201
|
Ruby MA, Nomura DK, Hudak CSS, Barber A, Casida JE, Krauss RM. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes. PLoS One 2011; 6:e26415. [PMID: 22073164 PMCID: PMC3208546 DOI: 10.1371/journal.pone.0026415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023] Open
Abstract
Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes.
Collapse
Affiliation(s)
- Maxwell A. Ruby
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Daniel K. Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Carolyn S. S. Hudak
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Anne Barber
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - John E. Casida
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Ronald M. Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
202
|
Wiedmer P, Chaudhary N, Rath M, Yi CX, Ananthakrishnan G, Nogueiras R, Wirth EK, Kirchner H, Schweizer U, Jonas W, Veyrat-Durebex C, Rohner-Jeanrenaud F, Schürmann A, Joost HG, Tschöp MH, Perez-Tilve D. The HPA axis modulates the CNS melanocortin control of liver triacylglyceride metabolism. Physiol Behav 2011; 105:791-9. [PMID: 22061427 DOI: 10.1016/j.physbeh.2011.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/10/2011] [Accepted: 10/20/2011] [Indexed: 11/16/2022]
Abstract
The central melanocortin system regulates lipid metabolism in peripheral tissues such as white adipose tissue. Alterations in the activity of sympathetic nerves connecting hypothalamic cells expressing melanocortin 3/4 receptors (MC3/4R) with white adipocytes have been shown to partly mediate these effects. Interestingly, hypothalamic neurons producing corticotropin-releasing hormone and thyrotropin-releasing hormone co-express MC4R. Therefore we hypothesized that regulation of hypothalamo-pituitary adrenal (HPA) and hypothalamo-pituitary thyroid (HPT) axes activity by the central melanocortin system could contribute to its control of peripheral lipid metabolism. To test this hypothesis, we chronically infused rats intracerebroventricularly (i.c.v.) either with an MC3/4R antagonist (SHU9119), an MC3/4R agonist (MTII) or saline. Rats had been previously adrenalectomized (ADX) and supplemented daily with 1mg/kg corticosterone (s.c.), thyroidectomized (TDX) and supplemented daily with 10 μg/kgL-thyroxin (s.c.), or sham operated (SO). Blockade of MC3/4R signaling with SHU9119 increased food intake and body mass, irrespective of gland surgery. The increase in body mass was accompanied by higher epididymal white adipose tissue (eWAT) weight and higher mRNA content of lipogenic enzymes in eWAT. SHU9119 infusion increased triglyceride content in the liver of SO and TDX rats, but not in those of ADX rats. Concomitantly, mRNA expression of lipogenic enzymes in liver was increased in SO and TDX, but not in ADX rats. We conclude that the HPA and HPT axes do not play an essential role in mediating central melanocortinergic effects on white adipose tissue and liver lipid metabolism. However, while basal hepatic lipid metabolism does not depend on a functional HPA axis, the induction of hepatic lipogenesis due to central melanocortin system blockade does require a functional HPA axis.
Collapse
Affiliation(s)
- Petra Wiedmer
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
González CR, Novelle MG, Caminos JE, Vázquez MJ, Luque RM, López M, Nogueiras R, Diéguez C. Regulation of lipin1 by nutritional status, adiponectin, sex and pituitary function in rat white adipose tissue. Physiol Behav 2011; 105:777-83. [PMID: 22051776 DOI: 10.1016/j.physbeh.2011.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 08/16/2011] [Accepted: 10/13/2011] [Indexed: 11/30/2022]
Abstract
Lipin1 is a member of the lipin protein family that plays an important role in the regulation of lipid metabolism. The endogenous role of lipin1 was demonstrated by the fact that mutations in lipin1 caused lipodystrophy and metabolic disorders. The aim of this study was to assess the influence of nutritional status, pregnancy, insulin-sensitizers and pituitary hormones on lipin1 mRNA levels in adipose tissue of rats. Lipin1 gene expression was induced in conditions of hypoleptinemia (fasting) and leptin resistance (high fat diet), whereas it was decreased by high circulating leptin levels (leptin administration, pregnancy) and in leptin-deficient mice. Lipin1 mRNA levels were also decreased in adiponectin-deficient mice. Lipin1 mRNA levels are influenced by age in female rats, with peak expression at 25th day of life and decreasing thereafter. Consistently, ovariectomy increased lipin1 expression indicating that estrogens modulate lipin1. Finally, lipin1 was also regulated by pituitary hormones, since its expression was modified by thyroid status and growth hormone deficiency. Our observations indicate that: a) gWAT lipin1 mRNA levels are regulated by nutritional status, and leptin plays an important role in this regard, b) lipin1 is modulated by adiponectin, c) lipin1 is influenced by age and sex, and d) alterations in pituitary function modify lipin1 mRNA levels. To dissect the complicated interactions between key regulators of lipid metabolism like lipin1, may be important for the development of new therapies for the treatment and prevention of obesity and its associated disorders.
Collapse
Affiliation(s)
- C Ruth González
- Department of Physiology, School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov 2011; 6:995-1025. [DOI: 10.1517/17460441.2011.608063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
205
|
Vykoukal D, Davies MG. Vascular biology of metabolic syndrome. J Vasc Surg 2011; 54:819-31. [PMID: 21439758 PMCID: PMC3136643 DOI: 10.1016/j.jvs.2011.01.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/02/2011] [Accepted: 01/06/2011] [Indexed: 12/20/2022]
Abstract
The metabolic syndrome is a constellation of clinical risk factors comprising atherogenic dyslipidemia (low high-density lipoprotein and high triglycerides levels), elevated blood pressure, elevated plasma glucose, a prothrombotic state, and a proinflammatory state accompanied by an increased risk for cardiovascular disease and type 2 diabetes mellitus. The adipose tissue of obese humans contains increased numbers of macrophages, and once activated, these macrophages are responsible for the expression of most of the tissue's tumor necrosis factor (TNF)-α and interleukin (IL)-6. Chronic inflammation associated with visceral obesity induces altered lipoprotein metabolism and insulin resistance in the liver. Adipocytes secrete a variety of hormones, cytokines, growth factors, and other bioactive substances, conceptualized as adipocytokines, including plasminogen activator inhibitor 1 (PAI-1), TNF-α, leptin, and adiponectin. The dysregulation of these adipokines contributes to the pathogenesis of obesity. Adipose tissue-resident macrophages and adipocytes in the adipose tissue combined with the consequences of hyperglycemia, altered lipoproteins, and hyperinsulinemia in the vasculature and within organ microcirculation lead to dysfunctional endothelia and a proinflammatory state. Metabolic syndrome thus represents a combination of synergistic vascular pathologies that lead to an accelerated atherogenic state that compromises the ability of the patient to satisfactorily respond to humoral, cellular, and mechanical stresses.
Collapse
Affiliation(s)
- Daynene Vykoukal
- Vascular Biology and Therapeutics Program, The Methodist Hospital Research Institute, The Methodist Hospital, Houston, TX77030, USA
| | | |
Collapse
|
206
|
Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord 2011; 12:235-43. [PMID: 21713385 PMCID: PMC3253350 DOI: 10.1007/s11154-011-9190-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty acids released from white adipose tissue (WAT) provide important energy substrates during fasting. However, uncontrolled fatty acid release from WAT during non-fasting states causes lipotoxicity and promotes inflammation and insulin resistance, which can lead to and worsen type 2 diabetes (DM2). WAT is also a source for insulin sensitizing fatty acids such as palmitoleate produced during de novo lipogenesis. Insulin and leptin are two major hormonal adiposity signals that control energy homeostasis through signaling in the central nervous system. Both hormones have been implicated to regulate both WAT lipolysis and de novo lipogenesis through the mediobasal hypothalamus (MBH) in an opposing fashion independent of their respective peripheral receptors. Here, we review the current literature on brain leptin and insulin action in regulating WAT metabolism and discuss potential mechanisms and neuro-anatomical substrates that could explain the opposing effects of central leptin and insulin. Finally, we discuss the role of impaired hypothalamic control of WAT metabolism in the pathogenesis of insulin resistance, metabolic inflexibility and type 2 diabetes.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574, USA
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574, USA
| |
Collapse
|
207
|
Zhou X, Gomez-Smith M, Qin Z, Duquette PM, Cardenas-Blanco A, Rai PS, Harper ME, Tsai EC, Anisman H, Chen HH. Ablation of LMO4 in glutamatergic neurons impairs leptin control of fat metabolism. Cell Mol Life Sci 2011; 69:819-28. [PMID: 21874351 PMCID: PMC3276759 DOI: 10.1007/s00018-011-0794-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 12/19/2022]
Abstract
The LIM domain only 4 (LMO4) protein is expressed in the hypothalamus, but its function there is not known. Using mice with LMO4 ablated in postnatal glutamatergic neurons, including most neurons of the paraventricular (PVN) and ventromedial (VMH) hypothalamic nuclei where LMO4 is expressed, we asked whether LMO4 is required for metabolic homeostasis. LMO4 mutant mice exhibited early onset adiposity. These mice had reduced energy expenditure and impaired thermogenesis together with reduced sympathetic outflow to adipose tissues. The peptide hormone leptin, produced from adipocytes, activates Jak/Stat3 signaling at the hypothalamus to control food intake, energy expenditure, and fat metabolism. Intracerebroventricular infusion of leptin suppressed feeding similarly in LMO4 mutant and control mice. However, leptin-induced fat loss was impaired and activation of Stat3 in the VMH was blunted in these mice. Thus, our study identifies LMO4 as a novel modulator of leptin function in selective hypothalamic nuclei to regulate fat metabolism.
