201
|
Ruppert PMM, Michielsen CCJR, Hazebroek EJ, Pirayesh A, Olivecrona G, Afman LA, Kersten S. Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol Metab 2020; 40:101033. [PMID: 32504883 PMCID: PMC7334813 DOI: 10.1016/j.molmet.2020.101033] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Studies in mice have shown that the decrease in lipoprotein lipase (LPL) activity in adipose tissue upon fasting is mediated by induction of the inhibitor ANGPTL4. Here, we aimed to validate this concept in humans by determining the effect of a prolonged fast on ANGPTL4 and LPL gene and protein expression in human subcutaneous adipose tissue. Methods Twenty-three volunteers ate a standardized meal at 18.00 h and fasted until 20.00 h the next day. Blood was drawn and periumbilical adipose tissue biopsies were collected 2 h and 26 h after the meal. Results Consistent with previous mouse data, LPL activity in human adipose tissue was significantly decreased by fasting (−60%), concurrent with increased ANGPTL4 mRNA (+90%) and decreased ANGPTL8 mRNA (−94%). ANGPTL4 protein levels in adipose tissue were also significantly increased by fasting (+46%), whereas LPL mRNA and protein levels remained unchanged. In agreement with the adipose tissue data, plasma ANGPTL4 levels increased upon fasting (+100%), whereas plasma ANGPTL8 decreased (−79%). Insulin, levels of which significantly decreased upon fasting, downregulated ANGPTL4 mRNA and protein in primary human adipocytes. By contrast, cortisol, levels of which significantly increased upon fasting, upregulated ANGPTL4 mRNA and protein in primary human adipocytes as did fatty acids. Conclusion ANGPTL4 levels in human adipose tissue are increased by fasting, likely via increased plasma cortisol and free fatty acids and decreased plasma insulin, resulting in decreased LPL activity. This clinical trial was registered with identifier NCT03757767. 24-h fast in humans reduces LPL activity in subcutaneous adipose tissue. 24-h fast in humans increases adipose ANGPTL4 mRNA, protein, and plasma ANGPTL4 levels. Cortisol, fatty acids, and insulin regulate ANGPTL4 in vitro. ANGPTL4 mediates the reduction in adipose LPL activity during fasting. 24-h fast in humans decreases adipose ANGPTL8 mRNA and plasma ANGPTL8 levels.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Charlotte C J R Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, the Netherlands; Nutrition and Disease Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ali Pirayesh
- Amsterdam Plastic Surgery, Amsterdam, the Netherlands
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
202
|
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, Luo MJ, Gimeno RE, Van't Hooft F, Konrad RJ. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res 2020; 61:1203-1220. [PMID: 32487544 PMCID: PMC7397750 DOI: 10.1194/jlr.ra120000781] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein (ANGPTL)8 has been implicated in metabolic syndrome and reported to regulate adipose FA uptake through unknown mechanisms. Here, we studied how complex formation of ANGPTL8 with ANGPTL3 or ANGPTL4 varies with feeding to regulate LPL. In human serum, ANGPTL3/8 and ANGPTL4/8 complexes both increased postprandially, correlated negatively with HDL, and correlated positively with all other metabolic syndrome markers. ANGPTL3/8 also correlated positively with LDL-C and blocked LPL-facilitated hepatocyte VLDL-C uptake. LPL-inhibitory activity of ANGPTL3/8 was >100-fold more potent than that of ANGPTL3, and LPL-inhibitory activity of ANGPTL4/8 was >100-fold less potent than that of ANGPTL4. Quantitative analyses of inhibitory activities and competition experiments among the complexes suggested a model in which localized ANGPTL4/8 blocks the LPL-inhibitory activity of both circulating ANGPTL3/8 and localized ANGPTL4, allowing lipid sequestration into fat rather than muscle during the fed state. Supporting this model, insulin increased ANGPTL3/8 secretion from hepatocytes and ANGPTL4/8 secretion from adipocytes. These results suggest that low ANGPTL8 levels during fasting enable ANGPTL4-mediated LPL inhibition in fat tissue to minimize adipose FA uptake. During feeding, increased ANGPTL8 increases ANGPTL3 inhibition of LPL in muscle via circulating ANGPTL3/8, while decreasing ANGPTL4 inhibition of LPL in adipose tissue through localized ANGPTL4/8, thereby increasing FA uptake into adipose tissue. Excessive caloric intake may shift this system toward the latter conditions, possibly predisposing to metabolic syndrome.
Collapse
Affiliation(s)
- Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Thomas G Pottanat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ajit Regmi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - William C Roell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Haihong Guo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - M Jane Luo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ferdinand Van't Hooft
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet Karolinska University Hospital Solna, Stockholm, Sweden
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| |
Collapse
|
203
|
Abstract
Diabetes mellitus is a major risk factor for coronary heart disease (CHD). The major form of diabetes mellitus is type 2 diabetes mellitus (T2D), which is thus largely responsible for the CHD association in the general population. Recent years have seen major advances in the genetics of T2D, principally through ever-increasing large-scale genome-wide association studies. This article addresses the question of whether this expanding knowledge of the genomics of T2D provides insight into the etiologic relationship between T2D and CHD. We will investigate this relationship by reviewing the evidence for shared genetic loci between T2D and CHD; by examining the formal testing of this interaction (Mendelian randomization studies assessing whether T2D is causal for CHD); and then turn to the implications of this genetic relationship for therapies for CHD, for therapies for T2D, and for therapies that affect both. In conclusion, the growing knowledge of the genetic relationship between T2D and CHD is beginning to provide the promise for improved prevention and treatment of both disorders.
Collapse
Affiliation(s)
- Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
204
|
Tomlinson B, Chan P, Lam CWK. Postprandial hyperlipidemia as a risk factor in patients with type 2 diabetes. Expert Rev Endocrinol Metab 2020; 15:147-157. [PMID: 32292091 DOI: 10.1080/17446651.2020.1750949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Postprandial hyperlipidemia is a common feature of the atherogenic dyslipidemia in patients with type 2 diabetes. Quantification of this with oral fat tolerance tests is not used routinely in clinical practice and abnormal postprandial lipids are usually inferred from non-fasting plasma triglyceride levels. Identifying excessive postprandial hyperlipidemia may help to refine cardiovascular risk assessment but there are no treatments currently available which selectively target postprandial lipids and no large cardiovascular outcome trials using this as the entry criterion.Areas covered: In this review of relevant published material, we summarize the findings from the most important publications in this area.Expert opinion: Postprandial hyperlipidemia appears to contribute to the cardiovascular risk in patients with diabetes. Non-fasting triglyceride levels provide a surrogate marker of postprandial hyperlipidemia but more specific markers such as apoB48 levels may prove to be more reliable. Omega-3 fatty acids, fibrates and ezetimibe can reduce postprandial lipids but may not correct them completely. Several novel treatments have been developed to target hypertriglyceridemia and some of these may be particularly effective in improving postprandial levels. Further clinical trials are needed to establish the role of postprandial lipids in assessment of cardiovascular risk and to identify the most effective treatments.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
205
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
206
|
Kaltoft M, Langsted A, Nordestgaard BG. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur Heart J 2020; 41:2288-2299. [DOI: 10.1093/eurheartj/ehaa172] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 03/09/2020] [Indexed: 01/12/2023] Open
Abstract
AbstractAimsWe tested the hypothesis that higher levels of plasma triglycerides and remnant cholesterol are observationally and genetically associated with increased risk of aortic valve stenosis.Methods and resultsWe included 108 559 individuals from the Copenhagen General Population Study. Plasma triglycerides, remnant cholesterol (total cholesterol minus low-density lipoprotein and high-density lipoprotein cholesterol), and 16 genetic variants causing such increased or decreased levels were determined. Incident aortic valve stenosis occurred in 1593 individuals. Observationally compared to individuals with triglycerides <1 mmol/L (<89 mg/dL), the multifactorially adjusted hazard ratio for aortic valve stenosis was 1.02 [95% confidence interval (CI) 0.87–1.19] for individuals with triglycerides of 1.0–1.9 mmol/L (89–176 mg/dL), 1.22 (1.02–1.46) for 2.0–2.9 mmol/L (177–265 mg/dL), 1.40 (1.11–1.77) for 3.0–3.9 mmol/L (266–353 mg/dL), 1.29 (0.88–1.90) for 4.0–4.9 mmol/L (354–442 mg/dL), and 1.52 (1.02–2.27) for individuals with triglycerides ≥5 mmol/L (≥443 mg/dL). By age 85, the cumulative incidence of aortic valve stenosis was 5.1% for individuals with plasma triglycerides <2.0 mmol/L (77 mg/dL), 6.5% at 2.0–4.9 mmol/L (177–442 mg/dL), and 8.2% for individuals with plasma triglycerides ≥5.0 mmol/L (443 mg/dL). The corresponding values for remnant cholesterol categories were 4.8% for <0.5 mmol/L (19 mg/dL), 5.6% for 0.5–1.4 mmol/L (19–57 mg/dL), and 7.4% for ≥1.5 mmol/L (58 mg/dL). Genetically, compared to individuals with allele score 13–16, odds ratios for aortic valve stenosis were 1.30 (95% CI 1.20–1.42; Δtriglycerides +12%; Δremnant cholesterol +11%) for allele score 17–18, 1.41 (1.31–1.52; +25%; +22%) for allele score 19–20, and 1.51 (1.22–1.86; +51%; +44%) for individuals with allele score 21–23.ConclusionHigher triglycerides and remnant cholesterol were observationally and genetically associated with increased risk of aortic valve stenosis.
Collapse
Affiliation(s)
- Morten Kaltoft
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, DK-2730 Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, DK-2730 Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, DK-2730 Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
207
|
Abstract
PURPOSE OF REVIEW To review the recent evidence from observational/genetic/interventional studies addressing triglycerides and residual cardiovascular risk (CVRisk). RECENT FINDINGS Large population-based and secondary prevention studies consistently show an association of higher triglycerides with increased CVRisk. This is compounded by genetic studies demonstrating an independent relationship between triglyceride raising or lowering genetic variants affecting triglyceride-rich lipoproteins (TRL) metabolism and CVRisk. Mendelian randomization analysis suggests the benefit of genetic lowering of triglycerides and LDL-cholesterol is similar per unit change in apolipoprotein-B. Among cholesterol-lowering trials, more intensive statin therapy produced greater CVRisk reductions in patients with higher TRL-cholesterol or triglycerides; proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition led to similar triglycerides reduction but greater non-HDL-C or apolipoprotein-B reductions than fibrates or fish oils. Regarding n-3 fatty acids, A Study of Cardiovascular Events in Diabetes (ASCEND) and Vitamin D and Omega-3 Trial (VITAL) primary prevention trials with eicosapentaenoic acid (EPA) and docosahexaenoic acid failed to demonstrate cardiovascular benefits, Conversely, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) using high-dose icosapent-ethyl (purified EPA) in primary (diabetes) and secondary prevention with hypertriglyceridemia showed significant cardiovascular events reductions (greater than expected by the observed triglycerides or apolipoprotein-B reductions, suggesting potential benefits through non-lipid pathways). SUMMARY Evidence suggests higher triglycerides are a marker of CVRisk and may help identify patients who benefit from intensification of therapy. Moreover, genetic studies support a causal link between TRL/triglycerides and cardiovascular disease. Treatment with high-dose EPA may be of benefit in high-risk patients with hypertriglyceridemia to reduce CVRisk.
