201
|
Lee JW, Mizuno K, Watanabe H, Lee IH, Tsumita T, Hida K, Yawaka Y, Kitagawa Y, Hasebe A, Iimura T, Kong SW. Enhanced phagocytosis associated with multinucleated microglia via Pyk2 inhibition in an acute β-amyloid infusion model. J Neuroinflammation 2024; 21:196. [PMID: 39107821 PMCID: PMC11301859 DOI: 10.1186/s12974-024-03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf β-amyloid (Aβ) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aβ peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aβ into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aβ. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Won Lee
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan.
| | - Kaito Mizuno
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - In-Hee Lee
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Yasutaka Yawaka
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Akira Hasebe
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
202
|
Leung SK, Bamford RA, Jeffries AR, Castanho I, Chioza B, Flaxman CS, Moore K, Dempster EL, Harvey J, Brown JT, Ahmed Z, O'Neill P, Richardson SJ, Hannon E, Mill J. Long-read transcript sequencing identifies differential isoform expression in the entorhinal cortex in a transgenic model of tau pathology. Nat Commun 2024; 15:6458. [PMID: 39095344 PMCID: PMC11297290 DOI: 10.1038/s41467-024-50486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Increasing evidence suggests that alternative splicing plays an important role in Alzheimer's disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool (FICLE) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts - including specific isoforms of Apoe, App, Cd33, Clu, Fyn and Trem2 - associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.
Collapse
Affiliation(s)
- Szi Kay Leung
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Rosemary A Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | - Isabel Castanho
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry Chioza
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Christine S Flaxman
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Karen Moore
- Biosciences, University of Exeter, Exeter, UK
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Joshua Harvey
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Sarah J Richardson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
203
|
Liu Y, Chen J. Senescence-related genes and proteins in the development of Alzheimer's disease: evidence from transcriptomic and Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1423725. [PMID: 39156738 PMCID: PMC11327092 DOI: 10.3389/fnagi.2024.1423725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Alzheimer's disease (AD) is a common neurodegenerative disease, which can lead to cognitive impairment and dementia. Since AD is tightly associated with aging and cellular senescence, objective of this study was to investigate the association between senescence-related genes and proteins (SRGs and SRPs) and the development of AD. Design The whole study was based on transcriptomic analysis of control and AD brain tissues and Mendelian randomization (MR) analysis. Methods For transcriptomic analysis, GSE5281 dataset from GEO database contains the transcriptomic data of human brain tissues (n = 161) from control group and AD patients. The expression of SRGs in control and AD brain tissues were compared by Student's t test. For MR analysis, the instrumental single-nucleotide polymorphisms (SNPs) associated with 110 SRPs were filtered and selected from a large genome-wide association study (GWAS) for plasma proteome. The causality between plasma levels of SRPs and AD was explored using GWAS data of AD from Lambert et al. (17,008 cases and 37,154 controls) and further validated by using data from FinnGen consortium (6,489 patients and 170,489 controls). MR estimate was performed using the inverse-variance weighted (IVW) method and the heterogeneity and pleiotropy of results were tested. Results Transcriptomic analysis identified 36 up-regulated (including PLAUR) and 8 down-regulated SRGs in AD brain tissues. In addition, the MR results at both discovery and validation stages supported the causality between plasma levels of PLAUR (IVW-p = 3.04E-2, odds ratio [OR] = 1.15), CD55 (IVW-p = 1.56E-3, OR = 0.86), and SERPINE2 (IVW-p = 2.74E-2, OR = 0.91) and the risk of AD. Conclusion Our findings identified that PLAUR, as an SRG, may take part in the development of AD and found that high plasma levels of PLAUR was associated with increased risk of AD, indicating that this gene was a risk factor for this disease and providing the rationale of existing drugs or new preventative and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jiao Chen
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
204
|
Altmann A, Aksman LM, Oxtoby NP, Young AL, Alexander DC, Barkhof F, Shoai M, Hardy J, Schott JM. Towards cascading genetic risk in Alzheimer's disease. Brain 2024; 147:2680-2690. [PMID: 38820112 PMCID: PMC11292901 DOI: 10.1093/brain/awae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (-). Over the past decades, genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset Alzheimer's disease. Here, we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70-4.89; P < 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84-1.42; P = 0.53). Conversely, for the transition from A+T- to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05-2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27-2.36; P < 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05-6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87-3.49; P = 0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer's disease, in addition to opening therapeutic windows for targeted interventions.
Collapse
Affiliation(s)
- Andre Altmann
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Leon M Aksman
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Neil P Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Alexandra L Young
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Daniel C Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, 1081 HV, The Netherlands
| | - Maryam Shoai
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - John Hardy
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Jonathan M Schott
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|
205
|
Wu A, Lee D, Xiong WC. VPS35 or retromer as a potential target for neurodegenerative disorders: barriers to progress. Expert Opin Ther Targets 2024; 28:701-712. [PMID: 39175128 PMCID: PMC11583022 DOI: 10.1080/14728222.2024.2392700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Vacuolar Protein Sorting 35 (VPS35) is pivotal in the retromer complex, governing transmembrane protein trafficking within cells, and its dysfunction is implicated in neurodegenerative diseases. A missense mutation, Asp620Asn (D620N), specifically ties to familial late-onset Parkinson's, while reduced VPS35 levels are observed in Alzheimer's, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and tauopathies. VPS35's absence in certain neurons during development can initiate neurodegeneration, highlighting its necessity for neural health. Present therapeutic research mainly targets the clearance of harmful protein aggregates and symptom management. Innovative treatments focusing on VPS35 are under investigation, although fully understanding the mechanisms and optimal targeting strategies remain a challenge. AREAS COVERED This review offers a detailed account of VPS35's discovery, its role in neurodegenerative mechanisms - especially in Parkinson's and Alzheimer's - and its link to other disorders. It shines alight on recent insights into VPS35's function in development, disease, and as a therapeutic target. EXPERT OPINION VPS35 is integral to cellular function and disease association, making it a significant candidate for developing therapies. Progress in modulating VPS35's activity may lead to breakthrough treatments that not only slow disease progression but may also act as biomarkers for neurodegeneration risk, marking a step forward in managing these complex conditions.
Collapse
Affiliation(s)
- Anika Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
206
|
Huq A, Thompson B, Winship I. Clinical application of whole genome sequencing in young onset dementia: challenges and opportunities. Expert Rev Mol Diagn 2024; 24:659-675. [PMID: 39135326 DOI: 10.1080/14737159.2024.2388765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024]
Abstract
INTRODUCTION Young onset dementia (YOD) by its nature is difficult to diagnose. Despite involvement of multidisciplinary neurogenetics services, patients with YOD and their families face significant diagnostic delays. Genetic testing for people with YOD currently involves a staggered, iterative approach. There is currently no optimal single genetic investigation that simultaneously identifies the different genetic variants resulting in YOD. AREAS COVERED This review discusses the advances in clinical genomic testing for people with YOD. Whole genome sequencing (WGS) can be employed as a 'one stop shop' genomic test for YOD. In addition to single nucleotide variants, WGS can reliably detect structural variants, short tandem repeat expansions, mitochondrial genetic variants as well as capture single nucleotide polymorphisms for the calculation of polygenic risk scores. EXPERT OPINION WGS, when used as the initial genetic test, can enhance the likelihood of a precision diagnosis and curtail the time taken to reach this. Finding a clinical diagnosis using WGS can reduce invasive and expensive investigations and could be cost effective. These advances need to be balanced against the limitations of the technology and the genetic counseling needs for these vulnerable patients and their families.
Collapse
Affiliation(s)
- Aamira Huq
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Bryony Thompson
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Winship
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
207
|
Ray NR, Kunkle BW, Hamilton‐Nelson K, Kurup JT, Rajabli F, Qiao M, Vardarajan BN, Cosacak MI, Kizil C, Jean‐Francois M, Cuccaro M, Reyes‐Dumeyer D, Cantwell L, Kuzma A, Vance JM, Gao S, Hendrie HC, Baiyewu O, Ogunniyi A, Akinyemi RO, Alzheimer's Disease Genetics Consortium, Lee W, Martin ER, Wang L, Beecham GW, Bush WS, Xu W, Jin F, Wang L, Farrer LA, Haines JL, Byrd GS, Schellenberg GD, Mayeux R, Pericak‐Vance MA, Reitz C. Extended genome-wide association study employing the African genome resources panel identifies novel susceptibility loci for Alzheimer's disease in individuals of African ancestry. Alzheimers Dement 2024; 20:5247-5261. [PMID: 38958117 PMCID: PMC11350055 DOI: 10.1002/alz.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.
Collapse
Grants
- P30 AG013854 NIA NIH HHS
- International Parkinson Fonds
- P50 MH060451 NIMH NIH HHS
- P30 AG066444 NIA NIH HHS
- R01 AG28786-01A1 North Carolina A&T University
- U01AG46161 NIA NIH HHS
- AG05128 Duke University
- Medical Research Council
- U01AG057659 NIH HHS
- R01 DK131437 NIDDK NIH HHS
- R01 AG022374 NIA NIH HHS
- U19 AG074865 NIA NIH HHS
- P50 AG023501 NIA NIH HHS
- U01 AG046152 NIA NIH HHS
- P30 AG010124 NIA NIH HHS
- U01 HG006375 NHGRI NIH HHS
- Biogen
- U01 AG058654 NIA NIH HHS
- NIMH MH60451 NINDS NIH HHS
- U54 AG052427 NIA NIH HHS
- P30 AG066518 NIA NIH HHS
- UO1 HG004610 Group Health Research Institute
- RC2 AG036528 NIA NIH HHS
- P30 AG028377 NIA NIH HHS
- R01AG048927 NIH HHS
- UO1 HG006375 Group Health Research Institute
- R01 AG22018 Rush University
- U01AG46152 NIA NIH HHS
- P50 AG008671 NIA NIH HHS
- P30 AG10133 Indiana University
- P50 AG005142 NIA NIH HHS
- U01 AG10483 Boston University
- Higher Education Funding Council for England
- R01 AG035137 NIA NIH HHS
- R01 AG009029 NIA NIH HHS
- P50 AG005131 NIA NIH HHS
- P50 AG005128 NIA NIH HHS
- P30 AG010133 NIA NIH HHS
- U24 AG021886 NIA NIH HHS
- R01 AG031581 NIA NIH HHS
- 5R01AG012101 New York University
- R01 AG009956 NIA NIH HHS
- P50 AG016574 NIA NIH HHS
- P50 AG005146 NIA NIH HHS
- U01AG058654 NIH HHS
- AG025688 Emory University
- P30AG10161 NIA NIH HHS
- Alzheimer's Drug Discovery Foundation
- U01 AG061356 NIA NIH HHS
- RC2 AG036650 NIA NIH HHS
- Servier
- Janssen Alzheimer Immunotherapy Research & Development, LLC.
