201
|
Sharma R, Frasch MG, Zelgert C, Zimmermann P, Fabre B, Wilson R, Waldenberger M, MacDonald JW, Bammler TK, Lobmaier SM, Antonelli MC. Maternal-fetal stress and DNA methylation signatures in neonatal saliva: an epigenome-wide association study. Clin Epigenetics 2022; 14:87. [PMID: 35836289 PMCID: PMC9281078 DOI: 10.1186/s13148-022-01310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal stress before, during and after pregnancy has profound effects on the development and lifelong function of the infant's neurocognitive development. We hypothesized that the programming of the central nervous system (CNS), hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) induced by prenatal stress (PS) is reflected in electrophysiological and epigenetic biomarkers. In this study, we aimed to find noninvasive epigenetic biomarkers of PS in the newborn salivary DNA. RESULTS A total of 728 pregnant women were screened for stress exposure using Cohen Perceived Stress Scale (PSS), 164 women were enrolled, and 114 dyads were analyzed. Prenatal Distress Questionnaire (PDQ) was also administered to assess specific pregnancy worries. Transabdominal fetal electrocardiograms (taECG) were recorded to derive coupling between maternal and fetal heart rates resulting in a 'Fetal Stress Index' (FSI). Upon delivery, we collected maternal hair strands for cortisol measurements and newborn's saliva for epigenetic analyses. DNA was extracted from saliva samples, and DNA methylation was measured using EPIC BeadChip array (850 k CpG sites). Linear regression was used to identify associations between PSS/PDQ/FSI/Cortisol and DNA methylation. We found epigenome-wide significant associations for 5 CpG with PDQ and cortisol at FDR < 5%. Three CpGs were annotated to genes (Illumina Gene annotation file): YAP1, TOMM20 and CSMD1, and two CpGs were located approximately lay at 50 kb from SSBP4 and SCAMP1. In addition, two differentiated methylation regions (DMR) related to maternal stress measures PDQ and cortisol were found: DAXX and ARL4D. CONCLUSIONS Genes annotated to these CpGs were found to be involved in secretion and transportation, nuclear signaling, Hippo signaling pathways, apoptosis, intracellular trafficking and neuronal signaling. Moreover, some CpGs are annotated to genes related to autism, post-traumatic stress disorder (PTSD) and schizophrenia. However, our results should be viewed as hypothesis generating until replicated in a larger sample. Early assessment of such noninvasive PS biomarkers will allow timelier detection of babies at risk and a more effective allocation of resources for early intervention programs to improve child development. A biomarker-guided early intervention strategy is the first step in the prevention of future health problems, reducing their personal and societal impact.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Martin G Frasch
- Department of Obstetrics and Gynecology and Center On Human Development and Disability (CHDD), University of Washington, Seattle, WA, USA
| | - Camila Zelgert
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter Zimmermann
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bibiana Fabre
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Silvia M Lobmaier
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marta C Antonelli
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
202
|
Qiao H, Tian Y, Huo Y, Man HY. Role of the DUB enzyme USP7 in dendritic arborization, neuronal migration, and autistic-like behaviors in mice. iScience 2022; 25:104595. [PMID: 35800757 PMCID: PMC9253496 DOI: 10.1016/j.isci.2022.104595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Duplication and haploinsufficiency of the USP7 gene are implicated in autism spectrum disorders (ASD), but the role for USP7 in neurodevelopment and contribution to ASD pathogenesis remain unknown. We find that in primary neurons, overexpression of USP7 increases dendritic branch number and total dendritic length, whereas knockdown leads to opposite alterations. Besides, USP7 deubiquitinates the X-linked inhibitor of apoptosis protein (XIAP). The USP7-induced increase in XIAP suppresses caspase 3 activity, leading to a reduction in tubulin cleavage and suppression of dendritic pruning. When USP7 is introduced into the brains of prenatal mice via in utero electroporation (IUE), it results in abnormal migration of newborn neurons and increased dendritic arborization. Importantly, intraventricular brain injection of AAV-USP7 in P0 mice leads to autistic-like phenotypes including aberrant social interactions, repetitive behaviors, as well as changes in somatosensory sensitivity. These findings provide new insights in USP7-related neurobiological functions and its implication in ASD. Overexpression of USP7 increases dendritic arborization USP7 targets XIAP for deubiquitination and regulates XIAP proteostasis in neurons USP7 regulates dendritic remodeling via the XIAP-caspase 3-tubulin pathway Prenatal overexpression of USP7 in mice leads to autistic-like behaviors
Collapse
|
203
|
Giraldo-Ocampo S, Pacheco-Orozco RA, Pachajoa H. A Novel POGZ Variant in a Patient with Intellectual Disability and Obesity. Appl Clin Genet 2022; 15:63-68. [PMID: 35821784 PMCID: PMC9271277 DOI: 10.2147/tacg.s369483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
White–Sutton syndrome is a rare type of autosomal dominant neurodevelopmental disorder caused by mutations, mostly de novo, in the POGZ gene. No more than 120 patients have been described so far in the literature. Common clinical manifestations include intellectual disability, developmental delay, autism spectrum disorder, other behavioral abnormalities, sleeping problems, hyperactivity and visual problems. We describe a 20-year-old male patient from Colombia who presented with delayed psychomotor development, intellectual disability, obesity, sleep difficulties, hypotonia, hypogonadism, gynecomastia, visual abnormalities and several facial dysmorphisms. Genetic testing showed a novel heterozygous frameshift variant (c.3308del; p.Leu1103Profs*19) in the POGZ gene (NM_015100.3). This is the first report of a diagnosed patient with WHSUS in Colombia.
Collapse
Affiliation(s)
| | | | - Harry Pachajoa
- Genetics Division, Fundación Valle del Lili, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Cali, Colombia
- Correspondence: Harry Pachajoa, Genetics Division, Fundación Valle del Lili, Carrera 98 # 18-49, Cali, Colombia, Tel +57 5552334 ext 7653, Email
| |
Collapse
|
204
|
Goto A, Sakai S, Mizuike A, Yamaji T, Hanada K. Compartmentalization of casein kinase 1 γ CSNK1G controls the intracellular trafficking of ceramide. iScience 2022; 25:104624. [PMID: 35800758 PMCID: PMC9254030 DOI: 10.1016/j.isci.2022.104624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Casein kinase 1 γ (CK1G) is involved in the regulation of various cellular functions. For instance, the ceramide transport protein (CERT), which delivers ceramide to the Golgi apparatus for the synthesis of sphingomyelin (SM), is inactivated when it receives multiple phosphorylation by CK1G. Using human genome-wide gene disruption screening with an SM-binding cytolysin, we found that loss of the C-terminal region of CK1G3 rendered the kinase hyperactive in cells. Deletion of the C-terminal 20 amino acids or mutation of cysteine residues expected to be palmitoylated sites redistributed CK1G3 from cytoplasmic punctate compartments to the nucleocytoplasm. Wild-type CK1G3 exhibited a similar redistribution in the presence of 2-bromopalmitate, a protein palmitoylation inhibitor. Expression of C-terminal mutated CK1G1/2/3 similarly induced the multiple phosphorylation of the CERT SRM, thereby down-regulating de novo SM synthesis. These findings revealed that CK1Gs are regulated by a compartmentalization-based mechanism to access substrates present in specific intracellular organelles. C-terminal region of CSNK1Gs restricts their localization to punctate compartments Loss of the kinase compartmentalization causes hyperphosphorylation of CERT Compartmentalization of CSNK1G controls ceramide transport and de novo SM synthesis
Collapse
Affiliation(s)
- Asako Goto
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Aya Mizuike
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Corresponding author
| |
Collapse
|
205
|
Genomic health data generation in the UK: a 360 view. Eur J Hum Genet 2022; 30:782-789. [PMID: 34663916 PMCID: PMC8523282 DOI: 10.1038/s41431-021-00976-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
In the UK, genomic health data is being generated in three major contexts: the healthcare system (based on clinical indication), in large scale research programmes, and for purchasers of direct-to-consumer genetic tests. The recently delivered hybrid clinical/research programme, 100,000 Genomes Project set the scene for a new Genomic Medicine Service, through which the National Health Service aims to deliver consistent and equitable care informed by genomics, while providing data to inform academic and industry research and development. In parallel, a large scale research study, Our Future Health, has UK Government and Industry investment and aims to recruit 5 million volunteers to support research intended to improve early detection, risk stratification, and early intervention for chronic diseases. To explore how current models of genomic health data generation intersect, and to understand clinical, ethical, legal, policy and social issues arising from this intersection, we conducted a series of five multidisciplinary panel discussions attended by 28 invited stakeholders. Meetings were recorded and transcribed. We present a summary of issues identified: genomic test attributes; reasons for generating genomic health data; individuals' motivation to seek genomic data; health service impacts; role of genetic counseling; equity; data uses and security; consent; governance and regulation. We conclude with some suggestions for policy consideration.
Collapse
|
206
|
Nehme R, Pietiläinen O, Artomov M, Tegtmeyer M, Valakh V, Lehtonen L, Bell C, Singh T, Trehan A, Sherwood J, Manning D, Peirent E, Malik R, Guss EJ, Hawes D, Beccard A, Bara AM, Hazelbaker DZ, Zuccaro E, Genovese G, Loboda AA, Neumann A, Lilliehook C, Kuismin O, Hamalainen E, Kurki M, Hultman CM, Kähler AK, Paulo JA, Ganna A, Madison J, Cohen B, McPhie D, Adolfsson R, Perlis R, Dolmetsch R, Farhi S, McCarroll S, Hyman S, Neale B, Barrett LE, Harper W, Palotie A, Daly M, Eggan K. The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia. Nat Commun 2022; 13:3690. [PMID: 35760976 PMCID: PMC9237031 DOI: 10.1038/s41467-022-31436-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Mykyta Artomov
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Vera Valakh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Leevi Lehtonen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Christina Bell
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Aditi Trehan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - John Sherwood
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Danielle Manning
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Emily Peirent
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Rhea Malik
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ellen J Guss
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Anne M Bara
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Alexander A Loboda
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Christina Lilliehook
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Outi Kuismin
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Eija Hamalainen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mitja Kurki
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Jon Madison
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Bruce Cohen
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - Donna McPhie
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - Rolf Adolfsson
- Umea University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry, 901 85, Umea, Sweden
| | - Roy Perlis
- Psychiatry Dept., Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ricardo Dolmetsch
- Novartis Institutes for Biomedical Research, Novartis, Cambridge, MA, 02139, USA
| | - Samouil Farhi
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Steven Hyman
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ben Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Wade Harper
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark Daly
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
- BioMarin Pharmaceutical, San Rafael, CA, 94901, USA.