Collapse
Affiliation(s)
- Antonio J Vallejo-Vaz
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Pablo Corral
- Pharmacology Department, School of Medicine, FASTA University, Mar del Plata
| | - Laura Schreier
- Departamento de Bioquímica Clínica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Lípidos y Aterosclerosis, INFIBIOC-UBA, Buenos Aires, Argentina
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
208
|
Seo WK, Hosseini MB, Bang OY, Liebeskind DS. Recent updates in dyslipidemia management: perspectives in stroke-specific situation. PRECISION AND FUTURE MEDICINE 2020. [DOI: 10.23838/pfm.2020.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
209
|
Toth PP, Fazio S, Wong ND, Hull M, Nichols GA. Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence. Diabetes Obes Metab 2020; 22:279-289. [PMID: 31742844 PMCID: PMC7065050 DOI: 10.1111/dom.13921] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
AIMS To describe the real-world prevalence and consequences of hypertriglyceridaemia. MATERIALS AND METHODS We searched two large patient databases, the National Health and Nutrition Examination Survey (NHANES) database (2007-2014) and the Optum Research Database, as well as electronic medical records from two Kaiser Permanente regions. RESULTS The NHANES data showed that ~26% of US adults, including nearly one-third of statin users, had at least borderline hypertriglyceridaemia (triglycerides [TGs] ≥1.69 mmol/L), and ~40% of adults with diabetes had levels of ≥150 mg/dL despite statin use. The Optum analyses demonstrated that those with TG levels ≥1.69 mmol/L who were on statins had a significantly increased risk of composite initial major cardiovascular (CV) events (hazard ratio [HR] 1.26, 95% confidence interval [CI] 1.19-1.34; P < 0.001 vs. patients with TGs <150 mg/dL). This was accompanied by increased healthcare utilization and direct healthcare costs (HR 1.12, 95% CI 1.08-1.16; P < 0.001). In the analyses of the Kaiser Permanente records, patients with diabetes and TG levels 2.26-5.64 mmol/L had significantly higher adjusted incidence rates of non-fatal myocardial infarction (rate ratio 1.30, 95% CI 1.08-1.58; P = 0.006), non-fatal stroke (rate ratio 1.23; 95% CI 1.01-1.49; P = 0.037) and coronary revascularization (rate ratio 1.21; 95% CI 1.02-1.43; P = 0.027), but not unstable angina (rate ratio 1.33; 95% CI 0.87-2.03; P = 0.185) compared with patients with TG levels <1.69 mmol/L. CONCLUSIONS Real-world analyses suggest that elevated TGs are prevalent and commonly associated with increased CV risk. CV outcomes trials in patients with established hypertriglyceridaemia will clarify whether strategies to reduce TG levels can ameliorate residual CV risk in patients taking statins.
Collapse
Affiliation(s)
- Peter P. Toth
- Ciccarone Centre for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUnited States
- CGH Medical CenterSterlingIllinoisUnited States
| | - Sergio Fazio
- Oregon Health and Science UniversityPortlandOregonUnited States
| | - Nathan D. Wong
- University of CaliforniaIrvine School of MedicineIrvineCaliforniaUnited States
| | | | | |
Collapse
|
210
|
Riveros-Mckay F, Oliver-Williams C, Karthikeyan S, Walter K, Kundu K, Ouwehand WH, Roberts D, Di Angelantonio E, Soranzo N, Danesh J, INTERVAL Study, Wheeler E, Zeggini E, Butterworth AS, Barroso I. The influence of rare variants in circulating metabolic biomarkers. PLoS Genet 2020; 16:e1008605. [PMID: 32150548 PMCID: PMC7108731 DOI: 10.1371/journal.pgen.1008605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/31/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Circulating metabolite levels are biomarkers for cardiovascular disease (CVD). Here we studied, association of rare variants and 226 serum lipoproteins, lipids and amino acids in 7,142 (discovery plus follow-up) healthy participants. We leveraged the information from multiple metabolite measurements on the same participants to improve discovery in rare variant association analyses for gene-based and gene-set tests by incorporating correlated metabolites as covariates in the validation stage. Gene-based analysis corrected for the effective number of tests performed, confirmed established associations at APOB, APOC3, PAH, HAL and PCSK (p<1.32x10-7) and identified novel gene-trait associations at a lower stringency threshold with ACSL1, MYCN, FBXO36 and B4GALNT3 (p<2.5x10-6). Regulation of the pyruvate dehydrogenase (PDH) complex was associated for the first time, in gene-set analyses also corrected for effective number of tests, with IDL and LDL parameters, as well as circulating cholesterol (pMETASKAT<2.41x10-6). In conclusion, using an approach that leverages metabolite measurements obtained in the same participants, we identified novel loci and pathways involved in the regulation of these important metabolic biomarkers. As large-scale biobanks continue to amass sequencing and phenotypic information, analytical approaches such as ours will be useful to fully exploit the copious amounts of biological data generated in these efforts.
Collapse
Affiliation(s)
| | - Clare Oliver-Williams
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Homerton College, Cambridge, United Kingdom
| | - Savita Karthikeyan
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Kousik Kundu
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Willem H. Ouwehand
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Roberts
- The National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant—Oxford Centre, Level 2, John Radcliffe Hospital, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Emanuele Di Angelantonio
- Wellcome Sanger Institute, Cambridge, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
| | - Nicole Soranzo
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John Danesh
- Wellcome Sanger Institute, Cambridge, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
| | | | - Eleanor Wheeler
- Wellcome Sanger Institute, Cambridge, United Kingdom
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Institute of Translational Genomics, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Adam S. Butterworth
- Wellcome Sanger Institute, Cambridge, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
| | - Inês Barroso
- Wellcome Sanger Institute, Cambridge, United Kingdom
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
211
|
Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, Holmes MV. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med 2020; 17:e1003062. [PMID: 32203549 PMCID: PMC7089422 DOI: 10.1371/journal.pmed.1003062] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. METHODS AND FINDINGS We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. CONCLUSIONS These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
Collapse
Affiliation(s)
- Tom G. Richardson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, United Kingdom
| | - Eleanor Sanderson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, United Kingdom
| | - Tom M. Palmer
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, United Kingdom
| | - Mika Ala-Korpela
- Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Australia
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Australia
| | - Brian A. Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, United Kingdom
| | - Michael V. Holmes
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
212
|
Lorenzatti AJ, Toth PP. New Perspectives on Atherogenic Dyslipidaemia and Cardiovascular Disease. Eur Cardiol 2020; 15:1-9. [PMID: 32180834 PMCID: PMC7066832 DOI: 10.15420/ecr.2019.06] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, atherogenic dyslipidaemia has become one of the most common phenotypic presentations of lipid abnormalities, being strongly and unequivocally associated with an increased risk of cardiovascular (CV) disease. Despite the excellent results achieved from statin and non-statin management of LDL cholesterol and CV events prevention, there still remains a significant residual risk, associated with the prevalence of non-LDL cholesterol lipid patterns characterised by elevated triglyceride levels, low HDL cholesterol, a preponderance of small and dense LDL particles, accumulation of remnant lipoproteins and postprandial hyperlipidaemia. These qualitative and quantitative lipid modifications are largely associated with insulin resistance, type 2 diabetes and obesity, the prevalence of which has grown to epidemic proportions throughout the world. In this review, we analyse the pathophysiology of this particular dyslipidaemia, its relationship with the development of atherosclerotic CV disease and, finally, briefly describe the therapeutic approaches, including changes in lifestyle and current pharmacological interventions to manage these lipid alterations aimed at preventing CV events.
Collapse
Affiliation(s)
- Alberto J Lorenzatti
- DAMIC Medical Institute, Rusculleda Foundation for Research, Cordoba, Argentina.,Department of Cardiology, Cordoba Hospital, Cordoba, Argentina
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, US.,Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, US
| |
Collapse
|
213
|
Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2020; 117:4337-4346. [PMID: 32034094 DOI: 10.1073/pnas.1920202117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The binding of lipoprotein lipase (LPL) to GPIHBP1 focuses the intravascular hydrolysis of triglyceride-rich lipoproteins on the surface of capillary endothelial cells. This process provides essential lipid nutrients for vital tissues (e.g., heart, skeletal muscle, and adipose tissue). Deficiencies in either LPL or GPIHBP1 impair triglyceride hydrolysis, resulting in severe hypertriglyceridemia. The activity of LPL in tissues is regulated by angiopoietin-like proteins 3, 4, and 8 (ANGPTL). Dogma has held that these ANGPTLs inactivate LPL by converting LPL homodimers into monomers, rendering them highly susceptible to spontaneous unfolding and loss of enzymatic activity. Here, we show that binding of an LPL-specific monoclonal antibody (5D2) to the tryptophan-rich lipid-binding loop in the carboxyl terminus of LPL prevents homodimer formation and forces LPL into a monomeric state. Of note, 5D2-bound LPL monomers are as stable as LPL homodimers (i.e., they are not more prone to unfolding), but they remain highly susceptible to ANGPTL4-catalyzed unfolding and inactivation. Binding of GPIHBP1 to LPL alone or to 5D2-bound LPL counteracts ANGPTL4-mediated unfolding of LPL. In conclusion, ANGPTL4-mediated inactivation of LPL, accomplished by catalyzing the unfolding of LPL, does not require the conversion of LPL homodimers into monomers. Thus, our findings necessitate changes to long-standing dogma on mechanisms for LPL inactivation by ANGPTL proteins. At the same time, our findings align well with insights into LPL function from the recent crystal structure of the LPL•GPIHBP1 complex.
