IRS-2 expression, and intensify the unbalanced expression of IRS-1 and IRS-2. Conclusions IRS-2 was one of the targets of miR-126. MiR-126 inhibited the β-cell proliferation through IRS-2 instead of IRS-1. MiR-126 may take part in the glucose homeostasis both through its target IRS-2 and IRS-1. The unbalance between IRS-1 and IRS-2 caused by miR-126 may play an important role in type 2 diabetes.
Collapse
Affiliation(s)
- Hong Tao
- The Department of Physiology, Ningxia Medical University, Yinchuan, China
| | - Meng-meng Wang
- The Department of Physiology, Ningxia Medical University, Yinchuan, China.,Jiamusi Central Hospital, Department of Epilepsy, Jiamusi, Hei Long Jiang, China
| | - Man Zhang
- The Department of Physiology, Ningxia Medical University, Yinchuan, China
| | - Shao-ping Zhang
- Ningxia Key Lab of Cerebrocranial Diseases, the National Key Laboratory Incubation Base, Yinchuan, China
| | - Chun-hui Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wen-jun Yuan
- The Department of Physiology, Ningxia Medical University, Yinchuan, China.,The Department of Physiology, Second Military Medical University, Shanghai, China
| | - Tao Sun
- Ningxia Key Lab of Cerebrocranial Diseases, the National Key Laboratory Incubation Base, Yinchuan, China
| | - Lan-jie He
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qi-kuan Hu
- The Department of Physiology, Ningxia Medical University, Yinchuan, China.,Ningxia Key Lab of Cerebrocranial Diseases, the National Key Laboratory Incubation Base, Yinchuan, China
| |
Collapse
|
236
|
Mullaney JC, Zaleski DP, Tew DP, Walker NR, Legon AC. Geometry of an Isolated Dimer of Imidazole Characterised by Rotational Spectroscopy and Ab Initio Calculations. Chemphyschem 2016; 17:1154-8. [DOI: 10.1002/cphc.201501179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/07/2022]
Affiliation(s)
- John C. Mullaney
- School of Chemistry, Bedson Building; Newcastle University; Newcastle upon Tyne, Tyne and Wear NE1 7RU UK
| | - Daniel P. Zaleski
- School of Chemistry, Bedson Building; Newcastle University; Newcastle upon Tyne, Tyne and Wear NE1 7RU UK
- Argonne National Laboratory; Chemical Sciences & Engineering; 9700 S. Cass Ave., Bldg. 200 Lemont IL 60439 USA
| | - David P. Tew
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Nicholas R. Walker
- School of Chemistry, Bedson Building; Newcastle University; Newcastle upon Tyne, Tyne and Wear NE1 7RU UK
| | | |
Collapse
|
237
|
El Ouaamari A, Dirice E, Gedeon N, Hu J, Zhou JY, Shirakawa J, Hou L, Goodman J, Karampelias C, Qiang G, Boucher J, Martinez R, Gritsenko MA, De Jesus DF, Kahraman S, Bhatt S, Smith RD, Beer HD, Jungtrakoon P, Gong Y, Goldfine AB, Liew CW, Doria A, Andersson O, Qian WJ, Remold-O'Donnell E, Kulkarni RN. SerpinB1 Promotes Pancreatic β Cell Proliferation. Cell Metab 2016; 23:194-205. [PMID: 26701651 PMCID: PMC4715773 DOI: 10.1016/j.cmet.2015.12.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/20/2015] [Accepted: 11/30/2015] [Indexed: 01/09/2023]
Abstract
Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Ercument Dirice
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Nicholas Gedeon
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Jiang Hu
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jun Shirakawa
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Lifei Hou
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jessica Goodman
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 17177 Stockholm, Sweden
| | - Guifeng Qiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Cardiovascular and Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Rachael Martinez
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Marina A Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Dario F De Jesus
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Sevim Kahraman
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Shweta Bhatt
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Hans-Dietmar Beer
- University Hospital Zurich, Department of Dermatology, 8006 Zurich, Switzerland
| | - Prapaporn Jungtrakoon
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yanping Gong
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Allison B Goldfine
- Section on Clinical Research, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 17177 Stockholm, Sweden
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eileen Remold-O'Donnell
- Program in Cellular and Molecular Medicine at Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA.
| |
Collapse
|
238
|
Abstract
While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation.
