201
|
Iske J, El Fatimy R, Nian Y, Ghouzlani A, Eskandari SK, Cetina Biefer HR, Vasudevan A, Elkhal A. NAD + prevents septic shock-induced death by non-canonical inflammasome blockade and IL-10 cytokine production in macrophages. eLife 2024; 12:RP88686. [PMID: 38372712 PMCID: PMC10942599 DOI: 10.7554/elife.88686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Septic shock is characterized by an excessive inflammatory response depicted in a cytokine storm that results from invasive bacterial, fungi, protozoa, and viral infections. Non-canonical inflammasome activation is crucial in the development of septic shock promoting pyroptosis and proinflammatory cytokine production via caspase-11 and gasdermin D (GSDMD). Here, we show that NAD+ treatment protected mice toward bacterial and lipopolysaccharide (LPS)-induced endotoxic shock by blocking the non-canonical inflammasome specifically. NAD+ administration impeded systemic IL-1β and IL-18 production and GSDMD-mediated pyroptosis of macrophages via the IFN-β/STAT-1 signaling machinery. More importantly, NAD+ administration not only improved casp-11 KO (knockout) survival but rendered wild type (WT) mice completely resistant to septic shock via the IL-10 signaling pathway that was independent from the non-canonical inflammasome. Here, we delineated a two-sided effect of NAD+ blocking septic shock through a specific inhibition of the non-canonical inflammasome and promoting immune homeostasis via IL-10, underscoring its unique therapeutic potential.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Cardiothoracic and Vascular Surgery, Germany Heart Center BerlinBerlinGermany
| | - Rachid El Fatimy
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic UniversityBenguerirMorocco
| | - Yeqi Nian
- Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai UniversityTianjinChina
| | - Amina Ghouzlani
- NAD Immunology Laboratory, Huntington Medical Research InstitutesPasadenaUnited States
| | - Siawosh K Eskandari
- Department of Internal Medicine, University of GroningenGroningenNetherlands
| | - Hector Rodriguez Cetina Biefer
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Department of Cardiac Surgery, Stadtspital Zurich TriemliZurichSwitzerland
| | - Anju Vasudevan
- Department of Neurosciences, Angiogenesis and Brain Development Laboratory, Huntington Medical Research InstitutesPasadenaUnited States
| | - Abdallah Elkhal
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- NAD Immunology Laboratory, Huntington Medical Research InstitutesPasadenaUnited States
| |
Collapse
|
202
|
Wu Y, Caldwell B, Wang J, Zhang Y, Li L. Alleviation of monocyte exhaustion by BCG derivative mycolic acid. iScience 2024; 27:108978. [PMID: 38323001 PMCID: PMC10845070 DOI: 10.1016/j.isci.2024.108978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Monocyte exhaustion with sustained pathogenic inflammation and immune-suppression, a hallmark of sepsis resulting from systemic infections, presents a challenge with limited therapeutic solutions. This study identified Methoxy-Mycolic Acid (M-MA), a branched mycolic acid derived from Mycobacterium bovis Bacillus Calmette-Guérin (BCG), as a potent agent in alleviating monocyte exhaustion and restoring immune homeostasis. Co-treatment of monocytes with M-MA effectively blocked the expansion of Ly6Chi/CD38hi/PD-L1hi monocytes induced by LPS challenges and restored the expression of immune-enhancing CD86. M-MA treatment restored mitochondrial functions of exhausted monocytes and alleviated their suppressive activities on co-cultured T cells. Independent of TREM2, M-MA blocks Src-STAT1-mediated inflammatory polarization and reduces the production of immune suppressors TAX1BP1 and PLAC8. Whole genome methylation analyses revealed M-MA's ability to erase the methylation memory of exhausted monocytes, particularly restoring Plac8 methylation. Together, our data suggest M-MA as an effective agent in restoring monocyte homeostasis with a therapeutic potential for treating sepsis.
Collapse
Affiliation(s)
- Yajun Wu
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Blake Caldwell
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| |
Collapse
|
203
|
Marin MJ, van Wijk XMR, Chambliss AB. Advances in sepsis biomarkers. Adv Clin Chem 2024; 119:117-166. [PMID: 38514209 DOI: 10.1016/bs.acc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Sepsis, a dysregulated host immune response to an infectious agent, significantly increases morbidity and mortality for hospitalized patients worldwide. This chapter reviews (1) the basic principles of infectious diseases, pathophysiology and current definition of sepsis, (2) established sepsis biomarkers such lactate, procalcitonin and C-reactive protein, (3) novel, newly regulatory-cleared/approved biomarkers, such as assays that evaluate white blood cell properties and immune response molecules, and (4) emerging biomarkers and biomarker panels to highlight future directions and opportunities in the diagnosis and management of sepsis.
Collapse
Affiliation(s)
- Maximo J Marin
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Allison B Chambliss
- Department of Pathology & Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
204
|
Yang J, Chen J, Zhang M, Zhou Q, Yan B. Prognostic impacts of repeated sepsis in intensive care unit on autoimmune disease patients: a retrospective cohort study. BMC Infect Dis 2024; 24:197. [PMID: 38350868 PMCID: PMC10863122 DOI: 10.1186/s12879-024-09072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Autoimmune diseases (ADs) may be complicated by sepsis when intensive care unit (ICU) admission. But repeated sepsis among AD patients has not been studied yet. The aim of this study is to investigate the impact of repeated in-ICU sepsis on the 1-year overall-cause mortality, septic shock and in-ICU death of AD patients. METHODS Data of AD patients with sepsis retrieved from Medical Information Mart for Intensive Care IV (MIMIC-IV) database were divided into the single group and the repeated group according to the frequency of in-ICU sepsis. Propensity score matching was used to balance inter-group bias. Cox proportional hazard regression and sensitivity analysis were utilized to assess the variables on mortality. RESULTS The incidence of repeated in-ICU sepsis in baseline was 19.8%. The repeated in-ICU sepsis was a risk factor for 1-year overall-cause mortality among AD patients (adjusted hazard ratio [HR] = 1.50, 95% CI: 1.16-1.93, P = 0.002), with robust adjusted HRs by the adjustment for confounders in the sensitivity analysis (all P < 0.01). Maximum Sequential Organ Failure Assessment (Max SOFA), Charlson comorbidity index (CCI) and Simplified Acute Physiology Score-II (SAPS-II) were risk factors for 1-year overall-cause mortality among AD with repeated sepsis (Max SOFA: HR = 1.09, P = 0.002; CCI: HR = 1.08, P = 0.039; SAPS-II: HR = 1.03, P < 0.001). CONCLUSIONS Compared to single hit, repeated in-ICU sepsis was independently related to a higher risk of 1-year overall-cause mortality among AD patients. Assessment tools (Higher SOFA, CCI and SAPS-II scores) were closely linked to poor prognosis of AD with repeated sepsis and helped to reflect ill physical conditions for the patients.
Collapse
Affiliation(s)
- Jinming Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China
| | - Jie Chen
- Department of Rheumatology, People's Hospital of Leshan, Leshan, China
| | - Min Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China
| | - Qingsa Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China
| | - Bing Yan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China.
| |
Collapse
|
205
|
Chen Y, Sun J, Hua T, Wang J, Cao R, Xu H, Chen L, Morisseau C, Zhang M, Shi Y, Han C, Zhuang J, Jing Y, Liu Z, Hammock BD, Chen G. Design and Synthesis of Dual-Targeting Inhibitors of sEH and HDAC6 for the Treatment of Neuropathic Pain and Lipopolysaccharide-Induced Mortality. J Med Chem 2024; 67:2095-2117. [PMID: 38236416 PMCID: PMC11308793 DOI: 10.1021/acs.jmedchem.3c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Epoxyeicosatrienoic acids with anti-inflammatory effects are inactivated by soluble epoxide hydrolase (sEH). Both sEH and histone deacetylase 6 (HDAC6) inhibitors are being developed as neuropathic pain relieving agents. Based on the structural similarity, we designed a new group of compounds with inhibition of both HDAC6 and sEH and obtained compound M9. M9 exhibits selective inhibition of HDAC6 over class I HDACs in cells. M9 shows good microsomal stability, moderate plasma protein binding rate, and oral bioavailability. M9 exhibited a strong analgesic effect in vivo, and its analgesic tolerance was better than gabapentin. M9 improved the survival time of mice treated with lipopolysaccharide (LPS) and reversed the levels of inflammatory factors induced by LPS in mouse plasma. M9 represents the first sEH/HDAC6 dual inhibitors with in vivo antineuropathic pain and anti-inflammation.
Collapse
Affiliation(s)
- Yuanguang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianwen Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Hua
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jieru Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruolin Cao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huashen Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Maoying Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yajie Shi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chao Han
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Junning Zhuang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
206
|
Kumari A, Vertii A. Perspective: "Current understanding of NADs dynamics and mechanisms of Disease". Gene 2024; 894:147960. [PMID: 37923094 DOI: 10.1016/j.gene.2023.147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Chromatin architecture is essential for gene regulation, and multiple levels of the 3D chromatin organization exhibit dynamic changes during organismal development and cell differentiation. Heterochromatin, termed compartment B in Hi-C datasets, is a phase-separating gene-silencing form of chromatin, preferentially located at the two nuclear sites, nuclear (lamina-associate chromatin domains, LADs) and nucleoli (nucleoli-associated chromatin domains, NADs) peripheries. LADs and NADs contain both interchangeable and location-specific chromatin domains. Recent studies suggest striking dynamics in LADs and NADs during the differentiation of embryonic stem cells into neural progenitors and neurons. Here we discuss recent advances in understanding NADs changes during neuronal differentiation and future questions on how NADs integrity can contribute to healthy neurodevelopment and neurodevelopment diseases.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US
| | - Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US.
| |
Collapse
|
207
|
Ramasco F, Nieves-Alonso J, García-Villabona E, Vallejo C, Kattan E, Méndez R. Challenges in Septic Shock: From New Hemodynamics to Blood Purification Therapies. J Pers Med 2024; 14:176. [PMID: 38392609 PMCID: PMC10890552 DOI: 10.3390/jpm14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Sepsis and septic shock are associated with high mortality, with diagnosis and treatment remaining a challenge for clinicians. Their management classically encompasses hemodynamic resuscitation, antibiotic treatment, life support, and focus control; however, there are aspects that have changed. This narrative review highlights current and avant-garde methods of handling patients experiencing septic shock based on the experience of its authors and the best available evidence in a context of uncertainty. Following the first recommendation of the Surviving Sepsis Campaign guidelines, it is recommended that specific sepsis care performance improvement programs are implemented in hospitals, i.e., "Sepsis Code" programs, designed ad hoc, to achieve this goal. Regarding hemodynamics, the importance of perfusion and hemodynamic coherence stand out, which allow for the recognition of different phenotypes, determination of the ideal time for commencing vasopressor treatment, and the appropriate fluid therapy dosage. At present, this is not only important for the initial timing, but also for de-resuscitation, which involves the early weaning of support therapies, directed elimination of fluids, and fluid tolerance concept. Finally, regarding blood purification therapies, those aimed at eliminating endotoxins and cytokines are attractive in the early management of patients in septic shock.