Collapse
|
214
|
Shetty SK, Walzem RL, Davies BSJ. A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time. J Lipid Res 2020; 61:546-559. [PMID: 32029511 DOI: 10.1194/jlr.d119000388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
The hydrolysis of triglycerides in triglyceride-rich lipoproteins by LPL is critical for the delivery of triglyceride-derived fatty acids to tissues, including heart, skeletal muscle, and adipose tissues. Physiologically active LPL is normally bound to the endothelial cell protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), which transports LPL across endothelial cells, anchors LPL to the vascular wall, and stabilizes LPL activity. Disruption of LPL-GPIHBP1 binding significantly alters triglyceride metabolism and lipid partitioning. In this study, we modified the NanoLuc® Binary Technology split-luciferase system to develop a novel assay that monitors the binding of LPL to GPIHBP1 on endothelial cells in real time. We validated the specificity and sensitivity of the assay using endothelial lipase and a mutant version of LPL and found that this assay reliably and specifically detected the interaction between LPL and GPIHBP1. We then interrogated various endogenous and exogenous inhibitors of LPL-mediated lipolysis for their ability to disrupt the binding of LPL to GPIHBP1. We found that angiopoietin-like (ANGPTL)4 and ANGPTL3-ANGPTL8 complexes disrupted the interactions of LPL and GPIHBP1, whereas the exogenous LPL blockers we tested (tyloxapol, poloxamer-407, and tetrahydrolipstatin) did not. We also found that chylomicrons could dissociate LPL from GPIHBP1 and found evidence that this dissociation was mediated in part by the fatty acids produced by lipolysis. These results demonstrate the ability of this assay to monitor LPL-GPIHBP1 binding and to probe how various agents influence this important complex.
Collapse
Affiliation(s)
- Shwetha K Shetty
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center and Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Rosemary L Walzem
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center and Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
215
|
Pedro-Botet J, Ascaso JF, Blasco M, Brea Á, Díaz Á, Hernández-Mijares A, Pintó X, Millán J. Triglycerides, HDL cholesterol and atherogenic dyslipidaemia in the 2019 European guidelines for the management of dyslipidaemias. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 32:209-218. [PMID: 32037300 DOI: 10.1016/j.arteri.2019.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
In general, both European and American clinical guidelines have addressed the management of atherogenic dyslipidaemia in an unconvincing and even superficial way, largely because of the available therapeutic limitations. Consequently, this type of dyslipidaemia is underdiagnosed, under-treated, and under-controlled. Given the recent presentation of the 2019 guidelines of the European Atherosclerosis Society and the European Society of Cardiology on the management of dyslipidaemias, it seems appropriate to examine its position with respect to atherogenic dyslipidaemia and/or its main components, the increase in triglyceride-rich lipoproteins, and the decrease of high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España.
| | - Juan F Ascaso
- Departamento de Medicina, Universitat de València, CIBERDEM ISCIII, Valencia, España
| | - Mariano Blasco
- Área Sanitaria de Delicias, Atención Primaria, Zaragoza, España
| | - Ángel Brea
- Servicio de Medicina Interna, Hospital San Pedro, Logroño, España
| | - Ángel Díaz
- Centro de Salud de Bembibre, Bembibre, León, España
| | - Antonio Hernández-Mijares
- Fundación para la Investigación Sanitaria y Biomédica de la Comunidad Valenciana FISABIO; Departamento de Medicina, Universitat de València, Valencia, España
| | - Xavier Pintó
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, Universitat de Barcelona, CIBERobn-ISCIII, Barcelona, España
| | - Jesús Millán
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, España
| | | |
Collapse
|
216
|
Qiu J, Xu J, Zhang K, Gu W, Nie L, Wang G, Luo Y. Refining Cancer Management Using Integrated Liquid Biopsy. Am J Cancer Res 2020; 10:2374-2384. [PMID: 32089746 PMCID: PMC7019147 DOI: 10.7150/thno.40677] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy has emerged in the last ten years as an appealing noninvasive strategy to support early cancer diagnosis and follow-up interventions. However, conventional liquid biopsy strategies involving specified biomarkers have encountered unexpected inconsistencies stemming from the use of different analytical methodologies. Recent reports have repeatedly demonstrated that integrated detection of multiple liquid biopsy biomarkers can significantly improve diagnostic performance by eliminating the influence of intratumoral heterogeneity. Herein, we review the progress in the field of liquid biopsy and propose a novel integrated liquid biopsy framework consisting of three categories: elementary, intermediate, and advanced integration. We also summarize the merits of the integration strategy and propose a roadmap toward refining cancer diagnosis, metastasis surveillance, and prognostication.
Collapse
|
217
|
Morelli MB, Chavez C, Santulli G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: focus on lipid disorders. Expert Opin Ther Targets 2020; 24:79-88. [PMID: 31856617 DOI: 10.1080/14728222.2020.1707806] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Angiopoietin-like (ANGPTL) proteins belong to a family of eight secreted factors that are structurally related to proteins that modulate angiogenesi, commonly known as angiopoietins. Specifically, ANGPTL3, ANGPTL4, and ANGPTL8 (the 'ANGPT L3-4-8 triad'), have surfaced as principal regulators of plasma lipid metabolism by functioning as potent inhibitors of lipoprotein lipase. The targeting of these proteins may open up future therapeutic avenues for metabolic and cardiovascular disease.Areas covered: This article systematically summarizes the compelling literature describing the mechanistic roles of ANGPTL3, 4, and 8 in lipid metabolism, emphasizing their importance in determining the risk of cardiovascular disease. We shed light on population-based studies linking loss-of-function variations in ANGPTL3, 4, and 8 with decreased risk of metabolic conditions and cardiovascular disorders. We also discuss how the strategies aiming at targeting the ANGPT L3-4-8 triad could offer therapeutic benefit in the clinical scenario.Expert opinion: Monoclonal antibodies and antisense oligonucleotides that target ANGPTL3, 4, and 8 are potentially an efficient therapeutic strategy for hypertriglyceridemia and cardiovascular risk reduction, especially in patients with limited treatment options. These innovative therapeutical approaches are at an embryonic stage in development and hence further investigations are necessary for eventual use in humans.
Collapse
Affiliation(s)
- Marco Bruno Morelli
- Department of Medicine; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, NY, New York, USA
| | - Christopher Chavez
- Department of Medicine; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaetano Santulli
- Department of Medicine; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), The "Norman Fleischer" Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, NY, New York, USA.,Department of Advanced Biomedical Sciences and International Translational Research and Medical Education Consortium (ITME), "Federico II" University, Naples, Italy
| |
Collapse
|
218
|
Ruscica M, Zimetti F, Adorni MP, Sirtori CR, Lupo MG, Ferri N. Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: New therapeutic approaches for the treatment of atherogenic dyslipidemia. Pharmacol Res 2020; 153:104653. [PMID: 31931117 DOI: 10.1016/j.phrs.2020.104653] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Among the determinants of atherosclerotic cardiovascular disease (ASCVD), genetic and experimental evidence has provided data on a major role of angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4) in regulating the activity of lipoprotein lipase (LPL), antagonizing the hydrolysis of triglycerides (TG). Indeed, beyond low-density lipoprotein cholesterol (LDL-C), ASCVD risk is also dependent on a cluster of metabolic abnormalities characterized by elevated fasting and post-prandial levels of TG-rich lipoproteins and their remnants. In a head-to-head comparison between murine models for ANGPTL3 and ANGPTL4, the former was found to be a better pharmacological target for the treatment of hypertriglyceridemia. In humans, loss-of-function mutations of ANGPTL3 are associated with a marked reduction of plasma levels of VLDL, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Carriers of loss-of-function mutations of ANGPTL4 show instead lower TG-rich lipoproteins and a modest but significant increase of HDL. The relevance of ANGPTL3 and ANGPTL4 as new therapeutic targets is proven by the development of monoclonal antibodies or antisense oligonucleotides. Studies in animal models, including non-human primates, have demonstrated that short-term treatment with monoclonal antibodies against ANGPTL3 and ANGPTL4 induces activation of LPL and a marked reduction of plasma TG-rich-lipoproteins, apparently without any major side effects. Inhibition of both targets also partially reduces LDL-C, independent of the LDL receptor. Similar evidence has been observed with the antisense oligonucleotide ANGPTL3-LRX. The genetic studies have paved the way for the development of new ANGPTL3 and 4 antagonists for the treatment of atherogenic dyslipidemias. Conclusive data of phase 2 and 3 clinical trials are still needed in order to define their safety and efficacy profile.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Francesca Zimetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Maria Pia Adorni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Cesare R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
219
|
Li J, Li L, Guo D, Li S, Zeng Y, Liu C, Fu R, Huang M, Xie W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta 2020; 503:19-34. [PMID: 31923423 DOI: 10.1016/j.cca.2019.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Hypertriglyceridemia is a risk factor for a series of diseases, such as cardiovascular disease (CVD), diabetes and nonalcoholic fatty liver disease (NAFLD). Angiopoietin-like proteins (ANGPTLs) family, especially ANGPTL3, ANGPTL4 and ANGPTL8, which regulate lipoprotein lipase (LPL) activity, play pivotal roles in triglyceride (TG) metabolism and related diseases/complications. There are many transcriptional and post-transcriptional factors that participate in physiological and pathological regulation of ANGPTLs to affect triglyceride metabolism. This review is intended to focus on the similarity and difference in the expression, structural features, regulation profile of the three ANGPTLs and inhibitory models for LPL. Description of the regulatory factors of ANGPTLs and the properties in regulating the lipid metabolism involved in the underlying mechanisms in pathological effects on diseases will provide potential therapeutic approaches for the treatment of dyslipidemia related diseases.
Collapse
Affiliation(s)
- Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - DongMing Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - SuYun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - YuXin Zeng
- 2018 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - ChuHao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ru Fu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - MengQian Huang
- 2015 Class of Clinical Medicine, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
220
|
Stahel P, Xiao C, Nahmias A, Lewis GF. Role of the Gut in Diabetic Dyslipidemia. Front Endocrinol (Lausanne) 2020; 11:116. [PMID: 32231641 PMCID: PMC7083132 DOI: 10.3389/fendo.2020.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). In insulin resistant states such as the metabolic syndrome, overproduction and impaired clearance of liver-derived very-low-density lipoproteins and gut-derived chylomicrons (CMs) contribute to hypertriglyceridemia and elevated atherogenic remnant lipoproteins. Although ingested fat is the major stimulus of CM secretion, intestinal lipid handling and ultimately CM secretory rate is determined by numerous additional regulatory inputs including nutrients, hormones and neural signals that fine tune CM secretion during fasted and fed states. Insulin resistance and T2D represent perturbed metabolic states in which intestinal sensitivity to key regulatory hormones such as insulin, leptin and glucagon-like peptide-1 (GLP-1) may be altered, contributing to increased CM secretion. In this review, we describe the evidence from human and animal models demonstrating increased CM secretion in insulin resistance and T2D and discuss the molecular mechanisms underlying these effects. Several novel compounds are in various stages of preclinical and clinical investigation to modulate intestinal CM synthesis and secretion. Their efficacy, safety and therapeutic utility are discussed. Similarly, the effects of currently approved lipid modulating therapies such as statins, ezetimibe, fibrates, and PCSK9 inhibitors on intestinal CM production are discussed. The intricacies of intestinal CM production are an active area of research that may yield novel therapies to prevent atherosclerotic CVD in insulin resistance and T2D.
