201
|
Sim MJW, Sun PD. T Cell Recognition of Tumor Neoantigens and Insights Into T Cell Immunotherapy. Front Immunol 2022; 13:833017. [PMID: 35222422 PMCID: PMC8867076 DOI: 10.3389/fimmu.2022.833017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
In cancer, non-synonymous DNA base changes alter protein sequence and produce neoantigens that are detected by the immune system. For immune detection, neoantigens must first be presented on class I or II human leukocyte antigens (HLA) followed by recognition by peptide-specific receptors, exemplified by the T-cell receptor (TCR). Detection of neoantigens represents a unique challenge to the immune system due to their high similarity with endogenous 'self' proteins. Here, we review insights into how TCRs detect neoantigens from structural studies and delineate two broad mechanistic categories: 1) recognition of mutated 'self' peptides and 2) recognition of novel 'non-self' peptides generated through anchor residue modifications. While mutated 'self' peptides differ only by a single amino acid from an existing 'self' epitope, mutations that form anchor residues generate an entirely new epitope, hitherto unknown to the immune system. We review recent structural studies that highlight these structurally distinct mechanisms and discuss how they may lead to differential anti-tumor immune responses. We discuss how T cells specific for neoantigens derived from anchor mutations can be of high affinity and provide insights to their use in adoptive T cell transfer-based immunotherapy.
Collapse
Affiliation(s)
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
202
|
Wojciechowski E, Thevenin CR, Bonafoux B, Ralazamahaleo M, Visentin J. Characterization of the novel HLA-A*24:564 allele by sequencing-based typing. HLA 2022; 99:623-625. [PMID: 35122405 DOI: 10.1111/tan.14576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
HLA-A*24:564 differs from HLA-A*24:02:01:01 by one nucleotide substitution in codon 240 in exon 4. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 rue Léo Saignat, Bordeaux, France
| | - Celine Rene Thevenin
- CHU de Montpellier, Service d'Immunologie, 191 av. du Doyen Giraud, Montpellier, France
| | - Beatrice Bonafoux
- CHU de Montpellier, Service d'Immunologie, 191 av. du Doyen Giraud, Montpellier, France
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 rue Léo Saignat, Bordeaux, France
| |
Collapse
|
203
|
Foix A, López D, Díez-Fuertes F, McConnell MJ, Martín-Galiano AJ. Predicted impact of the viral mutational landscape on the cytotoxic response against SARS-CoV-2. PLoS Comput Biol 2022; 18:e1009726. [PMID: 35143484 PMCID: PMC8830725 DOI: 10.1371/journal.pcbi.1009726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
The massive assessment of immune evasion due to viral mutations that increase COVID-19 susceptibility can be computationally facilitated. The adaptive cytotoxic T response is critical during primary infection and the generation of long-term protection. Here, potential HLA class I epitopes in the SARS-CoV-2 proteome were predicted for 2,915 human alleles of 71 families using the netMHCIpan EL algorithm. Allele families showed extreme epitopic differences, underscoring genetic variability of protective capacity between humans. Up to 1,222 epitopes were associated with any of the twelve supertypes, that is, allele clusters covering 90% population. Next, from all mutations identified in ~118,000 viral NCBI isolates, those causing significant epitope score reduction were considered epitope escape mutations. These mutations mainly involved non-conservative substitutions at the second and C-terminal position of the ligand core, or total ligand removal by large recurrent deletions. Escape mutations affected 47% of supertype epitopes, which in 21% of cases concerned isolates from two or more sub-continental areas. Some of these changes were coupled, but never surpassed 15% of evaded epitopes for the same supertype in the same isolate, except for B27. In contrast to most supertypes, eight allele families mostly contained alleles with few SARS-CoV-2 ligands. Isolates harboring cytotoxic escape mutations for these families co-existed geographically within sub-Saharan and Asian populations enriched in these alleles according to the Allele Frequency Net Database. Collectively, our findings indicate that escape mutation events have already occurred for half of HLA class I supertype epitopes. However, it is presently unlikely that, overall, it poses a threat to the global population. In contrast, single and double mutations for susceptible alleles may be associated with viral selective pressure and alarming local outbreaks. The integration of genomic, geographical and immunoinformatic information eases the surveillance of variants potentially affecting the global population, as well as minority subpopulations.