Collapse
Affiliation(s)
- Matias De Vas
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Jorge Ferrer
- Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
239
|
Gupta A, Bahal R, Gupta M, Glazer PM, Saltzman WM. Nanotechnology for delivery of peptide nucleic acids (PNAs). J Control Release 2016; 240:302-311. [PMID: 26776051 DOI: 10.1016/j.jconrel.2016.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Over the past three decades, peptide nucleic acids have been employed in numerous chemical and biological applications. Peptide nucleic acids possess enormous potential because of their superior biophysical properties, compared to other oligonucleotide chemistries. However, for therapeutic applications, intracellular delivery of peptide nucleic acids remains a challenge. In this review, we summarize the progress that has been made in delivering peptide nucleic acids to intracellular targets. In addition, we emphasize recent nanoparticle-based strategies for efficient delivery of conventional and chemically-modified peptides nucleic acids.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Raman Bahal
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Meera Gupta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Chemical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
240
|
Sanghez V, Cubuk C, Sebastián-Leon P, Carobbio S, Dopazo J, Vidal-Puig A, Bartolomucci A. Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice. Stress 2016; 19:214-24. [PMID: 26946982 PMCID: PMC4841025 DOI: 10.3109/10253890.2016.1151491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Valentina Sanghez
- Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA
- Department of Neuroscience, University of Parma, Parma,
Italy
- Correspondence: Alessandro Bartolomucci,
Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA. Tel: +1-612-626-7006. Fax: +1-612-625-5149. E-mail:
| | - Cankut Cubuk
- Department of Computational Genomics, Centro de Investigación Principe Felipe, Valencia,
Spain
| | - Patricia Sebastián-Leon
- Department of Computational Genomics, Centro de Investigación Principe Felipe, Valencia,
Spain
| | - Stefania Carobbio
- Wellcome Trust MRC Metabolic Disease Unit, Institute Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge,
UK
| | - Joaquin Dopazo
- Department of Computational Genomics, Centro de Investigación Principe Felipe, Valencia,
Spain
| | - Antonio Vidal-Puig
- Wellcome Trust MRC Metabolic Disease Unit, Institute Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge,
UK
- Wellcome Trust Sanger Institute, Hinxton,
UK
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA
- Correspondence: Alessandro Bartolomucci,
Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA. Tel: +1-612-626-7006. Fax: +1-612-625-5149. E-mail:
| |
Collapse
|
241
|
Abstract
A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Alan R Saltiel
- Life Sciences Institute, University of Michigan, AnnArbor, MI, USA.
| |
Collapse
|
242
|
Lagarrigue S, Lopez-Mejia IC, Denechaud PD, Escoté X, Castillo-Armengol J, Jimenez V, Chavey C, Giralt A, Lai Q, Zhang L, Martinez-Carreres L, Delacuisine B, Annicotte JS, Blanchet E, Huré S, Abella A, Tinahones FJ, Vendrell J, Dubus P, Bosch F, Kahn CR, Fajas L. CDK4 is an essential insulin effector in adipocytes. J Clin Invest 2016; 126:335-48. [PMID: 26657864 PMCID: PMC4701556 DOI: 10.1172/jci81480] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4(R24C)). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT.