Collapse
|
221
|
Basu D, Bornfeldt KE. Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Front Endocrinol (Lausanne) 2020; 11:504. [PMID: 32849290 PMCID: PMC7423973 DOI: 10.3389/fendo.2020.00504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Human studies support a strong association between hypertriglyceridemia and atherosclerotic cardiovascular disease (CVD). However, whether a causal relationship exists between hypertriglyceridemia and increased CVD risk is still unclear. One plausible explanation for the difficulty establishing a clear causal role for hypertriglyceridemia in CVD risk is that lipolysis products of triglyceride-rich lipoproteins (TRLs), rather than the TRLs themselves, are the likely mediators of increased CVD risk. This hypothesis is supported by studies of rare mutations in humans resulting in impaired clearance of such lipolysis products (remnant lipoprotein particles; RLPs). Several animal models of hypertriglyceridemia support this hypothesis and have provided additional mechanistic understanding. Mice deficient in lipoprotein lipase (LPL), the major vascular enzyme responsible for TRL lipolysis and generation of RLPs, or its endothelial anchor GPIHBP1, are severely hypertriglyceridemic but develop only minimal atherosclerosis as compared with animal models deficient in apolipoprotein (APO) E, which is required to clear TRLs and RLPs. Likewise, animal models convincingly show that increased clearance of TRLs and RLPs by LPL activation (achieved by inhibition of APOC3, ANGPTL3, or ANGPTL4 action, or increased APOA5) results in protection from atherosclerosis. Mechanistic studies suggest that RLPs are more atherogenic than large TRLs because they more readily enter the artery wall, and because they are enriched in cholesterol relative to triglycerides, which promotes pro-atherogenic effects in lesional cells. Other mechanistic studies show that hepatic receptors (LDLR and LRP1) and APOE are critical for RLP clearance. Thus, studies in animal models have provided additional mechanistic insight and generally agree with the hypothesis that RLPs derived from TRLs are highly atherogenic whereas hypertriglyceridemia due to accumulation of very large TRLs in plasma is not markedly atherogenic in the absence of TRL lipolysis products.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Karin E. Bornfeldt
| |
Collapse
|
222
|
Santos-Baez LS, Ginsberg HN. Hypertriglyceridemia-Causes, Significance, and Approaches to Therapy. Front Endocrinol (Lausanne) 2020; 11:616. [PMID: 32982991 PMCID: PMC7492386 DOI: 10.3389/fendo.2020.00616] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023] Open
Abstract
Hypertriglyceridemia (HTG) is a common metabolic disorder with both genetic and lifestyle factors playing significant roles in its pathophysiology. HTG poses a risk for the development of cardiovascular disease (CVD) in the population at large and for pancreatitis in about two percent of individuals with extremely high levels of triglycerides (TG). This manuscript summarizes the mechanisms underlying the development of HTG as well as its management, including emerging therapies targeted at specific molecular pathways.
Collapse
|
223
|
Abul-Husn NS, Soper ER, Odgis JA, Cullina S, Bobo D, Moscati A, Rodriguez JE, Loos RJF, Cho JH, Belbin GM, Suckiel SA, Kenny EE. Exome sequencing reveals a high prevalence of BRCA1 and BRCA2 founder variants in a diverse population-based biobank. Genome Med 2019; 12:2. [PMID: 31892343 PMCID: PMC6938627 DOI: 10.1186/s13073-019-0691-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pathogenic variants in BRCA1 and BRCA2 (BRCA1/2) lead to increased risk of breast, ovarian, and other cancers, but most variant-positive individuals in the general population are unaware of their risk, and little is known about prevalence in non-European populations. We investigated BRCA1/2 prevalence and impact in the electronic health record (EHR)-linked BioMe Biobank in New York City. METHODS Exome sequence data from 30,223 adult BioMe participants were evaluated for pathogenic variants in BRCA1/2. Prevalence estimates were made in population groups defined by genetic ancestry and self-report. EHR data were used to evaluate clinical characteristics of variant-positive individuals. RESULTS There were 218 (0.7%) individuals harboring expected pathogenic variants, resulting in an overall prevalence of 1 in 139. The highest prevalence was in individuals with Ashkenazi Jewish (AJ; 1 in 49), Filipino and other Southeast Asian (1 in 81), and non-AJ European (1 in 103) ancestry. Among 218 variant-positive individuals, 112 (51.4%) harbored known founder variants: 80 had AJ founder variants (BRCA1 c.5266dupC and c.68_69delAG, and BRCA2 c.5946delT), 8 had a Puerto Rican founder variant (BRCA2 c.3922G>T), and 24 had one of 19 other founder variants. Non-European populations were more likely to harbor BRCA1/2 variants that were not classified in ClinVar or that had uncertain or conflicting evidence for pathogenicity (uncertain/conflicting). Within mixed ancestry populations, such as Hispanic/Latinos with genetic ancestry from Africa, Europe, and the Americas, there was a strong correlation between the proportion of African genetic ancestry and the likelihood of harboring an uncertain/conflicting variant. Approximately 28% of variant-positive individuals had a personal history, and 45% had a personal or family history of BRCA1/2-associated cancers. Approximately 27% of variant-positive individuals had prior clinical genetic testing for BRCA1/2. However, individuals with AJ founder variants were twice as likely to have had a clinical test (39%) than those with other pathogenic variants (20%). CONCLUSIONS These findings deepen our knowledge about BRCA1/2 variants and associated cancer risk in diverse populations, indicate a gap in knowledge about potential cancer-related variants in non-European populations, and suggest that genomic screening in diverse patient populations may be an effective tool to identify at-risk individuals.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Emily R Soper
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacqueline A Odgis
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sinead Cullina
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dean Bobo
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arden Moscati
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica E Rodriguez
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gillian M Belbin
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina A Suckiel
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E Kenny
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
224
|
Rhainds D, Brodeur MR, Tardif JC. Investigational drugs in development for hypertriglyceridemia: a coming-of-age story. Expert Opin Investig Drugs 2019; 28:1059-1079. [PMID: 31752565 DOI: 10.1080/13543784.2019.1696772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Elevated triglyceride (TG) level is a prevalent condition in the general population and in patients with cardiovascular (CV) risk even under statin therapy. Severe hypertriglyceridemia (HTG) puts patients at risk for acute pancreatitis. Several TG-lowering drugs failed in clinical trials, but subgroup analyses suggest that high-risk patients, such as those with atherogenic dyslipidemia or diabetes, benefit from TG lowering.Areas covered: We review advances for TG-lowering drugs in clinical development. These include selective PPARα modulators, omega-3 fatty acid formulations that have been approved for severe HTG, and inhibitors of apolipoprotein C-III, angiopoietin-like-3 or microsomal transfer protein. Lessons learned from the success of the phase 3 trial REDUCE-IT with high-dose icosapent ethyl are also reviewed.Expert opinion: We believe that TG-lowering therapies are coming of age as they will allow to treat patients with high CV risk and moderate HTG, including T2D subjects, as well as patients with severe HTG or even homozygous familial hypercholesterolemia, all of which being 'optimally' treated with a statin. More studies on the impact of therapy on quality of life in patients with severe HTG should be conducted with the help of patient registries.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute Research Center, Montreal Heart Institute, Montreal, Canada
| | - Mathieu R Brodeur
- Montreal Heart Institute Research Center, Montreal Heart Institute, Montreal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute Research Center, Montreal Heart Institute, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
225
|
Abstract
Several new or emerging drugs for dyslipidemia owe their existence, in part, to human genetic evidence, such as observations in families with rare genetic disorders or in Mendelian randomization studies. Much effort has been directed to agents that reduce LDL (low-density lipoprotein) cholesterol, triglyceride, and Lp[a] (lipoprotein[a]), with some sustained programs on agents to raise HDL (high-density lipoprotein) cholesterol. Lomitapide, mipomersen, AAV8.TBG.hLDLR, inclisiran, bempedoic acid, and gemcabene primarily target LDL cholesterol. Alipogene tiparvovec, pradigastat, and volanesorsen primarily target elevated triglycerides, whereas evinacumab and IONIS-ANGPTL3-LRx target both LDL cholesterol and triglyceride. IONIS-APO(a)-LRx targets Lp(a).
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla (S.T.)
| |
Collapse
|
226
|
Sodhi A, Ma T, Menon D, Deshpande M, Jee K, Dinabandhu A, Vancel J, Lu D, Montaner S. Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. J Clin Invest 2019; 129:4593-4608. [PMID: 31545295 PMCID: PMC6819094 DOI: 10.1172/jci120879] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
The majority of patients with diabetic macular edema (DME), the most common cause of vision loss in working-age Americans, do not respond adequately to current therapies targeting VEGFA. Here, we show that expression of angiopoietin-like 4 (ANGPTL4), a HIF-1-regulated gene product, is increased in the eyes of diabetic mice and patients with DME. We observed that ANGPTL4 and VEGF act synergistically to destabilize the retinal vascular barrier. Interestingly, while ANGPTL4 modestly enhanced tyrosine phosphorylation of VEGF receptor 2, promotion of vascular permeability by ANGPTL4 was independent of this receptor. Instead, we found that ANGPTL4 binds directly to neuropilin 1 (NRP1) and NRP2 on endothelial cells (ECs), leading to rapid activation of the RhoA/ROCK signaling pathway and breakdown of EC-EC junctions. Treatment with a soluble fragment of NRP1 (sNRP1) prevented ANGPTL4 from binding to NRP1 and blocked ANGPTL4-induced activation of RhoA as well as EC permeability in vitro and retinal vascular leakage in diabetic animals in vivo. In addition, sNRP1 reduced the stimulation of EC permeability by aqueous fluid from patients with DME. Collectively, these data identify the ANGPTL4/NRP/RhoA pathway as a therapeutic target for the treatment of DME.