| |
Collapse
|
207
|
Rodríguez-García ME, Cotrina-Vinagre FJ, Bellusci M, Hernández-Sánchez L, de Aragón AM, López-Laso E, Martín-Hernández E, Martínez-Azorín F. First splicing variant in HECW2 with an autosomal recessive pattern of inheritance and associated with NDHSAL. Hum Mutat 2022; 43:1361-1367. [PMID: 35753050 DOI: 10.1002/humu.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/07/2022]
Abstract
We report the clinical and genetic features of a Caucasian girl who presented a severe neurodevelopmental disorder with drug-resistant epilepsy, hypotonia, severe gastro-esophageal reflux and brain MRI anomalies. WES uncovered a novel variant in homozygosis (g.197092814_197092824delinsC) in HECW2 gene that encodes the E3 ubiquitin-protein ligase HECW2. This protein induces ubiquitination and is implicated in the regulation of several important pathways involved in neurodevelopment and neurogenesis. Furthermore, de novo heterozygous missense variants in this gene have been associated with NDHSAL. The homozygous variant of our patient disrupts the splice donor site of intron 22 and causes the elimination of exon 22 (r.3766_3917+1del) leading to an in-frame deletion of the protein (p.Leu1256_Trp1306del). Functional studies showed a two-fold increase of its RNA expression, while the protein expression level was reduced by 60%, suggesting a partial LOF mechanism of pathogenesis. Thus, this is the first patient with NDHSAL caused by an autosomal recessive splicing variant in HECW2. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | - Marcello Bellusci
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Laura Hernández-Sánchez
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | | | - Eduardo López-Laso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain.,Unidad de Neurología Pediátrica, Hospital Universitario Reina Sofia IMIBIC, E-14004, Córdoba, Spain
| | - Elena Martín-Hernández
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain.,Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain
| |
Collapse
|
208
|
Xu L, Zhou Y, Ren X, Xu C, Ren R, Yan X, Li X, Yang H, Xu X, Guo X, Sheng G, Hua Y, Yuan Z, Wang S, Gu W, Sun D, Gao F. Expanding the Phenotypic and Genotypic Spectrum of ARFGEF1-Related Neurodevelopmental Disorder. Front Mol Neurosci 2022; 15:862096. [PMID: 35782386 PMCID: PMC9248374 DOI: 10.3389/fnmol.2022.862096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Mono-allelic loss-of-function variants in ARFGEF1 have recently caused a developmental delay, intellectual disability, and epilepsy, with varying clinical expressivity. However, given the clinical heterogeneity and low-penetrance mutations of ARFGEF1-related neurodevelopmental disorder, the robustness of the gene-disease association requires additional evidence. In this study, five novel heterozygous ARFGEF1 variants were identified in five unrelated pediatric patients with neurodevelopmental disorders, including one missense change (c.3539T>G), two canonical splice site variants (c.917-1G>T, c.2850+2T>A), and two frameshift (c.2923_c.2924delCT, c.4951delG) mutations resulting in truncation of ARFGEF1. The pathogenic/likely pathogenic variants presented here will be highly beneficial to patients undergoing genetic testing in the future by providing an expanded reference list of disease-causing variants.
Collapse
Affiliation(s)
- Lu Xu
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youfeng Zhou
- Department of Pediatrics, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyan Ren
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenlu Xu
- Beijing Chigene Translational Medical Research Centre Co. Ltd., Beijing, China
| | - Rongna Ren
- Department of Pediatrics and Neurosurgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Xuke Yan
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuelian Li
- Department of Pediatric Neurology, Anhui Provincial Children's Hospital, Hefei, China
| | - Huimin Yang
- Department of Pediatric, Inner Mongolia Maternal and Child Health Care Hospital, Hohhot, China
| | - Xuebin Xu
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotong Guo
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoxia Sheng
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Hua
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhefeng Yuan
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shugang Wang
- Beijing Chigene Translational Medical Research Centre Co. Ltd., Beijing, China
| | - Weiyue Gu
- Beijing Chigene Translational Medical Research Centre Co. Ltd., Beijing, China
- *Correspondence: Weiyue Gu
| | - Dan Sun
- Department of Pediatric Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Dan Sun
| | - Feng Gao
- Department of Neurology, National Clinical Research Centre for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Feng Gao
| |
Collapse
|
209
|
Wright D, Kenny A, Eley S, McKechanie AG, Stanfield AC. Clinical and behavioural features of SYNGAP1-related intellectual disability: a parent and caregiver description. J Neurodev Disord 2022; 14:34. [PMID: 35655128 PMCID: PMC9164368 DOI: 10.1186/s11689-022-09437-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/05/2022] [Indexed: 11/26/2022] Open
Abstract
Background SYNGAP1-related intellectual disability (ID) is a recently described neurodevelopmental disorder that is caused by pathogenic variation in the SYNGAP1 gene. To date, the behavioural characteristics of this disorder have mainly been highlighted via the prevalence of existing diagnoses in case series. We set out to detail the behavioural features of this disorder by undertaking interviews with those who have a child with SYNGAP1-related ID to allow them to describe their child’s behaviour. Methods We conducted 27 semi-structured interviews with parents and caregivers which covered basic information (e.g., age, gender), family history, perinatal history, past medical history, developmental history, epilepsy, behavioural history, and a general description of their child’s behaviour. Results Using a mixed quantitative and qualitative approach, the responses from the parents indicated that those with SYNGAP1-related ID showed high rates of autism spectrum disorder (52%), difficulties with fine and gross motor skills, delays in language development, and a high prevalence of epilepsy (70%). A qualitative analysis highlighted their general behaviour affected the themes of daily living skills, distress-related behaviours, emotional regulation, difficulties with change, a lack of danger awareness, and sensory differences. Sensory features described involved auditory, visual, tactile, gustatory, and proprioceptive themes. Conclusions Our findings and behavioural descriptions provide important insights as well as implications for the diagnosis and care of those with SYNGAP1-related ID. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09437-x.
Collapse
Affiliation(s)
- Damien Wright
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, Scotland.
| | - Aisling Kenny
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, Scotland
| | - Sarah Eley
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, Scotland
| | - Andrew G McKechanie
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, Scotland
| | - Andrew C Stanfield
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, Scotland
| |
Collapse
|
210
|
Jain A, Zoncu R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab 2022; 60:101481. [PMID: 35342037 PMCID: PMC9043965 DOI: 10.1016/j.molmet.2022.101481] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spatial compartmentalization of metabolic pathways within membrane-separated organelles is key to the ability of eukaryotic cells to precisely regulate their biochemical functions. Membrane-bound organelles such as mitochondria, endoplasmic reticulum (ER) and lysosomes enable the concentration of metabolic precursors within optimized chemical environments, greatly accelerating the efficiency of both anabolic and catabolic reactions, enabling division of labor and optimal utilization of resources. However, metabolic compartmentalization also poses a challenge to cells because it creates spatial discontinuities that must be bridged for reaction cascades to be connected and completed. To do so, cells employ different methods to coordinate metabolic fluxes occurring in different organelles, such as membrane-localized transporters to facilitate regulated metabolite exchange between mitochondria and lysosomes, non-vesicular transport pathways via physical contact sites connecting the ER with both mitochondria and lysosomes, as well as localized regulatory signaling processes that coordinately regulate the activity of all these organelles. SCOPE OF REVIEW This review covers how cells use membrane transporters, membrane contact sites, and localized signaling pathways to mediate inter-organelle communication and coordinate metabolism. We also describe how disruption of inter-organelle communication is an emerging driver in a multitude of diseases, from cancer to neurodegeneration. MAJOR CONCLUSIONS Effective communication among organelles is essential to cellular health and function. Identifying the major molecular players involved in mediating metabolic coordination between organelles will further our understanding of cellular metabolism in health and lead us to design better therapeutics against dysregulated metabolism in disease.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
211
|
Özden F, Alkan C, Çiçek AE. Polishing copy number variant calls on exome sequencing data via deep learning. Genome Res 2022; 32:1170-1182. [PMID: 35697522 PMCID: PMC9248885 DOI: 10.1101/gr.274845.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
Accurate and efficient detection of copy number variants (CNVs) is of critical importance owing to their significant association with complex genetic diseases. Although algorithms that use whole-genome sequencing (WGS) data provide stable results with mostly valid statistical assumptions, copy number detection on whole-exome sequencing (WES) data shows comparatively lower accuracy. This is unfortunate as WES data are cost-efficient, compact, and relatively ubiquitous. The bottleneck is primarily due to the noncontiguous nature of the targeted capture: biases in targeted genomic hybridization, GC content, targeting probes, and sample batching during sequencing. Here, we present a novel deep learning model, DECoNT, which uses the matched WES and WGS data, and learns to correct the copy number variations reported by any off-the-shelf WES-based germline CNV caller. We train DECoNT on the 1000 Genomes Project data, and we show that we can efficiently triple the duplication call precision and double the deletion call precision of the state-of-the-art algorithms. We also show that our model consistently improves the performance independent of (1) sequencing technology, (2) exome capture kit, and (3) CNV caller. Using DECoNT as a universal exome CNV call polisher has the potential to improve the reliability of germline CNV detection on WES data sets.
Collapse
Affiliation(s)
- Furkan Özden
- Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
| | - A Ercüment Çiçek
- Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
212
|
Olfson E, Lebowitz ER, Hommel G, Pashankar N, Silverman WK, Fernandez TV. Whole-exome DNA sequencing in childhood anxiety disorders identifies rare de novo damaging coding variants. Depress Anxiety 2022; 39:474-484. [PMID: 35312124 PMCID: PMC9246845 DOI: 10.1002/da.23251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/09/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic factors contribute to the development of anxiety disorders, yet few risk genes have been previously identified. One genomic approach that has achieved success in identifying risk genes in related childhood neuropsychiatric conditions is investigations of de novo variants, which has yet to be leveraged in childhood anxiety disorders. METHODS We performed whole-exome DNA sequencing in 76 parent-child trios (68 trios after quality control) recruited from a childhood anxiety disorder clinic and compared rates of rare and ultra-rare de novo variants with 790 previously sequenced control trios (783 trios after quality control). We then explored overlap with risk genes for other neuropsychiatric conditions and enrichment in biologic pathways. RESULTS Rare and ultra-rare de novo likely gene disrupting and predicted damaging missense genetic variants are enriched in anxiety disorder probands compared with controls (rare variant rate ratio 1.97, 95% confidence interval [CI]: 1.11-3.34, p = .03; ultra-rare variant rate ratio 2.59, 95% CI: 1.35-4.70, p = .008). These de novo damaging variants occur in individuals with a variety of childhood anxiety disorders and impact genes that have been associated with other neuropsychiatric conditions. Exploratory network analyses reveal enrichment of deleterious variants in canonical biological pathways. CONCLUSIONS These findings provide a path for identifying risk genes and promising biologic pathways in childhood anxiety disorders by de novo genetic variant detection. Our results suggest the discovery potential of applying this approach in larger anxiety disorder cohorts to advance our understanding of the underlying biology of these common and debilitating conditions.