- U01 AG032984 NIA NIH HHS
- U01 HG008657 NHGRI NIH HHS
- Brain Net Europe
- R01 AG019085 NIA NIH HHS
- Lumosity
- R01 AG013616 NIA NIH HHS
- U01 AG024904 NIA NIH HHS
- R01 HG012384 NHGRI NIH HHS
- Translational Genomics Research Institute
- P50 AG008702 NIA NIH HHS
- Bristol-Myers Squibb Company
- R01 AG030146 NIA NIH HHS
- R01AG041797 NIA FBS (Columbia University)
- U01 AG072579 NIA NIH HHS
- Piramal Imaging
- DeNDRoN
- UL1 RR029893 NCRR NIH HHS
- Takeda Pharmaceutical Company
- 1R01AG035137 New York University
- R01 AG15819 Rush University
- R01AG30146 NIA NIH HHS
- R01AG15819 NIA NIH HHS
- P50 NS039764 NINDS NIH HHS
- P01 AG003991 NIA NIH HHS
- Office of Research and Development
- Genentech, Inc.
- U01 AG016976 NIA NIH HHS
- US Department of Veterans Affairs Administration
- P30 AG008051 NIA NIH HHS
- P50 AG005681 NIA NIH HHS
- P30 AG013846 NIA NIH HHS
- U24 AG056270 NIA NIH HHS
- RC2 AG036502 NIA NIH HHS
- P01 AG026276 NIA NIH HHS
- R01 AG017917 NIA NIH HHS
- Araclon Biotech
- U01 AG057659 NIA NIH HHS
- R01 MH080295 NIMH NIH HHS
- Hersenstichting Nederland Breinbrekend Werk
- R01 CA267872 NCI NIH HHS
- R01 AG026390 NIA NIH HHS
- R01 AG028786 NIA NIH HHS
- KL2 RR024151 NCRR NIH HHS
- Internationale Stiching Alzheimer Onderzoek
- P30AG066462 NIH HHS
- U24 AG026390 NIA FBS (Columbia University)
- Novartis Pharmaceuticals Corporation
- P50 AG005136 NIA NIH HHS
- Meso Scale Diagnostics, LLC.
- CereSpir, Inc.
- P30 AG012300 NIA NIH HHS
- P01 AG03991 University of Washington
- RF1AG059018 NIH HHS
- Canadian Institute of Health Research
- RF1 AG059018 NIA NIH HHS
- BioClinica, Inc.
- UG3 NS132061 NINDS NIH HHS
- U01 AG062943 NIA NIH HHS
- R01 AG012101 NIA NIH HHS
- GE Healthcare
- P50 AG016573 NIA NIH HHS
- U24 AG21886 National Cell Repository for Alzheimer's Disease (NCRAD)
- P50 AG016570 NIA NIH HHS
- P50 AG005134 NIA NIH HHS
- P30 AG066462 NIA NIH HHS
- Stichting MS Research
- P30 AG008017 NIA NIH HHS
- R01AG33193 Boston University
- Howard Hughes Medical Institute
- R01 AG042437 NIA NIH HHS
- U24 AG041689 NIA NIH HHS
- P01 AG019724 NIA NIH HHS
- R01AG36042 NIA NIH HHS
- RC2AG036547 NIA NIH HHS
- R01 AG036042 NIA NIH HHS
- P30 AG010161 NIA NIH HHS
- AG019757 University of Miami
- Kronos Science
- P30 AG08051 New York University
- IIRG-05-14147 Alzheimer's Association
- AG010491 University of Miami
- R01 AG033193 NIA NIH HHS
- P50 AG025688 NIA NIH HHS
- IIRG-08-89720 Alzheimer's Association
- AbbVie
- R37 AG015473 NIA NIH HHS
- U24 AG026395 NIA NIH HHS
- R01 AG032990 NIA NIH HHS
- North Bristol NHS Trust Research and Innovation Department
- AG021547 University of Miami
- R01 AG01101 Rush University
- Transition Therapeutics
- R01 AG072547 NIA NIH HHS
- AG027944 University of Miami
- AG041232 NIA NIH HHS
- A2111048 BrightFocus Foundation
- U01 AG052410 NIA NIH HHS
- Johnson & Johnson Pharmaceutical Research & Development LLC.
- R01 CA129769 NCI NIH HHS
- P50 AG005133 NIA NIH HHS
- U01 AG010483 NIA NIH HHS
- UO1 AG006781 Group Health Research Institute
- Merck & Co., Inc.
- U01AG32984 NIA NIH HHS
- U01 AG024904 NIH HHS
- RC2 AG036547 NIA NIH HHS
- P01 AG002219 NIA NIH HHS
- R01 AG17917 Rush University
- U01 AG006781 NIA NIH HHS
- R01 AG041797 NIA NIH HHS
- NIBIB NIH HHS
- P01 AG010491 NIA NIH HHS
- P50 AG005144 NIA NIH HHS
- U01AG062943 NIH HHS
- R01 AG064614 NIA NIH HHS
- Glaxo Smith Kline
- U01AG072579 NIH HHS
- Biomedical Laboratory Research Program
- U19AG074865 NIH HHS
- R01 AG048927 NIA NIH HHS
- RF1 AG057473 NIA NIH HHS
- R01 AG037212 NIA NIH HHS
- R01 AG022018 NIA NIH HHS
- U24AG056270 NIH HHS
- R01 AG021547 NIA NIH HHS
- R01 AG041232 NIA NIH HHS
- P50 AG005138 NIA NIH HHS
- RF1AG57473 NIA NIH HHS
- R01 AG019757 NIA NIH HHS
- R01 AG020688 NIA NIH HHS
- AG07562 University of Pittsburgh
- R01AG072547 NIH HHS
- Alzheimer's Research Trust
- Pfizer Inc.
- Illinois Department of Public Health
- Elan Pharmaceuticals, Inc.
- NHS trusts
- R01 AG030653 NIA NIH HHS
- R01 HG009658 NHGRI NIH HHS
- AG052410 NIA NIH HHS
- P20 MD000546 NIMHD NIH HHS
- R01 AG027944 NIA NIH HHS
- Eli Lilly and Company
- R01 AG017173 NIA NIH HHS
- R01 AG025259 NIA NIH HHS
- U01 HG004610 NHGRI NIH HHS
- U24-AG041689 University of Pennsylvania
- P30 AG010129 NIA NIH HHS
- U01 AG046161 NIA NIH HHS
- Wellcome Trust
- P30 AG019610 NIA NIH HHS
- IXICO Ltd.
- P50 AG016582 NIA NIH HHS
- R01 AG048015 NIA NIH HHS
- NeuroRx Research
- R01AG17917 NIA NIH HHS
- U01AG61356 NIA NIH HHS
- R01AG36836 NIA NIH HHS
- 5R01AG022374 New York University
- EuroImmun; F. Hoffmann-La Roche Ltd
- R01 AG041718 NIA NIH HHS
- 1RC2AG036502 New York University
- Newcastle University
- R01 AG072474 NIA NIH HHS
- AG041718 University of Pittsburgh
- P30 AG028383 NIA NIH HHS
- AG05144 University of Kentucky
- AG030653 University of Pittsburgh
- R01AG48015 NIA NIH HHS
- R01 AG026916 NIA NIH HHS
- P50 AG033514 NIA NIH HHS
- R01 NS059873 NINDS NIH HHS
- # NS39764 NINDS NIH HHS
- ADGC National Institutes of Health, National Institute on Aging (NIH-NIA)
- Neurotrack Technologies
- Fujirebio
- Lundbeck
- MP-V BrightFocus Foundation
- BRACE
- R01 AG015819 NIA NIH HHS
- R01 AG036836 NIA NIH HHS
- Eisai Inc.
- 5R01AG013616 New York University
- W81XWH-12-2-0012 Department of Defense
- R01AG064614 NIH HHS
- AG02365 University of Pittsburgh
- NIH
- University of Pennsylvania
- NACC
- Boston University
- Columbia University
- Duke University
- Emory University
- Indiana University
- Johns Hopkins University
- Massachusetts General Hospital
- Mayo Clinic
- New York University
- Northwestern University
- Oregon Health & Science University
- Rush University
- NIA
- University of Alabama at Birmingham
- University of Arizona
- University of California, Davis
- University of California, Irvine
- University of California, Los Angeles
- University of California, San Diego
- University of California, San Francisco
- University of Kentucky
- University of Michigan
- University of Pittsburgh
- University of Southern California
- University of Miami
- University of Washington
- Vanderbilt University
- NINDS
- Alzheimer's Association
- Office of Research and Development
- BrightFocus Foundation
- Wellcome Trust
- Howard Hughes Medical Institute
- Medical Research Council
- Newcastle University
- Higher Education Funding Council for England
- Alzheimer's Research Trust
- BRACE
- Stichting MS Research
- Department of Defense
- National Institute of Biomedical Imaging and Bioengineering
- AbbVie
- Alzheimer's Drug Discovery Foundation
- BioClinica, Inc.
- Biogen
- Bristol‐Myers Squibb Company
- Eli Lilly and Company
- Genentech, Inc.
- Fujirebio
- GE Healthcare
- Lundbeck
- Merck & Co., Inc.
- Novartis Pharmaceuticals Corporation
- Pfizer Inc.