Collapse
Affiliation(s)
- Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and
| | - Monika Deshpande
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jordan Vancel
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daoyuan Lu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and,Greenebaum Cancer Center, University of Maryland, Baltimore (UMB), Maryland, USA
| |
Collapse
|
227
|
|
228
|
Sirtori CR, Ruscica M, Calabresi L, Chiesa G, Giovannoni R, Badimon JJ. HDL therapy today: from atherosclerosis, to stent compatibility to heart failure. Ann Med 2019; 51:345-359. [PMID: 31729238 PMCID: PMC7877888 DOI: 10.1080/07853890.2019.1694695] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epidemiologically, high-density lipoprotein (HDL) cholesterol levels have been inversely associated to cardiovascular (CV) events, although a Mendelian Randomisation Study had failed to establish a clear causal role. Numerous atheroprotective mechanisms have been attributed to HDL, the main being the ability to promote cholesterol efflux from arterial walls; anti-inflammatory effects related to HDL ligands such as S1P (sphingosine-1-phosphate), resolvins and others have been recently identified. Experimental studies and early clinical investigations have indicated the potential of HDL to slow progression or induce regression of atherosclerosis. More recently, the availability of different HDL formulations, with different phospholipid moieties, has allowed to test other indications for HDL therapy. Positive reports have come from studies on coronary stent biocompatibility, where the use of HDL from different sources reduced arterial cell proliferation and thrombogenicity. The observation that low HDL-C levels may be associated with an enhanced risk of heart failure (HF) has also suggested that HDL therapy may be applied to this condition. HDL infusions or apoA-I gene transfer were able to reverse heart abnormalities, reduce diastolic resistance and improve cardiac metabolism. HDL therapy may be effective not only in atherosclerosis, but also in other conditions, of relevant impact on human health.Key messagesHigh-density lipoproteins have as a major activity that of removing excess cholesterol from tissues (particularly arteries).Knowledge on the activity of high-density lipoproteins on health have however significantly widened.HDL-therapy may help to improve stent biocompatibility and to reduce peripheral arterial resistance in heart failure.
Collapse
Affiliation(s)
- C R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - G Chiesa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - R Giovannoni
- Department of Biology, University of Pisa, Pisa, Italy
| | - J J Badimon
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
229
|
Oetjens MT, Kelly MA, Sturm AC, Martin CL, Ledbetter DH. Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders. Nat Commun 2019; 10:4897. [PMID: 31653860 PMCID: PMC6814771 DOI: 10.1038/s41467-019-12869-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
Rare genetic disorders (RGDs) often exhibit significant clinical variability among affected individuals, a disease characteristic termed variable expressivity. Recently, the aggregate effect of common variation, quantified as polygenic scores (PGSs), has emerged as an effective tool for predictions of disease risk and trait variation in the general population. Here, we measure the effect of PGSs on 11 RGDs including four sex-chromosome aneuploidies (47,XXX; 47,XXY; 47,XYY; 45,X) that affect height; two copy-number variant (CNV) disorders (16p11.2 deletions and duplications) and a Mendelian disease (melanocortin 4 receptor deficiency (MC4R)) that affect BMI; and two Mendelian diseases affecting cholesterol: familial hypercholesterolemia (FH; LDLR and APOB) and familial hypobetalipoproteinemia (FHBL; PCSK9 and APOB). Our results demonstrate that common, polygenic factors of relevant complex traits frequently contribute to variable expressivity of RGDs and that PGSs may be a useful metric for predicting clinical severity in affected individuals and for risk stratification.
Collapse
MESH Headings
- Apolipoproteins B/genetics
- Autistic Disorder/genetics
- Body Height/genetics
- Body Mass Index
- Cholesterol, LDL/blood
- Cholesterol, LDL/genetics
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosome Duplication/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, X/genetics
- Female
- Humans
- Hyperlipoproteinemia Type II/genetics
- Hypobetalipoproteinemias/genetics
- Intellectual Disability/genetics
- Klinefelter Syndrome/genetics
- Male
- Middle Aged
- Multifactorial Inheritance
- Obesity/genetics
- Proprotein Convertase 9/genetics
- Rare Diseases/genetics
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptors, LDL/genetics
- Sex Chromosome Aberrations
- Sex Chromosome Disorders of Sex Development/genetics
- Trisomy/genetics
- Turner Syndrome/genetics
- XYY Karyotype/genetics
Collapse
Affiliation(s)
| | - M A Kelly
- Geisinger Health System, Danville, PA, USA
| | - A C Sturm
- Geisinger Health System, Danville, PA, USA
| | - C L Martin
- Geisinger Health System, Danville, PA, USA
| | | |
Collapse
|
230
|
Affiliation(s)
- Kyoung Im Cho
- Department of Cardiology, Kosin University Gospel Hospital
| | - Jongwook Yu
- Department of Cardiovascular Medicine, Heart Center, Gachon University Gil Medical Center
| | - Toshio Hayashi
- School of Health Sciences, Nagoya University Graduate School of Medicine
| | - Seung Hwan Han
- Department of Cardiovascular Medicine, Heart Center, Gachon University Gil Medical Center
- Gachon Cardiovascular Research Institute
| | - Kwang Kon Koh
- Department of Cardiovascular Medicine, Heart Center, Gachon University Gil Medical Center
- Gachon Cardiovascular Research Institute
| |
Collapse
|
231
|
Toth PP, Philip S, Hull M, Granowitz C. Association of Elevated Triglycerides With Increased Cardiovascular Risk and Direct Costs in Statin-Treated Patients. Mayo Clin Proc 2019; 94:1670-1680. [PMID: 31405751 DOI: 10.1016/j.mayocp.2019.03.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To retrospectively investigate the real-world impact of elevated triglyceride (TG) levels on cardiovascular (CV) outcomes, medical resource utilization, and medical costs using observational administrative claims data from the Optum Research Database. METHODS Patients with one or more claims for statin therapy between January 1, 2010, and December 31, 2010, and 6 months or more of baseline data prior to the index date were eligible for inclusion in the study. Patients aged 45 years or older with diabetes and/or atherosclerotic CV disease were included and analyzed in an elevated TG cohort (≥150 mg/dL) vs a comparator cohort with TG levels less than 150 mg/dL and high-density lipoprotein cholesterol (HDL-C) levels greater than 40 mg/dL. RESULTS In the elevated TG vs propensity-matched comparator cohorts (both N=23,181 patients), the mean age was 62.2 vs 62.6 years, mean follow-up was 41.4 vs 42.5 months, 49.7% (11,518) vs 49.5% (11,467) were female, 83.7% (19,392) vs 84.0% (19,478) had diabetes, and 29.8% (6915) vs 29.3% (6800) had atherosclerotic CV disease. In the elevated TG (N=27,471 patients) vs comparator (N=32,506 patients) cohorts, multivariate analysis revealed significantly greater risk of composite major CV events (hazard ratio [HR], 1.26; 95% CI, 1.19-1.34; P<.001), nonfatal myocardial infarction (HR, 1.32; 95% CI, 1.20-1.45; P<.001), nonfatal stroke (HR, 1.14; 95% CI, 1.04-1.24; P=.004), and need for coronary revascularization (HR, 1.46; 95% CI, 1.33-1.61; P<.001) but not unstable angina (P=.53) or CV death (P=.23). Increased CV risk was maintained with the addition of non-HDL-C to the multivariate model and with high and low HDL-C subgroup analysis. Total direct health care costs (cost ratio, 1.12; 95% CI, 1.08-1.16; P<.001) and inpatient hospital stays (HR, 1.13; 95% CI, 1.10-1.17; P<.001) were significantly higher in the elevated TG cohort vs the comparator cohort. CONCLUSION Statin-treated patients with TG levels of 150 mg/dL or greater had worse CV and health economic outcomes than those with well-managed TG (<150 mg/dL) and HDL-C (>40 mg/dL) levels.
Collapse
Affiliation(s)
- Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Preventive Cardiology, CGH Medical Center, Sterling, IL.
| | - Sephy Philip
- Department of Medical Affairs, Amarin Pharma, Inc, Bedminster, NJ
| | - Michael Hull
- Department of Health Economics and Outcomes Research, Optum, Inc, Eden Prairie, MN
| | - Craig Granowitz
- Department of Medical Affairs, Amarin Pharma, Inc, Bedminster, NJ
| |
Collapse
|
232
|
Cho DI, Kang HJ, Jeon JH, Eom GH, Cho HH, Kim MR, Cho M, Jeong HY, Cho HC, Hong MH, Kim YS, Ahn Y. Antiinflammatory activity of ANGPTL4 facilitates macrophage polarization to induce cardiac repair. JCI Insight 2019; 4:125437. [PMID: 31434807 DOI: 10.1172/jci.insight.125437] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can suppress pathological inflammation. However, the mechanisms underlying the association between MSCs and inflammation remain unclear. Under coculture conditions with macrophages, MSCs highly expressed angiopoietin-like 4 (ANGPTL4) to blunt the polarization of macrophages toward the proinflammatory phenotype. ANGPTL4-deficient MSCs failed to inhibit the inflammatory macrophage phenotype. In inflammation-related animal models, the injection of coculture medium or ANGPTL4 protein increased the antiinflammatory macrophages in both peritonitis and myocardial infarction. In particular, cardiac function and pathology were markedly improved by ANGPTL4 treatment. We found that retinoic acid-related orphan receptor α (RORα) was increased by inflammatory mediators, such as IL-1β, and bound to ANGPTL4 promoter in MSCs. Collectively, RORα-mediated ANGPTL4 induction was shown to contribute to the antiinflammatory activity of MSCs against macrophages under pathological conditions. This study suggests that the capability of ANGPTL4 to induce tissue repair is a promising opportunity for safe stem cell-free regeneration therapy from a translational perspective.