Collapse
Affiliation(s)
- Fernando Ramasco
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Jesús Nieves-Alonso
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Esther García-Villabona
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Carmen Vallejo
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Eduardo Kattan
- Departamento de Medicina Intensiva del Adulto, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago 8320000, Chile
| | - Rosa Méndez
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
208
|
Chinzowu T, Chyou TY, Nishtala PS. Antibiotic-Associated Acute Kidney Injury Among Older Adults: A Case-Crossover Study. Clin Drug Investig 2024; 44:131-139. [PMID: 38170348 DOI: 10.1007/s40261-023-01339-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND OBJECTIVES Drug-related acute kidney injury is quite common in older adults. The associated drugs, including antibiotics, are often co-prescribed. The objective of this study was to ascertain antibiotic-associated acute kidney injury (AKI) in older adults aged 65 years or above in New Zealand using a case-crossover study design. METHODS The International Statistical Classification of Diseases and Related Health Problems, tenth revision, Australian modification code N17.x was used to identify all individuals aged 65 years and above with a diagnosis of incident AKI on admission between 1 January 2005 and 31 December 2020, from the New Zealand National Minimum Data Set. A case-crossover cohort for antibiotic exposures, with a 3 day case period and two 30 day washout periods, summed up to a 66 day study period, was created. Using conditional logistic regression, the changed odds of AKI due to exposure to an antibiotic was calculated as matched odds ratios and their 95% confidence intervals. RESULTS A total of 2399 incident cases of AKI were identified between 2005 and 2020 among older adults. The adjusted odds of consuming sulfamethoxazole/trimethoprim antibiotic during the case period was 3.57 times (95% CI 2.86-4.46) higher than the reference period among the incident AKI cases. Fluoroquinolone utilization was also associated with incident AKI (adjusted OR = 2.56; 95% CI 1.90-3.46). CONCLUSION The potential of sulfamethoxazole/trimethoprim and fluoroquinolones to be associated with AKI raises the significant need for vigilant prescribing of these antibiotics in older adults.
Collapse
Affiliation(s)
| | - Te-Yuan Chyou
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Prasad S Nishtala
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
209
|
Li X, Zhang L, Hu S, Liu D, Hu B, Ran J, Lin X, Mao W, Hu J. Postmarketing Safety of Sacituzumab Govitecan: A Pharmacovigilance Study Based on the FDA Adverse Event Reporting System. Clin Pharmacol Ther 2024; 115:256-268. [PMID: 37994531 DOI: 10.1002/cpt.3098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Sacituzumab govitecan is widely used for the treatment of breast cancer and urothelial carcinoma, but available information regarding adverse events (AEs) is limited. We aim to explore the AE induced by sacituzumab govitecan by mining the FDA Adverse Event Reporting System (FAERS) database. The association between sacituzumab govitecan and AEs was evaluated using the information component. A multivariate logistic regression analysis was conducted for all identified signals to explore the risk factors associated with AEs leading to hospitalization. In total, 1,884 reports related to sacituzumab govitecan were retrieved, and 114 AE signals involving 20 systems were identified. The median time for onset of AEs was ~ 6-7 days after initiating treatment with sacituzumab govitecan, with over 80% of AEs occurring within 30 days. Subgroup analysis revealed that 14 signals were reported in men and 110 in women. There were 58 signals reported in patients under 65 following the use of sacituzumab govitecan, 59 signals in patients over 65, and 31 signals were present in both groups. Multivariable analysis showed that being male and the occurrence of colitis, pneumonitis, febrile neutropenia, pyrexia, sepsis, dehydration, and diarrhea were risk factors leading to hospitalization with an area under the curve (AUC) of 0.89. Additionally, sensitivity analysis revealed that this study had good robustness. This is the first retrospective analysis based on FAERS to review the safety of sacituzumab govitecan. The results highlight the need to closely monitor adverse reactions such as neutropenia, diarrhea, colitis, and sepsis when using sacituzumab govitecan.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Sang Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Ran
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaofang Lin
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Mao
- Department of Pharmacy, Nan'an People's Hospital of Chongqing, Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
210
|
Choi MH, Kim D, Kim J, Song YG, Jeong SH. Shift in risk factors for mortality by period of the bloodstream infection timeline. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:97-106. [PMID: 38092626 DOI: 10.1016/j.jmii.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/30/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND This study was designed to determine changes in risk factors on the prognosis of patients during each period of the bloodstream infection (BSI) timeline. METHODS Through an integrated study of multivariable regressions with machine learning techniques, the risk factors for mortality during each period of BSI were analyzed. RESULTS A total of 302,303 inpatients who underwent blood cultures during 2011-2021 were enrolled. More than 8 % of BSI cases progressed to subsequent BSI, and risk factors were identified as gut colonization with vancomycin-resistant enterococci (aOR 1.82; 95 % CI 1.47-2.24), intensive care unit admission (aOR 3.37; 95 % CI 3.35-4.28), and current cancer chemotherapy (aOR 1.54; 95 % CI 1.36-1.74). The mean SOFA score of the deceased patients during the first 7 days was 10.6 (SD 4.3), which was significantly higher than those on days 8-30 (7.0 ± 4.2) and after Day 30 (4.0 ± 3.5). BSIs caused by Acinetobacter baumannii and Candida albicans were more likely to result in deaths of patients for all time periods (all, P < 0.001). BSIs caused by Enterococcus faecalis and Enterococcus faecium were associated with a poor outcome in the period after Day 30 (both, P < 0.001). Nonsusceptible phenotypes to β-lactam/β-lactamase inhibitors of Escherichia coli and Klebsiella pneumoniae influenced the prognoses of patients with BSI in terms of high mortality rates during both days 8-30 and after Day 30. CONCLUSION Influence of microbiological factors on mortality, including BSI-causative microorganisms and their major antimicrobial resistance, was emphasized in both periods of days 8-30 and after Day 30.
Collapse
Affiliation(s)
- Min Hyuk Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, South Korea
| | - Dokyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, South Korea
| | - Jihyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, South Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, South Korea.
| |
Collapse
|
211
|
Fang W, Chai C, Lu J. The causal effects of circulating cytokines on sepsis: a Mendelian randomization study. PeerJ 2024; 12:e16860. [PMID: 38313013 PMCID: PMC10838533 DOI: 10.7717/peerj.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Background In observational studies, sepsis and circulating levels of cytokines have been associated with unclear causality. This study used Mendelian randomization (MR) to identify the causal direction between circulating cytokines and sepsis in a two-sample study. Methods An MR analysis was performed to estimate the causal effect of 41 cytokines on sepsis risk. The inverse-variance weighted random-effects method, the weighted median-based method, and MR-Egger were used to analyze the data. Heterogeneity and pleiotropy were assessed using MR-Egger regression and Cochran's Q statistic. Results Genetically predicted beta-nerve growth factor (OR = 1.12, 95% CI [1.037-1.211], P = 0.004) increased the risk of sepsis, while RANTES (OR = 0.92, 95% CI [0.849-0.997], P = 0.041) and fibroblast growth factor (OR = 0.869, 95% CI [0.766-0.986], P = 0.029) reduced the risk of sepsis. These findings were robust in extensive sensitivity analyses. There was no clear association between the other cytokines and sepsis risk. Conclusion The findings of this study demonstrate that beta-nerve growth factor, RANTES, and fibroblast growth factor contribute to sepsis risk. Investigations into potential mechanisms are warranted.
Collapse
Affiliation(s)
- Weijun Fang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China, Wuhan, China
| | - Chen Chai
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China, Wuhan, China
| | - Jiawei Lu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China, Wuhan, China
| |
Collapse
|
212
|
Lin Z, Lin S. Heart rate/temperature ratio: A practical prognostic indicator for critically ill patients with sepsis. Heliyon 2024; 10:e24422. [PMID: 38293510 PMCID: PMC10827506 DOI: 10.1016/j.heliyon.2024.e24422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background We hypothesize that the heart rate/temperature ratio can predict intensive care unit (ICU) mortality in critical ill patients with sepsis. We aimed to explore the association between the heart rate/temperature ratio and ICU mortality in patients with sepsis. Methods We conducted this study utilizing a comprehensive critical care medicine database. The primary endpoint assessed was ICU mortality. A multivariable logistic regression model was employed to determine the independent impact of the heart rate to temperature ratio on ICU mortality. Results The study included 12,321 patients. A nonlinear relationship was observed between the heart rate/temperature ratio and ICU mortality, with an inflection point identified at 2.22. The results from the Multivariable logistic regression analysis revealed that the heart rate/temperature ratio independently contributed to the risk of ICU mortality. In model II, there was a 55 % higher ICU mortality rate with a heart rate/temperature ratio greater than 2.22 than with that less than 2.22 (odds ratio [OR] = 1.55, 95 % confidence interval [CI] 1.35-1.77). Moreover, an elevated heart rate/temperature ratio as a continuous variable showed a positive association with ICU mortality (OR = 2.14; 95 % CI: 1.87-2.45). The impact of the heart rate/temperature ratio on ICU mortality remained consistent across all subgroup variables. The sensitivity analysis results consistently supported the primary outcome, with an E value of 2.47. This suggests that the influence of unmeasured confounders on the observed outcomes was minimal, thereby confirming the robustness of the findings. Conclusions The heart rate/temperature ratio is a readily available and convenient indicator in a clinical setting. Elevated heart rate/temperature ratios, particularly those exceeding 2.22, are strongly linked to a high ICU mortality rate among critically ill sepsis patients.