Collapse
Affiliation(s)
- Emily Olfson
- Yale Child Study Center, Yale University School of Medicine, New Haven CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Eli R. Lebowitz
- Yale Child Study Center, Yale University School of Medicine, New Haven CT
| | - Grace Hommel
- Yale Child Study Center, Yale University School of Medicine, New Haven CT
| | - Neha Pashankar
- Yale Child Study Center, Yale University School of Medicine, New Haven CT
| | - Wendy K. Silverman
- Yale Child Study Center, Yale University School of Medicine, New Haven CT
| | - Thomas V. Fernandez
- Yale Child Study Center, Yale University School of Medicine, New Haven CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
213
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
214
|
Bestetti I, Crippa M, Sironi A, Tumiatti F, Masciadri M, Smeland MF, Naik S, Murch O, Bonati MT, Spano A, Cattaneo E, Mariani M, Gotta F, Crosti F, Cavalli P, Pantaleoni C, Natacci F, Bedeschi MF, Milani D, Maitz S, Selicorni A, Spaccini L, Peron A, Russo S, Larizza L, Low K, Finelli P. Expanding the Molecular Spectrum of ANKRD11 Gene Defects in 33 Patients with a Clinical Presentation of KBG Syndrome. Int J Mol Sci 2022; 23:5912. [PMID: 35682590 PMCID: PMC9180463 DOI: 10.3390/ijms23115912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KBG syndrome (KBGS) is a neurodevelopmental disorder caused by the Ankyrin Repeat Domain 11 (ANKRD11) haploinsufficiency. Here, we report the molecular investigations performed on a cohort of 33 individuals with KBGS clinical suspicion. By using a multi-testing genomic approach, including gene sequencing, Chromosome Microarray Analysis (CMA), and RT-qPCR gene expression assay, we searched for pathogenic alterations in ANKRD11. A molecular diagnosis was obtained in 22 out of 33 patients (67%). ANKRD11 sequencing disclosed pathogenic or likely pathogenic variants in 18 out of 33 patients. CMA identified one full and one terminal ANKRD11 pathogenic deletions, and one partial duplication and one intronic microdeletion, with both possibly being pathogenic. The pathogenic effect was established by RT-qPCR, which confirmed ANKRD11 haploinsufficiency only for the three deletions. Moreover, RT-qPCR applied to six molecularly unsolved KBGS patients identified gene downregulation in a clinically typical patient with previous negative tests, and further molecular investigations revealed a cryptic deletion involving the gene promoter. In conclusion, ANKRD11 pathogenic variants could also involve the regulatory regions of the gene. Moreover, the application of a multi-test approach along with the innovative use of RT-qPCR improved the diagnostic yield in KBGS suspected patients.
Collapse
Affiliation(s)
- Ilaria Bestetti
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Milena Crippa
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Alessandra Sironi
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Francesca Tumiatti
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Maura Masciadri
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | | | - Swati Naik
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham B15 2TG, UK;
| | - Oliver Murch
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff CF14 4XW, UK;
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, San Luca Hospital, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy;
| | - Alice Spano
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (A.S.); (S.M.)
| | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, “V. Buzzi” Children’s Hospital, University of Milan, 20142 Milan, Italy; (E.C.); (L.S.)
| | - Milena Mariani
- Pediatric Unit, ASST Lariana, 22100 Como, Italy; (M.M.); (A.S.)
| | - Fabio Gotta
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy; (F.G.); (P.C.)
| | - Francesca Crosti
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Pietro Cavalli
- Clinical Genetics, ASST Cremona, Via Concordia 1, 26100 Cremona, Italy; (F.G.); (P.C.)
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20142 Milan, Italy;
| | - Federica Natacci
- Medical Genetic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy; (F.N.); (M.F.B.)
| | - Maria Francesca Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy; (F.N.); (M.F.B.)
| | - Donatella Milani
- Pediatric Highly Intensive Care, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20142 Milan, Italy;
| | - Silvia Maitz
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (A.S.); (S.M.)
- Service of Medical Genetics, Oncologic Institute of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | | | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, “V. Buzzi” Children’s Hospital, University of Milan, 20142 Milan, Italy; (E.C.); (L.S.)
| | - Angela Peron
- Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy;
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Silvia Russo
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
| | - Karen Low
- University Hospitals Bristol NHS Trust, University of Bristol, Bristol BS1 3NU, UK;
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20142 Milan, Italy; (M.C.); (A.S.); (F.T.); (M.M.); (S.R.); (L.L.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20142 Milan, Italy
| |
Collapse
|
215
|
Tremblay MW, Green MV, Goldstein BM, Aldridge AI, Rosenfeld JA, Streff H, Tan WD, Craigen W, Bekheirnia N, Al Tala S, West AE, Jiang YH. Mutations of the histone linker H1-4 in neurodevelopmental disorders and functional characterization of neurons expressing C-terminus frameshift mutant H1.4. Hum Mol Genet 2022; 31:1430-1442. [PMID: 34788807 PMCID: PMC9271223 DOI: 10.1093/hmg/ddab321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022] Open
Abstract
Rahman syndrome (RMNS) is a rare genetic disorder characterized by mild to severe intellectual disability, hypotonia, anxiety, autism spectrum disorder, vision problems, bone abnormalities and dysmorphic facies. RMNS is caused by de novo heterozygous mutations in the histone linker gene H1-4; however, mechanisms underlying impaired neurodevelopment in RMNS are not understood. All reported mutations associated with RMNS in H1-4 are small insertions or deletions that create a shared frameshift, resulting in a H1.4 protein that is both truncated and possessing an abnormal C-terminus frameshifted tail (H1.4 CFT). To expand understanding of mutations and phenotypes associated with mutant H1-4, we identified new variants at both the C- and N-terminus of H1.4. The clinical features of mutations identified at the C-terminus are consistent with other reports and strengthen the support of pathogenicity of H1.4 CFT. To understand how H1.4 CFT may disrupt brain function, we exogenously expressed wild-type or H1.4 CFT protein in rat hippocampal neurons and assessed neuronal structure and function. Genome-wide transcriptome analysis revealed ~ 400 genes altered in the presence of H1.4 CFT. Neuronal genes downregulated by H1.4 CFT were enriched for functional categories involved in synaptic communication and neuropeptide signaling. Neurons expressing H1.4 CFT also showed reduced neuronal activity on multielectrode arrays. These data are the first to characterize the transcriptional and functional consequence of H1.4 CFT in neurons. Our data provide insight into causes of neurodevelopmental impairments associated with frameshift mutations in the C-terminus of H1.4 and highlight the need for future studies on the function of histone H1.4 in neurons.
Collapse
Affiliation(s)
- Martine W Tremblay
- University Program in Genetics and Genomics, Duke University, Durham NC 27710, USA
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - Matthew V Green
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | | | - Andrew I Aldridge
- University Program in Genetics and Genomics, Duke University, Durham NC 27710, USA
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Baylor Genetics Laboratories, Baylor College of Medicine, Houston TX 77030, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Wendy D Tan
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Renal section, Baylor College of Medicine, Houston TX 77030, USA
| | - Saeed Al Tala
- Department of Pediatrics, Armed Forces Hospital SR, Khamis Mushayt 61961, Saudi Arabia
| | - Anne E West
- University Program in Genetics and Genomics, Duke University, Durham NC 27710, USA
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - Yong-hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520, USA
- Neuroscience, Yale University School of Medicine, New Haven CT 06520, USA
- Pediatrics, Yale University School of Medicine, New Haven CT 06520, USA
| |
Collapse
|
216
|
FitzPatrick L, Bird A. Genetic therapies for neurological disorders. Hum Genet 2022; 141:1085-1091. [PMID: 34807307 PMCID: PMC8607967 DOI: 10.1007/s00439-021-02399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022]
Abstract
In recent years, it has become increasingly apparent that many neurological disorders are underpinned by a genetic aetiology. This has resulted in considerable efforts to develop therapeutic strategies which can treat the disease-causing mutation, either by supplying a functional copy of the mutated gene or editing the genomic sequence. In this review, we will discuss the main genetic strategies which are currently being explored for the treatment of monogenic neurological disorders, as well as some of the challenges they face. In addition, we will address some of the ethical difficulties which may arise.
Collapse
Affiliation(s)
- Laura FitzPatrick
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
217
|
Kepler LD, McDiarmid TA, Rankin CH. Rapid assessment of the temporal function and phenotypic reversibility of neurodevelopmental disorder risk genes in Caenorhabditis elegans. Dis Model Mech 2022; 15:dmm049359. [PMID: 35363276 PMCID: PMC9092656 DOI: 10.1242/dmm.049359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies have indicated that some phenotypes caused by decreased function of select neurodevelopmental disorder (NDD) risk genes can be reversed by restoring gene function in adulthood. However, few of the hundreds of risk genes have been assessed for adult phenotypic reversibility. We developed a strategy to rapidly assess the temporal requirements and phenotypic reversibility of NDD risk gene orthologs using a conditional protein degradation system and machine-vision phenotypic profiling in Caenorhabditis elegans. We measured how degrading and re-expressing orthologs of EBF3, BRN3A and DYNC1H1 at multiple periods throughout development affect 30 morphological, locomotor, sensory and learning phenotypes. We found that phenotypic reversibility was possible for each gene studied. However, the temporal requirements of gene function and degree of rescue varied by gene and phenotype. This work highlights the critical need to assess multiple windows of degradation and re-expression and a large number of phenotypes to understand the many roles a gene can have across the lifespan. This work also demonstrates the benefits of using a high-throughput model system to prioritize NDD risk genes for re-expression studies in other organisms.
Collapse
Affiliation(s)
- Lexis D. Kepler
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Troy A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
- Department of Genome Sciences, University of Washington School of Medicine, Foege Building S-250 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
218
|
Capalbo A, Buonaiuto S, Figliuzzi M, Damaggio G, Girardi L, Caroselli S, Poli M, Patassini C, Cetinkaya M, Yuksel B, Azad A, Grøndahl M, Hoffmann E, Simón C, Colonna V, Kahraman S. A standardized approach for case selection and genomic data analysis of maternal exomes for the diagnosis of oocyte maturation and early embryonic developmental arrest in IVF. Reprod Biomed Online 2022; 45:508-518. [DOI: 10.1016/j.rbmo.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
|
219
|
Lambert N, Moïse M, Nguyen L. E3 Ubiquitin ligases and cerebral cortex development in health and disease. Dev Neurobiol 2022; 82:392-407. [PMID: 35476229 DOI: 10.1002/dneu.22877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Cerebral cortex development involves the sequential progression of biological steps driven by molecular pathways whose tight regulation often relies on ubiquitination. Ubiquitination is a post-translational modification involved in all aspects of cellular homeostasis through the attachment of a ubiquitin moiety on proteins. Over the past years, an increasing amount of research has highlighted the crucial role played by ubiquitin ligases in every step of cortical development and whose impairment often leads to various neurodevelopmental disorders. In this review, we focus on the key contributions of E3 ubiquitin ligases for the progression of the different steps of corticogenesis, as well as the pathological consequences of their mutations, often resulting in malformations of cortical development. Finally, we discuss some promising targeted treatment strategies for these diseases based on recent advances in the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas Lambert
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Martin Moïse
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Laurent Nguyen
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium
| |
Collapse
|
220
|
Hamanaka K, Miyake N, Mizuguchi T, Miyatake S, Uchiyama Y, Tsuchida N, Sekiguchi F, Mitsuhashi S, Tsurusaki Y, Nakashima M, Saitsu H, Yamada K, Sakamoto M, Fukuda H, Ohori S, Saida K, Itai T, Azuma Y, Koshimizu E, Fujita A, Erturk B, Hiraki Y, Ch'ng GS, Kato M, Okamoto N, Takata A, Matsumoto N. Large-scale discovery of novel neurodevelopmental disorder-related genes through a unified analysis of single-nucleotide and copy number variants. Genome Med 2022; 14:40. [PMID: 35468861 PMCID: PMC9040275 DOI: 10.1186/s13073-022-01042-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background Previous large-scale studies of de novo variants identified a number of genes associated with neurodevelopmental disorders (NDDs); however, it was also predicted that many NDD-associated genes await discovery. Such genes can be discovered by integrating copy number variants (CNVs), which have not been fully considered in previous studies, and increasing the sample size. Methods We first constructed a model estimating the rates of de novo CNVs per gene from several factors such as gene length and number of exons. Second, we compiled a comprehensive list of de novo single-nucleotide variants (SNVs) in 41,165 individuals and de novo CNVs in 3675 individuals with NDDs by aggregating our own and publicly available datasets, including denovo-db and the Deciphering Developmental Disorders study data. Third, summing up the de novo CNV rates that we estimated and SNV rates previously established, gene-based enrichment of de novo deleterious SNVs and CNVs were assessed in the 41,165 cases. Significantly enriched genes were further prioritized according to their similarity to known NDD genes using a deep learning model that considers functional characteristics (e.g., gene ontology and expression patterns). Results We identified a total of 380 genes achieving statistical significance (5% false discovery rate), including 31 genes affected by de novo CNVs. Of the 380 genes, 52 have not previously been reported as NDD genes, and the data of de novo CNVs contributed to the significance of three genes (GLTSCR1, MARK2, and UBR3). Among the 52 genes, we reasonably excluded 18 genes [a number almost identical to the theoretically expected false positives (i.e., 380 × 0.05 = 19)] given their constraints against deleterious variants and extracted 34 “plausible” candidate genes. Their validity as NDD genes was consistently supported by their similarity in function and gene expression patterns to known NDD genes. Quantifying the overall similarity using deep learning, we identified 11 high-confidence (> 90% true-positive probabilities) candidate genes: HDAC2, SUPT16H, HECTD4, CHD5, XPO1, GSK3B, NLGN2, ADGRB1, CTR9, BRD3, and MARK2. Conclusions We identified dozens of new candidates for NDD genes. Both the methods and the resources developed here will contribute to the further identification of novel NDD-associated genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01042-w.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohei Yamada
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Biray Erturk
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey.,Current affiliation: Department of Medical Genetics, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | | | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
221
|
Neurodevelopmental Disorders Associated with PSD-95 and Its Interaction Partners. Int J Mol Sci 2022; 23:ijms23084390. [PMID: 35457207 PMCID: PMC9025546 DOI: 10.3390/ijms23084390] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023] Open
Abstract
The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.