Collapse
Affiliation(s)
- Dong Im Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hye-Jin Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Hee Jeon
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyang Hee Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - Mi Ra Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Meeyoung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hye-Yun Jeong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyen Chung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Korea
| | - Moon Hwa Hong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
233
|
Janssen LGM, Jauhiainen M, Olkkonen VM, Haridas PAN, Nahon KJ, Rensen PCN, Boon MR. Short-Term Cooling Increases Plasma ANGPTL3 and ANGPTL8 in Young Healthy Lean Men but Not in Middle-Aged Men with Overweight and Prediabetes. J Clin Med 2019; 8:jcm8081214. [PMID: 31416197 PMCID: PMC6723119 DOI: 10.3390/jcm8081214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/16/2023] Open
Abstract
Angiopoietin-like proteins (ANGPTLs) regulate triglyceride (TG)-rich lipoprotein distribution via inhibiting TG hydrolysis by lipoprotein lipase in metabolic tissues. Brown adipose tissue combusts TG-derived fatty acids to enhance thermogenesis during cold exposure. It has been shown that cold exposure regulates ANGPTL4, but its effects on ANGPTL3 and ANGPTL8 in humans have not been elucidated. We therefore investigated the effect of short-term cooling on plasma ANGPTL3 and ANGPTL8, besides ANGPTL4. Twenty-four young, healthy, lean men and 20 middle-aged men with overweight and prediabetes were subjected to 2 h of mild cooling just above their individual shivering threshold. Before and after short-term cooling, plasma ANGPTL3, ANGPTL4, and ANGPTL8 were determined by ELISA. In young, healthy, lean men, short-term cooling increased plasma ANGPTL3 (+16%, p < 0.05), ANGPTL4 (+15%, p < 0.05), and ANGPTL8 levels (+28%, p < 0.001). In middle-aged men with overweight and prediabetes, short-term cooling only significantly increased plasma ANGPTL4 levels (+15%, p < 0.05), but not ANGPTL3 (230 ± 9 vs. 251 ± 13 ng/mL, p = 0.051) or ANGPTL8 (2.2 ± 0.5 vs. 2.3 ± 0.5 μg/mL, p = 0.46). We show that short-term cooling increases plasma ANGPTL4 levels in men, regardless of age and metabolic status, but only overtly increases ANGPTL3 and ANGPTL8 levels in young, healthy, lean men.
Collapse
Affiliation(s)
- Laura G M Janssen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - Kimberly J Nahon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
234
|
Oteng AB, Ruppert PMM, Boutens L, Dijk W, van Dierendonck XAMH, Olivecrona G, Stienstra R, Kersten S. Characterization of ANGPTL4 function in macrophages and adipocytes using Angptl4-knockout and Angptl4-hypomorphic mice. J Lipid Res 2019; 60:1741-1754. [PMID: 31409739 DOI: 10.1194/jlr.m094128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/13/2019] [Indexed: 12/27/2022] Open
Abstract
Angiopoietin-like protein (ANGPTL)4 regulates plasma lipids, making it an attractive target for correcting dyslipidemia. However, ANGPTL4 inactivation in mice fed a high fat diet causes chylous ascites, an acute-phase response, and mesenteric lymphadenopathy. Here, we studied the role of ANGPTL4 in lipid uptake in macrophages and in the above-mentioned pathologies using Angptl4-hypomorphic and Angptl4 -/- mice. Angptl4 expression in peritoneal and bone marrow-derived macrophages was highly induced by lipids. Recombinant ANGPTL4 decreased lipid uptake in macrophages, whereas deficiency of ANGPTL4 increased lipid uptake, upregulated lipid-induced genes, and increased respiration. ANGPTL4 deficiency did not alter LPL protein levels in macrophages. Angptl4-hypomorphic mice with partial expression of a truncated N-terminal ANGPTL4 exhibited reduced fasting plasma triglyceride, cholesterol, and NEFAs, strongly resembling Angptl4 -/- mice. However, during high fat feeding, Angptl4-hypomorphic mice showed markedly delayed and attenuated elevation in plasma serum amyloid A and much milder chylous ascites than Angptl4 -/- mice, despite similar abundance of lipid-laden giant cells in mesenteric lymph nodes. In conclusion, ANGPTL4 deficiency increases lipid uptake and respiration in macrophages without affecting LPL protein levels. Compared with the absence of ANGPTL4, low levels of N-terminal ANGPTL4 mitigate the development of chylous ascites and an acute-phase response in mice.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Philip M M Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lily Boutens
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wieneke Dijk
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
235
|
Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF, Van Driest SL. Pharmacogenomics. Lancet 2019; 394:521-532. [PMID: 31395440 PMCID: PMC6707519 DOI: 10.1016/s0140-6736(19)31276-0] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Genomic medicine, which uses DNA variation to individualise and improve human health, is the subject of this Series of papers. The idea that genetic variation can be used to individualise drug therapy-the topic addressed here-is often viewed as within reach for genomic medicine. We have reviewed general mechanisms underlying variability in drug action, the role of genetic variation in mediating beneficial and adverse effects through variable drug concentrations (pharmacokinetics) and drug actions (pharmacodynamics), available data from clinical trials, and ongoing efforts to implement pharmacogenetics in clinical practice.
Collapse
Affiliation(s)
- Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL, USA
| | - Mary V Relling
- Pharmaceutical Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - George A Mensah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Josh F Peterson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara L Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
236
|
Musunuru K, Arora P, Cooke JP, Ferguson JF, Hershberger RE, Hickey KT, Lee JM, Lima JAC, Loscalzo J, Pereira NL, Russell MW, Shah SH, Sheikh F, Wang TJ, MacRae CA. Interdisciplinary Models for Research and Clinical Endeavors in Genomic Medicine: A Scientific Statement From the American Heart Association. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e000046. [PMID: 29844141 DOI: 10.1161/hcg.0000000000000046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The completion of the Human Genome Project has unleashed a wealth of human genomics information, but it remains unclear how best to implement this information for the benefit of patients. The standard approach of biomedical research, with researchers pursuing advances in knowledge in the laboratory and, separately, clinicians translating research findings into the clinic as much as decades later, will need to give way to new interdisciplinary models for research in genomic medicine. These models should include scientists and clinicians actively working as teams to study patients and populations recruited in clinical settings and communities to make genomics discoveries-through the combined efforts of data scientists, clinical researchers, epidemiologists, and basic scientists-and to rapidly apply these discoveries in the clinic for the prediction, prevention, diagnosis, prognosis, and treatment of cardiovascular diseases and stroke. The highly publicized US Precision Medicine Initiative, also known as All of Us, is a large-scale program funded by the US National Institutes of Health that will energize these efforts, but several ongoing studies such as the UK Biobank Initiative; the Million Veteran Program; the Electronic Medical Records and Genomics Network; the Kaiser Permanente Research Program on Genes, Environment and Health; and the DiscovEHR collaboration are already providing exemplary models of this kind of interdisciplinary work. In this statement, we outline the opportunities and challenges in broadly implementing new interdisciplinary models in academic medical centers and community settings and bringing the promise of genomics to fruition.
Collapse
|
237
|
Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 2019; 114:1241-1257. [PMID: 29617720 DOI: 10.1093/cvr/cvy084] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize current knowledge on the genetics of coronary artery disease, based on 10 years of genome-wide association studies. The discoveries began with individual studies using 200K single nucleotide polymorphism arrays and progressed to large-scale collaborative efforts, involving more than a 100 000 people and up to 40 Mio genetic variants. We discuss the challenges ahead, including those involved in identifying causal genes and deciphering the links between risk variants and disease pathology. We also describe novel insights into disease biology based on the findings of genome-wide association studies. Moreover, we discuss the potential for discovery of novel treatment targets through the integration of different layers of 'omics' data and the application of systems genetics approaches. Finally, we provide a brief outlook on the potential for precision medicine to be enhanced by genome-wide association study findings in the cardiovascular field.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Loreto Munoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
238
|
van der Ende MY, Said MA, van Veldhuisen DJ, Verweij N, van der Harst P. Genome-wide studies of heart failure and endophenotypes: lessons learned and future directions. Cardiovasc Res 2019; 114:1209-1225. [PMID: 29912321 DOI: 10.1093/cvr/cvy083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome resulting from structural or functional impairments of ventricular filling or ejection of blood. HF has a poor prognosis and the burden to society remains tremendous. The unfulfilled expectation is that expanding our knowledge of the genetic architecture of HF will help to quickly advance the quality of risk assessment, diagnoses, and treatment. To date, genome-wide association studies (GWAS) of HF have led to disappointing results with only limited progress in our understanding and tempering the earlier expectations. However, the analyses of traits closely related to HF (also called 'endophenotypes') have led to promising and novel findings. For example, GWAS of NT-proBNP levels not only identified variants in the NNPA-NPPB locus but also substantiated data suggesting that natriuretic peptides in itself are associated with a lower risk of hypertension and HF. Many other genetic associates currently await experimental follow-up in which genes are prioritized based on bioinformatic analyses and various model organisms are employed to obtain functional insights. Promising genes with identified function could later be used in personalized medicine. Also, targeting specific pathogenic gene mutations is promising to protect future generations from HF, such as recently done in human embryos carrying the cardiomyopathy-associated MYBPC3 mutation. This review discusses the current status of GWAS of HF and its endophenotypes. In addition, future directions such as functional follow-up and application of GWAS results are discussed.
Collapse
Affiliation(s)
- Maaike Yldau van der Ende
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Mir Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Dirk Jan van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| |
Collapse
|
239
|
Basu D, Huggins LA, Scerbo D, Obunike J, Mullick AE, Rothenberg PL, Di Prospero NA, Eckel RH, Goldberg IJ. Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arterioscler Thromb Vasc Biol 2019; 38:2207-2216. [PMID: 30354257 DOI: 10.1161/atvbaha.118.311339] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective- SGLT2 (sodium-glucose cotransporter 2) inhibition in humans leads to increased levels of LDL (low-density lipoprotein) cholesterol and decreased levels of plasma triglyceride. Recent studies, however, have shown this therapy to lower cardiovascular mortality. In this study, we aimed to determine how SGLT2 inhibition alters circulating lipoproteins. Approach and Results- We used a mouse model expressing human CETP (cholesteryl ester transfer protein) and human ApoB100 (apolipoprotein B100) to determine how SGLT2 inhibition alters plasma lipoprotein metabolism. The mice were fed a high-fat diet and then were made partially insulin deficient using streptozotocin. SGLT2 was inhibited using a specific antisense oligonucleotide or canagliflozin, a clinically available oral SGLT2 inhibitor. Inhibition of SGLT2 increased circulating levels of LDL cholesterol and reduced plasma triglyceride levels. SGLT2 inhibition was associated with increased LpL (lipoprotein lipase) activity in the postheparin plasma, decreased postprandial lipemia, and faster clearance of radiolabeled VLDL (very-LDL) from circulation. Additionally, SGLT2 inhibition delayed turnover of labeled LDL from circulation. Conclusions- Our studies in diabetic CETP-ApoB100 transgenic mice recapitulate many of the changes in circulating lipids found with SGLT2 inhibition therapy in humans and suggest that the increased LDL cholesterol found with this therapy is because of reduced clearance of LDL from the circulation and greater lipolysis of triglyceride-rich lipoproteins. Most prominent effects of SGLT2 inhibition in the current mouse model were seen with antisense oligonucleotides-mediated knockdown of SGLT2.