Collapse
Affiliation(s)
- Xun Zhou
- Centre for Stroke Recovery, Neuroscience, Ottawa Health Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Quarta C, Mazza R, Obici S, Pasquali R, Pagotto U. Energy balance regulation by endocannabinoids at central and peripheral levels. Trends Mol Med 2011; 17:518-26. [PMID: 21816675 DOI: 10.1016/j.molmed.2011.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 12/24/2022]
Abstract
Dysregulation of the endocannabinoid system (ECS) is a universal and, perhaps, causative feature of obesity. Central nervous system (CNS) circuits that regulate food intake were initially believed to be the targets for dysregulation. However, it is increasingly evident that endocannabinoids affect food intake, energy expenditure and substrate metabolism by acting on peripheral sites. Cannabinoid type 1 receptor (CB1r) antagonists can effectively treat obesity and associated metabolic alterations but, unfortunately, cause and exacerbate mood disorders. Drugs restricted to act on peripheral CB1rs might be safer and more effective, retaining the anti-obesity effects but lacking the adverse neurodepressive reactions. This review summarizes the emerging roles of the ECS in energy balance and discusses future pharmacological approaches for developing peripherally restricted CB1r antagonists.
Collapse
Affiliation(s)
- Carmelo Quarta
- Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna 40138, Italy
| | | | | | | | | |
Collapse
|
209
|
Kunos G, Tam J. The case for peripheral CB₁ receptor blockade in the treatment of visceral obesity and its cardiometabolic complications. Br J Pharmacol 2011; 163:1423-31. [PMID: 21434882 PMCID: PMC3165952 DOI: 10.1111/j.1476-5381.2011.01352.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 12/22/2022] Open
Abstract
In this review, we consider the role of endocannabinoids and cannabinoid-1 (CB(1)) cannabinoid receptors in metabolic regulation and as mediators of the thrifty phenotype that underlies the metabolic syndrome. We survey the actions of endocannabinoids on food intake and body weight, as well as on the metabolic complications of visceral obesity, including fatty liver, insulin resistance and dyslipidemias. Special emphasis is placed on weighing the relative importance of CB(1) receptors located in peripheral tissues versus the central nervous system in mediating the metabolic effects of endocannabinoids. Finally, we review recent observations that indicate that peripherally restricted CB(1) receptor antagonists retain efficacy in reducing weight and improving metabolic abnormalities in mouse models of obesity without causing behavioural effects predictive of neuropsychiatric side effects in humans.
Collapse
Affiliation(s)
- George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|
210
|
Tiano JP, Delghingaro-Augusto V, Le May C, Liu S, Kaw MK, Khuder SS, Latour MG, Bhatt SA, Korach KS, Najjar SM, Prentki M, Mauvais-Jarvis F. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes. J Clin Invest 2011; 121:3331-42. [PMID: 21747171 PMCID: PMC3148728 DOI: 10.1172/jci44564] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 05/18/2011] [Indexed: 12/11/2022] Open
Abstract
The failure of pancreatic β cells to adapt to an increasing demand for insulin is the major mechanism by which patients progress from insulin resistance to type 2 diabetes (T2D) and is thought to be related to dysfunctional lipid homeostasis within those cells. In multiple animal models of diabetes, females demonstrate relative protection from β cell failure. We previously found that the hormone 17β-estradiol (E2) in part mediates this benefit. Here, we show that treating male Zucker diabetic fatty (ZDF) rats with E2 suppressed synthesis and accumulation of fatty acids and glycerolipids in islets and protected against β cell failure. The antilipogenic actions of E2 were recapitulated by pharmacological activation of estrogen receptor α (ERα) or ERβ in a rat β cell line and in cultured ZDF rat, mouse, and human islets. Pancreas-specific null deletion of ERα in mice (PERα-/-) prevented reduction of lipid synthesis by E2 via a direct action in islets, and PERα-/- mice were predisposed to islet lipid accumulation and β cell dysfunction in response to feeding with a high-fat diet. ER activation inhibited β cell lipid synthesis by suppressing the expression (and activity) of fatty acid synthase via a nonclassical pathway dependent on activated Stat3. Accordingly, pancreas-specific deletion of Stat3 in mice curtailed ER-mediated suppression of lipid synthesis. These data suggest that extranuclear ERs may be promising therapeutic targets to prevent β cell failure in T2D.
Collapse
Affiliation(s)
- Joseph P. Tiano
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Viviane Delghingaro-Augusto
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cedric Le May
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Suhuan Liu
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Meenakshi K. Kaw
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Saja S. Khuder
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Martin G. Latour
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Surabhi A. Bhatt
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenneth S. Korach
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sonia M. Najjar
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc Prentki
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
Molecular Nutrition Unit, Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.
Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine, Toledo, Ohio, USA.
National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.
Comprehensive Center on Obesity, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
211
|
Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 2011; 22:275-85. [PMID: 21489811 PMCID: PMC5154334 DOI: 10.1016/j.tem.2011.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 03/05/2011] [Indexed: 12/17/2022]
Abstract
Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis.
Collapse
Affiliation(s)
- Joseph S Marino
- Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH 43614, USA
| | | | | |
Collapse
|
212
|
Abstract
Nutrient excess in obesity and diabetes is emerging as a common putative cause for multiple deleterious effects across diverse cell types, responsible for a variety of metabolic dysfunctions. The hypothalamus is acknowledged as an important regulator of whole-body energy homeostasis, through both detection of nutrient availability and coordination of effectors that determine nutrient intake and utilization, thus preventing cellular and whole-body nutrient excess. However, the mechanisms underlying hypothalamic nutrient detection and its impact on peripheral nutrient utilization remain poorly understood. Recent data suggest a role for thioredoxin-interacting protein (TXNIP) as a molecular nutrient sensor important in the regulation of energy metabolism, but the role of hypothalamic TXNIP in the regulation of energy balance has not been evaluated. Here we show in mice that TXNIP is expressed in nutrient-sensing neurons of the mediobasal hypothalamus, responds to hormonal and nutrient signals, and regulates adipose tissue metabolism, fuel partitioning, and glucose homeostasis. Hypothalamic expression of TXNIP is induced by acute nutrient excess and in mouse models of obesity and diabetes, and downregulation of mediobasal hypothalamic TXNIP expression prevents diet-induced obesity and insulin resistance. Thus, mediobasal hypothalamic TXNIP plays a critical role in nutrient sensing and the regulation of fuel utilization.
Collapse
|
213
|
Zhang Y, Zhu J, Wang C, Sun J, Lai X, Xu Y, Lan X, Lei C, Zhang C, Yang D, Chen H. Exploring polymorphisms of the bovine RARRES2 gene and their associations with growth traits. Mol Biol Rep 2011; 39:2305-11. [PMID: 21687971 DOI: 10.1007/s11033-011-0980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 05/26/2011] [Indexed: 12/30/2022]
Abstract
Retinoic acid receptor responder 2 gene (RARRES2) encodes a novel adipokine protein that plays a crucial role in regulating several biological processes, including immune responses, adipocyte differentiation, type 2 diabetes and metabolic syndrome. In this paper, polymorphisms of the bovine RARRES2 gene were detected in 1300 individuals from six breeds by DNA pooling, CRS-PCR-RFLP and DNA sequencing methods. The results showed that NC_007302:g.117035859A>G, 117035706G>A and 117034290A>G were in the coding region, which resulted in three synonymous mutations and only 117033779C>G was in the 3' UTR. Additionally, associations of the four novel SNPs with growth traits were analyzed in Nanyang cattle up to 2 years of age. In P1-PvuII locus, individuals with genotype BC had greater body height and hucklebone width than those with genotype AA, AC and AB at the age of 24 months. In P3-BamHI locus, individuals with genotype AG had higher hucklebone width than those with genotype GG at the age of 24 months. However, no statistically significant differences were observed in P5-SmaI locus. These results indicated that RARRES2 gene might be a potential candidate gene for marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Ya Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, 712100 Shaanxi, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Intracerebroventricular leptin administration differentially alters cardiac energy metabolism in mice fed a low-fat and high-fat diet. J Cardiovasc Pharmacol 2011; 57:103-13. [PMID: 20980918 DOI: 10.1097/fjc.0b013e31820014f9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leptin directly acts on peripheral tissues and alters energy metabolism in obese mice. It also has acute beneficial effects on these tissues via its hypothalamic action. However, it is not clear what effect chronic intracerebroventrical (ICV) leptin administration has on cardiac energy metabolism. We examined the effects of chronic ICV leptin on glucose and fatty acid metabolism in isolated working hearts from high-fat-fed and low-fat-fed mice. Mice were fed a high-fat (60% calories from fat) or low-fat (10% calories from fat) diet for 8 weeks before ICV leptin (5 [mu]g/d) for 7 days. In low-fat-fed mice, leptin increased glucose oxidation rates in isolated working hearts when compared with control [203 +/- 21 vs. 793 +/- 93 nmol[middle dot](g dry weight)-1[middle dot]min-1]. In high-fat-fed mice leptin inhibited fatty acid oxidation [476 +/- 73 vs. 251 +/- 38 nmol[middle dot](g[middle dot]dry[middle dot]wt)-1[middle dot]min-1]. The increase in glucose oxidation in low-fat-fed mice was accompanied by increased pyruvate dehydrogenase activity. In high-fat-fed mice, leptin increased cardiac malonyl coenzyme A levels, secondary to a decrease in malonyl coenzyme A decarboxylase expression. These results suggest that ICV leptin alters cardiac energy metabolism opposite to its peripheral effects and that these effects differ depending on energy substrate supply to the mice.