Collapse
Affiliation(s)
- Zongbin Lin
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shan Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
213
|
Cao M, Shi M, Zhou B, Jiang H. An overview of the mechanisms and potential roles of extracellular vesicles in septic shock. Front Immunol 2024; 14:1324253. [PMID: 38343439 PMCID: PMC10853337 DOI: 10.3389/fimmu.2023.1324253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
Septic shock, a subset of sepsis, is a fatal condition associated with high morbidity and mortality. However, the pathophysiology of septic shock is not fully understood. Moreover, the diagnostic markers employed for identifying septic shock lack optimal sensitivity and specificity. Current treatment protocols for septic shock have not been effective in lowering the mortality rate of patients. Most cells exhibit the capability to release extracellular vesicles (EVs), nanoscale vesicles that play a vital role in intercellular communication. In recent years, researchers have investigated the potential role of EVs in the pathogenesis, diagnosis, and treatment of different diseases, such as oncological, neurological, and cardiovascular diseases, as well as diabetes and septic shock. In this article, we present an overview of the inhibitory and facilitative roles that EVs play in the process of septic shock, the potential role of EVs in the diagnosis of septic shock, and the potential therapeutic applications of both native and engineered EVs in the management of septic shock.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Boru Zhou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
214
|
Tie X, Zhao Y, Su J, Liu X, Zou T, Yin W. Genetic associations between autoimmune diseases and the risks of severe sepsis and 28-day mortality: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1331950. [PMID: 38343642 PMCID: PMC10853392 DOI: 10.3389/fmed.2024.1331950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Autoimmune diseases exhibit heterogenous dysregulation of pro-inflammatory or anti-inflammatory cytokine expression, akin to the pathophysiology of sepsis. It is speculated that individuals with autoimmune diseases may have an increased likelihood of developing sepsis and face elevated mortality risks following septic events. However, current observational studies have not yielded consistent conclusions. This study aims to explore the causal relationship between autoimmune diseases and the risks of sepsis and mortality using Mendelian randomization (MR) analysis. METHODS We conducted a two-sample MR study involving a European population, with 30 autoimmune diseases as the exposure factors. To assess causal relationships, we employed the inverse variance-weighted (IVW) method and used Cochran's Q test for heterogeneity, as well as the MR pleiotropy residual sum and outlier (MR-PRESSO) global test for potential horizontal pleiotropy. RESULTS Genetically predicted Crohn's disease (β = 0.067, se = 0.034, p = 0.046, OR = 1.069, 95% CI = 1.001-1.141) and idiopathic thrombocytopenic (β = 0.069, se = 0.031, p = 0.023, OR = 1.071, 95% CI = 1.009-1.136) were positively associated with an increased risk of sepsis in critical care. Conversely, rheumatoid arthritis (β = -0.104, se = 0.047, p = 0.025, OR = 0.901, 95% CI = 0.823-0.987), ulcerative colitis (β = -0.208, se = 0.084, p = 0.013, OR = 0.812, 95% CI = 0.690-0.957), and narcolepsy (β = -0.202, se = 0.092, p = 0.028, OR = 0.818, 95% CI = 0.684-0.978) were associated with a reduced risk of sepsis in critical care. Moreover, Crohn's disease (β = 0.234, se = 0.067, p = 0.001, OR = 1.263, 95% CI = 1.108-1.440) and idiopathic thrombocytopenic (β = 0.158, se = 0.061, p = 0.009, OR = 1.171, 95% CI = 1.041-1.317) were also linked to an increased risk of 28-day mortality of sepsis in critical care. In contrast, multiple sclerosis (β = -0.261, se = 0.112, p = 0.020, OR = 0.771, 95% CI = 0.619-0.960) and narcolepsy (β = -0.536, se = 0.184, p = 0.003, OR = 0.585, 95% CI = 0.408-0.838) were linked to a decreased risk of 28-day mortality of sepsis in critical care. CONCLUSION This MR study identified causal associations between certain autoimmune diseases and risks of sepsis in critical care, and 28-day mortality in the European population. These findings suggest that exploring the mechanisms underlying autoimmune diseases may offer new diagnostic and therapeutic strategies for sepsis prevention and treatment.
Collapse
Affiliation(s)
- Xin Tie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjie Zhao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Su
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xing Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tongjuan Zou
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wanhong Yin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
215
|
Kong Z, Cai S, Xie W, Chen J, Xie J, Yang F, Li Z, Bai X, Liu T. CD4 + T cells ferroptosis is associated with the development of sepsis in severe polytrauma patients. Int Immunopharmacol 2024; 127:111377. [PMID: 38104369 DOI: 10.1016/j.intimp.2023.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Immunological disorder remains a great challenge in severe poly-trauma, in which lymphopenia is an important contributor. The purpose of present study is to explore whether ferroptosis, a new manner of programmed cell death (PCD), is involved in the lymphocyte depletion and predictive to the adverse prognosis of severe injuries. PATIENTS AND METHODS Severe polytrauma patients admitted from January 2022 to December 2022 in our trauma center were prospectively investigated. Peripheral blood samples were collected at admission (day 1), day 3 and day 7 from them. Included patients were classified based on whether they developed sepsis or not. Clinical outcomes, systematic inflammatory response, lymphocyte subpopulation, CD4 + T cell ferroptosis were collected, detected and analyzed. RESULTS Notable lymphopenia was observed on the first day after severe trauma and failed to normalize on the 7th day if patients were complicated with sepsis, in which CD4 + T cell was the subset of lymphocyte that depleted most pronouncedly. Lymphocyte loss was significantly correlated with the acute and biphasic systemic inflammatory response. Ferroptosis participated in the death of CD4 + T cells, potentially mediated by the downregulation of xCT-GSH-GPX4 pathway. CD4 + T cells ferroptosis had a conducive predicting value for the development of sepsis following severe trauma. CONCLUSIONS CD4 + T cells ferroptosis occurs early in the acute stage of severe polytrauma, which may become a promising biomarker and therapeutic target for post-traumatic sepsis.
Collapse
Affiliation(s)
- Zhiqiang Kong
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shiqi Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Weiming Xie
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiajun Chen
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jie Xie
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fan Yang
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhanfei Li
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiangjun Bai
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tao Liu
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
216
|
Li Z, Shan X, Yang G, Dong L. LGK974 suppresses the formation of deep vein thrombosis in mice with sepsis. Int Immunopharmacol 2024; 127:111458. [PMID: 38160565 DOI: 10.1016/j.intimp.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Sepsis is a disorder characterized by host inflammation and is caused by systemic infection. The inflammatory cytokine storm results in platelet overactivation, leading to coagulation dysfunction and thrombosis, but the underlying mechanism remains poorly understood. Recent evidence has shown that the Wnt/β-catenin signaling pathway is related to sepsis, but its role and mechanism in sepsis complicated with deep vein thrombosis (DVT) are unclear. METHODS In this study, a cecal ligation and puncture (CLP)-induced sepsis model and DVT mouse model were constructed by inferior vena cava ligation. The levels of serum inflammatory factors and adhesion molecules were measured in each group, and the thrombus weight and size, hematoxylin-eosin staining, collagen fiber tissue, and transcriptome of the venous wall were analyzed. The activation of the Wnt/β-catenin signal was evaluated by quantitative real-time polymerase chain reaction, Western blotting, ELISA, and immunohistochemical and immunofluorescence methods. RESULTS Sepsis significantly promoted the formation of venous wall collagen fibers and DVT. In addition, Porcn significantly upregulated and activated the Wnt/β-catenin signaling pathway in sepsis mouse models with DVT. In contrast, the Wnt signaling inhibitor LGK974 was found to improve the survival rate, decrease thrombosis, and inhibit the expression of inflammation and adhesion molecules in sepsis mice with DVT. Therefore, activation of the Wnt/β-catenin signal may promote the formation of DVT in sepsis mice. CONCLUSIONS LGK974 protects against DVT formation in sepsis mice by inhibiting the activation of the Wnt/β-catenin signal and down-regulating the production of proinflammatory cytokines, PAI-1, and adhesion molecules. LGK974 may be a new candidate for the treatment of sepsis complicated with DVT.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China; Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan 628000, China
| | - Xiaoxi Shan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Guolin Yang
- Laboratory Animal Centre, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China.
| |
Collapse
|
217
|
Richardson IM, Calo CJ, Ginter EL, Niehaus E, Pacheco KA, Hind LE. Diverse bacteria elicit distinct neutrophil responses in a physiologically relevant model of infection. iScience 2024; 27:108627. [PMID: 38188520 PMCID: PMC10770534 DOI: 10.1016/j.isci.2023.108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
An efficient neutrophil response is critical for fighting bacterial infections, which remain a significant global health concern; therefore, modulating neutrophil function could be an effective therapeutic approach. While we have a general understanding of how neutrophils respond to bacteria, how neutrophil function differs in response to diverse bacterial infections remains unclear. Here, we use a microfluidic infection-on-a-chip device to investigate the neutrophil response to four bacterial species: Pseudomonas aeruginosa, Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus. We find enhanced neutrophil extravasation to L. monocytogenes, a limited overall response to S. aureus, and identify IL-6 as universally important for neutrophil extravasation. Furthermore, we demonstrate a higher percentage of neutrophils generate reactive oxygen species (ROS) when combating gram-negative bacteria versus gram-positive bacteria. For all bacterial species, we found the percentage of neutrophils producing ROS increased following extravasation through an endothelium, underscoring the importance of studying neutrophil function in physiologically relevant models.
Collapse
Affiliation(s)
- Isaac M. Richardson
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303, USA
| | - Christopher J. Calo
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303, USA
| | - Eric L. Ginter
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303, USA
| | - Elise Niehaus
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303, USA
| | - Kayla A. Pacheco
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303, USA
| | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303, USA
| |
Collapse
|
218
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
219
|
Algarni AM, Alfaifi MS, Al Bshabshe AA, Omair OM, Alsultan MA, Alzahrani HM, Alali HE, Alsabaani AA, Alqarni AM, Alghanem SA, Al Mufareh BS, Almemari AM, Sindi AA, Ozturan IU, Alhadhira AA, Shujaa AS, Alotaibi AH, Awladthani MM, Alsaad AA, Almarshed AA, AlQahtani AM, Harris TR, Alyahya BA, Assiri SA, Abuzeyad FH, Kazim SN, Al-Fares AA, Almazroua FY, Marzook NT, Basri AA, Elsafti AM, Alalshaikh AS, Özturan CA, Alawad YI, AlOmari A, Alkhateeb MA, Farooq MM, AlMutairi LA, Alasfour MM, Al Haber MI, Umar UKA, Bokhary NH, Alqahtani SF, Almutairi A, Alyahya HF, Alzahrani WS, Alsalmi F, Omair AM, Alasmari FM, Alfifi SY, Al-Nujimi MS, Foroutan F. Prognostic accuracy of qSOFA score, SIRS criteria, and EWSs for in-hospital mortality among adult patients presenting with suspected infection to the emergency department (PASSEM) Multicenter prospective external validation cohort study protocol. PLoS One 2024; 19:e0281208. [PMID: 38232095 PMCID: PMC10793907 DOI: 10.1371/journal.pone.0281208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Early identification of a patient with infection who may develop sepsis is of utmost importance. Unfortunately, this remains elusive because no single clinical measure or test can reflect complex pathophysiological changes in patients with sepsis. However, multiple clinical and laboratory parameters indicate impending sepsis and organ dysfunction. Screening tools using these parameters can help identify the condition, such as SIRS, quick SOFA (qSOFA), National Early Warning Score (NEWS), or Modified Early Warning Score (MEWS). We aim to externally validate qSOFA, SIRS, and NEWS/NEWS2/MEWS for in-hospital mortality among adult patients with suspected infection who presenting to the emergency department. METHODS AND ANALYSIS PASSEM study is an international prospective external validation cohort study. For 9 months, each participating center will recruit consecutive adult patients who visited the emergency departments with suspected infection and are planned for hospitalization. We will collect patients' demographics, vital signs measured in the triage, initial white blood cell count, and variables required to calculate Charlson Comorbidities Index; and follow patients for 90 days since their inclusion in the study. The primary outcome will be 30-days in-hospital mortality. The secondary outcome will be intensive care unit (ICU) admission, prolonged stay in the ICU (i.e., ≥72 hours), and 30- as well as 90-days all-cause mortality. The study started in December 2021 and planned to enroll 2851 patients to reach 200 in-hospital death. The sample size is adaptive and will be adjusted based on prespecified consecutive interim analyses. DISCUSSION PASSEM study will be the first international multicenter prospective cohort study that designated to externally validate qSOFA score, SIRS criteria, and EWSs for in-hospital mortality among adult patients with suspected infection presenting to the ED in the Middle East region. STUDY REGISTRATION The study is registered at ClinicalTrials.gov (NCT05172479).