Collapse
Affiliation(s)
- Debapriya Basu
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Lesley-Ann Huggins
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Diego Scerbo
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Joseph Obunike
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA (A.E.M.)
| | - Paul L Rothenberg
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Nicholas A Di Prospero
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Robert H Eckel
- Division of Endocrinology, University of Colorado, Anschutz Campus, Denver (R.H.E.)
| | - Ira J Goldberg
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| |
Collapse
|
240
|
Abstract
Zusammenfassung
Häufige Krankheiten, die sog. Volkskrankheiten, sind in der Regel multifaktoriell verursacht, d. h. zu ihrer Entwicklung tragen sowohl genetische Faktoren als auch nicht-genetische Umgebungseinflüsse bei. Die geschätzte Gesamterblichkeit (‑heritabilität) reicht von moderat bis vergleichsweise hoch. Die genetische Architektur ist komplex und kann das gesamte allelische Spektrum, von häufigen Varianten mit niedriger Penetranz bis hin zu seltenen Varianten mit höherer Penetranz, sowie alle möglichen Kombinationen umfassen. Während häufige Varianten seit mehreren Jahren mit großem Erfolg durch genomweite Assoziationsstudien (GWAS) identifiziert werden, war bisher die Identifizierung seltener Varianten, insbesondere aufgrund der großen Zahl beitragender Gene, nur begrenzt erfolgreich. Dies ändert sich derzeit dank der Anwendung von Hochdurchsatz-Sequenziertechnologien („next-generation sequencing“, NGS) und der daraus resultierenden zunehmenden Verfügbarkeit von exom- und genomweiten Sequenzdaten großer Kollektive. In diesem Artikel geben wir einen Überblick über die Bedeutung seltener Varianten bei häufigen Erkrankungen sowie den aktuellen Stand in Bezug auf deren Identifizierung mittels NGS. Wir betrachten insbesondere die folgenden Fragen: Bei welchen häufigen Krankheiten ist ein Beitrag seltener Varianten zu erwarten, wie können diese Varianten identifiziert werden, und welches Potenzial bieten seltene Varianten für das Verständnis biologischer Prozesse bzw. für die Translation in die klinische Praxis?
Collapse
Affiliation(s)
- Kerstin U. Ludwig
- Aff2 0000 0000 8786 803X grid.15090.3d Emmy-Noether-Gruppe „Kraniofaziale Genomik“, Institut für Humangenetik U ni ver si täts kli ni kum Bonn Venusberg-Campus 1, Gebäude 76 53127 Bonn Deutschland
| | - Franziska Degenhardt
- Aff1 0000 0000 8786 803X grid.15090.3d Institut für Humangenetik Universitätsklinikum Bonn Bonn Deutschland
| | - Markus M. Nöthen
- Aff1 0000 0000 8786 803X grid.15090.3d Institut für Humangenetik Universitätsklinikum Bonn Bonn Deutschland
| |
Collapse
|
241
|
Tang WHW, Hazen SL. Atherosclerosis in 2016: Advances in new therapeutic targets for atherosclerosis. Nat Rev Cardiol 2019; 14:71-72. [PMID: 28094270 DOI: 10.1038/nrcardio.2016.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
242
|
Shivakumar M, Miller JE, Dasari VR, Gogoi R, Kim D. Exome-Wide Rare Variant Analysis From the DiscovEHR Study Identifies Novel Candidate Predisposition Genes for Endometrial Cancer. Front Oncol 2019; 9:574. [PMID: 31338326 PMCID: PMC6626914 DOI: 10.3389/fonc.2019.00574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the fourth most commonly diagnosed cancer in women. Family history is a known risk factor for endometrial cancer. The incidence of endometrial cancer in a first-degree relative elevates the relative risk to range between 1.3 and 2.8. It is unclear to what extent or what other novel germline variants are at play in endometrial cancer. We aim to address this question by utilizing whole exome sequencing as a means to identify novel, rare variant associations between exonic regions and endometrial cancer. The MyCode community health initiative is an excellent resource for this study with germline whole exome data for 60,000 patients available in the first phase, and further 30,000 patients independently sequenced in the second phase as part of DiscovEHR study. We conducted exome-wide rare variant association using 472 cases and 4,110 controls in 60,000 patients (discovery cohort); and 261 cases and 1,531 controls from 30,000 patients (replication cohort). After binning rare germline variants into genes, case-control association tests performed using Optimal Unified Approach for Rare-Variant Association, SKAT-O. Seven genes, including RBM12, NDUFB6, ATP6V1A, RECK, SLC35E1, RFX3 (Bonferroni-corrected P < 0.05) and ATP8A1 (suggestive P < 10−5), and one long non-coding RNA, DLGAP4-AS1 (Bonferroni-corrected P < 0.05), were associated with endometrial cancer. Notably, RECK, and ATP8A1 were replicated from the replication cohort (suggestive threshold P < 0.05). Additionally, a pathway-based rare variant analysis, using pathogenic and likely pathogenic variants, identified two significant pathways, pyrimidine metabolism and protein processing in the endoplasmic reticulum (Bonferroni-corrected P < 0.05). In conclusion, our results using the single-source electronic health records (EHR) linked to genomic data highlights candidate genes and pathways associated with endometrial cancer and indicates rare variants involvement in endometrial cancer predisposition, which could help in personalized prognosis and also further our understanding of its genetic etiology.
Collapse
Affiliation(s)
- Manu Shivakumar
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA, United States
| | - Jason E Miller
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Radhika Gogoi
- Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Dokyoon Kim
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA, United States.,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
243
|
Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G, Ploug M. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metab 2019; 30:51-65. [PMID: 31269429 PMCID: PMC6662658 DOI: 10.1016/j.cmet.2019.05.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
Collapse
Affiliation(s)
- Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher M Allan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Molecular Sciences, University of Western Australia, Crawley 6009, Australia
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Department of Medicine, Maebashi, Gunma 371-0805, Japan
| | - Muthuraman Meiyappan
- Discovery Therapeutics, Takeda Pharmaceutical Company Ltd., Cambridge, MA 02142, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen DK-2200, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
244
|
Haggerty CM, Damrauer S, Levin MG, Birtwell D, Carey DJ, Golden AM, Hartzel DN, Hu Y, Judy R, Kelly MA, Kember RL, Kirchner HL, Leader JB, Liang L, McDermott-Roe C, Babu A, Morley M, Nealy Z, Person TN, Pulenthiran A, Small A, Smelser DT, Stahl RC, Sturm AC, Williams H, Baras A, Margulies KB, Cappola TP, Dewey FE, Verma A, Zhang X, Correa A, Hall ME, Wilson JG, Ritchie MD, Rader DJ, Murray MF, Fornwalt BK, Arany Z. Genomics-First Evaluation of Heart Disease Associated With Titin-Truncating Variants. Circulation 2019; 140:42-54. [PMID: 31216868 PMCID: PMC6602806 DOI: 10.1161/circulationaha.119.039573] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/19/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Truncating variants in the Titin gene (TTNtvs) are common in individuals with idiopathic dilated cardiomyopathy (DCM). However, a comprehensive genomics-first evaluation of the impact of TTNtvs in different clinical contexts, and the evaluation of modifiers such as genetic ancestry, has not been performed. METHODS We reviewed whole exome sequence data for >71 000 individuals (61 040 from the Geisinger MyCode Community Health Initiative (2007 to present) and 10 273 from the PennMedicine BioBank (2013 to present) to identify anyone with TTNtvs. We further selected individuals with TTNtvs in exons highly expressed in the heart (proportion spliced in [PSI] >0.9). Using linked electronic health records, we evaluated associations of TTNtvs with diagnoses and quantitative echocardiographic measures, including subanalyses for individuals with and without DCM diagnoses. We also reviewed data from the Jackson Heart Study to validate specific analyses for individuals of African ancestry. RESULTS Identified with a TTNtv in a highly expressed exon (hiPSI) were 1.2% individuals in PennMedicine BioBank and 0.6% at Geisinger. The presence of a hiPSI TTNtv was associated with increased odds of DCM in individuals of European ancestry (odds ratio [95% CI]: 18.7 [9.1-39.4] {PennMedicine BioBank} and 10.8 [7.0-16.0] {Geisinger}). hiPSI TTNtvs were not associated with DCM in individuals of African ancestry, despite a high DCM prevalence (odds ratio, 1.8 [0.2-13.7]; P=0.57). Among 244 individuals of European ancestry with DCM in PennMedicine BioBank, hiPSI TTNtv carriers had lower left ventricular ejection fraction (β=-12%, P=3×10-7), and increased left ventricular diameter (β=0.65 cm, P=9×10-3). In the Geisinger cohort, hiPSI TTNtv carriers without a cardiomyopathy diagnosis had more atrial fibrillation (odds ratio, 2.4 [1.6-3.6]) and heart failure (odds ratio, 3.8 [2.4-6.0]), and lower left ventricular ejection fraction (β=-3.4%, P=1×10-7). CONCLUSIONS Individuals of European ancestry with hiPSI TTNtv have an abnormal cardiac phenotype characterized by lower left ventricular ejection fraction, irrespective of the clinical manifestation of cardiomyopathy. Associations with arrhythmias, including atrial fibrillation, were observed even when controlling for cardiomyopathy diagnosis. In contrast, no association between hiPSI TTNtvs and DCM was discerned among individuals of African ancestry. Given these findings, clinical identification of hiPSI TTNtv carriers may alter clinical management strategies.