- Servier
- Takeda Pharmaceutical Company
- Illinois Department of Public Health
- Translational Genomics Research Institute
Collapse
|
208
|
Latimer CS, Prater KE, Postupna N, Dirk Keene C. Resistance and Resilience to Alzheimer's Disease. Cold Spring Harb Perspect Med 2024; 14:a041201. [PMID: 38151325 PMCID: PMC11293546 DOI: 10.1101/cshperspect.a041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dementia is a significant public health crisis; the most common underlying cause of age-related cognitive decline and dementia is Alzheimer's disease neuropathologic change (ADNC). As such, there is an urgent need to identify novel therapeutic targets for the treatment and prevention of the underlying pathologic processes that contribute to the development of AD dementia. Although age is the top risk factor for dementia in general and AD specifically, these are not inevitable consequences of advanced age. Some individuals are able to live to advanced age without accumulating significant pathology (resistance to ADNC), whereas others are able to maintain cognitive function despite the presence of significant pathology (resilience to ADNC). Understanding mechanisms of resistance and resilience will inform therapeutic strategies to promote these processes to prevent or delay AD dementia. This article will highlight what is currently known about resistance and resilience to AD, including our current understanding of possible underlying mechanisms that may lead to candidate preventive and treatment interventions for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington, Seattle 98195, Washington, USA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| |
Collapse
|
209
|
Zheng J, Shi W, Yang Q, Huang J, Shen J, Yin L, Zhang P, Zhang S, Yang M, Qian A, Zheng Z, Tang S. Hospital-treated infectious diseases, infection burden and risk of Parkinson disease: An observational and Mendelian randomization study. Brain Behav Immun 2024; 120:352-359. [PMID: 38897329 DOI: 10.1016/j.bbi.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Experimental and cross-sectional evidence has suggested a potential role of infection in the ethology of Parkinson's disease (PD). We aim to examine the longitudinal association of infections with the incidence of PD and to explore whether the increased risk is limited to specific infection type rather than infection burden. METHODS Based on the UK Biobank, hospital-treated infectious diseases and incident PD were ascertained through record linkage to national hospital inpatient registers. Infection burden was defined as the sum of the number of infection episodes over time and the number of co-occurring infections. The polygenic risk score (PRS) for PD was calculated. The genome-wide association studies (GWAS) used in two-sample Mendelian Randomization (MR) were obtained from observational cohort participants of mostly European ancestry. RESULTS Hospital-treated infectious diseases were associated with an increased risk of PD (adjusted HR [aHR] 1.35 [95 % CI 1.20-1.52]). This relationship persisted when analyzing new PD cases occurring more than 10 years post-infection (aHR 1.22 [95 % CI 1.04-1.43]). The greatest PD risk was observed in neurological/eye infection (aHR 1.72 [95 % CI 1.32-2.34]), with lower respiratory tract infection (aHR 1.43 [95 % CI 1.02-1.99]) ranked the second. A dose-response association was observed between infection burden and PD risk within each PD-PRS tertile (p-trend < 0.001). Multivariable MR showed that bacterial and viral infections increase the PD risk. CONCLUSIONS Both observational and genetic analysis suggested a causal association between infections and the risk of developing PD. A dose-response relationship between infection burden and incident PD was revealed.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Wenming Shi
- School of Public Health, Fudan University, Shanghai, China
| | - Quan Yang
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinghan Huang
- Biomedical Genetics Section, School of Medicine, Boston University, United States; Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Junchun Shen
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Lingzi Yin
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Pengfei Zhang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Shichen Zhang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Minghao Yang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Annan Qian
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Zhihang Zheng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, Center for Aging Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
210
|
Dabin LC, Kersey H, Kim B, Acri DJ, Sharify D, Lee‐Gosselin A, Lasagna‐Reeves CA, Oblak AL, Lamb BT, Kim J. Loss of Inpp5d has disease-relevant and sex-specific effects on glial transcriptomes. Alzheimers Dement 2024; 20:5311-5323. [PMID: 38923164 PMCID: PMC11350029 DOI: 10.1002/alz.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Inpp5d is genetically associated with Alzheimer's disease risk. Loss of Inpp5d alters amyloid pathology in models of amyloidosis. Inpp5d is expressed predominantly in microglia but its function in brain is poorly understood. METHODS We performed single-cell RNA sequencing to study the effect of Inpp5d loss on wild-type mouse brain transcriptomes. RESULTS Loss of Inpp5d has sex-specific effects on the brain transcriptome. Affected genes are enriched for multiple neurodegeneration terms. Network analyses reveal a gene co-expression module centered around Inpp5d in female mice. Inpp5d loss alters Pleotrophin (PTN), Prosaposin (PSAP), and Vascular Endothelial Growth Factor A (VEGFA) signaling probability between cell types. DISCUSSION Our data suggest that the normal function of Inpp5d is entangled with mechanisms involved in neurodegeneration. We report the effect of Inpp5d loss without pathology and show that this has dramatic effects on gene expression. Our study provides a critical reference for researchers of neurodegeneration, allowing separation of disease-specific changes mediated by Inpp5d in disease from baseline effects of Inpp5d loss. HIGHLIGHTS Loss of Inpp5d has different effects in male and female mice. Genes dysregulated by Inpp5d loss relate to neurodegeneration. Total loss of Inpp5d in female mice collapses a conserved gene co-expression module. Loss of microglial Inpp5d affects the transcriptome of other cell types.
Collapse
Affiliation(s)
- Luke C. Dabin
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Holly Kersey
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Neuroscience Graduate ProgramIndiana University School of MedicineIndianapolisIndianaUSA
| | - Byungwook Kim
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Dominic J. Acri
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Neuroscience Graduate ProgramIndiana University School of MedicineIndianapolisIndianaUSA
| | - Daniel Sharify
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Audrey Lee‐Gosselin
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Cristian A. Lasagna‐Reeves
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Neuroscience Graduate ProgramIndiana University School of MedicineIndianapolisIndianaUSA
- Department of AnatomyCell Biology & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Adrian L. Oblak
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Neuroscience Graduate ProgramIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Neuroscience Graduate ProgramIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jungsu Kim
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Neuroscience Graduate ProgramIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
211
|
Bao J, Lee BN, Wen J, Kim M, Mu S, Yang S, Davatzikos C, Long Q, Ritchie MD, Shen L. Employing Informatics Strategies in Alzheimer's Disease Research: A Review from Genetics, Multiomics, and Biomarkers to Clinical Outcomes. Annu Rev Biomed Data Sci 2024; 7:391-418. [PMID: 38848574 PMCID: PMC11525791 DOI: 10.1146/annurev-biodatasci-102423-121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.
Collapse
Affiliation(s)
- Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Brian N Lee
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Mansu Kim
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Shizhuo Mu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
212
|
Lee H, Pearse RV, Lish AM, Pan C, Augur ZM, Terzioglu G, Gaur P, Liao M, Fujita M, Tio ES, Duong DM, Felsky D, Seyfried NT, Menon V, Bennett DA, De Jager PL, Young-Pearse TL. Contributions of genetic variation in astrocytes to cell and molecular mechanisms of risk and resilience to late onset Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605928. [PMID: 39211227 PMCID: PMC11361137 DOI: 10.1101/2024.07.31.605928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from forty-four individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from AD individuals are concordantly dysregulated in AD brain tissue. This includes increased prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins. This study establishes an experimental system that integrates genetic information with a heterogeneous set of iPSCs to identify genetic contributions to molecular pathways affecting AD risk and resilience.
Collapse
|
213
|
Do Carmo S, Kautzmann MAI, Bhattacharjee S, Jun B, Steinberg C, Emmerson JT, Malcolm JC, Bonomo Q, Bazan NG, Cuello AC. Differential effect of an evolving amyloid and tau pathology on brain phospholipids and bioactive lipid mediators in rat models of Alzheimer-like pathology. J Neuroinflammation 2024; 21:185. [PMID: 39080670 PMCID: PMC11290283 DOI: 10.1186/s12974-024-03184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aβ plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aβ plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Carolyn Steinberg
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Janice C Malcolm
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada
| | - Quentin Bonomo
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada
| | - Nicolas G Bazan
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada.
- Department of Pharmacology, Oxford University, Oxford, OX1 3QT, UK.
| |
Collapse
|
214
|
Bonaterra-Pastra A, Solé M, Lope-Piedrafita S, Lucas-Parra M, Castellote L, Marazuela P, Pancorbo O, Rodríguez-Luna D, Hernández-Guillamon M. The presence of circulating human apolipoprotein J reduces the occurrence of cerebral microbleeds in a transgenic mouse model with cerebral amyloid angiopathy. Alzheimers Res Ther 2024; 16:169. [PMID: 39069622 DOI: 10.1186/s13195-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β (Aβ) deposition in cerebral vessels, leading to lobar cerebral microbleeds (CMB) and intracerebral hemorrhages (ICH). Apolipoprotein J (ApoJ) is a multifunctional chaperone related to Aβ aggregation and clearance. Our study investigated the vascular impact of chronic recombinant human Apolipoprotein J (rhApoJ) treatment in a transgenic mouse model of β-amyloidosis with prominent CAA. METHODS Twenty-month-old APP23 C57BL/6 mice received 25 doses of rhApoJ (1 mg/kg) (n = 9) or saline (n = 8) intraperitoneally for 13 weeks, while Wild-type (WT) mice received saline (n = 13). Postmortem brains underwent T2*-weighted magnetic resonance imaging (MRI) to detect hemorrhagic lesions. Aβ levels and distribution, cerebral fibrinogen leakage, brain smooth muscle actin (sma), and plasma matrix metalloproteinases and inflammatory markers were analyzed after treatments. Additionally, plasma samples from 22 patients with lobar ICH were examined to determine the clinical relevance of the preclinical findings. RESULTS rhApoJ-treated APP23 presented fewer cortical CMBs (50-300 μm diameter) (p = 0.012) and cortical larger hemorrhages (> 300 μm) (p = 0.002) than saline-treated mice, independently of Aβ brain levels. MRI-detected hemorrhagic lesions correlated with fibrinogen cerebral extravasation (p = 0.011). Additionally, rhApoJ-treated mice presented higher number of sma-positive vessels than saline-treated mice (p = 0.038). In rhApoJ-treated mice, human ApoJ was detected in plasma and in occasional leptomeningeal vessels, but not in the parenchyma, suggesting that its mechanism of action operates through the periphery. The administration of rhApoJ induced an increase in plasma Groα (p = 0.035) and MIP-1α (p = 0.035) levels, while lower MMP-12 (p = 0.046) levels, compared to the saline-treated group. In acute lobar ICH patients, MMP-12 plasma levels correlated with larger hemorrhage volume (p = 0.040) and irregular ICH shape (p = 0.036). CONCLUSIONS Chronic rhApoJ treatment in aged APP23 mice ameliorated CAA-related neurovascular damage by reducing the occurrence of CMB. We propose that rhApoJ may prevent blood-brain barrier (BBB) leakage and CMB appearance partly through circulating MMP-12 modulation.