Collapse
Affiliation(s)
- Anna Foix
- European Bioinformatic Institute, European Molecular Biology Laboratory, Hinxton, United Kingdom
| | - Daniel López
- Presentation and Immune Regulation Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Michael J. McConnell
- Intrahospital Infections Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
204
|
Vita R, Mody A, Overton JA, Buus S, Haley ST, Sette A, Mallajosyula V, Davis MM, Long DL, Willis RA, Peters B, Altman JD. Minimal Information about MHC Multimers (MIAMM). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:531-537. [PMID: 35042788 PMCID: PMC8830768 DOI: 10.4049/jimmunol.2100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
With the goal of improving the reproducibility and annotatability of MHC multimer reagent data, we present the establishment of a new data standard: Minimal Information about MHC Multimers (https://miamm.lji.org/). Multimers are engineered reagents composed of a ligand and a MHC, which can be represented in a standardized format using ontology terminology. We provide an online Web site to host the details of the standard, as well as a validation tool to assist with the adoption of the standard. We hope that this publication will bring increased awareness of Minimal Information about MHC Multimers and drive acceptance, ultimately improving the quality and documentation of multimer data in the scientific literature.
Collapse
Affiliation(s)
- Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA;
| | - Apurva Mody
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | | | - Soren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Dale L Long
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Richard A Willis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
205
|
Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, Allen EK, Chou CH, Mettelman RC, Allison KJ, Lin CY, Brice DC, Zhu X, Vegesana K, Wu G, Trivedi S, Kottapalli P, Darnell D, McNeely S, Olsen SR, Schultz-Cherry S, Estepp JH, the SJTRC Study Team, McGargill MA, Wolf J, Thomas PG. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8 T cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.07.12.21260227. [PMID: 34341799 PMCID: PMC8328067 DOI: 10.1101/2021.07.12.21260227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although mRNA vaccine efficacy against severe COVID-19 remains high, variant emergence and breakthrough infections have changed vaccine policy to include booster immunizations. However, the effect of diverse and repeated antigen exposures on SARS-CoV-2 memory T cells is poorly understood. Here, we utilize DNA-barcoded MHC-multimers combined with scRNAseq and scTCRseq to capture the ex vivo profile of SARS-CoV-2-responsive T cells within a cohort of individuals with one, two, or three antigen exposures, including vaccination, primary infection, and breakthrough infection. We found that the order of exposure determined the relative distribution between spike- and non-spike-specific responses, with vaccination after infection leading to further expansion of spike-specific T cells and differentiation to a CCR7-CD45RA+ effector phenotype. In contrast, individuals experiencing a breakthrough infection mount vigorous non-spike-specific responses. In-depth analysis of over 4,000 epitope-specific T cell receptor sequences demonstrates that all types of exposures elicit diverse repertoires characterized by shared, dominant TCR motifs, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and that current vaccination protocols continue to expand and differentiate spike-specific memory responses.
Collapse
Affiliation(s)
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Allison M. Kirk
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | | | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Robert C. Mettelman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kim J. Allison
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Xun Zhu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kasi Vegesana
- Information Services, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Suzanne McNeely
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Scott R. Olsen
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jeremie H. Estepp
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN USA
| | | | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
206
|
Stuart PE, Tsoi LC, Nair RP, Ghosh M, Kabra M, Shaiq PA, Raja GK, Qamar R, Thelma B, Patrick MT, Parihar A, Singh S, Khandpur S, Kumar U, Wittig M, Degenhardt F, Tejasvi T, Voorhees JJ, Weidinger S, Franke A, Abecasis GR, Sharma VK, Elder JT. Transethnic analysis of psoriasis susceptibility in South Asians and Europeans enhances fine-mapping in the MHC and genomewide. HGG ADVANCES 2022; 3:100069. [PMID: 34927100 PMCID: PMC8682265 DOI: 10.1016/j.xhgg.2021.100069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023] Open
Abstract
Because transethnic analysis may facilitate prioritization of causal genetic variants, we performed a genomewide association study (GWAS) of psoriasis in South Asians (SAS), consisting of 2,590 cases and 1,720 controls. Comparison with our existing European-origin (EUR) GWAS showed that effect sizes of known psoriasis signals were highly correlated in SAS and EUR (Spearman ρ = 0.78; p < 2 × 10-14). Transethnic meta-analysis identified two non-MHC psoriasis loci (1p36.22 and 1q24.2) not previously identified in EUR, which may have regulatory roles. For these two loci, the transethnic GWAS provided higher genetic resolution and reduced the number of potential causal variants compared to using the EUR sample alone. We then explored multiple strategies to develop reference panels for accurately imputing MHC genotypes in both SAS and EUR populations and conducted a fine-mapping of MHC psoriasis associations in SAS and the largest such effort for EUR. HLA-C*06 was the top-ranking MHC locus in both populations but was even more prominent in SAS based on odds ratio, disease liability, model fit and predictive power. Transethnic modeling also substantially boosted the probability that the HLA-C*06 protein variant is causal. Secondary MHC signals included coding variants of HLA-C and HLA-B, but also potential regulatory variants of these two genes as well as HLA-A and several HLA class II genes, with effects on both chromatin accessibility and gene expression. This study highlights the shared genetic basis of psoriasis in SAS and EUR populations and the value of transethnic meta-analysis for discovery and fine-mapping of susceptibility loci.