Collapse
Affiliation(s)
| | - Musa S. Alfaifi
- Emergency Medicine Department, Armed Forces Hospital Southern Region, Khamis Mushait, Saudi Arabia
| | | | - Othman M. Omair
- Emergency Medicine Department, Aseer Central Hospital, Abha, Saudi Arabia
| | | | | | - Hadi E. Alali
- Emergency Medicine Department, Armed Forces Hospital Southern Region, Khamis Mushait, Saudi Arabia
| | | | - Ali M. Alqarni
- Radiology Department, Prince Mashary Bin Saud Hospital, Belgraishi, Saudi Arabia
| | - Salah A. Alghanem
- Emergency Medicine Department, Bahrain Defence Force Hospital, Al Riffa, Bahrain
| | - Bandar S. Al Mufareh
- Emergency Medicine Department, Royal Commission Hospital in Jubail, Jubail, Saudi Arabia
| | - Ayesha M. Almemari
- Emergency Medicine Department, Shaikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | | | - Ibrahim U. Ozturan
- Kocaeli University, Faculty of Medicine, Emergency Medicine Department, Kocaeli, Turkey
| | - Abdullah A. Alhadhira
- Emergency Medicine Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Asaad S. Shujaa
- Emergency Medicine Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Abdullah H. Alotaibi
- Emergency Medicine Department, King Abdullah University Hospital, Riyadh, Saudi Arabia
| | | | - Ahmed A. Alsaad
- Emergency Medicine Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | | | - Tim R. Harris
- Emergency Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | | | - Saad A. Assiri
- Emergency Medicine Department, Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - Feras H. Abuzeyad
- Emergency Medicine Department, King Hamad University Hospital, Muharraq, Bahrain
| | - Sara N. Kazim
- Emergency Medicine Department, Rashid Hospital, Dubai, United Arab Emirates
| | | | | | - Naif T. Marzook
- Emergency Medicine Department, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah A. Basri
- Emergency Medicine Department, Bahrain Defence Force Hospital, Al Riffa, Bahrain
| | | | | | - Cansu A. Özturan
- Emergency Medicine Department, Gölcük Necati Çelik State Hospital, Gölcük, Kocaeli, Turkey
| | - Yousef I. Alawad
- Emergency Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Awad AlOmari
- Critical Care Department, Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - Malek A. Alkhateeb
- Emergency Medicine Department, Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - Moonis M. Farooq
- Emergency Medicine Department, King Hamad University Hospital, Muharraq, Bahrain
| | | | | | - Mohammad I. Al Haber
- Emergency Medicine Department, Shaikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Umma-Kulthum A. Umar
- Emergency Medicine Department, Shaikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Nidal H. Bokhary
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saeed F. Alqahtani
- Emergency Medicine Department, Aseer Central Hospital, Abha, Saudi Arabia
| | | | - Hisham F. Alyahya
- Emergency Medicine Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Wejdan S. Alzahrani
- Emergency Medicine Department, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Fawziah Alsalmi
- Emergency Medicine Department, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | | | | | | | | | - Farid Foroutan
- Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
220
|
Tao L, Zhu Y, Wu L, Liu J. Comprehensive analysis of senescence-associated genes in sepsis based on bulk and single-cell sequencing data. Front Mol Biosci 2024; 10:1322221. [PMID: 38259686 PMCID: PMC10801732 DOI: 10.3389/fmolb.2023.1322221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Sepsis is a pathological state resulting from dysregulated immune response in host during severe infection, leading to persistent organ dysfunction and ultimately death. Senescence-associated genes (SAGs) have manifested their potential in controlling the proliferation and dissemination of a variety of diseases. Nevertheless, the correlation between sepsis and SAGs remains obscure and requires further investigation. Methods: Two RNA expression datasets (GSE28750 and GSE57065) specifically related to sepsis were employed to filter hub SAGs, based on which a diagnostic model predictive of the incidence of sepsis was developed. The association between the expression of the SAGs identified and immune-related modules was analyzed employing Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Microenvironment Cell Populations-counter (MCP-counter) analysis. The identified genes in each cohort were clustered by unsupervised agreement clustering analysis and weighted gene correlation network analysis (WGCNA). Results: A diagnostic model for sepsis established based on hub genes (IGFBP7, GMFG, IL10, IL18, ETS2, HGF, CD55, and MMP9) exhibited a strong clinical reliability (AUC = 0.989). Sepsis patients were randomly assigned and classified by WGCNA into two clusters with distinct immune statuses. Analysis on the single-cell RNA sequencing (scRNA-seq) data revealed high scores of SAGs in the natural killer (NK) cells of the sepsis cohort than the healthy cohort. Conclusion: These findings suggested a close association between SAGs and sepsis alterations. The identified hub genes had potential to serve as a viable diagnostic marker for sepsis.
Collapse
Affiliation(s)
- Linfeng Tao
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lifang Wu
- Department of Critical Care Medicine of Kunshan Third People’s Hospital, Suzhou, China
| | - Jun Liu
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| |
Collapse
|
221
|
Papaioannou V, Papaioannou T. Rethinking Fluid Responsiveness during Septic Shock: Ameliorate Accuracy of Noninvasive Cardiac Output Measurements through Evaluation of Arterial Biomechanical Properties. J Pers Med 2024; 14:70. [PMID: 38248770 PMCID: PMC10817669 DOI: 10.3390/jpm14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Beat-to-beat estimates of cardiac output from the direct measure of peripheral arterial blood pressure rely on the assumption that changes in the waveform morphology are related to changes in blood flow and vasomotor tone. However, in septic shock patients, profound changes in vascular tone occur that are not uniform across the entire arterial bed. In such cases, cardiac output estimates might be inaccurate, leading to unreliable evaluation of fluid responsiveness. Pulse wave velocity is the gold-standard method for assessing different arterial biomechanical properties. Such methods might be able to guide, personalize and optimize the management of septic patients.
Collapse
Affiliation(s)
- Vasileios Papaioannou
- Intensive Care Unit, Alexandroupolis University Hospital, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Theodoros Papaioannou
- Biomedical Engineering and Cardiovascular Mechanics Unit, 1st Department of Cardiology, Hippokration University Hospital, Medical School of the National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
222
|
Kogelmann K, Hübner T, Drüner M, Jarczak D. Impact of CytoSorb Hemoadsorption Therapy on Fluid Balance in Patients with Septic Shock. J Clin Med 2024; 13:294. [PMID: 38202301 PMCID: PMC10779563 DOI: 10.3390/jcm13010294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Recent in vitro studies have investigated the effects of hemoadsorption therapy on endothelial function in sepsis showing a reduction in markers of endothelial dysfunction, but, to this day, there are no clinical studies proving whether this approach could actually positively influence the disturbed vascular barrier function in septic conditions. We retrospectively analyzed data on administered fluid volumes and catecholamines in 124 septic shock patients. We collected catecholamine and volume requirements and calculated the volume balance within different time periods to obtain an assumption on the stability of the vascular barrier. Regarding the entire study cohort, our findings revealed a significant reduction in fluid balance at 72 h (T72) compared to both baseline (T0) and the 24 h mark (T24). Fluid balances from T72-T0 were significantly lower in hospital survivors compared with non-survivors. Patients who received a second catecholamine had a significantly lower in-hospital mortality. Our findings suggest that the applied treatment regimen including hemoadsorption therapy is associated with a reduced positive fluid balance paralleled by reductions in vasopressor needs, suggesting a potential positive effect on endothelial integrity. These results, derived from a large cohort of patients, provide valuable insights on the multiple effects of hemoadsorption treatment in septic shock patients.
Collapse
Affiliation(s)
- Klaus Kogelmann
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Leer, Augustenstraße 35-37, 26789 Leer, Germany
| | - Tobias Hübner
- Department of Anesthesiology and Intensive Care, Kantonsspital Münsterlingen, Spitalcampus 1, 8596 Münsterlingen, Switzerland;
| | - Matthias Drüner
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Emden, 26721 Emden, Germany;
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
223
|
Beltrán-García J, Casabó-Vallés G, Osca-Verdegal R, Navarrete-López P, Rodriguez-Gimillo M, Nacher-Sendra E, Ferrando-Sánchez C, García-López E, Pallardó FV, Carbonell N, Mena-Mollá S, García-Giménez JL. Alterations in leukocyte DNA methylome are associated to immunosuppression in severe clinical phenotypes of septic patients. Front Immunol 2024; 14:1333705. [PMID: 38235139 PMCID: PMC10791922 DOI: 10.3389/fimmu.2023.1333705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Sepsis patients experience a complex interplay of host pro- and anti-inflammatory processes which compromise the clinical outcome. Despite considering the latest clinical and scientific research, our comprehension of the immunosuppressive events in septic episodes remains incomplete. Additionally, a lack of data exists regarding the role of epigenetics in modulating immunosuppression, subsequently impacting patient survival. Methods To advance the current understanding of the mechanisms underlying immunosuppression, in this study we explored the dynamics of DNA methylation using the Infinium Methylation EPIC v1.0 BeadChip Kit in leukocytes from patients suffering from sepsis, septic shock, and critically ill patients as controls, within the first 24 h after admission in the Intensive Care Unit of a tertiary hospital. Results and discussion Employing two distinct analysis approaches (DMRcate and mCSEA) in comparing septic shock and critically ill patients, we identified 1,256 differentially methylated regions (DMRs) intricately linked to critical immune system pathways. The examination of the top 100 differentially methylated positions (DMPs) between septic shock and critically ill patients facilitated a clear demarcation among the three patient groups. Notably, the top 6,657 DMPs exhibited associations with organ dysfunction and lactate levels. Among the individual genes displaying significant differential methylation, IL10, TREM1, IL1B, and TNFAIP8 emerged with the most pronounced methylation alterations across the diverse patient groups when subjected to DNA bisulfite pyrosequencing analysis. These findings underscore the dynamic nature of DNA methylation profiles, highlighting the most pronounced alterations in patients with septic shock, and revealing their close association with the disease.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Germán Casabó-Vallés
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- EpiDisease S. L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Salk Institute for Biological Studies, San Diego, CA, United States
| | - Paula Navarrete-López
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Rodriguez-Gimillo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carolina Ferrando-Sánchez
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Eva García-López
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- EpiDisease S. L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Salvador Mena-Mollá
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
224
|
Aldewereld Z, Horvat C, Carcillo JA, Clermont G. EMERGENCE OF A TECHNOLOGY-DEPENDENT PHENOTYPE OF PEDIATRIC SEPSIS IN A LARGE CHILDREN'S HOSPITAL. Shock 2024; 61:76-82. [PMID: 38010054 PMCID: PMC10842625 DOI: 10.1097/shk.0000000000002264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Objective: To investigate whether pediatric sepsis phenotypes are stable in time. Methods: Retrospective cohort study examining children with suspected sepsis admitted to a Pediatric Intensive Care Unit at a large freestanding children's hospital during two distinct periods: 2010-2014 (early cohort) and 2018-2020 (late cohort). K-means consensus clustering was used to derive types separately in the cohorts. Variables included ensured representation of all organ systems. Results: One thousand ninety-one subjects were in the early cohort and 737 subjects in the late cohort. Clustering analysis yielded four phenotypes in the early cohort and five in the late cohort. Four types were in both: type A (34% of early cohort, 25% of late cohort), mild sepsis, with minimal organ dysfunction and low mortality; type B (25%, 22%), primary respiratory failure; type C (25%, 18%), liver dysfunction, coagulopathy, and higher measures of systemic inflammation; type D (16%, 17%), severe multiorgan dysfunction, with high degrees of cardiorespiratory support, renal dysfunction, and highest mortality. Type E was only detected in the late cohort (19%) and was notable for respiratory failure less severe than B or D, mild hypothermia, and high proportion of diagnoses and technological dependence associated with medical complexity. Despite low mortality, this type had the longest PICU length of stay. Conclusions: This single center study identified four pediatric sepsis phenotypes in an earlier epoch but five in a later epoch, with the new type having a large proportion of characteristics associated with medical complexity, particularly technology dependence. Personalized sepsis therapies need to account for this expanding patient population.