Collapse
Affiliation(s)
| | - Scott Damrauer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael G. Levin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David Birtwell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | - Renae Judy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Rachel L. Kember
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Lusha Liang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Apoorva Babu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Morley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Aeron Small
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Heather Williams
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY
| | | | - Thomas P. Cappola
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Anurag Verma
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xinyuang Zhang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Michael E. Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Marylyn D. Ritchie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J. Rader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
245
|
Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol Med 2019; 25:723-734. [PMID: 31235370 DOI: 10.1016/j.molmed.2019.05.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Alterations in circulating lipids and ectopic lipid deposition impact on the risk of developing cardiovascular and metabolic diseases. Lipoprotein lipase (LPL) hydrolyzes fatty acids (FAs) from triglyceride (TAG)-rich lipoproteins including very low density lipoproteins (VLDLs) and chylomicrons, and regulates their distribution to peripheral tissues. Angiopoietin-like 4 (ANGPTL4) mediates the inhibition of LPL activity under different circumstances. Accumulating evidence associates ANGPTL4 directly with the risk of atherosclerosis and type 2 diabetes (T2D). This review focuses on recent findings on the role of ANGPTL4 in metabolic and cardiovascular diseases. We highlight human and murine studies that explore ANGPTL4 functions in different tissues and how these effect disease development through possible autocrine and paracrine forms of regulation.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suarez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
246
|
Kharazmi-Khorassani S, Kharazmi-Khorassani J, Rastegar-Moghadam A, Samadi S, Ghazizadeh H, Tayefi M, Ferns GA, Ghayour-Mobarhan M, Avan A, Esmaily H. Association of a genetic variant in the angiopoietin-like protein 4 gene with metabolic syndrome. BMC MEDICAL GENETICS 2019; 20:97. [PMID: 31164103 PMCID: PMC6549319 DOI: 10.1186/s12881-019-0825-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Background Metabolic syndrome (MetS) is characterized by a clustering of cardiovascular risk factors that include: abdominal obesity, dyslipidemia, hypertension and glucose intolerance. Angiopoietin-like protein 4 (ANGPTL4) is a circulating peptide that is an inhibitor of lipoprotein lipase, a key enzyme in lipid metabolism. The objective of this study was to investigate the association of ANGPTL4 gene variants (E40K) with fasting serum triglyceride levels and with cardiovascular risk factors, that included the presence of MetS in 817 subjects recruited from the Mashhad stroke and heart Atherosclerosis Disorders (MASHAD) cohort Study. Method ANGPTL4 genotypes were determined using a TaqMan genotyping based real time PCR method. The association of the genetic variant with the risk of metabolic syndrome and its relationship with lipid profile were determined. Result The frequency of GG, GA and AA genotypes were 96.9, 2.7 and 0.4% in individuals with MetS, and 78.8, 20.8, 0.4%, in those without MetS. The GA genotype of the rs116843064 polymorphism was associated with a lower risk for MetS (e.g., OR in Codominant genetic model: 0.14, 95% CI: (0.06–0.33), p < 0.0001). Subject with an A allele had a higher risk for MetS (OR: 6.72, 95% CI: (3.05–14.82), p < 0.0001). There was a significant difference in fasted lipid profiles across the genotypes for ANGPTL4. Carriers of the AG genotype had higher levels of serum HDL-cholesterol (HDL-C) and lower TG, compared to the GG homozygotes genotype. Conclusion The G allele at the rs116843064 polymorphic locus of the ANGPTL4 gene was associated with a lower prevalence of MetS.
Collapse
Affiliation(s)
| | | | - Azam Rastegar-Moghadam
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Samadi
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Habibollah Esmaily
- Social Determinants of Health Research, Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
247
|
Fruchart JC, Santos RD, Aguilar-Salinas C, Aikawa M, Al Rasadi K, Amarenco P, Barter PJ, Ceska R, Corsini A, Després JP, Duriez P, Eckel RH, Ezhov MV, Farnier M, Ginsberg HN, Hermans MP, Ishibashi S, Karpe F, Kodama T, Koenig W, Krempf M, Lim S, Lorenzatti AJ, McPherson R, Nuñez-Cortes JM, Nordestgaard BG, Ogawa H, Packard CJ, Plutzky J, Ponte-Negretti CI, Pradhan A, Ray KK, Reiner Ž, Ridker PM, Ruscica M, Sadikot S, Shimano H, Sritara P, Stock JK, Su TC, Susekov AV, Tartar A, Taskinen MR, Tenenbaum A, Tokgözoğlu LS, Tomlinson B, Tybjærg-Hansen A, Valensi P, Vrablík M, Wahli W, Watts GF, Yamashita S, Yokote K, Zambon A, Libby P. The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential : A consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation. Cardiovasc Diabetol 2019; 18:71. [PMID: 31164165 PMCID: PMC6549355 DOI: 10.1186/s12933-019-0864-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, treatments that target specific modifiable characteristics of high-risk patients have the potential to lower further the residual risk of atherosclerotic cardiovascular events. Correction of atherogenic dyslipidemia, however, remains a major unmet clinical need. Elevated plasma triglycerides, with or without low levels of high-density lipoprotein cholesterol (HDL-C), offer a key modifiable component of this common dyslipidemia, especially in insulin resistant conditions such as type 2 diabetes mellitus. The development of selective peroxisome proliferator-activated receptor alpha modulators (SPPARMα) offers an approach to address this treatment gap. This Joint Consensus Panel appraised evidence for the first SPPARMα agonist and concluded that this agent represents a novel therapeutic class, distinct from fibrates, based on pharmacological activity, and, importantly, a safe hepatic and renal profile. The ongoing PROMINENT cardiovascular outcomes trial is testing in 10,000 patients with type 2 diabetes mellitus, elevated triglycerides, and low levels of HDL-C whether treatment with this SPPARMα agonist safely reduces residual cardiovascular risk.
Collapse
Affiliation(s)
| | - Raul D. Santos
- Hospital Israelita Albert Einstein, and Lipid Clinic, Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Carlos Aguilar-Salinas
- Unidad de Investigacion de Enfermedades Metabolicas, Department of Endocrinolgy and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine and Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Khalid Al Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Pierre Amarenco
- Department of Neurology and Stroke Center, Paris-Diderot-Sorbonne University, Paris, France
| | - Philip J. Barter
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Richard Ceska
- IIIrd Dept Int. Med, Center for Preventive Cardiology, 3rd Internal Medicine Clinic, University General Hospital and Charles University, Prague, Czech Republic
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Jean-Pierre Després
- Centre de recherche sur les soins et les services de première ligne-Université Laval du CIUSSS de la Capitale-Nationale, Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC Canada
| | - Patrick Duriez
- INSERM, CHU Lille, U1171-Degenerative & Vascular Cognitive Disorders, University of Lille, Faculty of Pharmacy, University of Lille, UDSL, Lille, France
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO USA
| | - Marat V. Ezhov
- Laboratory of Lipid Disorders, National Cardiology Research Center, Moscow, Russian Federation
| | - Michel Farnier
- Lipid Clinic, Point Médical and Department of Cardiology, CHU Dijon-Bourgogne, Dijon, France
| | - Henry N. Ginsberg
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Michel P. Hermans
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Fredrik Karpe
- OCDEM, University of Oxford and the NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Churchill Hospital, Oxford, UK
| | - Tatsuhiko Kodama
- Laboratory for System Biology and Medicine Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universitat München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Michel Krempf
- Mass Spectrometry Core facility of West Human Nutrition Research Center (CRNHO), Hotel Dieu Hospital, Nantes, France
- Inra, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France
- Department of Endocrinology, Metabolic diseases and Nutrition, G and R Laennec Hospital, Nantes, France
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Alberto J. Lorenzatti
- DAMIC Medical Institute/Rusculleda Foundation for Research, Córdoba, Argentina
- Cardiology Department, Córdoba Hospital, Córdoba, Argentina
| | - Ruth McPherson
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada
| | - Jesus Millan Nuñez-Cortes
- Internal Medicine, Lipids Unit, Gregorio Marañón University Hospital, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Madrid, Spain
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hisao Ogawa
- National Cerebral and Cardiovascular Center, Suita, Osaka Japan
| | - Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jorge Plutzky
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Carlos I. Ponte-Negretti
- Unidad de Prevención Cardiometabólica Cardiocob. Servicio de Cardiología Hospital el Pino Santiago de Chile, Sociedad Inter Americana de Cardiología SIAC Chairman Cardiovascular Prevention Comite, Santiago de Chile, Chile
| | - Aruna Pradhan
- Division of Cardiovascular Medicine, VA Boston Medical Center, Boston, MA USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kausik K. Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, Zagreb University, Kispaticeva 12, Zagreb, Croatia
| | - Paul M. Ridker
- Division of Cardiovascular Medicine and Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Shaukat Sadikot
- Department of Endocrinology/Diabetology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575 Japan
| | - Piyamitr Sritara
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jane K. Stock
- R3i Foundation, Picassoplatz 8, 4010 Basel, Switzerland
| | - Ta-Chen Su
- Departments of Internal Medicine and Environmental and Occupational Medicine, National Taiwan University; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Andrey V. Susekov
- Faculty of Clinical Pharmacology and Therapeutics, Academy for Postgraduate Continuous Medical Education, Moscow, Russian Federation
| | | | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki and Clinical Research Institute, HUCH Ltd., Helsinki, Finland
| | - Alexander Tenenbaum
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Cardiac Rehabilitation Institute, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - Lale S. Tokgözoğlu
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Brian Tomlinson
- Department of Medicine & Theraputics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet; Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Paul Valensi
- Department of Endocrinology, Diabetology and Nutrition, Jean-Verdier Hospital (AP-HP), Paris 13 University, Sorbonne Paris Cité, CRNH-IdF, CINFO, 93140 Bondy, France
| | - Michal Vrablík
- 3rd Department of Medicine, 1st Faculty of Medicine of Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232 Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Institut National de La Recherche Agronomique (INRA), UMR1331 ToxAlim, Toulouse, France
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, Australia
| | - Shizuya Yamashita
- Rinku General Medical Center, Izumisano, Osaka Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Osaka Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Alberto Zambon
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
248
|
Abstract
PURPOSE OF REVIEW The angiopoietin-like proteins (ANGPTLs), consisting of ANGPTL3, ANGPTL4, and ANGPTL8, have gained significant interest for their role as inhibitors of lipoprotein lipase (LPL) and for their potential as therapeutic targets for correcting dyslipidemia. This review provides an overview of the most relevant new insights on the connection between ANGPTLs, plasma lipids, and coronary artery disease. RECENT FINDINGS Carriers of loss-of-function variants in ANGPTL3 have a reduced risk of coronary artery disease and reduced plasma levels of triglycerides and LDL-C, while carriers of loss-of-function variants in ANGPTL4 have a reduced risk of coronary artery disease and reduced plasma levels of triglycerides and increased HDL-C. There is evidence that carrier status of ANGPTL4 loss-of-function variants may also influence risk of type 2 diabetes. ANGPTL3 is produced in liver and is released as a complex with ANGPTL8 to suppress LPL activity in fat and muscle tissue. ANGPTL4 is produced by numerous tissues and likely mainly functions as a locally released LPL inhibitor. Both proteins inactivate LPL by catalyzing the unfolding of the hydrolase domain in LPL and by promoting the cleavage of LPL. Antisense oligonucleotide and monoclonal antibody-based inactivation of ANGPTL3 reduce plasma triglyceride and LDL-C levels in human volunteers and suppress atherosclerosis in mouse models. SUMMARY ANGPTL3/ANGPTL8 and ANGPTL4 together assure the appropriate distribution of plasma triglycerides across tissues during different physiological conditions. Large-scale genetic studies provide strong rationale for continued research efforts to pharmacologically inactivate ANGPTL3 and possibly ANGPTL4 to reduce plasma lipids and coronary artery disease risk.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
249
|
Abstract
Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 Å resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.
Collapse
|
250
|
Stock J. Triglycerides and cardiovascular risk: Apolipoprotein B holds the key. Atherosclerosis 2019; 284:221-222. [DOI: 10.1016/j.atherosclerosis.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/08/2023]
|