Collapse
Affiliation(s)
- Philip E. Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Manju Ghosh
- Department of Pediatrics Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Department of Pediatrics Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Pakeeza A. Shaiq
- Department of Biochemistry, PMASAA University, Rawalpindi, Pakistan
| | - Ghazala K. Raja
- Department of Biochemistry, PMASAA University, Rawalpindi, Pakistan
| | - Raheel Qamar
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - B.K. Thelma
- Department of Genetics, University of Delhi South Campus, 110021 New Delhi, India
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anita Parihar
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Singh
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Michael Wittig
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - John J. Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephan Weidinger
- Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Goncalo R. Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vinod K. Sharma
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - James T. Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| |
Collapse
|
207
|
Dholakia D, Kalra A, Misir BR, Kanga U, Mukerji M. HLA-SPREAD: a natural language processing based resource for curating HLA association from PubMed abstracts. BMC Genomics 2022; 23:10. [PMID: 34991484 PMCID: PMC8740486 DOI: 10.1186/s12864-021-08239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Extreme complexity in the Human Leukocyte Antigens (HLA) system and its nomenclature makes it difficult to interpret and integrate relevant information for HLA associations with diseases, Adverse Drug Reactions (ADR) and Transplantation. PubMed search displays ~ 146,000 studies on HLA reported from diverse locations. Currently, IPD-IMGT/HLA (Robinson et al., Nucleic Acids Research 48:D948-D955, 2019) database houses data on 28,320 HLA alleles. We developed an automated pipeline with a unified graphical user interface HLA-SPREAD that provides a structured information on SNPs, Populations, REsources, ADRs and Diseases information. Information on HLA was extracted from ~ 28 million PubMed abstracts extracted using Natural Language Processing (NLP). Python scripts were used to mine and curate information on diseases, filter false positives and categorize to 24 tree hierarchical groups and named Entity Recognition (NER) algorithms followed by semantic analysis to infer HLA association(s). This resource from 109 countries and 40 ethnic groups provides interesting insights on: markers associated with allelic/haplotypic association in autoimmune, cancer, viral and skin diseases, transplantation outcome and ADRs for hypersensitivity. Summary information on clinically relevant biomarkers related to HLA disease associations with mapped susceptible/risk alleles are readily retrievable from HLASPREAD. The resource is available at URL http://hla-spread.igib.res.in/ . This resource is first of its kind that can help uncover novel patterns in HLA gene-disease associations.
Collapse
Affiliation(s)
- Dhwani Dholakia
- Institute of Genomics and Integrative Biology-Council of Scientific and Industrial Research, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Ankit Kalra
- Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Bishnu Raman Misir
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, 110007, India
| | - Uma Kanga
- All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mitali Mukerji
- Institute of Genomics and Integrative Biology-Council of Scientific and Industrial Research, New Delhi, 110025, India.
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, 110007, India.
- Present Address: Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
208
|
Hernández DG, Camacho Ramírez N, Mosquera Martínez M, Cendales PA, Camacho BA. Characterization of the novel HLA-DRB1*04:315 allele by next-generation sequencing. HLA 2022; 99:654-655. [PMID: 34978763 DOI: 10.1111/tan.14534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022]
Abstract
HLA-DRB1*04:315 differs from HLA-DRB1*04:07:01:02 by a single nucleotide substitution in codon 147 of exon 3.