Collapse
|
222
|
Doddato G, Fabbiani A, Scandurra V, Canitano R, Mencarelli MA, Renieri A, Ariani F. Identification of a Novel SHANK2 Pathogenic Variant in a Patient with a Neurodevelopmental Disorder. Genes (Basel) 2022; 13:genes13040688. [PMID: 35456494 PMCID: PMC9025881 DOI: 10.3390/genes13040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic defects in the SHANK2 gene, encoding for synaptic scaffolding protein, are associated with a variety of neurodevelopmental conditions, including autism spectrum disorders and mild to moderate intellectual disability. Until now, limited patient clinical descriptions have been published. Only 13 unrelated patients with SHANK2 pathogenic variations or microdeletions have been reported worldwide. By Exome Sequencing, we identified a de novo stop-gain variant, c.334C>T, p.(Gln112*), in an Italian patient with a neurodevelopmental disorder. The patient (9 years old) presented the following facial features: a flat profile, thick eyebrows, long eyelashes, a bulbous nasal tip and a prominent columella, retracted ears, dental anomalies. The patient showed speech delay and mild neuromotor delay but not autism spectrum disorder. In conclusion, this patient with a novel pathogenic variant in SHANK2 enlarges the phenotypic spectrum of SHANK2-mutated patients and demonstrates that the severity of SHANK2-associated disorders is highly variable.
Collapse
Affiliation(s)
- Gabriella Doddato
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.D.); (A.F.); (A.R.)
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100 Siena, Italy
| | - Alessandra Fabbiani
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.D.); (A.F.); (A.R.)
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Valeria Scandurra
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, 53100 Siena, Italy; (V.S.); (R.C.)
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, 53100 Siena, Italy; (V.S.); (R.C.)
| | | | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.D.); (A.F.); (A.R.)
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Francesca Ariani
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.D.); (A.F.); (A.R.)
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Correspondence: ; Tel.: +39-0577-233303
| |
Collapse
|
223
|
Levchenko OA, Rudenskaya GE, Markova TV, Bessonova LA, Marakhonov AV, Nagieva SE, Shchagina OA, Lavrov AV. Autosomal dominant intellectual disability associated with the MED13L gene. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2022. [DOI: 10.21508/1027-4065-2022-67-1-101-107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intellectual disability is a widespread group of diseases with population frequency 1–3%. More than half of intellectual disability cases are due to various genetic causes, including monogenic ones. The paper describes three clinical cases of MED13L-associated intellectual disability with an autosomal dominant inheritance. Novel probably pathogenic variants p.Cys118delinsTrpSer and p.Gln2111fs, as well as the previously described p.Pro866Leu mutation in the MED13L gene (NM_015335), were detected in patients by massive parallel sequencing. А rare familial case with two affected maternal half-siblings was of particular interest since the mutation detected in both children was not found in the mother (blood cells and buccal epithelium were investigated). We assume the presence of gonadal mosaicism in the mother, which allows to recommend families with confirmed cases of MED13L-associated intellectual disability to plan pregnancies with prenatal or preimplantational diagnostics. The disease has been shown to have a wide clinical variability, even intrafamilial.
Collapse
Affiliation(s)
| | | | | | | | | | - S. E. Nagieva
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | |
Collapse
|
224
|
Kilinc M, Arora V, Creson TK, Rojas C, Le AA, Lauterborn J, Wilkinson B, Hartel N, Graham N, Reich A, Gou G, Araki Y, Bayés À, Coba M, Lynch G, Miller CA, Rumbaugh G. Endogenous Syngap1 alpha splice forms promote cognitive function and seizure protection. eLife 2022; 11:e75707. [PMID: 35394425 PMCID: PMC9064290 DOI: 10.7554/elife.75707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function variants in SYNGAP1 cause a developmental encephalopathy defined by cognitive impairment, autistic features, and epilepsy. SYNGAP1 splicing leads to expression of distinct functional protein isoforms. Splicing imparts multiple cellular functions of SynGAP proteins through coding of distinct C-terminal motifs. However, it remains unknown how these different splice sequences function in vivo to regulate neuronal function and behavior. Reduced expression of SynGAP-α1/2 C-terminal splice variants in mice caused severe phenotypes, including reduced survival, impaired learning, and reduced seizure latency. In contrast, upregulation of α1/2 expression improved learning and increased seizure latency. Mice expressing α1-specific mutations, which disrupted SynGAP cellular functions without altering protein expression, promoted seizure, disrupted synapse plasticity, and impaired learning. These findings demonstrate that endogenous SynGAP isoforms with α1/2 spliced sequences promote cognitive function and impart seizure protection. Regulation of SynGAP-αexpression or function may be a viable therapeutic strategy to broadly improve cognitive function and mitigate seizure.
Collapse
Affiliation(s)
- Murat Kilinc
- Graduate School of Chemical and Biological Sciences, The Scripps Research InstituteJupiterUnited States
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Vineet Arora
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Thomas K Creson
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Camilo Rojas
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Aliza A Le
- Department of Anatomy and Neurobiology, The University of CaliforniaIrvineUnited States
| | - Julie Lauterborn
- Department of Anatomy and Neurobiology, The University of CaliforniaIrvineUnited States
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern CaliforniaLos AngelesUnited States
| | - Nicholas Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern CaliforniaLos AngelesUnited States
| | - Adrian Reich
- Bioinformatics and Statistics Core, The Scripps Research InstituteJupiterUnited States
| | - Gemma Gou
- Molecular Physiology of the Synapse Laboratory, Institut d'Investigació Biomèdica Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Yoichi Araki
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Institut d'Investigació Biomèdica Sant PauBarcelonaSpain
| | - Marcelo Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Gary Lynch
- Department of Anatomy and Neurobiology, The University of CaliforniaIrvineUnited States
| | - Courtney A Miller
- Graduate School of Chemical and Biological Sciences, The Scripps Research InstituteJupiterUnited States
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Gavin Rumbaugh
- Graduate School of Chemical and Biological Sciences, The Scripps Research InstituteJupiterUnited States
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| |
Collapse
|
225
|
Ophthalmic abnormalities in Wieacker-Wolff syndrome. J AAPOS 2022; 26:91-93. [PMID: 35121145 DOI: 10.1016/j.jaapos.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022]
Abstract
Wieacker-Wolff syndrome is an X-linked condition caused by variants of the ZC4H2 gene that results in in utero muscular weakness that manifests clinically as arthrogryposis congenita as well as facial and bulbar weakness. We report the case of a young girl with a de novo pathogenic deletion in the ZC4H2 gene and clinical features consistent with Wieacker-Wolff syndrome. Common eye manifestations of the syndrome reported in the literature include ptosis, strabismus, and oculomotor apraxia. The overall incidence of these manifestations is 56%.
Collapse
|
226
|
Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, Bass N, Bigdeli TB, Breen G, Bromet EJ, Buckley PF, Bunney WE, Bybjerg-Grauholm J, Byerley WF, Chapman SB, Chen WJ, Churchhouse C, Craddock N, Cusick CM, DeLisi L, Dodge S, Escamilla MA, Eskelinen S, Fanous AH, Faraone SV, Fiorentino A, Francioli L, Gabriel SB, Gage D, Gagliano Taliun SA, Ganna A, Genovese G, Glahn DC, Grove J, Hall MH, Hämäläinen E, Heyne HO, Holi M, Hougaard DM, Howrigan DP, Huang H, Hwu HG, Kahn RS, Kang HM, Karczewski KJ, Kirov G, Knowles JA, Lee FS, Lehrer DS, Lescai F, Malaspina D, Marder SR, McCarroll SA, McIntosh AM, Medeiros H, Milani L, Morley CP, Morris DW, Mortensen PB, Myers RM, Nordentoft M, O'Brien NL, Olivares AM, Ongur D, Ouwehand WH, Palmer DS, Paunio T, Quested D, Rapaport MH, Rees E, Rollins B, Satterstrom FK, Schatzberg A, Scolnick E, Scott LJ, Sharp SI, Sklar P, Smoller JW, Sobell JL, Solomonson M, Stahl EA, Stevens CR, Suvisaari J, Tiao G, Watson SJ, Watts NA, Blackwood DH, Børglum AD, Cohen BM, Corvin AP, Esko T, Freimer NB, Glatt SJ, Hultman CM, McQuillin A, Palotie A, Pato CN, Pato MT, Pulver AE, St Clair D, et alSingh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, Bass N, Bigdeli TB, Breen G, Bromet EJ, Buckley PF, Bunney WE, Bybjerg-Grauholm J, Byerley WF, Chapman SB, Chen WJ, Churchhouse C, Craddock N, Cusick CM, DeLisi L, Dodge S, Escamilla MA, Eskelinen S, Fanous AH, Faraone SV, Fiorentino A, Francioli L, Gabriel SB, Gage D, Gagliano Taliun SA, Ganna A, Genovese G, Glahn DC, Grove J, Hall MH, Hämäläinen E, Heyne HO, Holi M, Hougaard DM, Howrigan DP, Huang H, Hwu HG, Kahn RS, Kang HM, Karczewski KJ, Kirov G, Knowles JA, Lee FS, Lehrer DS, Lescai F, Malaspina D, Marder SR, McCarroll SA, McIntosh AM, Medeiros H, Milani L, Morley CP, Morris DW, Mortensen PB, Myers RM, Nordentoft M, O'Brien NL, Olivares AM, Ongur D, Ouwehand WH, Palmer DS, Paunio T, Quested D, Rapaport MH, Rees E, Rollins B, Satterstrom FK, Schatzberg A, Scolnick E, Scott LJ, Sharp SI, Sklar P, Smoller JW, Sobell JL, Solomonson M, Stahl EA, Stevens CR, Suvisaari J, Tiao G, Watson SJ, Watts NA, Blackwood DH, Børglum AD, Cohen BM, Corvin AP, Esko T, Freimer NB, Glatt SJ, Hultman CM, McQuillin A, Palotie A, Pato CN, Pato MT, Pulver AE, St Clair D, Tsuang MT, Vawter MP, Walters JT, Werge TM, Ophoff RA, Sullivan PF, Owen MJ, Boehnke M, O'Donovan MC, Neale BM, Daly MJ. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 2022; 604:509-516. [PMID: 35396579 PMCID: PMC9805802 DOI: 10.1038/s41586-022-04556-w] [Show More Authors] [Citation(s) in RCA: 468] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.