Collapse
Affiliation(s)
- Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
- Department of Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Silvia Lope-Piedrafita
- Nuclear Magnetic Resonance Service, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Lucas-Parra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Laura Castellote
- Department of Clinical Biochemistry, Clinical Laboratories, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Olalla Pancorbo
- Stroke Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain.
| |
Collapse
|
215
|
Ferrer I. Alzheimer's Disease Neuropathological Change in Aged Non-Primate Mammals. Int J Mol Sci 2024; 25:8118. [PMID: 39125687 PMCID: PMC11311584 DOI: 10.3390/ijms25158118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Human brain aging is characterized by the production and deposition of β-amyloid (Aβ) in the form of senile plaques and cerebral amyloid angiopathy and the intracellular accumulation of hyper-phosphorylated tau (Hp-tau) to form neurofibrillary tangles (NFTs) and dystrophic neurites of senile plaques. The process progresses for years and eventually manifests as cognitive impairment and dementia in a subgroup of aged individuals. Aβ is produced and deposited first in the neocortex in most aged mammals, including humans; it is usually not accompanied by altered behavior and cognitive impairment. Hp-tau is less frequent than Aβ pathology, and NFTs are rare in most mammals. In contrast, NFTs are familiar from middle age onward in humans; NFTs first appear in the paleocortex and selected brain stem nuclei. NFTs precede for decades or years Aβ deposition and correlate with dementia in about 5% of individuals at the age of 65 and 25% at the age of 85. Based on these comparative data, (a) Aβ deposition is the most common Alzheimer's disease neuropathological change (ADNC) in the brain of aged mammals; (b) Hp-tau is less common, and NFTs are rare in most aged mammals; however, NFTs are the principal cytoskeletal pathology in aged humans; (c) NFT in aged humans starts in selected nuclei of the brain stem and paleocortical brain regions progressing to the most parts of the neocortex and other regions of the telencephalon; (d) human brain aging is unique among mammalian species due to the early appearance and dramatic progression of NFTs from middle age onward, matching with cognitive impairment and dementia in advanced cases; (e) neither mammalian nor human brain aging supports the concept of the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain;
- Reial Acadèmia de Medicina de Catalunya, carrer del Carme 47, 08001 Barcelona, Spain
| |
Collapse
|
216
|
Fitzsimons LA, Atif-Sheikh M, Lovely J, Mueth M, Rice M, Kotredes K, Howell G, Harrison BJ. CD2AP is Co-Expressed with Tropomyosin-Related Kinase A and Ras-Related Protein Rab-5A in Cholinergic Neurons of the Murine Basal Forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604961. [PMID: 39211110 PMCID: PMC11361140 DOI: 10.1101/2024.07.24.604961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Basal forebrain cholinergic neurons project to the hippocampus and cortex, are critical for learning and memory, and are central to the pathogenesis of Alzheimer's disease (AD). GWAS have consistently shown that genomic variants at the CD2AP gene locus are associated with significant increased risk of AD. GWAS studies have also shown that genetic variants in endocytosis genes, including RAB5A , significantly increase susceptibility to AD. Previous work in our lab has shown that CD2AP functions as a docking-scaffold/adaptor protein as a coordinator of nerve growth factor (NGF) and trophic signaling in neurons. We have also demonstrated that CD2AP positively regulates Rab5-mediated mechanisms of endocytosis in primary sensory neurons. The purpose of this study was to perform an in vivo characterization of CD2AP expression in cholinergic neurons of the brain regions most relevant to AD pathogenesis and to investigate the colocalization of CD2AP and Rab5 in cholinergic neurons of the murine basal forebrain. Brain tissue was perfused, harvested from ChAT BAC -eGFP transgenic mice (N=4 male, N=4 female; aged 10 mo), where cholinergic neurons (co-) express green fluorescence protein (GFP) in central and peripheral neurons that express choline acetyltransferase (ChAT). Frozen tissue sections were used to assess the specificity of the reporter in mouse brain along with localization of both CD2AP and Rab5 (co-) expression using immunofluorescence (IF) analysis of ChAT-GFP+ neurons and primary antibodies against ChAT, CD2AP and Rab5. Image J software was used to develop and optimize a colocalization assay for CD2AP and Rab5 puncta. Experiments were repeated in a follow-up cohort of aged-adult mice (N=2 male, N=2 female; aged 18 mo). IF expression of CD2AP was quantified in the basal forebrain, diagonal band of Broca (vDB), and striatal regions and compared to results from the cortical regions of the adult mouse brain. Colocalization of CD2AP was observed in the cell bodies of ChAT-GFP+ neurons of the striatum, vDB and basal forebrain regions, where CD2AP expression intensity as well as the number of cell bodies with positive signal increased incrementally. Colocalization analyses revealed near-complete overlap of CD2AP and Rab5 expression in ChAT-GFP+ cholinergic neurons of the basal forebrain region. We conclude that cholinergic neurons express CD2AP in healthy adult and aged-adult mouse brains. These data provide the first evidence of quantifiable CD2AP protein expression of cholinergic neurons specific to the diagonal band of Broca (vDB) and basal forebrain. Together with previous research from our lab, these data support a role for CD2AP in the pathogenesis of AD through orchestration of endocytosis and retrograde signaling. Ongoing studies are underway to verify these findings in a novel AD mouse model that incorporates the humanized variant of CD2AP , created by MODEL-AD, where we aim to further investigate how CD2AP variants may affect mechanistic components of Rab5 endocytosis as well as subsequent survival of cholinergic neurons in the context of known amyloid beta and Tau pathologies.
Collapse
|
217
|
Zhao B, Li Y, Fan Z, Wu Z, Shu J, Yang X, Yang Y, Wang X, Li B, Wang X, Copana C, Yang Y, Lin J, Li Y, Stein JL, O'Brien JM, Li T, Zhu H. Eye-brain connections revealed by multimodal retinal and brain imaging genetics. Nat Commun 2024; 15:6064. [PMID: 39025851 PMCID: PMC11258354 DOI: 10.1038/s41467-024-50309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
The retina, an anatomical extension of the brain, forms physiological connections with the visual cortex of the brain. Although retinal structures offer a unique opportunity to assess brain disorders, their relationship to brain structure and function is not well understood. In this study, we conducted a systematic cross-organ genetic architecture analysis of eye-brain connections using retinal and brain imaging endophenotypes. We identified novel phenotypic and genetic links between retinal imaging biomarkers and brain structure and function measures from multimodal magnetic resonance imaging (MRI), with many associations involving the primary visual cortex and visual pathways. Retinal imaging biomarkers shared genetic influences with brain diseases and complex traits in 65 genomic regions, with 18 showing genetic overlap with brain MRI traits. Mendelian randomization suggests bidirectional genetic causal links between retinal structures and neurological and neuropsychiatric disorders, such as Alzheimer's disease. Overall, our findings reveal the genetic basis for eye-brain connections, suggesting that retinal images can help uncover genetic risk factors for brain disorders and disease-related changes in intracranial structure and function.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA.
- Applied Mathematics and Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhenyi Wu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Shu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaochen Yang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Yilin Yang
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bingxuan Li
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Copana
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jinjie Lin
- Yale School of Management, Yale University, New Haven, CT, 06511, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan M O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA, 19104, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
218
|
Manzoni C, Kia DA, Ferrari R, Leonenko G, Costa B, Saba V, Jabbari E, Tan MM, Albani D, Alvarez V, Alvarez I, Andreassen OA, Angiolillo A, Arighi A, Baker M, Benussi L, Bessi V, Binetti G, Blackburn DJ, Boada M, Boeve BF, Borrego-Ecija S, Borroni B, Bråthen G, Brooks WS, Bruni AC, Caroppo P, Bandres-Ciga S, Clarimon J, Colao R, Cruchaga C, Danek A, de Boer SC, de Rojas I, di Costanzo A, Dickson DW, Diehl-Schmid J, Dobson-Stone C, Dols-Icardo O, Donizetti A, Dopper E, Durante E, Ferrari C, Forloni G, Frangipane F, Fratiglioni L, Kramberger MG, Galimberti D, Gallucci M, García-González P, Ghidoni R, Giaccone G, Graff C, Graff-Radford NR, Grafman J, Halliday GM, Hernandez DG, Hjermind LE, Hodges JR, Holloway G, Huey ED, Illán-Gala I, Josephs KA, Knopman DS, Kristiansen M, Kwok JB, Leber I, Leonard HL, Libri I, Lleo A, Mackenzie IR, Madhan GK, Maletta R, Marquié M, Maver A, Menendez-Gonzalez M, Milan G, Miller BL, Morris CM, Morris HR, Nacmias B, Newton J, Nielsen JE, Nilsson C, Novelli V, Padovani A, Pal S, Pasquier F, Pastor P, Perneczky R, Peterlin B, Petersen RC, Piguet O, Pijnenburg YA, Puca AA, Rademakers R, Rainero I, Reus LM, Richardson AM, Riemenschneider M, et alManzoni C, Kia DA, Ferrari R, Leonenko G, Costa B, Saba V, Jabbari E, Tan MM, Albani D, Alvarez V, Alvarez I, Andreassen OA, Angiolillo A, Arighi A, Baker M, Benussi L, Bessi V, Binetti G, Blackburn DJ, Boada M, Boeve BF, Borrego-Ecija S, Borroni B, Bråthen G, Brooks WS, Bruni AC, Caroppo P, Bandres-Ciga S, Clarimon J, Colao R, Cruchaga C, Danek A, de Boer SC, de Rojas I, di Costanzo A, Dickson DW, Diehl-Schmid J, Dobson-Stone C, Dols-Icardo O, Donizetti A, Dopper E, Durante E, Ferrari C, Forloni G, Frangipane F, Fratiglioni L, Kramberger MG, Galimberti D, Gallucci M, García-González P, Ghidoni R, Giaccone G, Graff C, Graff-Radford NR, Grafman J, Halliday GM, Hernandez DG, Hjermind LE, Hodges JR, Holloway G, Huey ED, Illán-Gala I, Josephs KA, Knopman DS, Kristiansen M, Kwok JB, Leber I, Leonard HL, Libri I, Lleo A, Mackenzie IR, Madhan GK, Maletta R, Marquié M, Maver A, Menendez-Gonzalez M, Milan G, Miller BL, Morris CM, Morris HR, Nacmias B, Newton J, Nielsen JE, Nilsson C, Novelli V, Padovani A, Pal S, Pasquier F, Pastor P, Perneczky R, Peterlin B, Petersen RC, Piguet O, Pijnenburg YA, Puca AA, Rademakers R, Rainero I, Reus LM, Richardson AM, Riemenschneider M, Rogaeva E, Rogelj B, Rollinson S, Rosen H, Rossi G, Rowe JB, Rubino E, Ruiz A, Salvi E, Sanchez-Valle R, Sando SB, Santillo AF, Saxon JA, Schlachetzki JC, Scholz SW, Seelaar H, Seeley WW, Serpente M, Sorbi S, Sordon S, St George-Hyslop P, Thompson JC, Van Broeckhoven C, Van Deerlin VM, Van der Lee SJ, Van Swieten J, Tagliavini F, van der Zee J, Veronesi A, Vitale E, Waldo ML, Yokoyama JS, Nalls MA, Momeni P, Singleton AB, Hardy J, Escott-Price V. Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia. Am J Hum Genet 2024; 111:1316-1329. [PMID: 38889728 PMCID: PMC11267522 DOI: 10.1016/j.ajhg.2024.05.017] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
Collapse
Affiliation(s)
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Raffaele Ferrari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Ganna Leonenko
- Division of Psychological Medicine and Clinical Neurosciences, UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Beatrice Costa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Valentina Saba
- Medical and Genomic Statistics Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Manuela Mx Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Victoria Alvarez
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain; Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science "V. Tiberio," University of Molise, Campobasso, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giuliano Binetti
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Merce Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Sergi Borrego-Ecija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology. Hospital Clínic de Barcelona, Fundació Clínic Barcelona-IDIBAPS, Barcelona, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - William S Brooks
- Neuroscience Research Australia, and Randwick Clinical Campus, UNSW Medicine and Health, University of New South Wales, Sydney, Australia
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Paola Caroppo
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jordi Clarimon
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosanna Colao
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrian Danek
- Neurologische Klinik, LMU Klinikum, Munich, Germany
| | - Sterre Cm de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Itziar de Rojas
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfonso di Costanzo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science "V. Tiberio," University of Molise, Campobasso, Italy
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; kbo-Inn-Salzach-Klinikum, Wasserburg, Germany
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Oriol Dols-Icardo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elise Dopper
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabetta Durante
- Immunohematology and Transfusional Medicine Service, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluigi Forloni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | | - Laura Fratiglioni