Collapse
Affiliation(s)
- Zachary Aldewereld
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, and Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher Horvat
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, and Division of Division of Health Informatics, Department of Pediatrics, University of Pittsburgh, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph A Carcillo
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, University of Pittsburgh, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Gilles Clermont
- Department of Critical Care Medicine, and Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
225
|
Zhong T, Zhang J, Chen S, Chen S, Deng K, Guan J, Yang J, Lv R, Liu Z, Liu Y, Chang P, Liu Z. MAGNESIUM SULFATE AMELIORATES HISTONE-INDUCED COAGULATION DYSFUNCTION AND LUNG DAMAGE IN MICE. Shock 2024; 61:132-141. [PMID: 37988072 PMCID: PMC11841720 DOI: 10.1097/shk.0000000000002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
ABSTRACT Introduction: Extracellular histones have been determined as significant mediators of sepsis, which can induce endothelial cell injury and promote coagulation activation, and ultimately contribute to multiorgan failure. Evidence suggests that magnesium sulfate (MgSO 4 ) exerts a potential coagulation-modulating activity; however, whether MgSO 4 ameliorates histone-induced coagulation dysfunction and organ damage remains unclear. Methods: To measure circulating histone levels, blood specimens were collected from septic patients and mice, and the relationship between circulating histone levels, coagulation parameters, and Mg 2+ levels in sepsis was investigated. Furthermore, to explore the possible protective effects of MgSO 4 , we established a histone-induced coagulation model in mice by intravenous histone injection. The survival rate of mice was assessed, and the histopathological damage of the lungs (including endothelial cell injury and coagulation status) was evaluated using various methods, including hematoxylin and eosin staining, immunohistochemistry, immunofluorescence, electron microscopy, and quantitative polymerase chain reaction. Results: The circulating histone levels in septic patients and mice were significantly associated with several coagulation parameters. In septic patients, histone levels correlated negatively with platelet counts and positively with prothrombin time and D-dimer levels. Similarly, in cecal ligation and puncture mice, histones correlated negatively with platelet counts and positively with D-dimer levels. Interestingly, we also observed a positive link between histones and Mg 2+ levels, suggesting that Mg 2+ with anticoagulant activity is involved in histone-mediated coagulation alterations in sepsis. Further animal experiments confirmed that MgSO 4 administration significantly improved survival and attenuated histone-mediated endothelial cell injury, coagulation dysfunction, and lung damage in mice. Conclusion: These results suggest that therapeutic targeting of histone-mediated endothelial cell injury, coagulation dysfunction, and lung damage, for example, with MgSO 4 , may be protective in septic individuals with elevated circulating histone levels.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Zhang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanjia Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sainan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Deng
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbin Guan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingjing Yang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ronggui Lv
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhifeng Liu
- Department of Medicine Intensive Care Units, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| | - Yong Liu
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
226
|
Li XJ, Liu T, Wang Y. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway. J Nat Med 2024; 78:53-67. [PMID: 37668824 PMCID: PMC10764392 DOI: 10.1007/s11418-023-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Ting Liu
- Department of General Practice, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Yuan Wang
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
227
|
Varun HS, Pandya K, Muniraju M. Health Drink Poisoning - An Unusual Case of Bottle Gourd Toxicity. J Emerg Trauma Shock 2024; 17:40-42. [PMID: 38681874 PMCID: PMC11045003 DOI: 10.4103/jets.jets_41_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 05/01/2024] Open
Abstract
Bottle gourd, popularly known as "Lauki" is a commonly used vegetable throughout the world including India. Its juice is considered a "health tonic" for chronic ailments by practitioners of alternate therapy and nutritionist. It is essential for emergency physicians to be aware of this toxicity, especially in tropical countries like India, where alternate therapy practices are prevalent. We present the case of a 35-year-old man who consumed concentrated bottle gourd juice and subsequently experienced multiple episodes of vomiting, bloody diarrhea, and giddiness. The patient was resuscitated and stabilized with crystalloid fluids, proton.pump inhibitors, and antiemetics, and admitted to the critical care unit. The patient was discharged in stable condition after 4 days of hospitalization. Bottle gourd toxicity treatment is symptomatic, and there is no specific antidote for this toxicity. It is important to early diagnose bottle gourd toxicity, especially in countries where it is commonly used as a health tonic.
Collapse
Affiliation(s)
- H. S. Varun
- Department of Emergency Medicine, Manipal Hospital, Bengaluru, Karnataka, India
| | - Kushal Pandya
- Department of Emergency Medicine, Manipal Hospital Whitefield, Bengaluru, Karnataka, India
| | - M. Muniraju
- Department of Emergency Medicine, Manipal Hospital Whitefield, Bengaluru, Karnataka, India
| |
Collapse
|
228
|
Tang F, Liu D, Wan F, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Ameliorative effect of anisodamine (654-1/654-2) against myocardial dysfunction induced by septic shock via the NF-κB/NLRP-3 or the PI3K-AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155277. [PMID: 38128396 DOI: 10.1016/j.phymed.2023.155277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Septic shock, an extremely dangerous condition that causes impairment of organ function, always largely contributes to mortality in intensive care units. The impact of septic shock-induced organ damage on morbidity and mortality is substantially influenced by myocardial dysfunction. However, it remains unclear whether and in what manner anisodamine (654-1/654-2) ameliorates myocardial dysfunction caused by septic shock. PURPOSE This study is the pioneering investigation and validation about the protective efficacy of anisodamine (654-1/654-2) against LPS-induced myocardial dysfunction in septic shock rats. It also aims to explore the differences in the underlying molecular mechanisms of both drugs. METHODS A septic shock model was established in SD rats by after tail vein administration of LPS. 64 rats were distributed into eight groups, such as LPS group, control group, LPS+654-1 group (1.25, 2.5, and 5 mg/kg), and LPS+654-2 group (1.25, 2.5, and 5 mg/kg). The hemodynamics, echocardiography, immunohistochemical analysis, TEM, TUNEL assay, and H&E staining were utilized to assess the septic shock model and myocardial function. Lactic acid, inflammatory markers (IL-1β, IL-6, and TNF-α), endothelial injure markers (SDC-1, HS and TM) and myocardial injury markers (CK, c-TNT and NT-pro BNP) were assessed using ELISA or biochemical kits. Additionally, the mechanisms of 654-1/654-2 were analyzed using RNA-seq and bioinformatics, and validated using western blotting and RT-PCR. RESULTS Administration of 654-1/654-2 significantly restored hemodynamics and improved myocardial and endothelial glycocalyx injury in septic shock rats. Furthermore, 654-1/654-2 dose-dependently reduced plasma levels of lactic acid, inflammatory cytokines, and markers of endothelial and myocardial injury. Analyses using RNA-seq, WB and RT-PCR techniques indicated that 654-1/654-2 could mitigate myocardial and endothelial injury by inhibiting the NF-κB and NLRP-3 pathways, and activating the PI3K-AKT pathway. CONCLUSIONS These findings demonstrated that 654-1/654-2 could alleviate myocardial damage in septic shock rats. Specifically, 654-1 inhibited the NF-κB/NLRP-3 pathway, whereas 654-2 promoted the PI3K-AKT pathway and inhibited the NF-κB pathway, effectively mitigating the inflammatory response and cell apoptosis.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
229
|
Fiorentino M, La Fergola F, De Rosa S. Medium cut-off dialyzer for middle molecular uremic toxins in AKI and chronic dialysis. J Nephrol 2024; 37:23-37. [PMID: 37843731 PMCID: PMC10920419 DOI: 10.1007/s40620-023-01771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023]
Abstract
Uremic toxins accumulate in patients affected by renal failure and can deposit in different organs, including the kidneys and heart. Given their physicochemical characteristics, uremic toxins can contribute to organ dysfunction due to several pathobiological actions at cellular and molecular levels. Several uremic compounds have been described in serum and plasma from patients with acute kidney injury (AKI) and kidney failure; they are usually classified based on their molecular size and protein-binding properties. In this scenario, new dialytic approaches have been proposed in the last few years with the aim of improving uremic toxin removal. Recent studies which focused on the use of medium cut-off membranes in patients on chronic hemodialysis have shown a discrete ability to remove β2-microglobulin and other middle molecules, such as kappa and lambda free light chains, complement factor D and α1-microglobulin. However, current evidence is mainly based on the impact on short-term outcomes and, consequently, longer observational studies are necessary to confirm the efficacy and safety of the medium cut-off dialyzer. Here we present the state-of-the-art on the clinical application of medium cut-off membranes in AKI and chronic dialysis patients.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Francesco La Fergola
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Silvia De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy.
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Trento, Italy.
| |
Collapse
|
230
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
231
|
Unsinger J, Osborne D, Walton AH, Han E, Sheets L, Mazer MB, Remy KE, Griffith TS, Rao M, Badovinac VP, Brackenridge SC, Turnbull I, Efron PA, Moldawer LL, Caldwell CC, Hotchkiss RS. Temporal Changes in Innate and Adaptive Immunity During Sepsis as Determined by ELISpot. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571668. [PMID: 38168302 PMCID: PMC10760123 DOI: 10.1101/2023.12.14.571668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The ELISpot assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis on whether the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods Mice were made septic using sublethal cecal ligation and puncture (CLP). Blood and spleens were harvested serially and ex vivo IFN-γ and TNF-α production were compared by ELISpot and ELISA. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example dexamethasone, arginine, and IL-7 in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and ELISA results tended to parallel one another although some differences were noted. Conclusion ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.