Collapse
Affiliation(s)
- Tarjinder Singh
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Timothy Poterba
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Curtis
- UCL Genetics Institute, University College London, London, UK
- Centre for Psychiatry, Queen Mary University London, London, UK
| | - Huda Akil
- Department of Psychiatry, Michigan Neuroscience Institute, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Mariam Al Eissa
- Division of Psychiatry, University College London, London, UK
| | | | - Nicholas Bass
- Division of Psychiatry, University College London, London, UK
| | - Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Gerome Breen
- Social Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evelyn J Bromet
- Department of Psychiatry and Behavioral Health, Health Sciences Center, Stony Brook University, Stony Brook, NY, USA
| | - Peter F Buckley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jonas Bybjerg-Grauholm
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - William F Byerley
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Sinéad B Chapman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wei J Chen
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Claire Churchhouse
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Caroline M Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lynn DeLisi
- Department of Psychiatry, Cambridge Health Alliance, Cambridge Hospital, Cambridge, MA, USA
| | - Sheila Dodge
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Saana Eskelinen
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Ayman H Fanous
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Stephen V Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Laurent Francioli
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Stacey B Gabriel
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diane Gage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah A Gagliano Taliun
- Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Montréal Heart Institute, Montreal, Quebec, Canada
| | - Andrea Ganna
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Jakob Grove
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine and Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Mei-Hua Hall
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Henrike O Heyne
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Matti Holi
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - David M Hougaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Daniel P Howrigan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University, Taipei, Taiwan
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- MIRECC, JP Peters VA Hospital, Bronx, NY, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James A Knowles
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | - Douglas S Lehrer
- Department of Psychiatry, Wright State University, Dayton, OH, USA
| | - Francesco Lescai
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen R Marder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Helena Medeiros
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Lili Milani
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christopher P Morley
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Public Health and Preventive Medicine and Department of Family Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Merete Nordentoft
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Copenhagen Research Center for Mental Health, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niamh L O'Brien
- Division of Psychiatry, University College London, London, UK
| | - Ana Maria Olivares
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dost Ongur
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | - Duncan S Palmer
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tiina Paunio
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
| | | | - Mark H Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Brandi Rollins
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - F Kyle Satterstrom
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan Schatzberg
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Edward Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sally I Sharp
- Division of Psychiatry, University College London, London, UK
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Janet L Sobell
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew Solomonson
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Eli A Stahl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine R Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Grace Tiao
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Stanley J Watson
- Department of Psychiatry, Michigan Neuroscience Institute, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas A Watts
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Anders D Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine and Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Bruce M Cohen
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Nelson B Freimer
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | - Aarno Palotie
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Carlos N Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Michele T Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Ann E Pulver
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - James T Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Thomas M Werge
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Patrick F Sullivan
- Karolinska Institute, Solna, Sweden
- University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
227
|
Davis KW, Bilancia CG, Martin M, Vanzo R, Rimmasch M, Hom Y, Uddin M, Serrano MA. NeuroSCORE is a genome-wide omics-based model that identifies candidate disease genes of the central nervous system. Sci Rep 2022; 12:5427. [PMID: 35361823 PMCID: PMC8971396 DOI: 10.1038/s41598-022-08938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
To identify candidate disease genes of central nervous system (CNS) phenotypes, we created the Neurogenetic Systematic Correlation of Omics-Related Evidence (NeuroSCORE). We identified five genome-wide metrics highly associated with CNS phenotypes to score 19,601 protein-coding genes. Genes scored one point per metric (range: 0-5), identifying 8298 scored genes (scores ≥ 1) and 1601 "high scoring" genes (scores ≥ 3). Using logistic regression, we determined the odds ratio that genes with a NeuroSCORE from 1 to 5 would be associated with known CNS-related phenotypes compared to genes that scored zero. We tested NeuroSCORE using microarray copy number variants (CNVs) in case-control cohorts and aggregate mouse model data. High scoring genes are associated with CNS phenotypes (OR = 5.5, p < 2E-16), enriched in case CNVs, and mouse ortholog genes that cause behavioral and nervous system abnormalities. We identified 1058 high scoring genes with no disease association in OMIM. Transforming the logistic regression results indicates high scoring genes have an 84-92% chance of being associated with a CNS phenotype. Top scoring genes include GRIA1, MAP4K4, SF1, TNPO2, and ZSWIM8. Finally, we interrogated CNVs in the Clinical Genome Resource, finding the majority of clinically significant CNVs contain high scoring genes. These findings can direct future research and improve molecular diagnostics.
Collapse
Affiliation(s)
- Kyle W Davis
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Colleen G Bilancia
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Megan Martin
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Rena Vanzo
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Megan Rimmasch
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Yolanda Hom
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Moises A Serrano
- Bionano Genomics, Lineagen Division, Inc., 9540 Towne Center, Dr. #100, San Diego, CA, 92121, USA.
| |
Collapse
|
228
|
Sobering AK, Bryant LM, Li D, McGaughran J, Maystadt I, Moortgat S, Graham JM, van Haeringen A, Ruivenkamp C, Cuperus R, Vogt J, Morton J, Brasch-Andersen C, Steenhof M, Hansen LK, Adler É, Lyonnet S, Pingault V, Sandrine M, Ziegler A, Donald T, Nelson B, Holt B, Petryna O, Firth H, McWalter K, Zyskind J, Telegrafi A, Juusola J, Person R, Bamshad MJ, Earl D, University of Washington Center for Mendelian Genomics, Tsai ACH, Yearwood KR, Marco E, Nowak C, Douglas J, Hakonarson H, Bhoj EJ. Variants in PHF8 cause a spectrum of X-linked neurodevelopmental disorders and facial dysmorphology. HGG ADVANCES 2022; 3:100102. [PMID: 35469323 PMCID: PMC9034099 DOI: 10.1016/j.xhgg.2022.100102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function variants in PHD Finger Protein 8 (PHF8) cause Siderius X-linked intellectual disability (ID) syndrome, hereafter called PHF8-XLID. PHF8 is a histone demethylase that is important for epigenetic regulation of gene expression. PHF8-XLID is an under-characterized disorder with only five previous reports describing different PHF8 predicted loss-of-function variants in eight individuals. Features of PHF8-XLID include ID and craniofacial dysmorphology. In this report we present 16 additional individuals with PHF8-XLID from 11 different families of diverse ancestry. We also present five individuals from four different families who have ID and a variant of unknown significance in PHF8 with no other explanatory variant in another gene. All affected individuals exhibited developmental delay and all but two had borderline to severe ID. Of the two who did not have ID, one had dyscalculia and the other had mild learning difficulties. Craniofacial findings such as hypertelorism, microcephaly, elongated face, ptosis, and mild facial asymmetry were found in some affected individuals. Orofacial clefting was seen in three individuals from our cohort, suggesting that this feature is less common than previously reported. Autism spectrum disorder and attention deficit hyperactivity disorder, which were not previously emphasized in PHF8-XLID, were frequently observed in affected individuals. This series expands the clinical phenotype of this rare ID syndrome caused by loss of PHF8 function.
Collapse
Affiliation(s)
- Andrew K. Sobering
- AU/UGA Medical Partnership, Department of Basic Sciences, University of Georgia Health Sciences Campus, Athens, GA 30602, USA
- St. George’s University, Department of Biochemistry, St. George’s, Grenada, West Indies
- Windward Islands Research and Education Foundation, True Blue, St. George’s, Grenada, West Indies
- Corresponding author
| | - Laura M. Bryant
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie McGaughran
- Genetic Health Queensland, RBWH, Brisbane and The University of Queensland School of Medicine, Brisbane, QLD 4029, Australia
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041 Gosselies, Belgium
| | - Stephanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041 Gosselies, Belgium
| | - John M. Graham
- Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | - Roos Cuperus
- Juliana Children’s Hospital, HAGA Medical Center, The Hague, the Netherlands
| | - Julie Vogt
- Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham Women’s Hospital, Birmingham B15 2TG, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense 5000, Denmark
- Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Maria Steenhof
- Department of Clinical Genetics, Odense University Hospital, Odense 5000, Denmark
| | | | - Élodie Adler
- Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Stanislas Lyonnet
- Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Veronique Pingault
- Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Marlin Sandrine
- Reference Center for Genetic Deafness, Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Alban Ziegler
- Reference Center for Genetic Deafness, Fédération de Médecine Génomique and Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, APHP, 75015 Paris, France
| | - Tyhiesia Donald
- Clinical Teaching Unit, St. George’s University School of Medicine, St. George’s, Grenada, West Indies
| | - Beverly Nelson
- Clinical Teaching Unit, St. George’s University School of Medicine, St. George’s, Grenada, West Indies
| | - Brandon Holt
- Department of Anatomical Sciences, St. George’s University, Grenada, West Indies
| | - Oleksandra Petryna
- Hackensack University Ocean Medical Center, Department of Psychiatry, Hackensack, NJ 08724, USA
| | - Helen Firth
- Department of Clinical Genetics, Cambridge University Hospitals, Box 134, Cambridge CB2 0QQ, UK
| | | | - Jacob Zyskind
- Clinical Genomics, GeneDx, Gaithersburg, MD 20877, USA
| | | | - Jane Juusola
- Clinical Genomics, GeneDx, Gaithersburg, MD 20877, USA
| | | | - Michael J. Bamshad
- Seattle Children’s Hospital, Seattle, WA 98105, USA
- Departments of Pediatrics and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
| | - Dawn Earl
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | - Anne Chun-Hui Tsai
- University of Oklahoma, Section of Genetics, 800 Stanton L Young Boulevard, Oklahoma City, OK 73117, USA
| | | | - Elysa Marco
- Cortica Healthcare, Marin Center, 4000 Civic Center Dr, Ste 100, San Rafael, CA 94903, USA
| | - Catherine Nowak
- Boston Children’s Hospital, Division of Genetics and Genomics, 60 Temple Place, 2nd Floor, Boston, MA 02111, USA
| | - Jessica Douglas
- Boston Children’s Hospital, Division of Genetics and Genomics, 60 Temple Place, 2nd Floor, Boston, MA 02111, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth J. Bhoj
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
229
|
Cummings CT, Rowley MJ. Implications of Dosage Deficiencies in CTCF and Cohesin on Genome Organization, Gene Expression, and Human Neurodevelopment. Genes (Basel) 2022; 13:583. [PMID: 35456389 PMCID: PMC9030571 DOI: 10.3390/genes13040583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Properly organizing DNA within the nucleus is critical to ensure normal downstream nuclear functions. CTCF and cohesin act as major architectural proteins, working in concert to generate thousands of high-intensity chromatin loops. Due to their central role in loop formation, a massive research effort has been dedicated to investigating the mechanism by which CTCF and cohesin create these loops. Recent results lead to questioning the direct impact of CTCF loops on gene expression. Additionally, results of controlled depletion experiments in cell lines has indicated that genome architecture may be somewhat resistant to incomplete deficiencies in CTCF or cohesin. However, heterozygous human genetic deficiencies in CTCF and cohesin have illustrated the importance of their dosage in genome architecture, cellular processes, animal behavior, and disease phenotypes. Thus, the importance of considering CTCF or cohesin levels is especially made clear by these heterozygous germline variants that characterize genetic syndromes, which are increasingly recognized in clinical practice. Defined primarily by developmental delay and intellectual disability, the phenotypes of CTCF and cohesin deficiency illustrate the importance of architectural proteins particularly in neurodevelopment. We discuss the distinct roles of CTCF and cohesin in forming chromatin loops, highlight the major role that dosage of each protein plays in the amplitude of observed effects on gene expression, and contrast these results to heterozygous mutation phenotypes in murine models and clinical patients. Insights highlighted by this comparison have implications for future research into these newly emerging genetic syndromes.