Collapse
Affiliation(s)
- Sylviane Lagarrigue
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | | | | | - Xavier Escoté
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
| | | | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | - Albert Giralt
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
| | - Qiuwen Lai
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
| | - Lianjun Zhang
- Translational Tumor Immunology, Ludwig Center for Cancer Research, Université de Lausanne, Epalinges, Switzerland
| | | | | | - Jean-Sébastien Annicotte
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
- European Genomic Institute for Diabetes, Université Lille Nord de France, UMR 8199 CNRS, Lille, France
| | - Emilie Blanchet
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | - Sébastien Huré
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | | | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y la Nutrición (CIBERobn CB06/003), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Vendrell
- CIBERDEM, Institut d’Investigació Pere Virgili, Universitat Rovira i Virgili, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Pierre Dubus
- EA2406, Histologie et pathologie moléculaire des tumeurs, Université de Bordeaux, Bordeaux, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lluis Fajas
- Department of Physiology, Université de Lausanne, Lausanne, Switzerland
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| |
Collapse
|
243
|
White MF, Copps KD. The Mechanisms of Insulin Action. ENDOCRINOLOGY: ADULT AND PEDIATRIC 2016:556-585.e13. [DOI: 10.1016/b978-0-323-18907-1.00033-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
244
|
Pedersen BA, Wang W, Taylor JF, Khattab OS, Chen YH, Edwards RA, Yazdi PG, Wang PH. Hepatic proteomic analysis revealed altered metabolic pathways in insulin resistant Akt1(+/-)/Akt2(-/-) mice. Metabolism 2015; 64:1694-703. [PMID: 26455965 PMCID: PMC4641788 DOI: 10.1016/j.metabol.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. METHODS Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1(+/-)/AKT2(-/-) mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway Analysis was performed for the interpretation of the biological significance of the observed proteomic changes. RESULTS 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1(+/-)/Akt2(-/-)) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. CONCLUSION Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance.
Collapse
Affiliation(s)
- Brian A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Weiwen Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136
| | - Jared F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Omar S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Yu-Han Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Robert A Edwards
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
245
|
Anjali G, Kaur S, Lakra R, Taneja J, Kalsey GS, Nagendra A, Shrivastav TG, Devi MG, Malhotra N, Kriplani A, Singh R. FSH stimulates IRS-2 expression in human granulosa cells through cAMP/SP1, an inoperative FSH action in PCOS patients. Cell Signal 2015; 27:2452-66. [PMID: 26388164 DOI: 10.1016/j.cellsig.2015.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
Abstract
Follicle stimulating hormone (FSH) plays a central role in growth and differentiation of ovarian follicles. A plethora of information exists on molecular aspects of FSH responses but little is known about the mechanisms involved in its cross-talk with insulin/IGF-1 pathways implicated in the coordination of energy homeostasis in preovulatory granulosa cells (GCs). In this study, we hypothesized that FSH may regulate IRS-2 expression and thereby maintain the energy balance in GCs. We demonstrate here that FSH specifically increases IRS-2 expression in human and rat GCs. FSH-stimulated IRS-2 expression was inhibited by actinomycin D or cycloheximide. Furthermore, FSH decreases IRS-2 mRNA degradation indicating post-transcriptional stabilization. Herein, we demonstrate a role of cAMP pathway in the activation of IRS-2 expression by FSH. Scan and activity analysis of IRS-2 promoter demonstrated that FSH regulates IRS-2 expression through SP1 binding sites. FSH stimulates SP1 translocation into nucleus and its binding to IRS-2 promoter. These results are corroborated by the fact that siRNA mediated knockdown of IRS-2 decreased the FSH-stimulated PI3K activity, p-Akt levels, GLUT4 translocation and glucose uptake. However, FSH was not able to increase IRS-2 expression in GCs from PCOS women undergoing IVF. Interestingly, IRS-2 mRNA expression was downregulated in GCs from the PCOS rat model. Taken together, our findings establish that FSH induces IRS-2 expression and thereby activates PI3K, Akt and glucose uptake. Crucially, our data confirms a molecular defect in FSH action in PCOS GCs which may cause deceleration of metabolism and follicular growth leading to infertility. These results lend support for a therapeutic potential of IRS-2 in the management of PCOS.