Collapse
|
215
|
Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest 2011; 121:2087-93. [PMID: 21633176 DOI: 10.1172/jci45888] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cloned in 1994, the ob gene encodes the protein hormone leptin, which is produced and secreted by white adipose tissue. Since its discovery, leptin has been found to have profound effects on behavior, metabolic rate, endocrine axes, and glucose fluxes. Leptin deficiency in mice and humans causes morbid obesity, diabetes, and various neuroendocrine anomalies, and replacement leads to decreased food intake, normalized glucose homeostasis, and increased energy expenditure. Here, we provide an update on the most current understanding of leptin-sensitive neural pathways in terms of both anatomical organization and physiological roles.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
216
|
Gallagher EJ, Leroith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. ACTA ACUST UNITED AC 2011; 77:511-23. [PMID: 20960553 DOI: 10.1002/msj.20212] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic syndrome.
Collapse
|
217
|
Sahu A. Intracellular leptin-signaling pathways in hypothalamic neurons: the emerging role of phosphatidylinositol-3 kinase-phosphodiesterase-3B-cAMP pathway. Neuroendocrinology 2011; 93:201-10. [PMID: 21464566 PMCID: PMC3130491 DOI: 10.1159/000326785] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/24/2011] [Indexed: 01/02/2023]
Abstract
Leptin is secreted primarily by fat cells and acts centrally, particularly in the hypothalamus, to reduce food intake and body weight. Besides the classical JAK2 (Janus kinase-2)-STAT3 (signal transducer and activator of transcription-3) pathway, several non-STAT3 pathways play an important role in mediating leptin signaling in the hypothalamus. We have demonstrated that leptin action in the hypothalamus is mediated by an insulin-like signaling pathway involving stimulation of PI3K (phosphatidylinositol-3 kinase) and PDE3B (phosphodiesterase-3B), and reduction in cAMP levels, and that a PI3K-PDE3B-cAMP pathway interacting with the JAK2-STAT3 pathway constitutes a critical component of leptin signaling in the hypothalamus. It appears that defective regulation of multiple signaling pathways in the hypothalamus causes central leptin resistance, a major cause of obesity. In this regard, we have shown that leptin resistance in hypothalamic neurons following chronic central infusion of this hormone is associated with a defect in the PI3K-PDE3B-cAMP, and not due to compromised signaling in the JAK2-STAT3 pathway. Similarly, the PI3K, but not the STAT3, pathway is impaired in the hypothalamus during the development of diet-induced obesity. Additionally, our recent work suggests that suppressor of cytokine signaling-3 negatively regulates the PI3K pathway of leptin signaling in the hypothalamus, a mechanism expected to play a significant role in diet-induced obesity. Together, the PI3K-PDE3B-cAMP pathway appears to emerge as a major mechanism of leptin signaling in the hypothalamus in regulating energy balance.
Collapse
Affiliation(s)
- Abhiram Sahu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|
218
|
Bonzón-Kulichenko E, Fernández-Agulló T, Moltó E, Serrano R, Fernández A, Ros M, Carrascosa JM, Arribas C, Martínez C, Andrés A, Gallardo N. Regulation of insulin-stimulated glucose uptake in rat white adipose tissue upon chronic central leptin infusion: effects on adiposity. Endocrinology 2011; 152:1366-77. [PMID: 21285320 DOI: 10.1210/en.2010-0858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin enhances the glucose utilization in most insulin target tissues and paradoxically decreases it in white adipose tissue (WAT), but knowledge of the mechanisms underlying the inhibitory effect of central leptin on the insulin-dependent glucose uptake in WAT is limited. After 7 d intracerebroventricular leptin treatment (0.2 μg/d) of rats, the overall insulin sensitivity and the responsiveness of WAT after acute in vivo insulin administration were analyzed. We also performed unilateral WAT denervation to clarify the role of the autonomic nervous system in leptin effects on the insulin-stimulated [(3)H]-2-deoxyglucose transport in WAT. Central leptin improved the overall insulin sensitivity but decreased the in vivo insulin action in WAT, including insulin receptor autophosphorylation, insulin receptor substrate-1 tyrosine-phosphorylation, and Akt activation. In this tissue, insulin receptor substrate-1 and glucose transporter 4 mRNA and protein levels were down-regulated after central leptin treatment. Additionally, a remarkable up-regulation of resistin, together with an augmented expression of suppressor of cytokine signaling 3 in WAT, was also observed in leptin-treated rats. As a result, the insulin-stimulated glucose transporter 4 insertion at the plasma membrane and the glucose uptake in WAT were impaired in leptin-treated rats. Finally, denervation of WAT abolished the inhibitory effect of central leptin on glucose transport and decreased suppressor of cytokine signaling 3 and resistin levels in this tissue, suggesting that resistin, in an autocrine/paracrine manner, might be a mediator of central leptin antagonism of insulin action in WAT. We conclude that central leptin, inhibiting the insulin-stimulated glucose uptake in WAT, may regulate glucose availability for triacylglyceride formation and accumulation in this tissue, thereby contributing to the control of adiposity.
Collapse
Affiliation(s)
- Elena Bonzón-Kulichenko
- Area de Bioquímica, Facultad de Químicas, Regional Centre for Biomedical Research, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
O'Hare JD, Zielinski E, Cheng B, Scherer T, Buettner C. Central endocannabinoid signaling regulates hepatic glucose production and systemic lipolysis. Diabetes 2011; 60:1055-62. [PMID: 21447652 PMCID: PMC3064079 DOI: 10.2337/db10-0962] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The endocannabinoid (EC) system has been implicated as an important regulator of energy homeostasis. In obesity and type 2 diabetes, EC tone is elevated in peripheral tissues including liver, muscle, fat, and also centrally, particularly in the hypothalamus. Cannabinoid receptor type 1 (CB₁) blockade with the centrally and peripherally acting rimonabant induces weight loss and improves glucose homeostasis while also causing psychiatric adverse effects. The relative contributions of peripheral versus central EC signaling on glucose homeostasis remain to be elucidated. The aim of this study was to test whether the central EC system regulates systemic glucose fluxes. RESEARCH DESIGN AND METHODS We determined glucose and lipid fluxes in male Sprague-Dawley rats during intracerebroventricular infusions of either WIN55,212-2 (WIN) or arachidonoyl-2'-chloroethylamide (ACEA) while controlling circulating insulin and glucose levels through hyperinsulinemic, euglycemic clamp studies. Conversely, we fed rats a high-fat diet for 3 days and then blocked central EC signaling with an intracerebroventricular infusion of rimonabant while assessing glucose fluxes during a clamp. RESULTS Central CB₁ activation is sufficient to impair glucose homeostasis. Either WIN or ACEA infusions acutely impaired insulin action in both liver and adipose tissue. Conversely, in a model of overfeeding-induced insulin resistance, CB₁ antagonism restored hepatic insulin sensitivity. CONCLUSIONS Thus central EC tone plays an important role in regulating hepatic and adipose tissue insulin action. These results indicate that peripherally restricted CB₁ antagonists, which may lack psychiatric side effects, are also likely to be less effective than brain-permeable CB₁ antagonists in ameliorating insulin resistance.
Collapse
Affiliation(s)
- James D O'Hare
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | | | |
Collapse
|
220
|
Yarandi SS, Hebbar G, Sauer CG, Cole CR, Ziegler TR. Diverse roles of leptin in the gastrointestinal tract: modulation of motility, absorption, growth, and inflammation. Nutrition 2011; 27:269-75. [PMID: 20947298 PMCID: PMC3066025 DOI: 10.1016/j.nut.2010.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Leptin was discovered in 1994 as a hormone produced by adipose tissue with a modulatory effect on feeding behavior and weight control. Recently, the stomach has been identified as an important source of leptin and growing evidence has shown diverse functions for leptin in the gastrointestinal tract. METHODS Using leptin as a keyword in PubMed, more than 17 000 articles were identified, of which more than 500 articles were related to the role of leptin in the gastrointestinal tract. Available abstracts were reviewed and more than 200 original articles were reviewed in detail. RESULTS The available literature demonstrated that leptin can modulate several important functions of the gastrointestinal tract. Leptin interacts with the vagus nerve and cholecystokinin to delay gastric emptying and has a complex effect on motility of the small bowel. Leptin modulates absorption of macronutrients in the gastrointestinal tract differentially in physiologic and pathologic states. In physiologic states, exogenous leptin has been shown to decrease carbohydrate absorption and to increase the absorption of small peptides by the PepT1 di-/tripeptide transporter. In certain pathologic states, leptin has been shown to increase absorption of carbohydrates, proteins, and fat. Leptin has been shown to be upregulated in the colonic mucosa in patients with inflammatory bowel disease. Leptin stimulates gut mucosal cell proliferation and inhibits apoptosis. These functions have led to speculation about the role of leptin in tumorigenesis in the gastrointestinal tract, which is complicated by the multiple immunoregulatory effects of leptin. CONCLUSION Leptin is an important modulator of major aspects of gastrointestinal tract functions, independent of its more well-described roles in appetite regulation and obesity.