Collapse
Affiliation(s)
- Christopher T. Cummings
- Munroe-Meyer Institute, Department of Genetic Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - M. Jordan Rowley
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
230
|
Brea-Fernández AJ, Álvarez-Barona M, Amigo J, Tubío-Fungueiriño M, Caamaño P, Fernández-Prieto M, Barros F, De Rubeis S, Buxbaum J, Carracedo Á. Trio-based exome sequencing reveals a high rate of the de novo variants in intellectual disability. Eur J Hum Genet 2022; 30:938-945. [PMID: 35322241 PMCID: PMC9349217 DOI: 10.1038/s41431-022-01087-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Intellectual disability (ID), a neurodevelopmental disorder affecting 1-3% of the general population, is characterized by limitations in both intellectual function and adaptive skills. The high number of conditions associated with ID underlines its heterogeneous origin and reveals the difficulty of obtaining a rapid and accurate genetic diagnosis. However, the Next Generation Sequencing, and the whole exome sequencing (WES) in particular, has boosted the diagnosis rate associated with ID. In this study, WES performed on 244 trios of patients clinically diagnosed with isolated or syndromic ID and their respective unaffected parents has allowed the identification of the underlying genetic basis of ID in 64 patients, yielding a diagnosis rate of 25.2%. Our results suggest that trio-based WES facilitates ID's genetic diagnosis, particularly in patients who have been extensively waiting for a definitive molecular diagnosis. Moreover, genotypic information from parents provided by trio-based WES enabled the detection of a high percentage (61.5%) of de novo variants inside our cohort. Establishing a quick genetic diagnosis of ID would allow early intervention and better clinical management, thus improving the quality of life of these patients and their families.
Collapse
Affiliation(s)
- Alejandro J Brea-Fernández
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.
| | - Miriam Álvarez-Barona
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jorge Amigo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | - María Tubío-Fungueiriño
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Caamaño
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | - Montserrat Fernández-Prieto
- Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | | | - Joseph Buxbaum
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
231
|
Marques IJ, Ernst A, Arora P, Vianin A, Hetke T, Sanz-Morejón A, Naumann U, Odriozola A, Langa X, Andrés-Delgado L, Zuber B, Torroja C, Osterwalder M, Simões FC, Englert C, Mercader N. Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development 2022; 149:274789. [DOI: 10.1242/dev.200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contribute cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.
Collapse
Affiliation(s)
- Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Andrej Vianin
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Tanja Hetke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Andrés Sanz-Morejón
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Adolfo Odriozola
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | | | - Benoît Zuber
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, 3010 Bern, Switzerland
| | - Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07745, Germany
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| |
Collapse
|
232
|
Moczulska H, Serafin M, Wojda K, Borowiec M, Sieroszewski P. Fetal Nasal Bone Hypoplasia in the Second Trimester as a Marker of Multiple Genetic Syndromes. J Clin Med 2022; 11:jcm11061513. [PMID: 35329839 PMCID: PMC8954562 DOI: 10.3390/jcm11061513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 01/01/2023] Open
Abstract
Nasal bone hypoplasia is associated with a trisomy of chromosome 21, 18 or 13. Nasal bone hypoplasia can also be seen in other, rarer genetic syndromes. The aim of the study was to evaluate the potential of nasal bone hypoplasia, in the second trimester of pregnancy, as a marker of fetal facial dysmorphism, associated with pathogenic copy number variation (CNV). This retrospective analysis of the invasive tests results in fetuses with nasal bone hypoplasia, after excluding those with trisomy 21, 18 and 13. In total, 60 cases with nasal bone hypoplasia were analyzed. Chromosomal aberrations were found in 7.1% of cases of isolated nasal bone hypoplasia, and in 57% of cases of nasal bone hypoplasia with additional malformations. Additionally, in four of nine cases with non-isolated nasal bone hypoplasia but normal CMA results, a monogenic disease was diagnosed. Non-isolated hypoplastic nasal bone appears to be an effective objective marker of fetal facial dysmorphism, associated with pathogenic CNVs or monogenic diseases. In isolated cases, chromosomal microarray testing can be of additional value if invasive testing is performed, e.g., for aneuploidy testing after appropriate counseling.
Collapse
Affiliation(s)
- Hanna Moczulska
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.B.)
- Correspondence: ; Tel.: +48-42-201-44-92
| | - Marcin Serafin
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.B.)
| | - Katarzyna Wojda
- Department of Fetal Medicine and Gynecology, Medical University of Lodz, 90-419 Lodz, Poland; (K.W.); (P.S.)
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.B.)
| | - Piotr Sieroszewski
- Department of Fetal Medicine and Gynecology, Medical University of Lodz, 90-419 Lodz, Poland; (K.W.); (P.S.)
| |
Collapse
|
233
|
Gonzalez-Teran B, Pittman M, Felix F, Thomas R, Richmond-Buccola D, Hüttenhain R, Choudhary K, Moroni E, Costa MW, Huang Y, Padmanabhan A, Alexanian M, Lee CY, Maven BEJ, Samse-Knapp K, Morton SU, McGregor M, Gifford CA, Seidman JG, Seidman CE, Gelb BD, Colombo G, Conklin BR, Black BL, Bruneau BG, Krogan NJ, Pollard KS, Srivastava D. Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell 2022; 185:794-814.e30. [PMID: 35182466 PMCID: PMC8923057 DOI: 10.1016/j.cell.2022.01.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023]
Abstract
Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.
Collapse
Affiliation(s)
- Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Maureen Pittman
- Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Franco Felix
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Desmond Richmond-Buccola
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | | | | | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Clara Youngna Lee
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Sarah U Morton
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
234
|
Richardson R, Baralle D, Bennett C, Briggs T, Bijlsma EK, Clayton-Smith J, Constantinou P, Foulds N, Jarvis J, Jewell R, Johnson DS, McEntagart M, Parker MJ, Radley JA, Robertson L, Ruivenkamp C, Rutten JW, Tellez J, Turnpenny PD, Wilson V, Wright M, Balasubramanian M. Further delineation of phenotypic spectrum of SCN2A-related disorder. Am J Med Genet A 2022; 188:867-877. [PMID: 34894057 DOI: 10.1002/ajmg.a.62595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/28/2021] [Accepted: 11/20/2021] [Indexed: 01/12/2023]
Abstract
SCN2A-related disorders include intellectual disability, autism spectrum disorder, seizures, episodic ataxia, and schizophrenia. In this study, the phenotype-genotype association in SCN2A-related disorders was further delineated by collecting detailed clinical and molecular characteristics. Using previously proposed genotype-phenotype hypotheses based on variant function and position, the potential of phenotype prediction from the variants found was examined. Patients were identified through the Deciphering Developmental Disorders study and gene matching strategies. Phenotypic information and variant interpretation evidence were collated. Seventeen previously unreported patients and five patients who had been previously reported (but with minimal phenotypic and segregation data) were included (10 males, 12 females; median age 10.5 years). All patients had developmental delays and the majority had intellectual disabilities. Seizures were reported in 15 of 22 (68.2%), four of 22 (18.2%) had autism spectrum disorder and no patients were reported with episodic ataxia. The majority of variants were de novo. One family had presumed gonadal mosaicism. The correlation of the use of sodium channel-blocking antiepileptic drugs with phenotype or genotype was variable. These data suggest that variant type and position alone can provide some predictive information about the phenotype in a proportion of cases, but more precise assessment of variant function is needed for meaningful phenotype prediction.
Collapse
Affiliation(s)
- Ruth Richardson
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Diana Baralle
- University Hospital of Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christopher Bennett
- Yorkshire Regional Genetics Service, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Tracy Briggs
- NW Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jill Clayton-Smith
- NW Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Nicola Foulds
- University Hospital of Southampton NHS Foundation Trust, Southampton, UK
| | - Joanna Jarvis
- Clinical Genetics Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Diana S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS Trust, St. George's, University of London, London, UK
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Jessica A Radley
- London North West Regional Genetics Service, St. Mark's and Northwick Park Hospitals, London, UK
| | | | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - James Tellez
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Peter D Turnpenny
- Clinical Genetics Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Valerie Wilson
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Michael Wright
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
235
|
Alkelai A, Greenbaum L, Docherty AR, Shabalin AA, Povysil G, Malakar A, Hughes D, Delaney SL, Peabody EP, McNamara J, Gelfman S, Baugh EH, Zoghbi AW, Harms MB, Hwang HS, Grossman-Jonish A, Aggarwal V, Heinzen EL, Jobanputra V, Pulver AE, Lerer B, Goldstein DB. The benefit of diagnostic whole genome sequencing in schizophrenia and other psychotic disorders. Mol Psychiatry 2022; 27:1435-1447. [PMID: 34799694 DOI: 10.1038/s41380-021-01383-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey A Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ayan Malakar
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shannon L Delaney
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - James McNamara
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Anthony W Zoghbi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Columbia University, New York City, NY, USA
- New York State Psychiatric Institute, Office of Mental Health, New York, NY, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hann-Shyan Hwang
- Department of Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Anat Grossman-Jonish
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vaidehi Jobanputra
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
236
|
Chang KT, Jezek J, Campbell AN, Stieg DC, Kiss ZA, Kemper K, Jiang P, Lee HO, Kruger WD, van Hasselt PM, Strich R. Aberrant cyclin C nuclear release induces mitochondrial fragmentation and dysfunction in MED13L syndrome fibroblasts. iScience 2022; 25:103823. [PMID: 35198885 PMCID: PMC8844603 DOI: 10.1016/j.isci.2022.103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
MED13L syndrome is a haploinsufficiency developmental disorder characterized by intellectual disability, heart malformation, and hypotonia. MED13L controls transcription by tethering the cyclin C-Cdk8 kinase module (CKM) to the Mediator complex. In addition, cyclin C has CKM-independent roles in the cytoplasm directing stress-induced mitochondrial fragmentation and regulated cell death. Unstressed MED13L S1497 F/fs patient fibroblasts exhibited aberrant cytoplasmic cyclin C localization, mitochondrial fragmentation, and a 6-fold reduction in respiration. In addition, the fibroblasts exhibited reduced mtDNA copy number, reduction in mitochondrial membrane integrity, and hypersensitivity to oxidative stress. Finally, transcriptional analysis of MED13L mutant fibroblasts revealed reduced mRNA levels for several genes necessary for normal mitochondrial function. Pharmacological or genetic approaches preventing cyclin C-mitochondrial localization corrected the fragmented mitochondrial phenotype and partially restored organelle function. In conclusion, this study found that mitochondrial dysfunction is an underlying defect in cells harboring the MED13L S1497 F/fs allele and identified cyclin C mis-localization as the likely cause. These results provide a new avenue for understanding this disorder.