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska Universtiy Hospital, Stockholm, Sweden
| | - Milica G Kramberger
- Department of Neurology, University Medical Center, Medical faculty, Ljubljana University of Ljubljana, Ljubljana, Slovenia; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Huddinge, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Pablo García-González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giorgio Giaccone
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caroline Graff
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Unit for hereditary dementia, Karolinska Universtiy Hospital-Solna, Stockholm, Sweden
| | | | | | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lena E Hjermind
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Guy Holloway
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Edward D Huey
- Bio Med Psychiatry & Human Behavior, Brown University, Providence, RI, USA
| | - Ignacio Illán-Gala
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Mark Kristiansen
- UCL Genomics, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK; Zayed Centre for Research into Rare Disease in Children, London, UK
| | - John B Kwok
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Isabelle Leber
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington, DC, USA; DZNE Tübingen, Tübingen, Germany
| | - Ilenia Libri
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Lleo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, Canada; Department of Pathology, Vancouver Coastal Health, Vancouver, Canada
| | - Gaganjit K Madhan
- UCL Genomics, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK; Zayed Centre for Research into Rare Disease in Children, London, UK
| | | | - Marta Marquié
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ales Maver
- Clinical institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenija
| | - Manuel Menendez-Gonzalez
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Universidad de Oviedo, Medicine Department, Oviedo, Spain
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA; Trinity College Dublin, Dublin, Ireland
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Newcastle University, Edwardson Building, Nuns Moor Road, Newcastle upon Tyne, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Judith Newton
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christer Nilsson
- Department of Clinical Sciences, Neurology, Lund University, Lund/Malmö, Sweden
| | | | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Suvankar Pal
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Florence Pasquier
- University of Lille, Lille, France; CHU Lille, Lille, France; Inserm, Labex DISTALZ, LiCEND, Lille, France
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, LMU Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Borut Peterlin
- Clinical institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenija
| | | | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Yolande Al Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Annibale A Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Fisciano, Italy; Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA; VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Innocenzo Rainero
- Department of Neuroscience, "Rita Levi Montalcini," University of Torino, Torino, Italy; Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, A.O.UCittà della Salute e della Scienza di Torino, Torino, Italy
| | - Lianne M Reus
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Anna Mt Richardson
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK
| | | | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Giacomina Rossi
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - James B Rowe
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Elisa Rubino
- Department of Neuroscience, "Rita Levi Montalcini," University of Torino, Torino, Italy; Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, A.O.UCittà della Salute e della Scienza di Torino, Torino, Italy
| | - Agustin Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Erika Salvi
- Unit of Neuroalgologia (III), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; Data science center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology. Hospital Clínic de Barcelona, Fundació Clínic Barcelona-IDIBAPS, Barcelona, Spain
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Jennifer A Saxon
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK
| | - Johannes Cm Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Harro Seelaar
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sabrina Sordon
- Department of Psychiatry, Saarland University, Homburg, Germany
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Neurology, Columbia University, New York, NY, USA
| | - Jennifer C Thompson
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vivianna M Van Deerlin
- Perelman School of Medicine at the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Sven J Van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - John Van Swieten
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabrizio Tagliavini
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Arianna Veronesi
- Immunohematology and Transfusional Medicine Service, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Emilia Vitale
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy; School of Integrative Science and Technology Department of Biology Kean University, Union, NJ, USA
| | - Maria Landqvist Waldo
- Clinical Sciences Helsingborg, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA; Trinity College Dublin, Dublin, Ireland
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington, DC, USA
| | | | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
219
|
Gunasekaran TI, Reyes-Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak-Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and Loss of Function Variants at GWAS Loci in Familial Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.18.23300145. [PMID: 38196599 PMCID: PMC10775337 DOI: 10.1101/2023.12.18.23300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome wide association studies of Alzheimer's disease (AD), limiting understanding of mechanisms and risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in The NIA Alzheimer's Disease Family Based Study, and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss of function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) of families APOE-e4 was the only variant segregating. However, in 60.3% of families neither APOE-e4 nor missense or LoF variants were found within the GWAS loci. DISCUSSION Although APOE-ε4 and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants.
Collapse
|
220
|
Hudgins AD, Zhou S, Arey RN, Rosenfeld MG, Murphy CT, Suh Y. A systems biology-based identification and in vivo functional screening of Alzheimer's disease risk genes reveal modulators of memory function. Neuron 2024; 112:2112-2129.e4. [PMID: 38692279 PMCID: PMC11223975 DOI: 10.1016/j.neuron.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.
Collapse
Affiliation(s)
- Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel N Arey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael G Rosenfeld
- Department of Medicine, School of Medicine, University of California, La Jolla, CA, USA; Howard Hughes Medical Institute, University of California, La Jolla, CA, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
221
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
222
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
223
|
Toshima T, Yagi M, Do Y, Hirai H, Kunisaki Y, Kang D, Uchiumi T. Mitochondrial translation failure represses cholesterol gene expression via Pyk2-Gsk3β-Srebp2 axis. Life Sci Alliance 2024; 7:e202302423. [PMID: 38719751 PMCID: PMC11079605 DOI: 10.26508/lsa.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3β was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3β and that GSK3β inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3β axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3β inhibitors is a potential therapeutic strategy for leukoencephalopathy.
Collapse
Affiliation(s)
- Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
224
|
Butler CA, Mendoza Arvilla A, Milinkeviciute G, Da Cunha C, Kawauchi S, Rezaie N, Liang HY, Javonillo D, Thach A, Wang S, Collins S, Walker A, Shi K, Neumann J, Gomez‐Arboledas A, Henningfield CM, Hohsfield LA, Mapstone M, Tenner AJ, LaFerla FM, Mortazavi A, MacGregor GR, Green KN. The Abca7 V1613M variant reduces Aβ generation, plaque load, and neuronal damage. Alzheimers Dement 2024; 20:4914-4934. [PMID: 38506634 PMCID: PMC11247689 DOI: 10.1002/alz.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/21/2024]
Abstract
BACKGROUND Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aβ) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aβ-associated inflammation, gliosis, and neuronal damage. DISCUSSION Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aβ pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.
Collapse
Affiliation(s)
- Claire A. Butler
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Adrian Mendoza Arvilla
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Narges Rezaie
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Heidi Y. Liang
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dominic Javonillo
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Annie Thach
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kai‐Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Angela Gomez‐Arboledas
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Lindsay A. Hohsfield
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Mark Mapstone
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Molecular Biology & BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Frank M. LaFerla
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ali Mortazavi
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAR, Office of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kim N. Green
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
225
|
Zhang Y, Xu F, Wang T, Han Z, Shang H, Han K, Zhu P, Gao S, Wang X, Xue Y, Huang C, Chen Y, Liu G. Shared genetics and causal association between plasma levels of SARS-CoV-2 entry receptor ACE2 and Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14873. [PMID: 39056224 PMCID: PMC11273102 DOI: 10.1111/cns.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the highest risk of COVID-19 infection, hospitalization, and mortality. However, it remains largely unclear about the link between AD and COVID-19 outcomes. ACE2 is an entry receptor for SARS-CoV-2. Circulating ACE2 is a novel biomarker of death and associated with COVID-19 outcomes. METHODS Here, we explored the shared genetics and causal association between AD and plasma ACE2 levels using large-scale genome-wide association study, gene expression, expression quantitative trait loci, and high-throughput plasma proteomic profiling datasets. RESULTS We found a significant causal effect of genetically increased circulating ACE2 on increased risk of AD. Cross-trait association analysis identified 19 shared genetic variants, and three variants rs3104412, rs2395166, and rs3135344 at chromosome 6p21.32 were associated with COVID-19 infection, hospitalization, and severity. We mapped 19 variants to 117 genes, which were significantly upregulated in lung, spleen, and small intestine, downregulated in brain tissues, and involved in immune system, immune disease, and infectious disease pathways. The plasma proteins corresponding to LST1, AGER, TNXB, and APOC1 were predominantly associated with COVID-19 infection, ventilation, and death. CONCLUSION Together, our findings suggest the shared genetics and causal association between AD and plasma ACE2 levels, which may partially explain the link between AD and COVID-19.
Collapse
Affiliation(s)
- Yan Zhang
- Department of PathologyThe Affiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Fang Xu
- Department of Neurology, Xuanwu Hospital, National Center for Neurological DisordersCapital Medical UniversityBeijingChina
| | - Tao Wang
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Zhifa Han
- Center of Respiratory Medicine, China–Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Acadamy of Medical Sciences, National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Hong Shang
- Department of NeurologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Kevin Han
- Department of StatisticsStanford UniversityStanfordCaliforniaUSA
| | - Ping Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xiaojie Wang
- Department of NeurologyShenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Yanli Xue
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao SARChina
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public HealthWannan Medical CollegeWuhuChina
- Institute of Chronic Disease Prevention and ControlWannan Medical CollegeWuhuChina
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Department of Epidemiology and Biostatistics, School of Public HealthWannan Medical CollegeWuhuChina
- Institute of Chronic Disease Prevention and ControlWannan Medical CollegeWuhuChina
- Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Taishan Vocational College of NursingTaianChina
- Brain HospitalShengli Oilfield Central HospitalDongyingChina
| |
Collapse
|
226
|
Sasner M, Preuss C, Pandey RS, Uyar A, Garceau D, Kotredes KP, Williams H, Oblak AL, Lin PB, Perkins B, Soni D, Ingraham C, Lee‐Gosselin A, Lamb BT, Howell GR, Carter GW. In vivo validation of late-onset Alzheimer's disease genetic risk factors. Alzheimers Dement 2024; 20:4970-4984. [PMID: 38687251 PMCID: PMC11247676 DOI: 10.1002/alz.13840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.