Collapse
Affiliation(s)
- Shadi S. Yarandi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Gautam Hebbar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Cary G. Sauer
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Conrad R. Cole
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Thomas R. Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
221
|
Li X, Wu X, Camacho R, Schwartz GJ, LeRoith D. Intracerebroventricular leptin infusion improves glucose homeostasis in lean type 2 diabetic MKR mice via hepatic vagal and non-vagal mechanisms. PLoS One 2011; 6:e17058. [PMID: 21379576 PMCID: PMC3040739 DOI: 10.1371/journal.pone.0017058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 01/17/2011] [Indexed: 12/28/2022] Open
Abstract
MKR mice, lacking insulin-like growth factor 1 receptor (IGF-1R) signaling in skeletal muscle, are lean yet hyperlipidemic, hyperinsulinemic, and hyperglycemic, with severe insulin resistance and elevated hepatic and skeletal muscle levels of triglycerides. We have previously shown that chronic peripheral administration of the adipokine leptin improves hepatic insulin sensitivity in these mice independently of its effects on food intake. As central leptin signaling has been implicated in the control of peripheral glucose homeostasis, here we examined the ability of central intracerebroventricular leptin administration to affect energy balance and peripheral glucose homeostasis in non-obese diabetic male MKR mice. Central leptin significantly reduced food intake, body weight gain and adiposity, as well as serum glucose, insulin, leptin, free fatty acid and triglyceride levels relative to ACSF treated controls. These reductions were accompanied by increased fat oxidation as measured by indirect calorimetry, as well as increased oxygen consumption. Central leptin also improved glucose tolerance and hepatic insulin sensitivity determined using the euglycemic-hyperinsulinemic clamps relative to pair fed vehicle treated controls, as well as increasing the rate of glucose disappearance. Hepatic vagotomy only partially reversed the ability of central leptin to improve glucose tolerance. These results demonstrate that central leptin dramatically improves insulin sensitivity independently of its effects on food intake, in a lean mouse model of type 2 diabetes. The findings also suggest that: 1) both hepatic vagal and non-vagal pathways contribute to this improvement, and 2) central leptin alters glucose disposal in skeletal muscle in this model.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Drug Evaluation, Preclinical
- Glucose/metabolism
- Homeostasis/drug effects
- Infusions, Intraventricular
- Leptin/administration & dosage
- Leptin/pharmacology
- Liver/drug effects
- Liver/innervation
- Liver/metabolism
- Liver/physiopathology
- Male
- Mice
- Mice, Knockout
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thinness/metabolism
- Thinness/pathology
- Vagus Nerve/drug effects
- Vagus Nerve/metabolism
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Xiaosong Li
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xhiping Wu
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raul Camacho
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary J. Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Derek LeRoith
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
222
|
Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, Zielinski E, Vempati P, Su K, Dighe S, Milsom T, Puchowicz M, Scheja L, Zechner R, Fisher SJ, Previs SF, Buettner C. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 2011; 13:183-94. [PMID: 21284985 PMCID: PMC3061443 DOI: 10.1016/j.cmet.2011.01.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/14/2010] [Accepted: 12/06/2010] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - James O’Hare
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Kelly Diggs-Andrews
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A- 8010 Graz, Austria
| | - Bob Cheng
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Claudia Lindtner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Elizabeth Zielinski
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Prashant Vempati
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Kai Su
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Shveta Dighe
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Thomas Milsom
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| | - Michelle Puchowicz
- Department of Nutrition and Mouse Metabolic Phenotyping Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Biology II, University Medical Center, 20246 Hamburg, Germany
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A- 8010 Graz, Austria
| | - Simon J. Fisher
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Stephen F. Previs
- Department of Nutrition and Mouse Metabolic Phenotyping Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574
| |
Collapse
|
223
|
Diéguez C, Vazquez MJ, Romero A, López M, Nogueiras R. Hypothalamic control of lipid metabolism: focus on leptin, ghrelin and melanocortins. Neuroendocrinology 2011; 94:1-11. [PMID: 21576929 DOI: 10.1159/000328122] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/02/2011] [Indexed: 11/19/2022]
Abstract
The hypothalamus plays a crucial role in the regulation of food intake and energy expenditure. One of the main regulatory factors within the hypothalamus is AMP-activated protein kinase (AMPK), which is involved in a large number of biological actions including the modulation of energy balance. Leptin and ghrelin-induced changes in hypothalamic AMPK lead to important alterations in hypothalamic fatty acid metabolism. Furthermore, it is well known that the hypothalamus controls peripheral lipid metabolism through the sympathetic nervous system, and those actions are independent of food intake. In this short review, we highlight the main molecular pathways triggered by leptin and ghrelin altering both central and peripheral lipid metabolism and, therefore, controlling feeding behavior and energy expenditure.
Collapse
Affiliation(s)
- Carlos Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain. carlos.dieguez @ usc.es
| | | | | | | | | |
Collapse
|
224
|
The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6:392. [PMID: 20664638 PMCID: PMC2925525 DOI: 10.1038/msb.2010.46] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 05/20/2010] [Indexed: 12/05/2022] Open
Abstract
We investigated several models of gut microbiota modulation: selective (prebiotics, probiotics, high-fat), drastic (antibiotics, germ-free mice) and mice bearing specific mutations of a key gene involved in the toll-like receptors (TLR) bacteria-host interaction (Myd88−/−). Here we report that gut microbiota modulates the intestinal endocannabinoid (eCB) system-tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The activation of the intestinal endocannabinoid system increases gut permeability which in turn enhances plasma LPS levels and inflammation in physiological and pathological conditions such as obesity and type 2 diabetes. The investigation of adipocyte differentiation and lipogenesis (both markers of adipogenesis) indicate that gut microbiota controls adipose tissue physiology through LPS-eCB system regulatory loops and may play a critical role in the adipose tissue plasticity during obesity. In vivo, ex vivo and in vitro studies indicate that LPS acts as a master switch on adipose tissue metabolism, by blocking the cannabinoid-driven adipogenesis.
Obesity and type II diabetes have reached epidemic proportions and are associated with a massive expansion of the adipose tissue. Recent data have shown that these metabolic disorders are characterised by low-grade inflammation of unknown molecular origin (Hotamisligil and Erbay, 2008; Shoelson and Goldfine, 2009); therefore, it is of the utmost importance to identify the link between inflammation and adipose tissue metabolism and plasticity. Among the latest important discoveries published in the field, two new concepts have driven this study. First, emerging data have shown that gut microbiota is involved in the control of energy homeostasis (Ley et al, 2005; Turnbaugh et al, 2006; Claus et al, 2008) Obesity is characterised by the massive expansion of adipose tissues and is associated with inflammation (Weisberg et al, 2003). It is possible that both this expansion and the associated inflammation are controlled by microbiota and lipopolysaccharide (LPS) (Cani et al, 2007a, 2008), a cell wall component of Gram-negative bacteria that is among the most potent inducers of inflammation (Cani et al, 2007a, 2007b, 2008; Cani and Delzenne, 2009). Second, obesity is also characterised by greater endocannabinoid (eCB) system tone (increased eCB plasma levels, altered expression of the cannabinoid receptor 1 (CB1 mRNA) and increased eCB levels in the adipose tissue) (Engeli et al, 2005; Bluher et al, 2006; Matias et al, 2006; Cote et al, 2007; D'Eon et al, 2008; Starowicz et al, 2008; Di Marzo et al, 2009; Izzo et al, 2009). Several studies have suggested a close relationship between LPS, gut microbiota and the eCB system. Indeed, LPS controls the synthesis of eCB in macrophages, whereas macrophage infiltration in the adipose tissue occurring during obesity is an important factor in the development of the metabolic disorders (Weisberg et al, 2003). We have shown that macrophage infiltration is not only dependent on the activation of the receptor CD14 by LPS, but is also dependent on the gut microbiota composition and the gut barrier function (gut permeability) (Cani et al, 2007a, 2008). Moreover, LPS controls the synthesis of eCBs both in vivo (Hoareau et al, 2009) and in vitro (Di Marzo et al, 1999; Maccarrone et al, 2001) through mechanisms dependent of the LPS receptor signalling pathway (Liu et al, 2003). Thus, obesity is nowadays associated with changes in gut microbiota and a higher endocannabinoid system tone, both having a function in the disease's pathophysiology. Given that the convergent molecular mechanisms that may affect these different supersystem activities and adiposity remain to be elucidated, we tested the hypothesis that the gut microbiota and the eCB system control gut permeability and adipogenesis, by a LPS-dependent mechanism, under both physiological and obesity-related conditions. First, we found that high-fat diet-induced obese and diabetic animals exhibit threefold higher colonic CB1 mRNA, whereas no modification was observed in the small intestinal segment (jejunum). Moreover, selective modulation of gut microbiota using prebiotics (i.e. non-digestible compounds fermented by specific bacteria in the gut) (Gibson and Roberfroid, 1995) reduces by about one half this effect. Similarly, in genetically obese mice (ob/ob), prebiotic treatment decreases colonic CB1 mRNA and colonic eCB concentrations (AEA) (Figure 2A). In addition, we have observed a modulation of FAAH and MGL mRNA (Figure 2A). Furthermore, we have found that antibiotic treatment decreasing the number of gut bacteria content was associated with a strong reduction of the CB1 receptor levels in the colon of healthy mice. Second, we show that the endocannabinoid system controls gut barrier function (in vivo and in vitro) and endotoxaemia. More precisely, we designed