Collapse
Affiliation(s)
- Kai-Ti Chang
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Jan Jezek
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Alicia N Campbell
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Zachary A Kiss
- Department of Medicine, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kevin Kemper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ping Jiang
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Hyung-Ok Lee
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Peter M van Hasselt
- Department of Metabolic and Endocrine Disease, University of Utrecht Medical Center, Utrecht, 3584 CX, the Netherlands
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
237
|
Ashraf T, Harrison M, Irving M. Ear lobe creases: A novel phenotypic feature in KBG syndrome. Am J Med Genet A 2022; 188:1618-1622. [PMID: 35175682 DOI: 10.1002/ajmg.a.62675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Tazeen Ashraf
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mike Harrison
- Department of Paediatric Dentistry, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
238
|
Hanada K, Sakai S, Kumagai K. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the Ceramide Transport Protein CERT. Int J Mol Sci 2022; 23:ijms23042098. [PMID: 35216212 PMCID: PMC8875512 DOI: 10.3390/ijms23042098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Quality Assurance, Radiation Safety and Information Management, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
- Correspondence:
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| | - Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| |
Collapse
|
239
|
Buonaiuto S, Biase ID, Aleotti V, Ravaei A, Marino AD, Damaggio G, Chierici M, Pulijala M, D'Ambrosio P, Esposito G, Ayub Q, Furlanello C, Greco P, Capalbo A, Rubini M, Biase SD, Colonna V. Prioritization of putatively detrimental variants in euploid miscarriages. Sci Rep 2022; 12:1997. [PMID: 35132093 PMCID: PMC8821623 DOI: 10.1038/s41598-022-05737-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.
Collapse
Affiliation(s)
| | | | - Valentina Aleotti
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | | | | | - Madhuri Pulijala
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | | | - Qasim Ayub
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | - Pantaleo Greco
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | | | - Michele Rubini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, 80111, Italy.
| |
Collapse
|
240
|
Boerkoel PK, Dixon K, Fitzsimons C, Shen Y, Huynh S, Schlade-Bartusiak K, Culibrk L, Chan S, Boerkoel CF, Jones SJM, Chin HL. Long-read genome sequencing resolves a complex 13q structural variant associated with syndromic anophthalmia. Am J Med Genet A 2022; 188:1589-1594. [PMID: 35122461 DOI: 10.1002/ajmg.a.62676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
Abstract
Microphthalmia, anophthalmia, and coloboma (MAC) are a heterogeneous spectrum of anomalous eye development and degeneration with genetic and environmental etiologies. Structural and copy number variants of chromosome 13 have been implicated in MAC; however, the specific loci involved in disease pathogenesis have not been well-defined. Herein we report a newborn with syndromic degenerative anophthalmia and a complex de novo rearrangement of chromosome 13q. Long-read genome sequencing improved the resolution and clinical interpretation of a duplication-triplication/inversion-duplication (DUP-TRP/INV-DUP) and terminal deletion. Sequence features at the breakpoint junctions suggested microhomology-mediated break-induced replication (MMBIR) of the maternal chromosome as the origin. Comparing this rearrangement to previously reported copy number alterations in 13q, we refine a putative dosage-sensitive critical region for MAC that might provide new insights into its molecular etiology.
Collapse
Affiliation(s)
- Pierre K Boerkoel
- MD Undergraduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Dixon
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | | | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Stephanie Huynh
- Provincial Medical Genetics Program, Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Kamilla Schlade-Bartusiak
- Department of Pathology, BC Children's Hospital, BC Women's Hospital & Health Centre, Vancouver, British Columbia, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Simon Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Provincial Medical Genetics Program, Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Hui-Lin Chin
- Provincial Medical Genetics Program, Women's Hospital of British Columbia, Vancouver, British Columbia, Canada.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| |
Collapse
|
241
|
Yuan X, Wang J, Dai B, Sun Y, Zhang K, Chen F, Peng Q, Huang Y, Zhang X, Chen J, Xu X, Chuan J, Mu W, Li H, Fang P, Gong Q, Zhang P. Evaluation of phenotype-driven gene prioritization methods for Mendelian diseases. Brief Bioinform 2022; 23:6521702. [PMID: 35134823 PMCID: PMC8921623 DOI: 10.1093/bib/bbac019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
It’s challenging work to identify disease-causing genes from the next-generation sequencing (NGS) data of patients with Mendelian disorders. To improve this situation, researchers have developed many phenotype-driven gene prioritization methods using a patient’s genotype and phenotype information, or phenotype information only as input to rank the candidate’s pathogenic genes. Evaluations of these ranking methods provide practitioners with convenience for choosing an appropriate tool for their workflows, but retrospective benchmarks are underpowered to provide statistically significant results in their attempt to differentiate. In this research, the performance of ten recognized causal-gene prioritization methods was benchmarked using 305 cases from the Deciphering Developmental Disorders (DDD) project and 209 in-house cases via a relatively unbiased methodology. The evaluation results show that methods using Human Phenotype Ontology (HPO) terms and Variant Call Format (VCF) files as input achieved better overall performance than those using phenotypic data alone. Besides, LIRICAL and AMELIE, two of the best methods in our benchmark experiments, complement each other in cases with the causal genes ranked highly, suggesting a possible integrative approach to further enhance the diagnostic efficiency. Our benchmarking provides valuable reference information to the computer-assisted rapid diagnosis in Mendelian diseases and sheds some light on the potential direction of future improvement on disease-causing gene prioritization methods.
Collapse
Affiliation(s)
- Xiao Yuan
- Changsha KingMed Center for Clinical Laboratory, Changsha, China.,Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China.,Genetalks Biotech. Co., Ltd., Changsha, China
| | - Jing Wang
- Changsha KingMed Center for Clinical Laboratory, Changsha, China
| | - Bing Dai
- Changsha KingMed Center for Clinical Laboratory, Changsha, China
| | - Yanfang Sun
- Changsha KingMed Center for Clinical Laboratory, Changsha, China
| | - Keke Zhang
- Changsha KingMed Center for Clinical Laboratory, Changsha, China
| | - Fangfang Chen
- Changsha KingMed Center for Clinical Laboratory, Changsha, China
| | - Qian Peng
- Changsha KingMed Center for Clinical Laboratory, Changsha, China
| | - Yixuan Huang
- Beijing Geneworks Technology Co., Ltd., Beijing, China
| | - Xinlei Zhang
- Reproductive & Genetics Hospital of Citic & Xiangya, Changsha, China
| | - Junru Chen
- Genetalks Biotech. Co., Ltd., Changsha, China
| | - Xilin Xu
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Jun Chuan
- Changsha KingMed Center for Clinical Laboratory, Changsha, China.,Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Wenbo Mu
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Huiyuan Li
- Changsha KingMed Center for Clinical Laboratory, Changsha, China.,Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Ping Fang
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Qiang Gong
- Changsha KingMed Center for Clinical Laboratory, Changsha, China.,Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
242
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D Wilson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
243
|
Panagiotakos G, Pasca SP. A matter of space and time: Emerging roles of disease-associated proteins in neural development. Neuron 2022; 110:195-208. [PMID: 34847355 PMCID: PMC8776599 DOI: 10.1016/j.neuron.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023]
Abstract
Recent genetic studies of neurodevelopmental disorders point to synaptic proteins and ion channels as key contributors to disease pathogenesis. Although many of these proteins, such as the L-type calcium channel Cav1.2 or the postsynaptic scaffolding protein SHANK3, have well-studied functions in mature neurons, new evidence indicates that they may subserve novel, distinct roles in immature cells as the nervous system is assembled in prenatal development. Emerging tools and technologies, including single-cell sequencing and human cellular models of disease, are illuminating differential isoform utilization, spatiotemporal expression, and subcellular localization of ion channels and synaptic proteins in the developing brain compared with the adult, providing new insights into the regulation of developmental processes. We propose that it is essential to consider the temporally distinct and cell-specific roles of these proteins during development and maturity in our framework for understanding neuropsychiatric disorders.