Collapse
Affiliation(s)
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Asli Uyar
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | | | | | | | - Adrian L. Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Peter Bor‐Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bridget Perkins
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Disha Soni
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Cindy Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Audrey Lee‐Gosselin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | | | - Gregory W. Carter
- The Jackson LaboratoryBar HarborMaineUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| |
Collapse
|
227
|
Myserlis EP, Ray A, Anderson CD, Georgakis MK. Genetically proxied IL-6 signaling and risk of Alzheimer's disease and lobar intracerebral hemorrhage: A drug target Mendelian randomization study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70000. [PMID: 39206334 PMCID: PMC11349601 DOI: 10.1002/trc2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Evidence suggests that higher C-reactive protein (CRP) is associated with lower risk of Alzheimer's disease (AD) and lobar intracerebral hemorrhage (ICH). Whether interleukin (IL)-6 signaling, an active pharmacological target upstream of CRP, is associated with these amyloid-related pathologies remains unknown. METHODS We used 26 CRP-lowering variants near the IL-6 receptor gene to perform Mendelian randomization analyses for AD (111,326 cases, 677,663 controls) and ICH (1545 cases, 1481 controls). We explored the effect of genetically proxied IL-6 signaling on serum, cerebrospinal fluid (CSF), and brain proteome (971 individuals). RESULTS Genetically upregulated IL-6 receptor-mediated signaling was associated with lower risk of AD (OR per increment in serum logCRP levels: 0.87, 95% CI: 0.79-0.95) and lobar ICH (OR: 0.27, 95% CI: 0.09-0.89). We also found associations with 312, 77, and 79 brain, CSF, and plasma proteins, respectively, some of which were previously implicated in amyloid-clearing mechanisms. DISCUSSION Genetic data support that CRP-lowering through variation in the gene encoding IL-6 receptor may be associated with amyloid-related outcomes. Highlights Genetic variants proxying IL-6 inhibition are associated with AD and lobar ICH risk.The variants are also associated with amyloid clearing-related proteomic changes.Whether pharmacologic IL-6 inhibition is linked to AD or lobar ICH merits further study.
Collapse
Affiliation(s)
| | - Anushree Ray
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) HospitalLMU MunichMunichGermany
| | - Christopher D. Anderson
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Henry and Alisson McCance Center for Brain HealthMassachusetts General HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) HospitalLMU MunichMunichGermany
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| |
Collapse
|
228
|
Soni DM, Lin PB, Lee‐Gosselin A, Lloyd CD, Mason E, Ingraham CM, Perkins A, Moutinho M, Lamb BT, Chu S, Oblak AL. Inpp5d haplodeficiency alleviates tau pathology in the PS19 mouse model of Tauopathy. Alzheimers Dement 2024; 20:4985-4998. [PMID: 38923171 PMCID: PMC11247686 DOI: 10.1002/alz.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION A noncoding variant (rs35349669) within INPP5D, a lipid and protein phosphatase restricted to microglia in the brain, is linked to increased susceptibility to Alzheimer's disease (AD). While Inpp5d is well-studied in amyloid pathology, its role in tau pathology remains unclear. METHODS PS19 Tauopathy mice were crossed with Inpp5d-haplodeficient (Inpp5d+/-) mice to examine the impact of Inpp5d in tau pathology. RESULTS Increased INPP5D expression correlated positively with phospho-Tau AT8 in PS19 mice. Inpp5d haplodeficiency mitigated hyperphosphorylated tau levels (AT8, AT180, AT100, and PHF1) and motor deficits in PS19 mice. Transcriptomic analysis revealed an up-regulation of genes associated with immune response and cell migration. DISCUSSION Our findings define an association between INPP5D expression and tau pathology in PS19 mice. Alleviation in hyperphosphorylated tau, motor deficits, and transcriptomics changes in haplodeficient-Inpp5d PS19 mice indicate that modulation in INPP5D expression may provide therapeutic potential for mitigating tau pathology and improving motor deficits. HIGHLIGHTS The impact of Inpp5d in the context of tau pathology was studied in the PS19 mouse model. INPP5D expression is associated with tau pathology. Reduced Inpp5d expression in PS19 mice improved motor functions and decreased total and phospho-Tau levels. Inpp5d haplodeficiency in PS19 mice modulates gene expression patterns linked to immune response and cell migration. These data suggest that inhibition of Inpp5d may be a therapeutic approach in tauopathies.
Collapse
Affiliation(s)
- Disha M. Soni
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Peter Bor‐Chian Lin
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Audrey Lee‐Gosselin
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Christopher D. Lloyd
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Emily Mason
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Cynthia M. Ingraham
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Abigail Perkins
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Miguel Moutinho
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Department of AnatomyCell Biology & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shaoyou Chu
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Adrian L. Oblak
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
229
|
Neven J, Issayama LK, Dewachter I, Wilson DM. Genomic stress and impaired DNA repair in Alzheimer disease. DNA Repair (Amst) 2024; 139:103678. [PMID: 38669748 DOI: 10.1016/j.dnarep.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aβ) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aβ and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aβ and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.
Collapse
Affiliation(s)
- Jolien Neven
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Luidy Kazuo Issayama
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium.
| |
Collapse
|
230
|
Chen S, Chen S, Hanewald K, Si Y, Bateman H, Li B, Xu X, Samtani S, Wu C, Brodaty H. Social Environment, Lifestyle, and Genetic Predisposition With Dementia Risk: A Long-Term Longitudinal Study Among Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae128. [PMID: 38733088 PMCID: PMC11184450 DOI: 10.1093/gerona/glae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The role of social environment, that is, the aggregate effect of social determinants of health (SDOHs), in determining dementia is unclear. METHODS We developed a novel polysocial risk score for dementia based on 19 SDOH among 5 199 participants in the Health and Retirement Study, United States, to measure the social environmental risk. We used a survival analysis approach to assess the association between social environment and dementia risk in 2006-2020. We further studied the interaction between social environment and lifestyles, and explored racial disparities. RESULTS The study participants (mean age = 73.4 years, SD = 8.3; 58.0% female; 11.6% African American) were followed up for an average of 6.2 years, and 1 089 participants developed dementia. Every 1-point increase in the polysocial risk score (ranging from 0 to 10) was associated with a 21.6% higher risk (adjusted hazard ratio [aHR] = 1.21, 95% confidence intervals [95% CI] = 1.15-1.26) of developing dementia, other things being equal. Among participants with high social environmental risk, regular exercise and moderate drinking were associated with a 43%-60% lower risk of developing dementia (p < .001). In addition, African Americans were 1.3 times (aHR = 2.28, 95% CI = 1.96-2.66) more likely to develop dementia than European Americans, other things being equal. CONCLUSION An adverse social environment is linked to higher dementia risk, but healthy lifestyles can partially offset the increased social environmental risk. The polysocial risk score can complement the existing risk tools to identify high-risk older populations, and guide the design of targeted social environmental interventions, particularly focusing on improving the companionship of the older people, to prevent dementia.
Collapse
Affiliation(s)
- Shu Chen
- School of Risk and Actuarial Studies, UNSW Business School, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), Kensington, New South Wales, Australia
| | - Shanquan Chen
- International Centre for Evidence in Disability, London School of Hygiene and Tropical Medicine, London, UK
| | - Katja Hanewald
- School of Risk and Actuarial Studies, UNSW Business School, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), Kensington, New South Wales, Australia
| | - Yafei Si
- School of Risk and Actuarial Studies, UNSW Business School, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), Kensington, New South Wales, Australia
| | - Hazel Bateman
- School of Risk and Actuarial Studies, UNSW Business School, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR), Kensington, New South Wales, Australia
| | - Bingqin Li
- Social Policy Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xiaolin Xu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
- Centre of Clinical Big Data and Analytics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suraj Samtani
- Centre for Healthy Brain Ageing (CHeBA), School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chenkai Wu
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
231
|
Korbmacher M, van der Meer D, Beck D, Askeland-Gjerde DE, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Distinct Longitudinal Brain White Matter Microstructure Changes and Associated Polygenic Risk of Common Psychiatric Disorders and Alzheimer's Disease in the UK Biobank. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100323. [PMID: 39132576 PMCID: PMC11313202 DOI: 10.1016/j.bpsgos.2024.100323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel E. Askeland-Gjerde
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
232
|
Peng J, Bao Z, Li J, Han R, Wang Y, Han L, Peng J, Wang T, Hao J, Wei Z, Shang X. DeepRisk: A deep learning approach for genome-wide assessment of common disease risk. FUNDAMENTAL RESEARCH 2024; 4:752-760. [PMID: 39156563 PMCID: PMC11330112 DOI: 10.1016/j.fmre.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 08/20/2024] Open
Abstract
The potential for being able to identify individuals at high disease risk solely based on genotype data has garnered significant interest. Although widely applied, traditional polygenic risk scoring methods fall short, as they are built on additive models that fail to capture the intricate associations among single nucleotide polymorphisms (SNPs). This presents a limitation, as genetic diseases often arise from complex interactions between multiple SNPs. To address this challenge, we developed DeepRisk, a biological knowledge-driven deep learning method for modeling these complex, nonlinear associations among SNPs, to provide a more effective method for scoring the risk of common diseases with genome-wide genotype data. Evaluations demonstrated that DeepRisk outperforms existing PRS-based methods in identifying individuals at high risk for four common diseases: Alzheimer's disease, inflammatory bowel disease, type 2 diabetes, and breast cancer.