two in vivo experiments in obese and lean mice (Figure 2). In a first experiment, we blocked the CB1 receptor in obese mice with a specific and selective antagonist (SR141716A) and found that the blockade of the CB1 receptor reduces plasma LPS levels by a mechanism linked to the improvement of the gut barrier function (Figure 2C) as shown by the lower alteration of tight junctions proteins (zonula occludens-1 (ZO-1) and occludin) distribution and localisation, and independently of food intake behaviour (Figures 2D and 3). In a second set of experiments performed in lean wild-type mice, we mimicked the increased eCB system tone observed during obesity by chronic (4-week) infusion of a cannabinoid receptor agonist (HU-210) through mini-pumps implanted subcutaneously. We found that cannabinoid agonist administration significantly increased plasma LPS levels. Furthermore, increased plasma fluorescein isothiocyanate-dextran levels were observed after oral gavage (Figure 2F and G). These sets of in vivo experiments strongly suggest that an overactive eCB system increases gut permeability. Finally, in a cellular model of intestinal epithelial barrier (Caco-2 cells monolayer), we found that CB1 receptor antagonist normalised LPS and the cannabinoid receptors agonist HU-210-induced epithelial barrier alterations. Third, we provide evidence that adipogenesis is under the control of the gut microbiota, through the modulation of the gut and adipose tissue endocannabinoid systems in both physiological and pathological conditions. We found that the higher eCB system tone (found in obesity or mimicked by eCB agonist) participates to the regulation of adipogenesis by directly acting on the adipose tissue, but also indirectly by increasing plasma LPS levels, which consequently impair adipogenesis and promote inflammatory states. Here, we found that both the specific modulation of the gut microbiota and the blockade of the CB1 receptor decrease plasma LPS levels and is associated with higher adipocyte differentiation and lipogenesis rate. One possible explanation for these surprising data could be as follows: plasma LPS levels might be under the control of CB1 in the intestine (gut barrier function); therefore, under particular pathophysiological conditions in vivo (e.g. obesity/type II diabetes), this could lead to higher circulating LPS levels. Furthermore, CB1 receptor blockade might paradoxically increase adipogenesis because of the ability of CB1 antagonist to reduce gut permeability and counteract the LPS-induced inhibitory effect on adipocyte differentiation and lipogenesis (i.e. a disinhibition mechanism). In summary, given that these treatments reduce gut permeability and, hence, plasma LPS levels and inflammatory tone, we hypothesised that LPS could act as a regulator in this process. This hypothesis was further supported in vitro and in vivo by the observation that cannabinoid-induced adipocyte differentiation and lipogenesis were directly altered (i.e. reduced) in the presence of physiological levels of LPS. In summary, because these treatments reduce gut permeability, hence, plasma LPS and inflammatory tone, we hypothesised that LPS acts as a regulator in this process. Altogether, our data provide the evidence that the consequences of obesity and gut microbiota dysregulation on gut permeability and metabolic endotoxaemia are clearly mediated by the eCB system, those observed on adiposity are likely the result of two systems interactions: LPS-dependent pathways activities and eCB system tone dysregulation (Figure 9). Our results indicate that the endocannabinoid system tone and the plasma LPS levels have a critical function in the regulation of the adipose tissue plasticity. As obesity is commonly characterised by increased eCB system tone, higher plasma LPS levels, altered gut microbiota and impaired adipose tissue metabolism, it is likely that the increased eCB system tone found in obesity is caused by a failure or a vicious cycle within the pathways controlling the eCB system. These findings show that two novel therapeutic targets in the treatment of obesity, the gut microbiota and the endocannabinoid system, are closely interconnected. They also provide evidence for the presence of a new integrative physiological axis between gut and adipose tissue regulated by LPS and endocannabinoids. Finally, we propose that the increased endotoxaemia and endocannabinoid system tone found in obesity might explain the altered adipose tissue metabolism. Obesity is characterised by altered gut microbiota, low-grade inflammation and increased endocannabinoid (eCB) system tone; however, a clear connection between gut microbiota and eCB signalling has yet to be confirmed. Here, we report that gut microbiota modulate the intestinal eCB system tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The impact of the increased plasma LPS levels and eCB system tone found in obesity on adipose tissue metabolism (e.g. differentiation and lipogenesis) remains unknown. By interfering with the eCB system using CB1 agonist and antagonist in lean and obese mouse models, we found that the eCB system controls gut permeability and adipogenesis. We also show that LPS acts as a master switch to control adipose tissue metabolism both in vivo and ex vivo by blocking cannabinoid-driven adipogenesis. These data indicate that gut microbiota determine adipose tissue physiology through LPS-eCB system regulatory loops and may have critical functions in adipose tissue plasticity during obesity.
Collapse
|
225
|
Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 2010; 1212:97-113. [PMID: 21070248 DOI: 10.1111/j.1749-6632.2010.05799.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The obesity and diabetes pandemics have made it an urgent necessity to define the central nervous system (CNS) pathways controlling body weight, energy expenditure, and fuel metabolism. The pancreatic hormone insulin and the adipose tissue-derived leptin are known to act on diverse neuronal circuits in the CNS to maintain body weight and metabolism in a variety of species, including humans. Because these homeostatic circuits are disrupted during the development of obesity, the pathomechanisms leading to CNS leptin and insulin resistance are a focal point of research. In this review, we summarize the recent findings concerning the mechanisms and novel neuronal mediators of both insulin and leptin action in the CNS.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47a, Cologne, Germany
| | | |
Collapse
|
226
|
Yamamoto N, Kanemoto Y, Ueda M, Kawasaki K, Fukuda I, Ashida H. Anti-obesity and anti-diabetic effects of ethanol extract of Artemisia princeps in C57BL/6 mice fed a high-fat diet. Food Funct 2010; 2:45-52. [PMID: 21773585 DOI: 10.1039/c0fo00129e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Artemisia princeps is commonly used as a food ingredient and in traditional Asian medicine. In this study, we examined the effects of long-term administration of an ethanol extract of A. princeps (APE) on body weight, white adipose tissue, blood glucose, insulin, plasma and hepatic lipids, and adipocytokines in C57BL/6 mice fed a high-fat diet. Daily feeding of a 1% APE diet for 14 weeks normalized elevated body weight, white adipose tissue, and plasma glucose and insulin levels, and delayed impaired glucose tolerance in mice a fed high-fat diet. These events were not observed in mice fed a control diet containing 1% APE. Liver triglyceride and cholesterol levels were similar in mice fed a 1% APE-diet and those fed a control diet. In the high-fat diet groups, APE inhibited hepatic fatty acid synthase (FAS) and suppressed the elevation of plasma leptin, but had no effect on adiponectin levels. These findings suggest that the regulation of leptin secretion by APE may inhibit FAS activity with subsequent suppression of triglyceride accumulation in the liver and adipose tissues. Inhibition of lipid accumulation can, in turn, lead to improvements in impaired glucose tolerance.
Collapse
Affiliation(s)
- Norio Yamamoto
- Food Science Research Center, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo 664-0011, Japan.
| | | | | | | | | | | |
Collapse
|
227
|
Parisi P, Verrotti A, Paolino MC, Miano S, Urbano A, Bernabucci M, Villa MP. Cognitive profile, parental education and BMI in children: reflections on common neuroendrocrinobiological roots. J Pediatr Endocrinol Metab 2010; 23:1133-41. [PMID: 21284326 DOI: 10.1515/jpem.2010.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Overweight and obesity may be associated with cognitive problems and both may share "neuroendocrinobiological roots" in common cerebral areas. We investigated intellectual performances and a possible "specific cognitive profile" in overweight/obese children. A cross-sectional study was conducted on 898 school children (6 to 13 years) attending primary schools. Wechsler Intelligence Scale for Children-revised (WISC-R) revealed significant differences in performance intelligence quotient (PIQ) scores between body mass index (BMI) subgroups (p < 0.01). Regression analysis identified BMI as the only variable significantly related to PIQ (p < 0.05). Gender (p < 0.05) and parental educational score (p < 0.001) were significantly related to verbal intelligence quotient (VIQ). Parental educational score was the only factor significantly related to total intelligence quotient (TIQ) (p < 0.05). Parental education seems to play a major role in TIQ and VIQ; a lower PIQ score is clearly related to a higher BMI. A routine neurocognitive assessment in overweight/obese children is recommended. Finally, we have added some reflections on common neuroendocrinobiological roots.
Collapse
Affiliation(s)
- Pasquale Parisi
- Child Neurology, Paediatric Sleep Centre and Pediatric Endocrinology Division, Chair of Paediatrics, II Faculty of Medicine, Sapienza University c/o Sant Andrea Hospital, Via di Grottarossa, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
228
|
Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm 2010; 2010:535918. [PMID: 20847813 PMCID: PMC2929614 DOI: 10.1155/2010/535918] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/10/2010] [Accepted: 06/17/2010] [Indexed: 02/08/2023] Open
Abstract
Obesity, the most common nutritional disorder in industrialized countries, is associated with an increased mortality and morbidity of cardiovascular disease (CVD). Obesity is primarily considered to be a disorder of energy balance, and it has recently been suggested that some forms of obesity are associated with chronic low-grade inflammation. The present paper focuses on the current status of our knowledge regarding chronic inflammation, a link between obesity and CVDs, including heart diseases, vascular disease and atherosclerosis. The paper discusses the methods of body fat evaluation in humans, the endocrinology and distribution of adipose tissue in the genders, the pathophysiology of obesity, the relationship among obesity, inflammation, and CVD, and the adipose tissue-derived cytokines known to affect inflammation. Due to space limitations, this paper focuses on C-reactive protein, serum amyloid A, leptin, adiponectin, resistin, visfatin, chemerin, omentin, vaspin, apelin, and retinol binding protein 4 as adipokines.