Collapse
Affiliation(s)
- Georgia Panagiotakos
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
244
|
Cabana-Domínguez J, Torrico B, Reif A, Fernàndez-Castillo N, Cormand B. Comprehensive exploration of the genetic contribution of the dopaminergic and serotonergic pathways to psychiatric disorders. Transl Psychiatry 2022; 12:11. [PMID: 35013130 PMCID: PMC8748838 DOI: 10.1038/s41398-021-01771-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Psychiatric disorders are highly prevalent and display considerable clinical and genetic overlap. Dopaminergic and serotonergic neurotransmission have been shown to play an important role in many psychiatric disorders. Here we aim to assess the genetic contribution of these systems to eight psychiatric disorders (attention-deficit hyperactivity disorder (ADHD), anorexia nervosa (ANO), autism spectrum disorder (ASD), bipolar disorder (BIP), major depression (MD), obsessive-compulsive disorder (OCD), schizophrenia (SCZ) and Tourette's syndrome (TS)) using publicly available GWAS analyses performed by the Psychiatric Genomics Consortium that include more than 160,000 cases and 275,000 controls. To do so, we elaborated four different gene sets: two 'wide' selections for dopamine (DA) and for serotonin (SERT) using the Gene Ontology and KEGG pathways tools, and two'core' selections for the same systems, manually curated. At the gene level, we found 67 genes from the DA and/or SERT gene sets significantly associated with one of the studied disorders, and 12 of them were associated with two different disorders. Gene-set analysis revealed significant associations for ADHD and ASD with the wide DA gene set, for BIP with the wide SERT gene set, and for MD with the core SERT set. Interestingly, interrogation of a cross-disorder GWAS meta-analysis of the eight psychiatric conditions displayed association with the wide DA gene set. To our knowledge, this is the first systematic examination of genes encoding proteins essential to the function of these two neurotransmitter systems in these disorders. Our results support a pleiotropic contribution of the dopaminergic and serotonergic systems in several psychiatric conditions.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
245
|
Xiong J, Liu Z, Chen S, Kessi M, Chen B, Duan H, Deng X, Yang L, Peng J, Yin F. Correlation Analyses of Clinical Manifestations and Variant Effects in KCNB1-Related Neurodevelopmental Disorder. Front Pediatr 2022; 9:755344. [PMID: 35071126 PMCID: PMC8767024 DOI: 10.3389/fped.2021.755344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Vitro functional analyses of KCNB1 variants have been done to disclose possible pathogenic mechanisms in KCNB1-related neurodevelopmental disorder. "Complete or partial loss of function (LoF)," "dominant-negative (DN) effect" are applied to describe KCNB1 variant's molecular phenotypes. The study here aimed to investigate clinical presentations and variant effects associations in the disorder. Methods: We reported 10 Chinese pediatric patients with KCNB1-related neurodevelopmental disorder here. Functional experiments on newly reported variants, including electrophysiology and protein expression, were performed in vitro. Phenotypic, functional, and genetic data in the cohort and published literature were collected. According to their variants' molecular phenotypes, patients were grouped into complete or partial LoF, and DN effect or non-dominant-negative (non-DN) effect to compare their clinical features. Results: Nine causative KCNB1 variants in 10 patients were identified in the cohort, including eight novel and one reported. Epilepsy (9/10), global developmental delay (10/10), and behavior issues (7/10) were common clinical features in our patients. Functional analyses of 8 novel variants indicated three partial and five complete LoF variants, five DN and three non-DN effect variants. Patient 1 in our series with truncated variants, whose functional results supported haploinsufficiency, had the best prognosis. Cases in complete LoF group had earlier seizure onset age (64.3 vs. 16.7%, p = 0.01) and worse seizure outcomes (18.8 vs. 66.7%, p = 0.03), and patients in DN effect subgroup had multiple seizure types compared to those in non-DN effect subgroup (65.5 vs. 30.8%, p = 0.039). Conclusion: Patients with KCNB1 variants in the Asian cohort have similar clinical manifestations to those of other races. Truncated KCNB1 variants exhibiting with haploinsufficiency molecular phenotype are linked to milder phenotypes. Individuals with complete LoF and DN effect KCNB1 variants have more severe seizure attacks than the other two subgroups.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
246
|
Buller-Peralta I, Maicas-Royo J, Lu Z, Till SM, Wood ER, Kind PC, Escudero J, Gonzalez-Sulser A. Abnormal brain state distribution and network connectivity in a SYNGAP1 rat model. Brain Commun 2022; 4:fcac263. [PMID: 36349120 PMCID: PMC9638780 DOI: 10.1093/braincomms/fcac263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/09/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in the SYNGAP1 gene are one of the common predictors of neurodevelopmental disorders, commonly resulting in individuals developing autism, intellectual disability, epilepsy, and sleep deficits. EEG recordings in neurodevelopmental disorders show potential to identify clinically translatable biomarkers to both diagnose and track the progress of novel therapeutic strategies, as well as providing insight into underlying pathological mechanisms. In a rat model of SYNGAP1 haploinsufficiency in which the exons encoding the calcium/lipid binding and GTPase-activating protein domains have been deleted (Syngap+/Δ-GAP ), we analysed the duration and occurrence of wake, non-rapid eye movement and rapid eye movement brain states during 6 h multi-electrode EEG recordings. We find that although Syngap+/Δ-GAP animals spend an equivalent percent time in wake and sleep states, they have an abnormal brain state distribution as the number of wake and non-rapid eye movement bouts are reduced and there is an increase in the average duration of both wake and non-rapid eye movement epochs. We perform connectivity analysis by calculating the average imaginary coherence between electrode pairs at varying distance thresholds during these states. In group averages from pairs of electrodes at short distances from each other, a clear reduction in connectivity during non-rapid eye movement is present between 11.5 Hz and 29.5 Hz, a frequency range that overlaps with sleep spindles, oscillatory phenomena thought to be important for normal brain function and memory consolidation. Sleep abnormalities were mostly uncorrelated to the electrophysiological signature of absence seizures, spike and wave discharges, as was the imaginary coherence deficit. Sleep spindles occurrence, amplitude, power and spread across multiple electrodes were not reduced in Syngap+/Δ-GAP rats, with only a small decrease in duration detected. Nonetheless, by analysing the dynamic imaginary coherence during sleep spindles, we found a reduction in high-connectivity instances between short-distance electrode pairs. Finally comparing the dynamic imaginary coherence during sleep spindles between individual electrode pairs, we identified a group of channels over the right somatosensory, association and visual cortices that have a significant reduction in connectivity during sleep spindles in mutant animals. This matched a significant reduction in connectivity during spindles when averaged regional comparisons were made. These data suggest that Syngap+/Δ-GAP rats have altered brain state dynamics and EEG connectivity, which may have clinical relevance for SYNGAP1 haploinsufficiency in humans.
Collapse
Affiliation(s)
- Ingrid Buller-Peralta
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Jorge Maicas-Royo
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Zhuoen Lu
- School of Engineering, Institute for Digital Communications, University of Edinburgh, EH9 3JL Edinburgh, United Kingdom
| | - Sally M Till
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Emma R Wood
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Peter C Kind
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications, University of Edinburgh, EH9 3JL Edinburgh, United Kingdom
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, United Kingdom
| |
Collapse
|
247
|
Levy T, Lerman B, Halpern D, Frank Y, Layton C, Zweifach J, Siper PM, Buxbaum JD, Kolevzon A. OUP accepted manuscript. Hum Mol Genet 2022; 31:2582-2594. [PMID: 35271727 PMCID: PMC9396938 DOI: 10.1093/hmg/ddac018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022] Open
Abstract
CHAMP1-related neurodevelopmental disorder, or CHAMP1 disorder, is a recently described genetic syndrome associated with developmental delay, intellectual disability, behavioral symptoms, medical comorbidities, and dysmorphic features. To date, literature has focused on medical review and dysmorphology but has yet to prospectively assess neurobehavioral core domains such as autism, or behavioral, language, cognitive, and sensory features. Here, we present deep phenotyping results for 11 individuals with CHAMP1 disorder, based on approximately 12 hours of remote clinician-administered assessments and standardized caregiver questionnaires. Diagnoses of autism spectrum disorder were given to 33% of participants; repetitive behaviors and sensory-seeking symptoms were prominent in this cohort. In addition, 60% of participants met the criteria for attention-deficit/hyperactivity disorder (ADHD). High rates of ADHD and relatively low rates of treatment suggest potential areas for intervention. This study represents the first prospective phenotyping analysis of individuals with CHAMP1 disorder. The utility of specific measures as clinical endpoints, as well as benefits and limitations of remote phenotyping, are described.
Collapse
Affiliation(s)
- Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bonnie Lerman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christina Layton
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- To whom correspondence should be addressed at: One Gustave L Levy Place, New York, NY 10029, USA. Tel: +1 2122410961; Fax: +1 2122415670;
| | | |
Collapse
|
248
|
Murch O, Jain V, Benneche A, Metcalfe K, Hobson E, Prescott K, Chandler K, Ghali N, Carmichael J, Foulds NC, Paulsen J, Smeland MF, Berland S, Fry AE. Further delineation of the clinical spectrum of White-Sutton syndrome: 12 new individuals and a review of the literature. Eur J Hum Genet 2022; 30:95-100. [PMID: 34645992 PMCID: PMC8738758 DOI: 10.1038/s41431-021-00961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/18/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
White-Sutton syndrome (WHSUS) is a neurodevelopmental disorder caused by heterozygous loss-of-function variants in POGZ. Through the Deciphering Developmental Disorders study and clinical testing, we identified 12 individuals from 10 families with pathogenic or likely pathogenic variants in POGZ (eight de novo and two inherited). Most individuals had delayed development and/or intellectual disability. We analyzed the clinical findings in our series and combined it with data from 89 previously reported individuals. The results demonstrate WHSUS is associated with variable developmental delay or intellectual disability, increased risk of obesity, visual defects, craniofacial dysmorphism, sensorineural hearing loss, feeding problems, seizures, and structural brain malformations. Our series includes further individuals with rod-cone dystrophy, cleft lip and palate, congenital diaphragmatic hernia, and duplicated renal drainage system, suggesting these are rare complications of WHSUS. In addition, we describe an individual with a novel, de novo missense variant in POGZ and features of WHSUS. Our work further delineates the phenotypic spectrum of WHSUS highlighting the variable severity of this disorder and the observation of familial pathogenic POGZ variants.
Collapse
Affiliation(s)
- Oliver Murch
- grid.241103.50000 0001 0169 7725Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Vani Jain
- grid.241103.50000 0001 0169 7725Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Andreas Benneche
- grid.412008.f0000 0000 9753 1393Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kay Metcalfe
- grid.416523.70000 0004 0641 2620Manchester Centre for Genomics Medicine, St. Mary’s Hospital, Manchester University Hospital Foundation Trust, Health Innovation Manchester, Oxford Road, Manchester, UK
| | - Emma Hobson
- grid.413818.70000 0004 0426 1312Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Katrina Prescott
- grid.413818.70000 0004 0426 1312Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kate Chandler
- grid.416523.70000 0004 0641 2620Manchester Centre for Genomics Medicine, St. Mary’s Hospital, Manchester University Hospital Foundation Trust, Health Innovation Manchester, Oxford Road, Manchester, UK
| | - Neeti Ghali
- grid.439803.5North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Jenny Carmichael
- grid.416531.40000 0004 0398 9723Oxford Regional Clinical Genetics Service, Northampton General Hospital, Northampton, UK
| | - Nicola C. Foulds
- grid.430506.4Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Julie Paulsen
- grid.52522.320000 0004 0627 3560Department of Medical Genetics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marie F. Smeland
- grid.412244.50000 0004 4689 5540Department of Medical Genetics, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Siren Berland
- grid.412008.f0000 0000 9753 1393Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Andrew E. Fry
- grid.241103.50000 0001 0169 7725Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK ,grid.5600.30000 0001 0807 5670Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
249
|
A recurrent SHANK1 mutation implicated in autism spectrum disorder causes autistic-like core behaviors in mice via downregulation of mGluR1-IP3R1-calcium signaling. Mol Psychiatry 2022; 27:2985-2998. [PMID: 35388181 PMCID: PMC9205781 DOI: 10.1038/s41380-022-01539-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
The genetic etiology and underlying mechanism of autism spectrum disorder (ASD) remain elusive. SHANK family genes (SHANK1/2/3) are well known ASD-related genes. However, little is known about how SHANK missense mutations contribute to ASD. Here, we aimed to clarify the molecular mechanism of and the multilevel neuropathological features induced by Shank1 mutations in knock-in (KI) mice. In this study, by sequencing the SHANK1 gene in a cohort of 615 ASD patients and 503 controls, we identified an ASD-specific recurrent missense mutation, c.2621 G > A (p.R874H). This mutation demonstrated strong pathogenic potential in in vitro experiments, and we generated the corresponding Shank1 R882H-KI mice. Shank1 R882H-KI mice displayed core symptoms of ASD, namely, social disability and repetitive behaviors, without confounding comorbidities of abnormal motor function and heightened anxiety. Brain structural changes in the frontal cortex, hippocampus and cerebellar cortex were observed in Shank1 R882H-KI mice via structural magnetic resonance imaging. These key brain regions also showed severe and consistent downregulation of mGluR1-IP3R1-calcium signaling, which subsequently affected the release of intracellular calcium. Corresponding cellular structural and functional changes were present in Shank1 R882H-KI mice, including decreased spine size, reduced spine density, abnormal morphology of postsynaptic densities, and impaired hippocampal long-term potentiation and basal excitatory transmission. These findings demonstrate the causative role of SHANK1 in ASD and elucidate the underlying biological mechanism of core symptoms of ASD. We also provide a reliable model of ASD with core symptoms for future studies, such as biomarker identification and therapeutic intervention studies.
Collapse
|
250
|
Pugsley K, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 2022; 27:710-730. [PMID: 34002022 PMCID: PMC8960415 DOI: 10.1038/s41380-021-01142-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high heritability of 60-90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo) mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.
Collapse
Affiliation(s)
- Kealan Pugsley
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|