Collapse
Affiliation(s)
- G Anjali
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Surleen Kaur
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Ruchi Lakra
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Jyoti Taneja
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Gaganjot S Kalsey
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Anjali Nagendra
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India
| | - T G Shrivastav
- National Institute of Health and Family Welfare, New Delhi 110067, India
| | | | - Neena Malhotra
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alka Kriplani
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rita Singh
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
246
|
Fu Q, Olson P, Rasmussen D, Keith B, Williamson M, Zhang KK, Xie L. A short-term transition from a high-fat diet to a normal-fat diet before pregnancy exacerbates female mouse offspring obesity. Int J Obes (Lond) 2015; 40:564-72. [PMID: 26607040 DOI: 10.1038/ijo.2015.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/19/2015] [Accepted: 11/01/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Recent findings have highlighted the detrimental influence of maternal overnutrition and obesity on fetal development and early life development. However, there are no evidence-based guidelines regarding the optimal strategy for dietary intervention before pregnancy. SUBJECTS/METHODS We used a murine model to study whether switching from a high-fat (HF) diet to a normal-fat (NF) diet (H1N group) 1 week before pregnancy could lead to in utero reprogramming of female offspring obesity; comparator groups were offspring given a consistent maternal HF group or NF group until weaning. After weaning, all female offspring were given the HF diet for either 9 or 12 weeks before being killed humanely. RESULTS H1N treatment did not result in maternal weight loss before pregnancy. NF offsprings were neither obese nor glucose intolerant during the entire experimental period. H1N offsprings were most obese after the 12-week postweaning HF diet and displayed glucose intolerance earlier than HF offsprings. Our mechanistic study showed reduced adipocyte insulin receptor substrate 1 (IRS1) and hepatic IRS2 expression and increased adipocyte p-Ser(636/639) and p-Ser(612) of H1N or HF offspring compared with that in the NF offspring. Among all groups, the H1N offspring had lowest level of IRS1 and the highest levels of p-Ser(636/639) and p-Ser(612) in gonadal adipocyte. In addition, the H1N offspring further reduced the expression of Glut4 and Glut2, vs those of the HF offspring, which was lower compared with the NF offspring. There were also enhanced expression of genes inhibiting glycogenesis and decreased hepatic glycogen in H1N vs HF or NF offspring. Furthermore, we showed extremely higher expression of lipogenesis and adipogenesis genes in gonadal adipocytes of H1N offspring compared with all other groups. CONCLUSIONS Our results suggest that a transition from an HF diet to an NF diet shortly before pregnancy, without resulting in maternal weight loss, is not necessarily beneficial and may have deleterious effects on offspring.
Collapse
Affiliation(s)
- Q Fu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - P Olson
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - D Rasmussen
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - B Keith
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - M Williamson
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - K K Zhang
- Department of Pathology, University of North Dakota, Grand Forks, ND, USA
| | - L Xie
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
247
|
Valdearcos M, Xu AW, Koliwad SK. Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 2015; 77:131-60. [PMID: 25668019 DOI: 10.1146/annurev-physiol-021014-071656] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.
Collapse
|
248
|
Mastrototaro L, Tietjen U, Sponder G, Vormann J, Aschenbach JR, Kolisek M. Insulin Modulates the Na+/Mg2+ Exchanger SLC41A1 and Influences Mg2+ Efflux from Intracellular Stores in Transgenic HEK293 Cells. J Nutr 2015; 145:2440-7. [PMID: 26355001 DOI: 10.3945/jn.115.213918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/07/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Magnesium deficiency is a common complication of diabetes with an unclear molecular background. OBJECTIVE We investigated the effect of the insulin (INS)-signaling pathway (ISP) on the regulation of Mg(2+) efflux (Mg(2+)E) conducted by solute carrier family 41, member A1 (SLC41A1; activated by protein kinase A) in transgenic human embryonic kidney (HEK) 293 cells. METHODS HEK293 cells overexpressing SLC41A1 were loaded with the Mg(2+) fluorescent indicator mag-fura-2 and Mg(2+). Measurements of Mg(2+)E were conducted in Mg(2+)-free buffer by using fast-filter fluorescence spectrometry. We examined the effects of INS, inhibitors of ISP or p38 mitogen-activated protein kinase (p38 MAPK), an activator of adenylate cyclase (ADC), and their combinations on SLC41A1-attributed Mg(2+)E. RESULTS The application of 400 μU/mL INS inhibited SLC41A1-mediated Mg(2+)E by up to 50.6% compared with INS-untreated cells (P < 0.001). Moreover, INS evoked the