Collapse
|
229
|
Adipokine update – neue Moleküle, neue Funktionen. Wien Med Wochenschr 2010; 160:377-90. [DOI: 10.1007/s10354-010-0781-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/12/2010] [Indexed: 12/15/2022]
|
230
|
Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV, Pickel J, Makriyannis A, Kunos G. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 2010; 120:2953-66. [PMID: 20664173 PMCID: PMC2912197 DOI: 10.1172/jci42551] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Obesity and its metabolic consequences are a major public health concern worldwide. Obesity is associated with overactivity of the endocannabinoid system, which is involved in the regulation of appetite, lipogenesis, and insulin resistance. Cannabinoid-1 receptor (CB1R) antagonists reduce body weight and improve cardiometabolic abnormalities in experimental and human obesity, but their therapeutic potential is limited by neuropsychiatric side effects. Here we have demonstrated that a CB1R neutral antagonist largely restricted to the periphery does not affect behavioral responses mediated by CB1R in the brains of mice with genetic or diet-induced obesity, but it does cause weight-independent improvements in glucose homeostasis, fatty liver, and plasma lipid profile. These effects were due to blockade of CB1R in peripheral tissues, including the liver, as verified through the use of CB1R-deficient mice with or without transgenic expression of CB1R in the liver. These results suggest that targeting peripheral CB1R has therapeutic potential for alleviating cardiometabolic risk in obese patients.
Collapse
Affiliation(s)
- Joseph Tam
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - V. Kiran Vemuri
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Shinobu Ohnuma
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V. Ambudkar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - James Pickel
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandros Makriyannis
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
231
|
Xu Y, Hill JW, Fukuda M, Gautron L, Sohn JW, Kim KW, Lee CE, Choi MJ, Lauzon D, Dhillon H, Lowell BB, Zigman JM, Zhao JJ, Elmquist JK. PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis. Cell Metab 2010; 12:88-95. [PMID: 20620998 PMCID: PMC2919367 DOI: 10.1016/j.cmet.2010.05.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 12/20/2009] [Accepted: 05/03/2010] [Indexed: 11/20/2022]
Abstract
Phosphatidyl inositol 3-kinase (PI3K) signaling in the hypothalamus has been implicated in the regulation of energy homeostasis, but the critical brain sites where this intracellular signal integrates various metabolic cues to regulate food intake and energy expenditure are unknown. Here, we show that mice with reduced PI3K activity in the ventromedial hypothalamic nucleus (VMH) are more sensitive to high-fat diet-induced obesity due to reduced energy expenditure. In addition, inhibition of PI3K in the VMH impaired the ability to alter energy expenditure in response to acute high-fat diet feeding and food deprivation. Furthermore, the acute anorexigenic effects induced by exogenous leptin were blunted in the mutant mice. Collectively, our results indicate that PI3K activity in VMH neurons plays a physiologically relevant role in the regulation of energy expenditure.
Collapse
Affiliation(s)
- Yong Xu
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jennifer W. Hill
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, College of Medicine, The University of Toledo, Toledo, OH 43614
| | - Makoto Fukuda
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Laurent Gautron
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jong-Woo Sohn
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ki-Woo Kim
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Charlotte E. Lee
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michelle J. Choi
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Danielle Lauzon
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Harveen Dhillon
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bradford B. Lowell
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jean J. Zhao
- Department of Pathology, Harvard Medical School, and Department of Cancer Biology Dana-Farber Cancer Institute, Boston, MA 02115
| | - Joel K. Elmquist
- Division of Hypothalamic Research, Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
232
|
Zadravec D, Brolinson A, Fisher RM, Carneheim C, Csikasz RI, Bertrand-Michel J, Borén J, Guillou H, Rudling M, Jacobsson A. Ablation of the very-long-chain fatty acid elongase ELOVL3 in mice leads to constrained lipid storage and resistance to diet-induced obesity. FASEB J 2010; 24:4366-77. [PMID: 20605947 DOI: 10.1096/fj.09-152298] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although saturated and monounsaturated very-long-chain fatty acids (VLCFAs) have long been associated with undesirable effects on health, including obesity, heart failure, and atherosclerosis, the physiological role of endogenous synthesis is largely unknown. The fatty acid elongase ELOVL3 is involved in the synthesis of C20-C24 saturated and monounsaturated VLCFAs mainly in liver, brown and white adipose tissue, and triglyceride-rich glands such as the sebaceous and meibomian glands. Here we show that ablation of ELOVL3 leads to reduced adiponectin levels, constrained expansion of adipose tissue, and resistance against diet-induced obesity, a situation that is more exaggerated in female mice. Both female and male knockout mice show reduced hepatic lipogenic gene expression and triglyceride content, a situation that is associated with reduced de novo fatty acid synthesis and uptake. As a consequence, the VLDL-triglyceride level in serum is significantly reduced. Remarkably, despite increased energy expenditure, markedly reduced serum levels of leptin, and increased expression of orexigenic peptides in the hypothalamus, the Elovl3(-/-) mice do not compensate by increased food intake. Thus, these results reveal that C20-C22 saturated and monounsaturated VLCFAs produced by ELOVL3 are indispensable for appropriate synthesis of liver triglycerides, fatty acid uptake, and storage in adipose tissue.
Collapse
Affiliation(s)
- Damir Zadravec
- Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
André A, Gonthier MP. The endocannabinoid system: its roles in energy balance and potential as a target for obesity treatment. Int J Biochem Cell Biol 2010; 42:1788-801. [PMID: 20541029 DOI: 10.1016/j.biocel.2010.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 01/28/2023]
Abstract
Obesity and cardiometabolic risk continue to be major public health concerns. A better understanding of the physiopathological mechanisms leading to obesity may help to identify novel therapeutic targets. The endocannabinoid system discovered in the early 1990s is believed to influence body weight regulation and cardiometabolic risk factors. This article aims to review the literature on the endocannabinoid system including the biological roles of its major components, namely, the cannabinoid receptors, their endogenous ligands the endocannabinoids and the ligand-metabolising enzymes. The review also discusses evidence that the endocannabinoid system constitutes a new physiological pathway occurring in the central nervous system and peripheral tissues that has a key role in the control of food intake and energy expenditure, insulin sensitivity, as well as glucose and lipid metabolism. Based on the important finding that there is a close association between obesity and the hyperactivity of the endocannabinoid system, interest in blocking stimulation of this pathway to aid weight loss and reduce cardiometabolic risk factor development has become an important area of research. Among the pharmacological strategies proposed, the antagonism of the cannabinoid receptors has been particularly investigated and several clinical trials have been conducted. One challenging pharmacological task will be to target the endocannabinoid system in a more selective, and hence, safe way. As the management of obesity also requires lifestyle modifications in terms of healthy eating and physical activity, the targeting of the endocannabinoid system may represent a novel approach for a multifactorial therapeutic strategy.
Collapse
Affiliation(s)
- Aurore André
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, Laboratoire de Biochimie et Génétique Moléculaire, Université de La Réunion, La Réunion, France
| | | |
Collapse
|
234
|
Marcelin G, Chua S. Contributions of adipocyte lipid metabolism to body fat content and implications for the treatment of obesity. Curr Opin Pharmacol 2010; 10:588-93. [PMID: 20860920 DOI: 10.1016/j.coph.2010.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/10/2010] [Accepted: 05/16/2010] [Indexed: 12/20/2022]
Abstract
Obesity is a chronic disease that increases susceptibility to various diseases, particularly cardiovascular dysfunction, type 2 diabetes, and some types of cancer. In this review, we highlighted recent evidence in mouse models that support a potential benefit of increasing adipose lipid utilization through stimulating lipolysis in adipose tissue and fatty acid oxidation. Brown adipocyte development within white adipose tissue of humans suggests that mouse models may be applicable to human obesity. Consequently, new therapies should target adipose tissue to specifically reduce fat mass through controlled triglyceride utilization.
Collapse
Affiliation(s)
- Genevieve Marcelin
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | | |
Collapse
|
235
|
Hudson BD, Emanuel AJ, Wiater MF, Ritter S. The lipoprivic control of feeding is governed by fat metabolism, not by leptin or adipose depletion. Endocrinology 2010; 151:2087-96. [PMID: 20203155 PMCID: PMC2869253 DOI: 10.1210/en.2009-1043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/26/2010] [Indexed: 12/29/2022]
Abstract
A lipoprivic control of feeding has been proposed based on the finding that appetite is stimulated by drugs such as beta-mercaptoacetate (MA) that reduce fatty acid oxidation. The adipose-derived hormone, leptin, has effects on feeding and fat oxidation that are opposite those produced by MA. However, effects of this hormone on MA-induced feeding are not known. Here we examined the effects of endogenous leptin levels and of acute central and peripheral leptin administration on MA-induced feeding. We also examined leptin-induced changes in feeding, body weight, and plasma fuels after capsaicin-induced deletion of the lipoprivic control. MA-induced feeding was not altered under any of these conditions, and leptin's effects were not altered by capsaicin. We then examined MA-induced feeding during chronic leptin treatment. Because chronic leptin produces several distinct metabolic states as body adiposity is reduced, we tested MA before, during, and after leptin treatment at times that coincided with these states. MA-induced feeding was unchanged on d 3 of leptin treatment when rats were in a lipolytic state and rapidly metabolizing body fat stores but reduced on d 10 when they were adipose deplete and their level of fat oxidation was reduced. Together results suggest that the lipoprivic control is normally less active in the fat deplete state than during states associated with fat availability. If so, its insensitivity to leptin would enable the lipoprivic control to operate when dietary fat, adiposity, and leptin levels are elevated. The role played by the lipoprivic control under such conditions remains uncertain.