Collapse
Affiliation(s)
- Jiajie Peng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518000, China
| | - Zhijie Bao
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| | - Jingyi Li
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| | - Ruijiang Han
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| | - Yuxian Wang
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| | - Lu Han
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| | - Jinghao Peng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| | - Tao Wang
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| | - Jianye Hao
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Zhongyu Wei
- School of Data Science, Fudan University, Shanghai 200433, China
| | - Xuequn Shang
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an 710129, China
| |
Collapse
|
233
|
Miller B, Kim S, Cao K, Mehta HH, Thumaty N, Kumagai H, Iida T, McGill C, Pike CJ, Nurmakova K, Levine ZA, Sullivan PM, Yen K, Ertekin‐Taner N, Atzmon G, Barzilai N, Cohen P. Humanin variant P3S is associated with longevity in APOE4 carriers and resists APOE4-induced brain pathology. Aging Cell 2024; 23:e14153. [PMID: 38520065 PMCID: PMC11258485 DOI: 10.1111/acel.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Su‐Jeong Kim
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kevin Cao
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hemal H. Mehta
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neehar Thumaty
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hiroshi Kumagai
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Tomomitsu Iida
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Cassandra McGill
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian J. Pike
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kamila Nurmakova
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | - Zachary A. Levine
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Patrick M. Sullivan
- Department of Medicine (Geriatrics)Duke University Medical CenterDurhamNorth CarolinaUSA
| | - Kelvin Yen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Gil Atzmon
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Nir Barzilai
- Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Pinchas Cohen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
234
|
Palihati N, Tang Y, Yin Y, Yu D, Liu G, Quan Z, Ni J, Yan Y, Qing H. Clusterin is a Potential Therapeutic Target in Alzheimer's Disease. Mol Neurobiol 2024; 61:3836-3850. [PMID: 38017342 DOI: 10.1007/s12035-023-03801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
In recent years, Clusterin, a glycosylated protein with multiple biological functions, has attracted extensive research attention. It is closely associated with the physiological and pathological states within the organism. Particularly in Alzheimer's disease (AD) research, Clusterin plays a significant role in the disease's occurrence and progression. Numerous studies have demonstrated a close association between Clusterin and AD. Firstly, the expression level of Clusterin in the brain tissue of AD patients is closely related to pathological progression. Secondly, Clusterin is involved in the deposition and formation of β-amyloid, which is a crucial process in AD development. Furthermore, Clusterin may affect the pathogenesis of AD through mechanisms such as regulating inflammation, controlling cell apoptosis, and clearing pathological proteins. Therefore, further research on the relationship between Clusterin and AD will contribute to a deeper understanding of the etiology of this neurodegenerative disease and provide a theoretical basis for developing early diagnostic and therapeutic strategies for AD. This also makes Clusterin one of the research focuses as a potential biomarker for AD diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Nazhakaiti Palihati
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Ding Yu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China.
| |
Collapse
|
235
|
Panyard DJ, Reus LM, Ali M, Liu J, Deming YK, Lu Q, Kollmorgen G, Carboni M, Wild N, Visser PJ, Bertram L, Zetterberg H, Blennow K, Gobom J, Western D, Sung YJ, Carlsson CM, Johnson SC, Asthana S, Cruchaga C, Tijms BM, Engelman CD, Snyder MP. Post-GWAS multiomic functional investigation of the TNIP1 locus in Alzheimer's disease highlights a potential role for GPX3. Alzheimers Dement 2024; 20:5044-5053. [PMID: 38809917 PMCID: PMC11247664 DOI: 10.1002/alz.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear. METHODS We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269). RESULTS CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.5 × 10-5) and higher CSF phosphorylated tau (p-tau) levels (P = 9.28 × 10-7). The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041). The replication cohort found associations of GPX3 with amyloid and tau positivity (P = 2.56 × 10-6) and CSF p-tau levels (P = 4.38 × 10-9). DISCUSSION These results suggest variants in the TNIP1 locus may affect the oxidative stress response in AD via altered GPX3 levels. HIGHLIGHTS Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with amyloid and tau positivity and higher CSF phosphorylated tau. The minor allele of rs34294852 was associated with lower CSF GPX3. levels when also controlling for amyloid and tau category. GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer's disease than controls. rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils, and microglia.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of GeneticsStanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
- Department of Population Health SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lianne M. Reus
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamThe Netherlands
- Center for Neurobehavioral GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Muhammad Ali
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMissouriUSA
| | - Jihua Liu
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of StatisticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yuetiva K. Deming
- Department of Population Health SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Qiongshi Lu
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of StatisticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | | | | | - Pieter J. Visser
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamThe Netherlands
- Department of PsychiatryMaastricht UniversityMaastrichtThe Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome AnalyticsInstitutes of Neurogenetics and CardiogeneticsUniversity of LübeckLübeckGermany
- Department of PsychologyUniversity of OsloOsloNorway
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Johan Gobom
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Dan Western
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMissouriUSA
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisMissouriUSA
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamThe Netherlands
| | - Corinne D. Engelman
- Department of Population Health SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Michael P. Snyder
- Department of GeneticsStanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
236
|
Branciamore S, Gogoshin G, Rodin AS, Myers AJ. Changes in expression of VGF, SPECC1L, HLA-DRA and RANBP3L act with APOE E4 to alter risk for late onset Alzheimer's disease. Sci Rep 2024; 14:14954. [PMID: 38942763 PMCID: PMC11213882 DOI: 10.1038/s41598-024-65010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 06/30/2024] Open
Abstract
While there are currently over 40 replicated genes with mapped risk alleles for Late Onset Alzheimer's disease (LOAD), the Apolipoprotein E locus E4 haplotype is still the biggest driver of risk, with odds ratios for neuropathologically confirmed E44 carriers exceeding 30 (95% confidence interval 16.59-58.75). We sought to address whether the APOE E4 haplotype modifies expression globally through networks of expression to increase LOAD risk. We have used the Human Brainome data to build expression networks comparing APOE E4 carriers to non-carriers using scalable mixed-datatypes Bayesian network (BN) modeling. We have found that VGF had the greatest explanatory weight. High expression of VGF is a protective signal, even on the background of APOE E4 alleles. LOAD risk signals, considering an APOE background, include high levels of SPECC1L, HLA-DRA and RANBP3L. Our findings nominate several new transcripts, taking a combined approach to network building including known LOAD risk loci.
Collapse
Affiliation(s)
- Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| | - Amanda J Myers
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Interdepartmental Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Interdepartmental Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
237
|
von Maydell D, Wright S, Bonner JM, Staab C, Spitaleri A, Liu L, Pao PC, Yu CJ, Scannail AN, Li M, Boix CA, Mathys H, Leclerc G, Menchaca GS, Welch G, Graziosi A, Leary N, Samaan G, Kellis M, Tsai LH. Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556135. [PMID: 38979214 PMCID: PMC11230156 DOI: 10.1101/2023.09.05.556135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid β -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.
Collapse
|
238
|
Singh MK, Shin Y, Ju S, Han S, Kim SS, Kang I. Comprehensive Overview of Alzheimer's Disease: Etiological Insights and Degradation Strategies. Int J Mol Sci 2024; 25:6901. [PMID: 39000011 PMCID: PMC11241648 DOI: 10.3390/ijms25136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects millions of individuals globally. AD is associated with cognitive decline and memory loss that worsens with aging. A statistical report using U.S. data on AD estimates that approximately 6.9 million individuals suffer from AD, a number projected to surge to 13.8 million by 2060. Thus, there is a critical imperative to pinpoint and address AD and its hallmark tau protein aggregation early to prevent and manage its debilitating effects. Amyloid-β and tau proteins are primarily associated with the formation of plaques and neurofibril tangles in the brain. Current research efforts focus on degrading amyloid-β and tau or inhibiting their synthesis, particularly targeting APP processing and tau hyperphosphorylation, aiming to develop effective clinical interventions. However, navigating this intricate landscape requires ongoing studies and clinical trials to develop treatments that truly make a difference. Genome-wide association studies (GWASs) across various cohorts identified 40 loci and over 300 genes associated with AD. Despite this wealth of genetic data, much remains to be understood about the functions of these genes and their role in the disease process, prompting continued investigation. By delving deeper into these genetic associations, novel targets such as kinases, proteases, cytokines, and degradation pathways, offer new directions for drug discovery and therapeutic intervention in AD. This review delves into the intricate biological pathways disrupted in AD and identifies how genetic variations within these pathways could serve as potential targets for drug discovery and treatment strategies. Through a comprehensive understanding of the molecular underpinnings of AD, researchers aim to pave the way for more effective therapies that can alleviate the burden of this devastating disease.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
239
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
240
|
Mato-Blanco X, Kim SK, Jourdon A, Ma S, Tebbenkamp AT, Liu F, Duque A, Vaccarino FM, Sestan N, Colantuoni C, Rakic P, Santpere G, Micali N. Early Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598925. [PMID: 38915580 PMCID: PMC11195173 DOI: 10.1101/2024.06.14.598925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.
Collapse
Affiliation(s)
- Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alexandre Jourdon
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlo Colantuoni
- Depts. of Neurology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
241
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
242
|
Zuo CY, Hu Z, Hao XY, Li MJ, Shi JJ, Guo MN, Ma DR, Li SJ, Liang YY, Zhang C, Mao CY, Xu Y, Shi CH. The potential protective role of peripheral immunophenotypes in Alzheimer's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1403077. [PMID: 38903900 PMCID: PMC11188398 DOI: 10.3389/fnagi.2024.1403077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.
Collapse
Affiliation(s)
- Chun-yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-jing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong-rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang-jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng-yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-he Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
243
|
Cruchaga C, Bradley J, Western D, Wang C, Lucio Da Fonseca E, Neupane A, Kurup J, Ray NI, Jean-Francois M, Gorijala P, Bergmann K, Budde J, Martin E, Pericak-Vance M, Cuccaro M, Kunkle B, Morris J, Holtzman D, Perrin R, Naj A, Haines J, Schellenberg G, Fernandez V, Reitz C, Beecham G. Novel early-onset Alzheimer-associated genes influence risk through dysregulation of glutamate, immune activation, and intracell signaling pathways. RESEARCH SQUARE 2024:rs.3.rs-4480585. [PMID: 38883718 PMCID: PMC11177996 DOI: 10.21203/rs.3.rs-4480585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Alzheimer Disease (AD) is a highly polygenic disease that presents with relatively earlier onset (≤70yo; EOAD) in about 5% of cases. Around 90% of these EOAD cases remain unexplained by pathogenic mutations. Using data from EOAD cases and controls, we performed a genome-wide association study (GWAS) and trans-ancestry meta-analysis on non-Hispanic Whites (NHW, NCase=6,282, NControl=13,386), African Americans (AA NCase=782, NControl=3,663) and East Asians (NCase=375, NControl=838 CO). We identified eight novel significant loci: six in the ancestry-specific analyses and two in the trans-ancestry analysis. By integrating gene-based analysis, eQTL, pQTL and functional annotations, we nominate four novel genes that are involved in microglia activation, glutamate production, and signaling pathways. These results indicate that EOAD, although sharing many genes with LOAD, harbors unique genes and pathways that could be used to create better prediction models or target identification for this type of AD.