Collapse
|
232
|
Gatti M, Rinaldi M, Tonetti T, Siniscalchi A, Viale P, Pea F. Could an Optimized Joint Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Piperacillin-Tazobactam Be a Valuable Innovative Approach for Maximizing the Effectiveness of Monotherapy Even in the Treatment of Critically Ill Patients with Documented Extended-Spectrum Beta-Lactamase-Producing Enterobacterales Bloodstream Infections and/or Ventilator-Associated Pneumonia? Antibiotics (Basel) 2023; 12:1736. [PMID: 38136770 PMCID: PMC10740629 DOI: 10.3390/antibiotics12121736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Piperacillin-tazobactam represents the first-line option for treating infections caused by full- or multi-susceptible Enterobacterales and/or Pseudomonas aeruginosa in critically ill patients. Several studies reported that attaining aggressive pharmacokinetic/pharmacodynamic (PK/PD) targets with beta-lactams is associated with an improved microbiological/clinical outcome. We aimed to assess the relationship between the joint PK/PD target attainment of continuous infusion (CI) piperacillin-tazobactam and the microbiological/clinical outcome of documented Gram-negative bloodstream infections (BSI) and/or ventilator-associated pneumonia (VAP) of critically ill patients treated with CI piperacillin-tazobactam monotherapy. (2) Methods: Critically ill patients admitted to the general and post-transplant intensive care unit in the period July 2021-September 2023 treated with CI piperacillin-tazobactam monotherapy optimized by means of a real-time therapeutic drug monitoring (TDM)-guided expert clinical pharmacological advice (ECPA) program for documented Gram-negative BSIs and/or VAP were retrospectively retrieved. Steady-state plasma concentrations (Css) of piperacillin and of tazobactam were measured, and the free fractions (f) were calculated according to respective plasma protein binding. The joint PK/PD target was defined as optimal whenever both the piperacillin fCss/MIC ratio was >4 and the tazobactam fCss/target concentration (CT) ratio was > 1 (quasi-optimal or suboptimal whenever only one or none of the two weas achieved, respectively). Multivariate logistic regression analysis was performed for testing variables potentially associated with microbiological outcome. (3) Results: Overall, 43 critically ill patients (median age 69 years; male 58.1%; median SOFA score at baseline 8) treated with CI piperacillin-tazobactam monotherapy were included. Optimal joint PK/PD target was attained in 36 cases (83.7%). At multivariate analysis, optimal attaining of joint PK/PD target was protective against microbiological failure (OR 0.03; 95%CI 0.003-0.27; p = 0.002), whereas quasi-optimal/suboptimal emerged as the only independent predictor of microbiological failure (OR 37.2; 95%CI 3.66-377.86; p = 0.002). (4) Conclusion: Optimized joint PK/PD target attainment of CI piperacillin-tazobactam could represent a valuable strategy for maximizing microbiological outcome in critically ill patients with documented Gram-negative BSI and/or VAP, even when sustained by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales. In this scenario, implementing a real-time TDM-guided ECPA program may be helpful in preventing failure in attaining optimal joint PK/PD targets among critically ill patients. Larger prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Matteo Rinaldi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Infectious Disease Unit, Department for integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Antonio Siniscalchi
- Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Infectious Disease Unit, Department for integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| |
Collapse
|
233
|
Wang S, Jiang D, Huang F, Qian Y, Qi M, Li H, Wang X, Wang Z, Wang K, Wang Y, Du P, Zhan B, Zhou R, Chu L, Yang X. Therapeutic effect of Echinococcus granulosus cyst fluid on bacterial sepsis in mice. Parasit Vectors 2023; 16:450. [PMID: 38066526 PMCID: PMC10709918 DOI: 10.1186/s13071-023-06021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-β) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Shuying Wang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Donghui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feifei Huang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yayun Qian
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Meitao Qi
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Zhi Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Kaigui Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Pengfei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
234
|
Kraus CK, O’Neal HR, Ledeboer NA, Rice TW, Self WH, Rothman RE. Variability in Provider Assessment of Sepsis and Potential of Host Response Technology to Address this Dilemma-Results of an Online Delphi Study. J Pers Med 2023; 13:1685. [PMID: 38138912 PMCID: PMC10744443 DOI: 10.3390/jpm13121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
Potentially septic patients have a huge clinical and economic impact on hospitals and often present to the emergency department (ED) with undifferentiated symptoms. The triage of these patients is complex and has historically relied heavily upon provider judgment. This study aims to evaluate the consistency of provider judgment and the potential of a new host response sepsis test to aid in the triage process. A modified Delphi study involving 26 participants from multiple specialties was conducted to evaluate provider agreement about sepsis risk and to test proposed actions based on the results of a sepsis test. The participants considered case vignettes of potentially septic patients designed to represent diagnostic dilemmas. Provider assessment of sepsis risk in these cases ranged from 10% to 90% and agreement was poor. Agreement about clinical actions to take in response to testing improved when participants considered their own hypothetical borderline cases. New host response testing for sepsis may have the potential to improve sepsis diagnosis and care and should be applied in a protocolized fashion to ensure consistency of results.
Collapse
Affiliation(s)
- Chadd K. Kraus
- Department of Emergency and Hospital Medicine, Lehigh Valley Health Network (LVHN), University of South Florida (USF) Morsani College of Medicine, Tampa, FL 33602, USA
| | - Hollis R. O’Neal
- Department of Critical Care Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Nathan A. Ledeboer
- Department of Pathology & Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Todd W. Rice
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Wesley H. Self
- Department of Emergency Medicine, Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
235
|
Chatterton C, Romero R, Jung E, Gallo DM, Suksai M, Diaz-Primera R, Erez O, Chaemsaithong P, Tarca AL, Gotsch F, Bosco M, Chaiworapongsa T. A biomarker for bacteremia in pregnant women with acute pyelonephritis: soluble suppressor of tumorigenicity 2 or sST2. J Matern Fetal Neonatal Med 2023; 36:2183470. [PMID: 36997168 PMCID: PMC10352993 DOI: 10.1080/14767058.2023.2183470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/15/2023] [Indexed: 04/01/2023]
Abstract
Objective: Sepsis is a leading cause of maternal death, and its diagnosis during the golden hour is critical to improve survival. Acute pyelonephritis in pregnancy is a risk factor for obstetrical and medical complications, and it is a major cause of sepsis, as bacteremia complicates 15-20% of pyelonephritis episodes in pregnancy. The diagnosis of bacteremia currently relies on blood cultures, whereas a rapid test could allow timely management and improved outcomes. Soluble suppression of tumorigenicity 2 (sST2) was previously proposed as a biomarker for sepsis in non-pregnant adults and children. This study was designed to determine whether maternal plasma concentrations of sST2 in pregnant patients with pyelonephritis can help to identify those at risk for bacteremia.Study design: This cross-sectional study included women with normal pregnancy (n = 131) and pregnant women with acute pyelonephritis (n = 36). Acute pyelonephritis was diagnosed based on a combination of clinical findings and a positive urine culture. Patients were further classified according to the results of blood cultures into those with and without bacteremia. Plasma concentrations of sST2 were determined by a sensitive immunoassay. Non-parametric statistics were used for analysis.Results: The maternal plasma sST2 concentration increased with gestational age in normal pregnancies. Pregnant patients with acute pyelonephritis had a higher median (interquartile range) plasma sST2 concentration than those with a normal pregnancy [85 (47-239) ng/mL vs. 31 (14-52) ng/mL, p < .001]. Among patients with pyelonephritis, those with a positive blood culture had a median plasma concentration of sST2 higher than that of patients with a negative blood culture [258 (IQR: 75-305) ng/mL vs. 83 (IQR: 46-153) ng/mL; p = .03]. An elevated plasma concentration of sST2 ≥ 215 ng/mL had a sensitivity of 73% and a specificity of 95% (area under the receiver operating characteristic curve, 0.74; p = .003) with a positive likelihood ratio of 13.8 and a negative likelihood ratio of 0.3 for the identification of patients who had a positive blood culture.Conclusion: sST2 is a candidate biomarker to identify bacteremia in pregnant women with pyelonephritis. Rapid identification of these patients may optimize patient care.
Collapse
Affiliation(s)
- Carolyn Chatterton
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
236
|
Affiliation(s)
- Ajay Kumar Jha
- Cardiothoracic Anaesthesia Division, Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Medical Education and Research, Pondicherry, India
| |
Collapse
|
237
|
Trivalairat P, Trivalairat K, Tassamakorn A, Purivirojkul W. Blood recovery of wild Mekong snail-eating turtles ( Malayemys subtrijuga Schlegel and Müller, 1845) in captivity from leech infestation. Int J Parasitol Parasites Wildl 2023; 22:126-135. [PMID: 37854273 PMCID: PMC10579961 DOI: 10.1016/j.ijppaw.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Blood cell counts are valuable diagnostic tools for assessing the health status of chelonians, however, reference standards for healthy blood parameters in various turtle species are lacking. In this study, forty wild female Malayemys subtrijuga were captured from ponds in Kasetsart University, and transported to laboratory for recuperating in captivity. All turtles were infected with a single leech species, Placobdelloides siamensis, with a mean of 513.7 ± 164.9 individuals per turtle, and exhibited penetrating and lesion wounds from leech infestations on both their skin and shell. Subsequently, they were cleaned and treated to eliminate ecto- and endoparasites before the recuperation period began. The turtles did not exhibit significantly differences in weight, carapace length (CL), red blood cell count (RCC), and white blood cell count (WCC) with a mean of 654.2 ± 199.9 g, 15.0 ± 2.5 cm, 327,080 ± 70,156 cells/mm3, and 73,340 ± 15,859 cells/mm3, respectively, during the initial records (week 0). However, after being maintained for 17 weeks, their health significantly improved in term of their blood parameters (RCC and WCC) and weight, except CL which remained unchanged, with a mean of 491,470 ± 16,169 cells/mm3, 18,790 ± 1496 cells/mm3, and 738.9 ± 191.5 g, respectively. Therefore, the health status obtained in this study can be used as a reference for blood parameters, weight, and recuperation period for the treatment of ill wild M. subtrijuga in captivity or as part of conservation management programs for turtles.