Collapse
Affiliation(s)
| | | | | | - Paola Andrea Cendales
- Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | | |
Collapse
|
209
|
Moyer AM, Gandhi MJ. Human Leukocyte Antigen (HLA) Testing in Pharmacogenomics. Methods Mol Biol 2022; 2547:21-45. [PMID: 36068459 DOI: 10.1007/978-1-0716-2573-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genetic region on the short arm of chromosome 6 where the human leukocyte antigen (HLA) genes are located is the major histocompatibility complex. The genes in this region are highly polymorphic, and some loci have a high degree of homology with other genes and pseudogenes. Histocompatibility testing has traditionally been performed in the setting of transplantation and involves determining which specific alleles are present. Several HLA alleles have been associated with disease risk or increased risk of adverse drug reaction (ADR) when treated with certain medications. Testing for these applications differs from traditional histocompatibility in that the desired result is simply presence or absence of the allele of interest, rather than determining which allele is present. At present, the majority of HLA typing is done by molecular methods using commercially available kits. A subset of pharmacogenomics laboratories has developed their own methods, and in some cases, query single nucleotide variants associated with certain HLA alleles rather than directly testing for the allele. In this chapter, a brief introduction to the HLA system is provided, followed by an overview of a variety of testing technologies including those specifically used in pharmacogenomics, and the chapter concludes with details regarding specific HLA alleles associated with ADR.
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Manish J Gandhi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
210
|
Perez MAS, Cuendet MA, Röhrig UF, Michielin O, Zoete V. Structural Prediction of Peptide-MHC Binding Modes. Methods Mol Biol 2022; 2405:245-282. [PMID: 35298818 DOI: 10.1007/978-1-0716-1855-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immune system is constantly protecting its host from the invasion of pathogens and the development of cancer cells. The specific CD8+ T-cell immune response against virus-infected cells and tumor cells is based on the T-cell receptor recognition of antigenic peptides bound to class I major histocompatibility complexes (MHC) at the surface of antigen presenting cells. Consequently, the peptide binding specificities of the highly polymorphic MHC have important implications for the design of vaccines, for the treatment of autoimmune diseases, and for personalized cancer immunotherapy. Evidence-based machine-learning approaches have been successfully used for the prediction of peptide binders and are currently being developed for the prediction of peptide immunogenicity. However, understanding and modeling the structural details of peptide/MHC binding is crucial for a better understanding of the molecular mechanisms triggering the immunological processes, estimating peptide/MHC affinity using universal physics-based approaches, and driving the design of novel peptide ligands. Unfortunately, due to the large diversity of MHC allotypes and possible peptides, the growing number of 3D structures of peptide/MHC (pMHC) complexes in the Protein Data Bank only covers a small fraction of the possibilities. Consequently, there is a growing need for rapid and efficient approaches to predict 3D structures of pMHC complexes. Here, we review the key characteristics of the 3D structure of pMHC complexes before listing databases and other sources of information on pMHC structures and MHC specificities. Finally, we discuss some of the most prominent pMHC docking software.
Collapse
Affiliation(s)
- Marta A S Perez
- Computer-aided Molecular Engineering Group, Department of Oncology UNIL-CHUV, Lausanne University, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michel A Cuendet
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Precision Oncology Center, Lausanne, Switzerland
| | - Ute F Röhrig
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Precision Oncology Center, Lausanne, Switzerland.