Collapse
Affiliation(s)
- Bryan D Hudson
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-6520, USA
| | | | | | | |
Collapse
|
236
|
Abstract
Orexin-A (hypocretin-1) and orexin-B (hypocretin-2) are hypothalamic neuropeptides that play key roles in the regulation of wakefulness, feeding, reward, autonomic functions and energy homeostasis. To control these functions indispensable for survival, orexin-expressing neurones integrate peripheral metabolic signals, interact with many types of neurones in the brain and modulate their activities via the activation of orexin-1 receptor or orexin-2 receptor. In addition, a new functional role of orexin is emerging in the regulation of insulin and leptin sensitivities responsible for whole-body glucose metabolism. Recent evidence indicates that orexin efficiently protects against the development of peripheral insulin resistance induced by ageing or high-fat feeding in mice. In particular, the orexin receptor-2 signalling appears to confer resistance to diet-induced obesity and insulin insensitivity by improving leptin sensitivity. In fact, the expression of orexin gene is known to be down-regulated by hyperglycaemia in the rodent model of diabetes, such as ob/ob and db/db mice. Moreover, the levels of orexin receptor-2 mRNA have been shown to decline in the brain of mice along with ageing. These suggest that hyperglycaemia due to insulin insensitivity during ageing or by habitual consumption of a high-fat diet leads to the reduction in orexin expression in the hypothalamus, thereby further exacerbating peripheral insulin resistance. Therefore, orexin receptor controlling hypothalamic insulin/leptin actions may be a new target for possible future treatment of hyperglycaemia in patients with type 2 diabetes.
Collapse
Affiliation(s)
- H Tsuneki
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | | | | |
Collapse
|
237
|
Nogueiras R, López M, Diéguez C. Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes Rev 2010; 11:185-201. [PMID: 19845870 DOI: 10.1111/j.1467-789x.2009.00669.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.
Collapse
Affiliation(s)
- R Nogueiras
- Department of Physiology, School of Medicine-Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
238
|
Abstract
The incidence of the metabolic syndrome represents a spectrum of disorders that continue to increase across the industrialized world. Both genetic and environmental factors contribute to metabolic syndrome and recent evidence has emerged to suggest that alterations in circadian systems and sleep participate in the pathogenesis of the disease. In this review, we highlight studies at the intersection of clinical medicine and experimental genetics that pinpoint how perturbations of the internal clock system, and sleep, constitute risk factors for disorders including obesity, diabetes mellitus, cardiovascular disease, thrombosis and even inflammation. An exciting aspect of the field has been the integration of behavioral and physiological approaches, and the emerging insight into both neural and peripheral tissues in disease pathogenesis. Consideration of the cell and molecular links between disorders of circadian rhythms and sleep with metabolic syndrome has begun to open new opportunities for mechanism-based therapeutics.
Collapse
Affiliation(s)
- Eleonore Maury
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, 2200 Campus Drive, Evanston, Illinois 60208
- Department of Neurobiology and Physiology, Northwestern University, 2200 Campus Drive, Evanston, Illinois 60208
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, 2200 Campus Drive, Evanston, Illinois 60208
- Department of Neurobiology and Physiology, Northwestern University, 2200 Campus Drive, Evanston, Illinois 60208
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, 2200 Campus Drive, Evanston, Illinois 60208
- Department of Neurobiology and Physiology, Northwestern University, 2200 Campus Drive, Evanston, Illinois 60208
| |
Collapse
|
239
|
Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest 2010; 120:720-34. [PMID: 20160350 DOI: 10.1172/jci39620] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 12/16/2009] [Indexed: 12/13/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron-specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron-specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b-/- mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron-specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2-/- mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b-/- mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2-/- mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and alpha-melanocyte-stimulating hormone (alphaMSH) peptide levels were markedly reduced in POMC-Shp2-/- mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system.
Collapse
Affiliation(s)
- Ryoichi Banno
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6046, USA
| | | | | | | | | | | | | |
Collapse
|
240
|
Roman EAFR, Reis D, Romanatto T, Maimoni D, Ferreira EA, Santos GA, Torsoni AS, Velloso LA, Torsoni MA. Central leptin action improves skeletal muscle AKT, AMPK, and PGC1 alpha activation by hypothalamic PI3K-dependent mechanism. Mol Cell Endocrinol 2010; 314:62-9. [PMID: 19698760 DOI: 10.1016/j.mce.2009.08.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 08/01/2009] [Accepted: 08/11/2009] [Indexed: 02/03/2023]
Abstract
Central leptin action requires PI3K activity to modulate glucose homeostasis and peripheral metabolism. However, the mechanism behind this phenomenon is not clearly understood. We hypothesize that hypothalamic PI3K activity is important for the modulation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway, PGC1 alpha, and AKT in skeletal muscle (SM). To address this issue, we injected leptin into the lateral ventricle of rats. Hypothalamic JAK2 and AKT were activated by intracerebroventricular (ICV) injection of leptin in a time-dependent manner. Central leptin improved tolerance to glucose (GTT), increased PGC1 alpha expression, and AKT, AMPK, ACC and JAK2 phosphorylation in the soleus muscle. Previous ICV administration of either LY294002 or propranolol (IP) blocked these effects. We concluded that the activation of the hypothalamic PI3K pathway is important for leptin-induced AKT phosphorylation, as well as for active catabolic pathway through AMPK and PGC1 alpha in SM. Thus, a defective leptin signalling PI3K pathway in the hypothalamus may contribute to peripheral resistance to insulin associated to diet-induced obesity.
Collapse
Affiliation(s)
- Erika A F R Roman
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, Grill HJ. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab 2010; 11:77-83. [PMID: 20074530 PMCID: PMC2807619 DOI: 10.1016/j.cmet.2009.10.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/04/2009] [Accepted: 10/27/2009] [Indexed: 01/02/2023]
Abstract
Medial nucleus tractus solitarius (mNTS) neurons express leptin receptors (LepRs), and intra-mNTS delivery of leptin reduces food intake and body weight. Here, the contribution of endogenous LepR signaling in mNTS neurons to energy balance control was examined. Knockdown of LepR in mNTS and area postrema (AP) neurons of rats (LepRKD) via adeno-associated virus short hairpin RNA-interference (AAV-shRNAi) resulted in significant hyperphagia for chow, high-fat, and sucrose diets, yielding increased body weight and adiposity. The chronic hyperphagia of mNTS/AP LepRKD rats is likely mediated by a reduction in leptin potentiation of gastrointestinal satiation signaling, as LepRKD rats showed decreased sensitivity to the intake-reducing effects of cholecystokinin. LepRKD rats showed increased basal AMP-kinase activity in mNTS/AP micropunches, and pharmacological data suggest that this increase provides a likely mechanism for their chronic hyperphagia. Overall these findings demonstrate that LepRs in mNTS and AP neurons are required for normal energy balance control.
Collapse
|
242
|
Sánchez-Lasheras C, Könner AC, Brüning JC. Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Front Neuroendocrinol 2010; 31:4-15. [PMID: 19729032 DOI: 10.1016/j.yfrne.2009.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/26/2022]
Abstract
Body weight is tightly controlled in a species-specific range from insects to vertebrates and organisms have developed a complex regulatory network in order to avoid either excessive weight gain or chronic weight loss. Energy homeostasis, a term comprising all processes that aim to maintain stability of the metabolic state, requires a constant communication of the different organs involved; i.e. adipose tissue, skeletal muscle, liver, pancreas and the central nervous system (CNS). A tight hormonal network ensures rapid communication to control initiation and cessation of eating, nutrient processing and partitioning of the available energy within different organs and metabolic pathways. Moreover, recent experiments indicate that many of these homeostatic signals modulate the neural circuitry of food reward and motivation. Disturbances in each individual system can affect the maintenance and regulation of the others, making the analysis of energy homeostasis and its dysregulation highly complex. Though this cross-talk has been intensively studied for many years now, we are far from a complete understanding of how energy balance is maintained and multiple key questions remain unanswered. This review summarizes some of the latest developments in the field and focuses on the effects of leptin, insulin, and nutrient-related signals in the central regulation of feeding behavior. The integrated view, how these signals interact and the definition of functional neurocircuits in control of energy homeostasis, will ultimately help to develop new therapeutic interventions within the current obesity epidemic.
Collapse
Affiliation(s)
- Carmen Sánchez-Lasheras
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany
| | | | | |
Collapse
|
243
|
Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2009; 209:1-12. [PMID: 20035790 DOI: 10.1016/j.bbr.2009.12.024] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a center of convergence and integration of multiple nutrient-related signals. It can sense changes in circulating adiposity hormones, gastric hormones and nutrients, and receives neuroanatomical projections from other nutrient sensors, mainly within the brainstem. The hypothalamus also integrates these signals with various cognitive forebrain-descending information and reward/motivation-related signals coming from the midbrain-dopamine system, to coordinate neuroendocrine, behavioral and metabolic effectors of energy balance. Some of the key nutrient-sensing hypothalamic neurons have been identified in the arcuate, the ventro-medial and the lateral nuclei of the hypothalamus, and the molecular mechanisms underlying intracellular integration of nutrient-related signals in these neurons are currently under intensive investigation. However, little is known about the neural pathways downstream from hypothalamic nutrient sensors, and how they drive effectors of energy homeostasis under physiological conditions. This manuscript will review recent progress from molecular, genetic and neurophysiological studies that identify and characterize the critical intracellular signalling pathways and neurocircuits involved in determining hypothalamic nutrient detection, and link these circuits to behavioral and metabolic effectors of energy balance. We will provide a critical analysis of current data to identify ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Clémence Blouet
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
244
|
Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab 2009; 297:E1247-59. [PMID: 19724019 PMCID: PMC2793049 DOI: 10.1152/ajpendo.00274.2009] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 09/01/2009] [Indexed: 12/12/2022]
Abstract
The brain controls energy homeostasis and body weight by integrating various metabolic signals. Leptin, an adipose-derived hormone, conveys critical information about peripheral energy storage and availability to the brain. Leptin decreases body weight by both suppressing appetite and promoting energy expenditure. Leptin directly targets hypothalamic neurons, including AgRP and POMC neurons. These leptin-responsive neurons widely connect to other neurons in the brain, forming a sophisticated neurocircuitry that controls energy intake and expenditure. The anorexigenic actions of leptin are mediated by LEPRb, the long form of the leptin receptor, in the hypothalamus. LEPRb activates both JAK2-dependent and -independent pathways, including the STAT3, PI 3-kinase, MAPK, AMPK, and mTOR pathways. These pathways act coordinately to form a network that fully mediates leptin response. LEPRb signaling is regulated by both positive (e.g., SH2B1) and negative (e.g., SOCS3 and PTP1B) regulators and by endoplasmic reticulum stress. Leptin resistance, a primary risk factor for obesity, likely results from impairment in leptin transport, LEPRb signaling, and/or the neurocircuitry of energy balance.