Collapse
Affiliation(s)
- Poramad Trivalairat
- Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok, 10210, Thailand
- Animal Systematics and Ecology Speciality Research Unit (ASESRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Krittiya Trivalairat
- Animal Systematics and Ecology Speciality Research Unit (ASESRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Bangkok, 10700, Thailand
| | - Awirut Tassamakorn
- Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok, 10210, Thailand
| | - Watchariya Purivirojkul
- Animal Systematics and Ecology Speciality Research Unit (ASESRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Biodiversity Center, Kasetsart University (BDCKU), Bangkok, 10900, Thailand
| |
Collapse
|
238
|
Zhi Y, Wu X, Chen Y, Chen X, Chen X, Luo H, Yi X, Lin X, Ma L, Chen Y, Cao Y, Li F, Zhou P. A novel TWIK2 channel inhibitor binds at the bottom of the selectivity filter and protects against LPS-induced experimental endotoxemia in vivo. Biochem Pharmacol 2023; 218:115894. [PMID: 37898389 DOI: 10.1016/j.bcp.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
TWIK2 channel plays a critical role in NLRP3 inflammasome activation and mice deficient in TWIK2 channel are protected from sepsis and inflammatory lung injury. However, inhibitors of TWIK2 channel are currently in an early stage of development, and the molecular determinants underlying the chemical modulation of TWIK2 channel remain unexplored. In this study, we identified NPBA and the synthesized derivative NPBA-4 potently and selectively inhibited TWIK2 channel by using whole-cell patch clamp techniques. Furthermore, the mutation of the last residues of the selectivity filter in both P1 and P2 (i.e., T106A, T214A) of TWIK2 channel substantially abolished the effect of NPBA on TWIK2 channel. Our data suggest that NPBA blocked TWIK2 channel through binding at the bottom of the selectivity filter, which was also supported by molecular docking prediction. Moreover, we found that NPBA significantly suppressed NLRP3 inflammasome activation in macrophages and alleviated LPS-induced endotoxemia and organ injury in vivo. Notably, the protective effects of NPBA against LPS-induced endotoxemia were abolished in Kcnk6-/- mice. In summary, our study has uncovered a series of novel inhibitors of TWIK2 channel and revealed their distinct molecular determinants interacting TWIK2 channel. These findings provide new insights into the mechanisms of pharmacological action on TWIK2 channel and opportunities for the development of selective TWIK2 channel modulators to treat related inflammatory diseases.
Collapse
Affiliation(s)
- Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanshan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingyuan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangyu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiuling Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Chen
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
239
|
Lira Chavez FM, Gartzke LP, van Beuningen FE, Wink SE, Henning RH, Krenning G, Bouma HR. Restoring the infected powerhouse: Mitochondrial quality control in sepsis. Redox Biol 2023; 68:102968. [PMID: 38039825 PMCID: PMC10711241 DOI: 10.1016/j.redox.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.
Collapse
Affiliation(s)
- F M Lira Chavez
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands.
| | - L P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - F E van Beuningen
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - S E Wink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - G Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Sulfateq B.V, Admiraal de Ruyterlaan 5, 9726, GN Groningen, the Netherlands
| | - H R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| |
Collapse
|
240
|
Quagliata M, Papini AM, Rovero P. Therapeutic applications of thymosin peptides: a patent landscape 2018-present. Expert Opin Ther Pat 2023; 33:865-873. [PMID: 38131310 DOI: 10.1080/13543776.2023.2298833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Thymosins are small proteins found mainly in the thymus. They are involved in several biological processes, including immunoregulation, angiogenesis, and anti-inflammatory activity. Due to these multiple activities, thymosins are widely used as therapeutics. In fact, these peptides have shown interesting results in the treatment of eye disorders, anticancer therapy, and dysregulated immune disorders. AREA COVERED We analyzed the thymosins therapeutic patent landscape describing the most significant patents published after 2018 and originally written in English, classified according to the different type of functions and diseases. We searched 'Thymosin' on Patentscope and Espacenet. EXPERT OPINION Thymalfasin (Zadaxin) is the only FDA-approved thymosine-based drug used to treat chronic hepatitis B and C and as a chemotherapy inducer. This outcome demonstrates how thymosins can be exploited as therapeutics, especially in immunological and anti-cancer therapies. However, the development of modified thymosins could expand their therapeutic interest and application in different diseases. In fact, by chemical modifications, it is possible to increase proteolytic stability in the biological environment, enhance cell permeability, and stabilize the secondary structure of the peptide. Finally, the development of shorter sequences could reduce the cost and production time of these thymosin-based drugs.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
241
|
Marcos-Vidal JM, González R, Merino M, Higuera E, García C. Sedation for Patients with Sepsis: Towards a Personalised Approach. J Pers Med 2023; 13:1641. [PMID: 38138868 PMCID: PMC10744994 DOI: 10.3390/jpm13121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
This article looks at the challenges of sedoanalgesia for sepsis patients, and argues for a personalised approach. Sedation is a necessary part of treatment for patients in intensive care to reduce stress and anxiety and improve long-term prognoses. Sepsis patients present particular difficulties as they are at increased risk of a wide range of complications, such as multiple organ failure, neurological dysfunction, septic shock, ARDS, abdominal compartment syndrome, vasoplegic syndrome, and myocardial dysfunction. The development of any one of these complications can cause the patient's rapid deterioration, and each has distinct implications in terms of appropriate and safe forms of sedation. In this way, the present article reviews the sedative and analgesic drugs commonly used in the ICU and, placing special emphasis on their strategic administration in sepsis patients, develops a set of proposals for sedoanalgesia aimed at improving outcomes for this group of patients. These proposals represent a move away from simplistic approaches like avoiding benzodiazepines to more "objective-guided sedation" that accounts for a patient's principal pathology, as well as any comorbidities, and takes full advantage of the therapeutic arsenal currently available to achieve personalised, patient-centred treatment goals.
Collapse
Affiliation(s)
- José Miguel Marcos-Vidal
- Department of Anesthesiology and Critical Care, Universitary Hospital of Leon, 24071 Leon, Spain; (R.G.); (M.M.); (E.H.); (C.G.)
| | | | | | | | | |
Collapse
|
242
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
243
|
Pérez-Torres I, Aisa-Álvarez A, Casarez-Alvarado S, Borrayo G, Márquez-Velasco R, Guarner-Lans V, Manzano-Pech L, Cruz-Soto R, Gonzalez-Marcos O, Fuentevilla-Álvarez G, Gamboa R, Saucedo-Orozco H, Franco-Granillo J, Soto ME. Impact of Treatment with Antioxidants as an Adjuvant to Standard Therapy in Patients with Septic Shock: Analysis of the Correlation between Cytokine Storm and Oxidative Stress and Therapeutic Effects. Int J Mol Sci 2023; 24:16610. [PMID: 38068931 PMCID: PMC10706209 DOI: 10.3390/ijms242316610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cellular homeostasis is lost or becomes dysfunctional during septic shock due to the activation of the inflammatory response and the deregulation of oxidative stress. Antioxidant therapy administered alongside standard treatment could restore this lost homeostasis. We included 131 patients with septic shock who were treated with standard treatment and vitamin C (Vit C), vitamin E (Vit E), N-acetylcysteine (NAC), or melatonin (MT), in a randomized trial. Organ damage quantified by Sequential Organ Failure Assessment (SOFA) score, and we determined levels of Interleukins (IL) IL1β, Tumor necrosis factor alpha (TNFα), IL-6, monocyte chemoattractant protein-1 (MCP-1), Transforming growth factor B (TGFβ), IL-4, IL-10, IL-12, and Interferon-γ (IFNγ). The SOFA score decreased in patients treated with Vit C, NAC, and MT. Patients treated with MT had statistically significantly reduced of IL-6, IL-8, MCP-1, and IL-10 levels. Lipid peroxidation, Nitrates and nitrites (NO3- and NO2-), glutathione reductase, and superoxide dismutase decreased after treatment with Vit C, Vit E, NAC, and MT. The levels of thiols recovered with the use of Vit E, and all patients treated with antioxidants maintained their selenium levels, in contrast with controls (p = 0.04). The findings regarding oxidative stress markers and cytokines after treatment with antioxidants allow us to consider to future the combined use of antioxidants in a randomized clinical trial with a larger sample to demonstrate the reproducibility of these beneficial effects.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Alfredo Aisa-Álvarez
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Sergio Casarez-Alvarado
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Gabriela Borrayo
- Instituto Mexicano del Seguro Social, Dirección de Prestaciones Médicas Coordinación de Innovación en Salud, Ciudad de México 06700, Mexico;
| | - Ricardo Márquez-Velasco
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Linaloe Manzano-Pech
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Randall Cruz-Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Omar Gonzalez-Marcos
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Giovanny Fuentevilla-Álvarez
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Ricardo Gamboa
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | | | - Juvenal Franco-Granillo
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
- Research Direction Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. Las Américas, Mexico City 01120, Mexico
| |
Collapse
|
244
|
Gallant RM, Snyder JM, Ayres JS. Fluoxetine promotes immunometabolic defenses to mediate host-pathogen cooperation during sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567681. [PMID: 38013994 PMCID: PMC10680848 DOI: 10.1101/2023.11.18.567681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are some of the most prescribed drugs in the world. While they are used for their ability to increase serotonergic signaling in the brain, SSRIs are also known to have a broad range of effects beyond the brain, including immune and metabolic effects. Recent studies have demonstrated that SSRIs are protective in animal models and humans against several infections, including sepsis and COVID-19, however the mechanisms underlying this protection are largely unknown. Here we mechanistically link two previously described effects of the SSRI fluoxetine in mediating protection against sepsis. We show that fluoxetine-mediated protection is independent of peripheral serotonin, and instead increases levels of circulating IL-10. IL-10 is necessary for protection from sepsis-induced hypertriglyceridemia and cardiac triglyceride accumulation, allowing for metabolic reprogramming of the heart. Our work reveals a beneficial "off-target" effect of fluoxetine, and reveals a protective immunometabolic defense mechanism with therapeutic potential.
Collapse
Affiliation(s)
- Robert M Gallant
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
245
|
Zhao R, Hadisurya M, Ndetan H, Xi NM, Adduri S, Konduru NV, Samten B, Tao WA, Singh KP, Ji HL. Regenerative Signatures in Bronchioalveolar Lavage of Acute Respiratory Distress Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566908. [PMID: 38014329 PMCID: PMC10680787 DOI: 10.1101/2023.11.13.566908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background In patients with severe acute respiratory distress syndrome (ARDS) associated with sepsis, lung recovery is considerably delayed, and mortality is much high. More insight into the process of lung regeneration in ARDS patients is needed. Exosomes are important cargos for intercellular communication by serving as autocrine and/or paracrine. Cutting-edge exomics (exosomal proteomics) makes it possible to study the mechanisms of re-alveolarization in ARDS lungs. Aims This study aimed to identify potential regenerative niches by characterizing differentially expressed proteins in the exosomes of bronchioalveolar lavage (BAL) in ARDS patients. Methods We purified exosomes from BAL samples collected from ARDS patients by NIH-supported ALTA and SPIROMICS trials. The abundance of exosomal proteins/peptides was quantified using liquid chromatography-mass spectrometry (LC-MS). Differentially expressed exosomal proteins between healthy controls and ARDS patients were profiled for functional annotations, cell origins, signaling pathways, networks, and clinical correlations. Results Our results show that more exosomal proteins were identified in the lungs of late-stage ARDS patients. Immune cells and lung epithelial stem cells were major contributors to BAL exosomes in addition to those from other organs. We enriched a wide range of functions, stem cell signals, growth factors, and immune niches in both mild and severe patients. The differentially expressed proteins that we identified were associated with key clinical variables. The severity-associated differences in protein-protein interaction, RNA crosstalk, and epigenetic network were observed between mild and severe groups. Moreover, alveolar type 2 epithelial cells could serve as both exosome donors and recipients via autocrine and paracrine mechanisms. Conclusions This study identifies novel exosomal proteins associated with diverse functions, signaling pathways, and cell origins in ARDS lavage samples. These differentiated proteins may serve as regenerative niches for re-alveolarization in injured lungs.