| | - Vincent Zoete
- Computer-aided Molecular Engineering Group, Department of Oncology UNIL-CHUV, Lausanne University, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
211
|
Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, Flem-Karlsen K, Frank R, Mehta BB, Vu MH, Zengin T, Gutierrez-Marcos J, Lund-Johansen F, Andersen JT, Greiff V. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs 2022; 14:2008790. [PMID: 35293269 PMCID: PMC8928824 DOI: 10.1080/19420862.2021.2008790] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
Collapse
Affiliation(s)
- Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Habib Bashour
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Philippe A. Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eva Smorodina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | | | - Karine Flem-Karlsen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Robert Frank
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Norway
| | - Talip Zengin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Bioinformatics, Mugla Sitki Kocman University, Turkey
| | | | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
212
|
Shkurnikov MY, Averinskaya DA, Komarov AG, Karbyshev IA, Speshilov GI, Shtinova IA, Doroshenko DA, Vechorko VI, Drapkina OM. Association of HLA Class I Genotype with Mortality in Patients with Diabetes Mellitus and COVID-19. DOKL BIOCHEM BIOPHYS 2022; 507:289-293. [PMID: 36786988 PMCID: PMC9926432 DOI: 10.1134/s1607672922060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 02/15/2023]
Abstract
Numerous studies showed that diabetes mellitus (DM) increases the risk of death from COVID-19 by five times. It is generally accepted that the high lethality of COVID-19 against the background of DM is due to the main complications of this disease: micro- and macroangiopathies, as well as heart and kidney failure. In addition, it was shown that acute respiratory viral infection increases the production of interferon gamma, increases muscle resistance to insulin, and modulates the activity of effector CD8+ T cells. The ability of CD8+ T cells to recognize SARS-CoV-2-infected cells depends not only on humoral factors but also on individual genetic characteristics, including the individual set of major histocompatibility complex class I (MHC-I) molecules. In this study, the relationship of the MHC-I genotype of patients with DM aged less than 60 years with the outcome of COVID-19 was studied using a sample of 222 patients. It was shown that lethal outcomes of COVID-19 in patients with DM are associated with the low affinity of the interaction of an individual set of MHC-I molecules with SARS-CoV-2 peptides.
Collapse
Affiliation(s)
- M. Yu. Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia ,Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D. A. Averinskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - A. G. Komarov
- Moscow City Public Institution of Health Care Diagnostic Center (Laboratory Testing Center) of Moscow Health Department, Moscow, Russia
| | - I. A. Karbyshev
- Moscow City Public Institution of Health Care Diagnostic Center (Laboratory Testing Center) of Moscow Health Department, Moscow, Russia
| | - G. I. Speshilov
- Moscow City Public Institution of Health Care Diagnostic Center (Laboratory Testing Center) of Moscow Health Department, Moscow, Russia
| | - I. A. Shtinova
- Moscow City Public Institution of Health Care Diagnostic Center (Laboratory Testing Center) of Moscow Health Department, Moscow, Russia
| | - D. A. Doroshenko
- Moscow City Public Institution of Health Care Filatov City Clinical Hospital of Moscow Health Department, Moscow, Russia
| | - V. I. Vechorko
- Moscow City Public Institution of Health Care Filatov City Clinical Hospital of Moscow Health Department, Moscow, Russia
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| |
Collapse
|
213
|
Mattei AE, Gutierrez AH, Martin WD, Terry FE, Roberts BJ, Rosenberg AS, De Groot AS. In silico Immunogenicity Assessment for Sequences Containing Unnatural Amino Acids: A Method Using Existing in silico Algorithm Infrastructure and a Vision for Future Enhancements. FRONTIERS IN DRUG DISCOVERY 2022; 2:952326. [PMID: 36945694 PMCID: PMC10026553 DOI: 10.3389/fddsv.2022.952326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The in silico prediction of T cell epitopes within any peptide or biologic drug candidate serves as an important first step for assessing immunogenicity. T cell epitopes bind human leukocyte antigen (HLA) by a well-characterized interaction of amino acid side chains and pockets in the HLA molecule binding groove. Immunoinformatics tools, such as the EpiMatrix algorithm, have been developed to screen natural amino acid sequences for peptides that will bind HLA. In addition to commonly occurring in synthetic peptide impurities, unnatural amino acids (UAA) are also often incorporated into novel peptide therapeutics to improve properties of the drug product. To date, the HLA binding properties of peptides containing UAA are not accurately estimated by most algorithms. Both scenarios warrant the need for enhanced predictive tools. The authors developed an in silico method for modeling the impact of a given UAA on a peptide's likelihood of binding to HLA and, by extension, its immunogenic potential. In silico assessment of immunogenic potential allows for risk-based selection of best candidate peptides in further confirmatory in vitro, ex vivo and in vivo assays, thereby reducing the overall cost of immunogenicity evaluation. Examples demonstrating in silico immunogenicity prediction for product impurities that are commonly found in formulations of the generic peptides teriparatide and semaglutide are provided. Next, this article discusses how HLA binding studies can be used to estimate the binding potentials of commonly encountered UAA and "correct" in silico estimates of binding based on their naturally occurring counterparts. As demonstrated here, these in vitro binding studies are usually performed with known ligands which have been modified to contain UAA in HLA anchor positions. An example using D-amino acids in relative binding position 1 (P1) of the PADRE peptide is presented. As more HLA binding data become available, new predictive models allowing for the direct estimation of HLA binding for peptides containing UAA can be established.