Collapse
Affiliation(s)
| | | | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Michael Cuccaro
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Ando K, Küçükali F, Doeraene E, Nagaraj S, Antonelli EM, Thazin Htut M, Yilmaz Z, Kosa AC, Lopez-Guitierrez L, Quintanilla-Sánchez C, Aydin E, Ramos AR, Mansour S, Turbant S, Schurmans S, Sleegers K, Erneux C, Brion JP, Leroy K. Alteration of gene expression and protein solubility of the PI 5-phosphatase SHIP2 are correlated with Alzheimer's disease pathology progression. Acta Neuropathol 2024; 147:94. [PMID: 38833073 PMCID: PMC11150309 DOI: 10.1007/s00401-024-02745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.
Collapse
Affiliation(s)
- Kunie Ando
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium.
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie Doeraene
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Siranjeevi Nagaraj
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Eugenia Maria Antonelli
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - May Thazin Htut
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute (UNI), 808 Route de Lennik, 1070, Brussels, Belgium
| | - Andreea-Claudia Kosa
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Lidia Lopez-Guitierrez
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Carolina Quintanilla-Sánchez
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Emmanuel Aydin
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Ana Raquel Ramos
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Salwa Mansour
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute (UNI), 808 Route de Lennik, 1070, Brussels, Belgium
| | - Sabrina Turbant
- Biobanque Neuro-CEB, Hôpital de la Pitié-Salpétrière, Paris, France
- Plateforme de Ressources Biologiques (PRB), Hôpital de La Pitié-Salpêtrière, AP-HP, Paris, France
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA Research Centre, University of Liège, Liège, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christophe Erneux
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Jean-Pierre Brion
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Karelle Leroy
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium.
| |
Collapse
|
245
|
Wojtas AM, Dammer EB, Guo Q, Ping L, Shantaraman A, Duong DM, Yin L, Fox EJ, Seifar F, Lee EB, Johnson ECB, Lah JJ, Levey AI, Levites Y, Rangaraju S, Golde TE, Seyfried NT. Proteomic changes in the human cerebrovasculature in Alzheimer's disease and related tauopathies linked to peripheral biomarkers in plasma and cerebrospinal fluid. Alzheimers Dement 2024; 20:4043-4065. [PMID: 38713744 PMCID: PMC11180878 DOI: 10.1002/alz.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 05/09/2024]
Abstract
INTRODUCTION Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Eric B. Dammer
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Qi Guo
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Lingyan Ping
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Ananth Shantaraman
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Luming Yin
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Edward J. Fox
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Fatemeh Seifar
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPennsylvaniaUSA
| | - Erik C. B. Johnson
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - James J. Lah
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan I. Levey
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Yona Levites
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Srikant Rangaraju
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Todd E. Golde
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
246
|
Cooper JM, Lathuiliere A, Su EJ, Song Y, Torrente D, Jo Y, Weinrich N, Sales JD, Migliorini M, Sisson TH, Lawrence DA, Hyman BT, Strickland DK. SORL1 is a receptor for tau that promotes tau seeding. J Biol Chem 2024; 300:107313. [PMID: 38657864 PMCID: PMC11145553 DOI: 10.1016/j.jbc.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.
Collapse
Affiliation(s)
- Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aurelien Lathuiliere
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Department of Rehabilitation and Geriatrics, Memory Center, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Enming J Su
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yuyu Song
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel Torrente
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York, USA
| | - Youhwa Jo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicholas Weinrich
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Diaz Sales
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas H Sisson
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
247
|
Pumo A, Legeay S. The dichotomous activities of microglia: A potential driver for phenotypic heterogeneity in Alzheimer's disease. Brain Res 2024; 1832:148817. [PMID: 38395249 DOI: 10.1016/j.brainres.2024.148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, characterized by two defining neuropathological hallmarks: amyloid plaques composed of Aβ aggregates and neurofibrillary pathology. Recent research suggests that microglia have both beneficial and detrimental effects in the development of AD. A new theory proposes that microglia play a beneficial role in the early stages of the disease but become harmful in later stages. Further investigations are needed to gain a comprehensive understanding of this shift in microglia's function. This transition is likely influenced by specific conditions, including spatial, temporal, and transcriptional factors, which ultimately lead to the deterioration of microglial functionality. Additionally, recent studies have also highlighted the potential influence of microglia diversity on the various manifestations of AD. By deciphering the multiple states of microglia and the phenotypic heterogeneity in AD, significant progress can be made towards personalized medicine and better treatment outcomes for individuals affected by AD.
Collapse
Affiliation(s)
- Anna Pumo
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France.
| | - Samuel Legeay
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France; Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| |
Collapse
|
248
|
Huang YH, Chen YC, Ho WM, Lee RG, Chung RH, Liu YL, Chang PY, Chang SC, Wang CW, Chung WH, Tsai SJ, Kuo PH, Lee YS, Hsiao CC. Classifying Alzheimer's disease and normal subjects using machine learning techniques and genetic-environmental features. J Formos Med Assoc 2024; 123:701-709. [PMID: 38044212 DOI: 10.1016/j.jfma.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is complicated by multiple environmental and polygenetic factors. The accuracy of artificial neural networks (ANNs) incorporating the common factors for identifying AD has not been evaluated. METHODS A total of 184 probable AD patients and 3773 healthy individuals aged 65 and over were enrolled. AD-related genes (51 SNPs) and 8 environmental factors were selected as features for multilayer ANN modeling. Random Forest (RF) and Support Vector Machine with RBF kernel (SVM) were also employed for comparison. Model results were verified using traditional statistics. RESULTS The ANN achieved high accuracy (0.98), sensitivity (0.95), and specificity (0.96) in the intrinsic test for AD classification. Excluding age and genetic data still yielded favorable results (accuracy: 0.97, sensitivity: 0.94, specificity: 0.96). The assigned weights to ANN features highlighted the importance of mental evaluation, years of education, and specific genetic variations (CASS4 rs7274581, PICALM rs3851179, and TOMM40 rs2075650) for AD classification. Receiver operating characteristic analysis revealed AUC values of 0.99 (intrinsic test), 0.60 (TWB-GWA), and 0.72 (CG-WGS), with slightly lower AUC values (0.96, 0.80, 0.52) when excluding age in ANN. The performance of the ANN model in AD classification was comparable to RF, SVM (linear kernel), and SVM (RBF kernel). CONCLUSION The ANN model demonstrated good sensitivity, specificity, and accuracy in AD classification. The top-weighted SNPs for AD prediction were CASS4 rs7274581, PICALM rs3851179, and TOMM40 rs2075650. The ANN model performed similarly to RF and SVM, indicating its capability to handle the complexity of AD as a disease entity.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wei-Min Ho
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ren-Guey Lee
- Department of Electronics Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ren-Hua Chung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Chaung-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Chun-Chieh Hsiao
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
249
|
Wang H, Lakshmana MK, Fields GB. Identification of binding partners that facilitate membrane-type 5 matrix metalloproteinase (MT5-MMP) processing of amyloid precursor protein. J Cell Physiol 2024; 239:e31218. [PMID: 38345408 DOI: 10.1002/jcp.31218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 06/14/2024]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of extracellular deposits of amyloid beta (Aβ) peptide. In addition to Aβ as the core component of the amyloid plaque, the amyloid precursor protein (APP) processing fragment Aβ was also found accumulated around the plaque. The APPη pathway, mainly mediated by membrane-type 5 matrix metalloproteinase (MT5-MMP), represents an important factor in AD pathogenesis. The proamyloidogenic features of MT5-MMP could result from interactions with APP when trafficking between organelles, so determination of the location within the cell of APPη cleavage and interacting proteins of MT5-MMP affecting this process will be of priority in understanding the role of MT5-MMP in AD. In the present study, MT5-MMP was found to be located in the nucleus, cytosol, and cytosolic subcellular granules of CHO cells that stably expressed wild-type human APP751. MT5-MMP fusion proteins were constructed that could localize enzyme production in the Golgi apparatus, endosome, ER, mitochondria, or plasma membrane. The fusion proteins significantly increased sAPPη when directed to the endosome, Golgi apparatus, plasma membrane, or mitochondria. Since the C-terminal region of MT5-MMP is responsible for its intracellular location and trafficking, this domain was used as the bait in a yeast two-hybrid screen to identify MT5-MMP protein partners in a human brain cDNA library. Identified binding partners included N4BP2L1, TMX3, EIG121, bridging Integrator 1 (BIN1), RUFY4, HTRA1, and TMEM199. The binding of N4BP2L1, EIG121, BIN1, or TMX3 to MT5-MMP resulted in the most significant increase in sAPPη production. Thus, the action of MT5-MMP on APP occurs in multiple locations within the cell and is facilitated by site-specific binding partners.
Collapse
Affiliation(s)
- Hongjie Wang
- Department of Chemistry & Biochemistry, Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, Florida, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Florida International University, Miami, Florida, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
250
|
Meshref M, Ghaith HS, Hammad MA, Shalaby MMM, Ayasra F, Monib FA, Attia MS, Ebada MA, Elsayed H, Shalash A, Bahbah EI. The Role of RIN3 Gene in Alzheimer's Disease Pathogenesis: a Comprehensive Review. Mol Neurobiol 2024; 61:3528-3544. [PMID: 37995081 PMCID: PMC11087354 DOI: 10.1007/s12035-023-03802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Alzheimer's disease (AD) is a globally prevalent form of dementia that impacts diverse populations and is characterized by progressive neurodegeneration and impairments in executive memory. Although the exact mechanisms underlying AD pathogenesis remain unclear, it is commonly accepted that the aggregation of misfolded proteins, such as amyloid plaques and neurofibrillary tau tangles, plays a critical role. Additionally, AD is a multifactorial condition influenced by various genetic factors and can manifest as either early-onset AD (EOAD) or late-onset AD (LOAD), each associated with specific gene variants. One gene of particular interest in both EOAD and LOAD is RIN3, a guanine nucleotide exchange factor. This gene plays a multifaceted role in AD pathogenesis. Firstly, upregulation of RIN3 can result in endosomal enlargement and dysfunction, thereby facilitating the accumulation of beta-amyloid (Aβ) peptides in the brain. Secondly, RIN3 has been shown to impact the PICLAM pathway, affecting transcytosis across the blood-brain barrier. Lastly, RIN3 has implications for immune-mediated responses, notably through its influence on the PTK2B gene. This review aims to provide a concise overview of AD and delve into the role of the RIN3 gene in its pathogenesis.
Collapse
Affiliation(s)
- Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Faris Ayasra
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Hanaa Elsayed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| |
Collapse
|