early onset of Mg(2+) release from intracellular stores. The application of 0.1 μM wortmannin or 10 μM zardaverine (both ISP inhibitors) restored SLC41A1 Mg(2+)E capacity in the presence of INS to the same levels in INS-untreated cells. The simultaneous application of 10 μM forskolin, an ADC activator, and INS resulted in a reduction of Mg(2+)E of up to 59% compared with untreated cells (P < 0.001), which was comparable to that in cells treated with INS alone. Inhibition of p38 MAPK with 10 μM SB 202190 (SB) in the absence of INS resulted in a decrease (P < 0.001) of SLC41A1-dependent Mg(2+)E (by up to 49%) compared with Mg(2+)E measured in untreated cells. Simultaneous exposure of cells to SB and INS had a stronger inhibitory effect on SLC41A1 activity than INS alone (P < 0.05). CONCLUSIONS INS affects intracellular Mg(2+) concentration in transgenic HEK293 cells by regulating SLC41A1 activity (via ISP) and by influencing the compartmentalization and cellular distribution of Mg(2+). In addition, p38 MAPK activates SLC41A1 independently of INS action.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute of Veterinary Physiology, Freie Universität, Berlin, Germany; and
| | - Uwe Tietjen
- Institute of Veterinary Physiology, Freie Universität, Berlin, Germany; and
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität, Berlin, Germany; and
| | - Jürgen Vormann
- Institute for Prevention and Nutrition, Ismaning/Munich, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität, Berlin, Germany; and
| | - Martin Kolisek
- Institute of Veterinary Physiology, Freie Universität, Berlin, Germany; and
| |
Collapse
|
249
|
Abstract
Until recently, type 2 diabetes was seen as a disease caused by an impaired ability of insulin to promote the uptake and utilisation of glucose. Work on forkhead box protein O (FOXO) transcription factors revealed new aspects of insulin action that have led us to articulate a liver- and beta cell-centric narrative of diabetes pathophysiology and treatment. FOXO integrate a surprisingly diverse subset of biological functions to promote metabolic flexibility. In the liver, they controls the glucokinase/glucose-6-phosphatase switch and bile acid pool composition, directing carbons to glucose or lipid utilisation, thus providing a unifying mechanism for the two abnormalities of the diabetic liver: excessive glucose production and increased lipid synthesis and secretion. Moreover, FOXO are necessary to maintain beta cell differentiation, and diabetes development is associated with a gradual loss of FOXO function that brings about beta cell dedifferentiation. We proposed that dedifferentiation is the main cause of beta cell failure and conversion into non-beta endocrine cells, and that treatment should restore beta cell differentiation. Our studies investigating these proposals have revealed new dimensions to the pathophysiology of diabetes that can be leveraged to design new therapies.
Collapse
Affiliation(s)
- Utpal B Pajvani
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Center, 1150 St Nicholas Av., New York, NY, 10032, USA.
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Center, 1150 St Nicholas Av., New York, NY, 10032, USA.
| |
Collapse
|
250
|
King A, Bowe J. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochem Pharmacol 2015; 99:1-10. [PMID: 26432954 DOI: 10.1016/j.bcp.2015.08.108] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a lifelong, metabolic disease that is characterised by an inability to maintain normal glucose homeostasis. There are several different forms of diabetes, however the two most common are Type 1 and Type 2 diabetes. Type 1 diabetes is caused by the autoimmune destruction of pancreatic beta cells and a subsequent lack of insulin production, whilst Type 2 diabetes is due to a combination of both insulin resistance and an inability of the beta cells to compensate adequately with increased insulin release. Animal models are increasingly being used to elucidate the mechanisms underlying both Type 1 and Type 2 diabetes as well as to identify and refine novel treatments. However, a wide range of different animal models are currently in use. The majority of these models are suited to addressing certain specific aspects of diabetes research, but may be of little use in other studies. All have pros and cons, and selecting an appropriate model for addressing a specific question is not always a trivial task and will influence the study results and their interpretation. Thus, as the number of available animal models increases it is important to consider the potential roles of these models in the many different aspects of diabetes research. This review gathers information on the currently used experimental animal models of both Type 1 and Type 2 diabetes and evaluates their advantages and disadvantages for research purposes and details the factors that should be taken into account in their use.
Collapse
Affiliation(s)
- Aileen King
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Hodgkin Building 2nd Floor, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.
| | - James Bowe
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Hodgkin Building 2nd Floor, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|