Collapse
Affiliation(s)
- Runzhen Zhao
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nagarjun Venkata Konduru
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Buka Samten
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
246
|
Singh A, Hassen WM, St-Onge R, Dubowski JJ. Galvanic Displacement Reaction Enabled Specific and Sensitive Detection of Bacteria with a Digital Photocorrosion GaAs/AlGaAs Biosensor. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21768-21776. [PMID: 37969924 PMCID: PMC10641864 DOI: 10.1021/acs.jpcc.3c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The conjugation of ionic gold with bacterial antibodies makes it possible to induce a specific interaction between targeted bacteria and the surface of a GaAs/AlGaAs biochip. The process of immobilization is based on a galvanic displacement reaction (GDR) involving electron transfer between GaAs and Au3+ ions that leads to the formation of a Au-Ga alloy anchoring bacteria to the biochip surface. The GDR-based immobilization of Escherichia coli on biochips comprising a stack of GaAs/AlGaAs nanolayers (dGaAs = 12 nm, dAlGaAs = 10 nm) was confirmed by X-ray photoelectron spectroscopy and atomic force microscopy-based infrared experiments. We report the successful application of this approach for highly sensitive detection of E. coli with a digital photocorrosion (DIP) biosensor. The photoluminescence (PL) monitored DIP of GaAs/AlGaAs nanolayers results in the formation of a PL intensity maximum whose temporal appearance depends on the electric charge transfer between bacteria and the biochip. The formation of a robust bacteria-biochip interface achieved with the GDR process allowed us to observe the role of bacteria on the temporal position of a PL intensity maximum related to the etching of two pairs of GaAs/AlGaAs nanolayers extending up to 24 nm below the biochip surface. We demonstrate the attractive detection of E. coli at 250 CFU/mL, and we discuss the potential of this approach for designing a family of biosensors addressing the quasi-continuous monitoring of a water environment for the presence of pathogenic bacteria.
Collapse
Affiliation(s)
- Amanpreet Singh
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| | - Walid M. Hassen
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| | - René St-Onge
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| | - Jan J. Dubowski
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| |
Collapse
|
247
|
Li Z, Wang C, Zhang X, Xu X, Wang M, Dong L. Crosstalk between septic shock and venous thromboembolism: a bioinformatics and immunoassay analysis. Front Cell Infect Microbiol 2023; 13:1235269. [PMID: 38029239 PMCID: PMC10666789 DOI: 10.3389/fcimb.2023.1235269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Herein, we applied bioinformatics methods to analyze the crosstalk between septic shock (SS) and venous thromboembolism (VTE), focusing on the correlation with immune infiltrating cells. Methods Expression data were obtained from the Gene Expression Omnibus (GEO) database, including blood samples from SS patients (datasets GSE64457, GSE95233, and GSE57065) and VTE patients (GSE19151). We used the R package "limma" for differential expression analysis (p value<0.05,∣logFC∣≥1). Venn plots were generated to identify intersected differential genes between SS and VTE and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment analysis. The protein-protein interaction (PPI) network of intersected genes was constructed by Cytoscape software. The xCell analysis identified immune cells with significant changes in VTE and SS and correlated them with significant molecular pathways of crosstalk. Finally, we validated the mRNA expression of crosstalk genes by qPCR, while Matrix Metalloprotein-9 (MMP-9) protein levels were assessed through Western blotting (WB) and Immunohistochemistry (IHC) in human umbilical vein endothelial cells (HUVECs) and mice. Results In the present study, we conducted a comparison between 88 patients with septic shock and 55 control subjects. Additionally, we compared 70 patients with venous thromboembolism to 63 control subjects. Twelve intersected genes and their corresponding three important molecular pathways were obtained: Metabolic, Estrogen, and FOXO signaling pathways. The resulting PPI network has 194 nodes and 388 edges. The immune microenvironment analysis of the two diseases showed that the infiltration levels of M2 macrophages and Class-switched memory B cells were correlated with the enrichment scores of metabolic, estrogen, and FOXO signaling pathways. Finally, qPCR confirmed that the expression of MMP9, S100A12, ARG1, SLPI, and ANXA3 mRNA in the SS with VTE group was significantly elevated. WB and IHC experiments revealed that MMP9 protein was significantly elevated in the experimental group. Conclusion Metabolic, estrogen, and FOXO pathways play important roles in both SS and VTE and are related to the immune cell microenvironment of M2 macrophages and Class-switched memory B cells. MMP9 shows promise as a biomarker for diagnosing sepsis with venous thrombosis and a potential molecular target for treating this patient population.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaolan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Zhang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Xiaolin Xu
- School of Statistics, Renmin University of China, Bejing, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
248
|
Thoppil J, Mehta P, Bartels B, Sharma D, Farrar JD. Impact of norepinephrine on immunity and oxidative metabolism in sepsis. Front Immunol 2023; 14:1271098. [PMID: 38022663 PMCID: PMC10662053 DOI: 10.3389/fimmu.2023.1271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a major health problem in the United States (US), constituting a leading contributor to mortality among critically ill patients. Despite advances in treatment the underlying pathophysiology of sepsis remains elusive. Reactive oxygen species (ROS) have a significant role in antimicrobial host defense and inflammation and its dysregulation leads to maladaptive responses because of excessive inflammation. There is growing evidence for crosstalk between the central nervous system and the immune system in response to infection. The hypothalamic-pituitary and adrenal axis and the sympathetic nervous system are the two major pathways that mediate this interaction. Epinephrine (Epi) and norepinephrine (NE), respectively are the effectors of these interactions. Upon stimulation, NE is released from sympathetic nerve terminals locally within lymphoid organs and activate adrenoreceptors expressed on immune cells. Similarly, epinephrine secreted from the adrenal gland which is released systemically also exerts influence on immune cells. However, understanding the specific impact of neuroimmunity is still in its infancy. In this review, we focus on the sympathetic nervous system, specifically the role the neurotransmitter norepinephrine has on immune cells. Norepinephrine has been shown to modulate immune cell responses leading to increased anti-inflammatory and blunting of pro-inflammatory effects. Furthermore, there is evidence to suggest that norepinephrine is involved in regulating oxidative metabolism in immune cells. This review attempts to summarize the known effects of norepinephrine on immune cell response and oxidative metabolism in response to infection.
Collapse
Affiliation(s)
- Joby Thoppil
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Prayag Mehta
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Brett Bartels
- Department of Emergency Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, United States
| | - Drashya Sharma
- Department of Immunology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - J. David Farrar
- Department of Immunology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
249
|
Lou C, Meng Z, Shi Y, Zheng R, Pan J, Qian S. Causal effects of genetically vitamins and sepsis risk: a two-sample Mendelian randomization study. BMC Infect Dis 2023; 23:766. [PMID: 37936083 PMCID: PMC10629037 DOI: 10.1186/s12879-023-08778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND In recent years, observational studies have been conducted to investigate the potential impact of vitamins on sepsis. However, many of these studies have produced inconsistent results. Our Mendelian randomization (MR) study aims to evaluate the causality between vitamins and sepsis from a genetic perspective. METHODS Our MR study was designed following the STROBE-MR guidelines. Genetic instrumental variables for vitamins including folate, vitamin B12, B6, A (Retinol), C, D, and K were obtained from previous genome-wide association studies (GWAS) and MR studies. Five different sepsis severity levels were included in the analysis. The genetic instrumental variables were screened for potential confounders using PhenoScanner V2. MR analysis was performed using MR-egger, inverse-variance weighted multiplicative random effects (IVW-RE), inverse-variance weighted multiplicative fixed-effects (IVW-FE), and wald ratio methods to assess the relationship between vitamins and sepsis. Sensitivity analysis was performed using the MR-egger_intercept method, and the MR-PRESSO package and Cochran's Q test were used to evaluate the heterogeneity of the instrumental variables. RESULTS Our MR study found no statistically significant association between vitamins and sepsis risk, regardless of the type of vitamin (P-value > 0.05). The odds ratios (ORs) for folate, vitamin B6, vitamin B12, vitamin A, vitamin D, vitamin K, and vitamin C were 1.164 (95% CI: 0.895-1.514), 0.987 (95% CI: 0.969-1.005), 0.975 (95% CI: 0.914-1.041), 0.993 (95% CI: 0.797-1.238), 0.861 (95% CI: 0.522-1.42), 0.955 (95% CI: 0.86-1.059), and 1.049 (95% CI: 0.911-1.208), respectively. Similar results were observed in subgroups of different sepsis severity levels. CONCLUSIONS Our MR study found no evidence of a causal association between vitamins and sepsis risk from a genetic perspective. Further randomized controlled trials are necessary to confirm these results.
Collapse
Affiliation(s)
- Chen Lou
- School of The First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhizhen Meng
- Department of Emergency, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yiyi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rui Zheng
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China.
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Provincial, Wenzhou, Zhejiang, 325000, People's Republic of China.
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, China.
| | - Songzan Qian
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
250
|
Nagendran M, Festor P, Komorowski M, Gordon AC, Faisal AA. Quantifying the impact of AI recommendations with explanations on prescription decision making. NPJ Digit Med 2023; 6:206. [PMID: 37935953 PMCID: PMC10630476 DOI: 10.1038/s41746-023-00955-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
The influence of AI recommendations on physician behaviour remains poorly characterised. We assess how clinicians' decisions may be influenced by additional information more broadly, and how this influence can be modified by either the source of the information (human peers or AI) and the presence or absence of an AI explanation (XAI, here using simple feature importance). We used a modified between-subjects design where intensive care doctors (N = 86) were presented on a computer for each of 16 trials with a patient case and prompted to prescribe continuous values for two drugs. We used a multi-factorial experimental design with four arms, where each clinician experienced all four arms on different subsets of our 24 patients. The four arms were (i) baseline (control), (ii) peer human clinician scenario showing what doses had been prescribed by other doctors, (iii) AI suggestion and (iv) XAI suggestion. We found that additional information (peer, AI or XAI) had a strong influence on prescriptions (significantly for AI, not so for peers) but simple XAI did not have higher influence than AI alone. There was no correlation between attitudes to AI or clinical experience on the AI-supported decisions and nor was there correlation between what doctors self-reported about how useful they found the XAI and whether the XAI actually influenced their prescriptions. Our findings suggest that the marginal impact of simple XAI was low in this setting and we also cast doubt on the utility of self-reports as a valid metric for assessing XAI in clinical experts.
Collapse
Affiliation(s)
- Myura Nagendran
- UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, UK
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, London, UK
- Brain and Behaviour Lab, Imperial College London, London, UK
| | - Paul Festor
- UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, UK
- Brain and Behaviour Lab, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, London, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, London, UK
| | - Aldo A Faisal
- UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London, UK.
- Brain and Behaviour Lab, Imperial College London, London, UK.
- Department of Computing, Imperial College London, London, UK.
- Institute of Artificial & Human Intelligence, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|