Collapse
Affiliation(s)
- David L Morris
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Mchigan 48109-0622, USA
| | | |
Collapse
|
245
|
Abstract
When compared with other modifiable cardiovascular risk factors, such as hypertension, dyslipidemia and smoking, obesity remains a surprisingly puzzling condition to prevent and treat. The history of the development of anti-obesity drugs has known more defeats than even partial victories. With very few drugs on the market, and bad publicity related to adverse events, obesity remains an almost completely unmet challenge for the pharmaceutical industry. In light of past experience with endocannabinoid-system antagonists, such as rimonabant, we propose that a major paradigm shift in clinical practice might be necessary to justify the use of pharmacotherapy for obesity. Furthermore, we suggest that the criteria currently used by regulatory authorities to evaluate and approve anti-obesity drugs should be rigorously re-examined. Finally, we discuss how pharmacological approaches that aim to counteract overactivity of the endocannabinoid system should be revisited in the future to treat visceral (intra-abdominal) obesity and its metabolic consequences.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.
| | | |
Collapse
|
246
|
German J, Kim F, Schwartz GJ, Havel PJ, Rhodes CJ, Schwartz MW, Morton GJ. Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 2009; 150:4502-11. [PMID: 19574396 PMCID: PMC2754686 DOI: 10.1210/en.2009-0445] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests that hormones such as insulin and leptin act in the hypothalamus to regulate energy balance and glucose metabolism. Here we show that in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats, adenovirally induced expression of leptin receptors in the area of the hypothalamic arcuate nucleus improved peripheral insulin sensitivity via enhanced suppression of hepatic glucose production, with no change of insulin-stimulated glucose uptake or disposal. This effect was associated with increased insulin signal transduction via phosphatidylinositol-3-OH kinase (as measured by pY-insulin receptor substrate-1 and pS-PKB/Akt) in liver, but not skeletal muscle, and with reduced hepatic expression of the gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate kinase. Moreover, the beneficial effects of hypothalamic leptin signaling on hepatic insulin sensitivity were blocked by selective hepatic vagotomy. We conclude that hypothalamic leptin action increases peripheral insulin sensitivity primarily via effects on the liver and that the mechanism underlying this effect is dependent on the hepatic branch of the vagus nerve.
Collapse
Affiliation(s)
- Jonathan German
- Department of Medicine, University of Washington at South Lake Union, 815 Mercer Street, Box 358055, Seattle, Washington 98195.
| | | | | | | | | | | | | |
Collapse
|
247
|
Belgardt BF, Okamura T, Brüning JC. Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 2009; 587:5305-14. [PMID: 19770186 DOI: 10.1113/jphysiol.2009.179192] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the wake of the obesity pandemic, increased research efforts are under way to define how peripheral hormones and metabolites regulate energy homeostasis. The melanocortin system, comprising anorexigenic proopiomelanocortin (POMC) expressing neurons and orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) coexpressing neurons in the arcuate nucleus of the hypothalamus are crucial for normal energy homeostasis both in rodents and humans. They are regulated by peripheral hormones such as leptin and insulin, as well as nutrients such as glucose, amino acids and fatty acids. Although much progress has been made, recent reports continue to underline how restricted our understanding of POMC and AgRP/NPY neuron regulation by these signals is. Importantly, ATP-dependent potassium (K(ATP)) channels are regulated both by ATP (from glucose metabolism) and by leptin and insulin, and directly control electrical excitability of both POMC and AgRP neurons. Thus, this review attempts to offer an integrative overview about how peripheral signals, particularly leptin, insulin and glucose, converge on a molecular level in POMC and AgRP neurons of the arcuate nucleus of the hypothalamus to control energy homeostasis.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Institute for Genetics, Department of Mouse Genetics and Metabolism, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 2nd Department for Internal Medicine University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
248
|
Plum L, Lin HV, Dutia R, Tanaka J, Aizawa KS, Matsumoto M, Kim AJ, Cawley NX, Paik JH, Loh YP, DePinho RA, Wardlaw SL, Accili D. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat Med 2009; 15:1195-201. [PMID: 19767734 PMCID: PMC2777744 DOI: 10.1038/nm.2026] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/11/2009] [Indexed: 12/03/2022]
Abstract
Reduced food intake brings about an adaptive decrease in energy expenditure that contributes to the recidivism of obesity following weight loss. Insulin and leptin inhibit food intake through actions in the central nervous system that are partly mediated by FoxO1. We show that FoxO1 ablation in pro–opiomelanocortin (Pomc) neurons (Pomc–Foxo1−/−) reduces food intake without affecting energy expenditure. Analyses of hypothalamic neuropeptides in Pomc–Foxo1−/− mice reveal selective increases of α–Msh and COOH–cleaved β–endorphin, the products of Carboxypeptidase E (Cpe)–dependent processing of Pomc. We show that Cpe is decreased in diet–induced obesity, and that FoxO1 deletion offsets the decrease, protecting against weight gain. Moreover, moderate Cpe overexpression in the arcuate nucleus phenocopies features of the FoxO1 mutation. The dissociation of food intake from energy expenditure in Pomc–Foxo1−/− mice represents a model for therapeutic intervention in obesity, and raises the possibility of targeting Cpe to develop weight loss medications.
Collapse
Affiliation(s)
- Leona Plum
- Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Leptin contributes to the adaptive responses of mice to high-fat diet intake through suppressing the lipogenic pathway. PLoS One 2009; 4:e6884. [PMID: 19727392 PMCID: PMC2731220 DOI: 10.1371/journal.pone.0006884] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 08/05/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Leptin is an adipocyte-derived hormone that plays a critical role in energy homeostasis and lipid metabolism. Overnutrition-associated obesity is known to be accompanied by hyperleptinemia. However, the physiological actions of leptin in the metabolic responses to high-fat diet (HFD) intake remain to be completely elucidated. Here we characterized the metabolic features of mice fed high-fat diets and investigated the impact of leptin upon the lipogenic program which was found to be suppressed by HFD feeding through a proteomics approach. RESULTS When maintained on two types of high-fat diets for up to 16 weeks, mice with a higher fat intake exhibited increased body fat accumulation at a greater pace, developing more severely impaired glucose tolerance. Notably, HFD feeding at 4 weeks elicited the onset of marked hyperleptinemia, prior to the occurrence of apparent insulin resistance and hyperinsulinemia. Proteomic analysis revealed dramatically decreased expression of lipogenic enzymes in the white adipose tissue (WAT) from HFD-fed mice, including ATP-citrate lyase (ACL) and fatty acid synthase (FAS). The expression of ACL and FAS in the liver was similarly suppressed in response to HFD feeding. By contrast, HFD-induced downregulation of hepatic ACL and FAS was significantly attenuated in leptin receptor-deficient db/db mice. Furthermore, in the liver and WAT of wild type animals, intraperitoneal leptin administration was able to directly suppress the expression of these two lipogenic enzymes, accompanied by reduced triglyceride levels both in the liver and serum. CONCLUSIONS These results suggest that leptin contributes to the metabolic responses in adaptation to overnutrition through suppressing the expression of lipogenic enzymes, and that the lipogenic pathway represents a key targeted peripheral component in exerting leptin's liporegulatory actions.
Collapse
|
250
|
Scherer T, Buettner C. The dysregulation of the endocannabinoid system in diabesity-a tricky problem. J Mol Med (Berl) 2009; 87:663-8. [PMID: 19290485 PMCID: PMC3253348 DOI: 10.1007/s00109-009-0459-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/09/2009] [Accepted: 02/20/2009] [Indexed: 12/20/2022]
Abstract
Endocannabinoids (ECs) are small lipid mediators that play a critical role in energy metabolism. Human studies have shown that the EC tone in peripheral tissues positively correlates with increased adiposity. Furthermore, pharmacological inhibition of EC signaling results in weight loss in humans. However, the mechanisms that cause the dysregulation of the EC system in obesity are not well-understood. Since the clinical utility of currently available EC blockers is severely limited due to their side effects like depression and suicidal ideation that are caused by central effects, it is important to delineate the role of central and peripheral effects of EC signaling in regulating glucose and lipid metabolism.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine and Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, P.O. Box 1055, New York, NY 10029-6574, USA
| | - Christoph Buettner
- Department of Medicine and Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, P.O. Box 1055, New York, NY 10029-6574, USA
| |
Collapse
|