Collapse
|
214
|
Bugada LF, Smith MR, Wen F. Rapid Identification of MHCII-Binding Peptides Through Microsphere-Assisted Peptide Screening (MAPS). Methods Mol Biol 2022; 2574:233-250. [PMID: 36087205 DOI: 10.1007/978-1-0716-2712-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CD4+ T cells play a vital role in the immune response, and their function requires T cell receptor (TCR) recognition of peptide epitopes presented in complex with MHC class II (MHCII) molecules. Consequently, rapidly identifying peptides that bind MHCII is critical to understanding and treating infectious disease, cancer, autoimmunity, allergy, and transplant rejection. Computational methods provide a fast, ultrahigh-throughput approach to predict MHCII-binding peptides but lack the accuracy of experimental methods. In contrast, experimental methods offer accurate, quantitative results at the expense of speed. To address the gap between these two approaches, we developed a high-throughput, semiquantitative experimental screening strategy termed microsphere-assisted peptide screening (MAPS). Here, we use the Zika virus envelope protein as an example to demonstrate the rapid identification of MHCII-binding peptides from a single pathogenic protein using MAPS. This process involves several key steps including peptide library design, peptide exchange into MHCII, peptide-MHCII loading onto microspheres, flow cytometry screening, and data analysis to identify peptides that bind to one or more MHCII alleles.
Collapse
Affiliation(s)
- Luke F Bugada
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mason R Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
215
|
Hernández DG, Camacho Ramírez N, Mosquera Martínez M, Cendales PA, Camacho BA. Description of HLA-DRB1*14:02:09, a novel HLA allele identified in a Colombian donor. HLA 2021; 99:405-407. [PMID: 34951145 DOI: 10.1111/tan.14519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
HLA-DRB1*14:02:09 differs from HLA-DRB1*14:02:01:02 by a single nucleotide substitution in codon 169 of exon 3. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | - Paola Andrea Cendales
- Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | | |
Collapse
|
216
|
Kubanov AA, Chikin VV, Karamova AE, Znamenskaya LF, Artamonova OG, Verbenko DA. Genetic markers for psoriatic arthritis among patients with psoriasis. Part II: HLA genes. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Psoriatic arthritis often leads to the development of severe outcomes ankylosis, deformities of the affected joints with severe impairment of their functions and disability. Early identification of patients with psoriasis with an increased risk of developing psoriatic arthritis for the purpose of its timely diagnosis and early initiation of therapy can prevent the development of severe disease outcomes. It is believed that the genes of the HLA system make the greatest individual genetic contribution to the formation of a predisposition to hereditary diseases with polygenic inheritance. The literature review considers the polymorphisms of the genes of the HLA system, associated with the development of psoriatic arthritis, in patients with psoriasis. The HLA alleles that contribute to the development of psoriatic arthritis and its individual forms have been identified. HLA alleles have been identified, which have a protective effect against the development of psoriatic arthritis.
Collapse
|
217
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
218
|
Niemann M, Matern BM, Spierings E, Schaub S, Hönger G. Peptides Derived From Mismatched Paternal Human Leukocyte Antigen Predicted to Be Presented by HLA-DRB1, -DRB3/4/5, -DQ, and -DP Induce Child-Specific Antibodies in Pregnant Women. Front Immunol 2021; 12:797360. [PMID: 34992608 PMCID: PMC8725048 DOI: 10.3389/fimmu.2021.797360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Predicted Indirectly ReCognizable Human Leukocyte Antigen (HLA) Epitopes (PIRCHE) are known to be a significant risk factor for the development of donor HLA-specific antibodies after organ transplantation. Most previous studies on PIRCHE limited their analyses on the presentation of the HLA-DRB1 locus, although HLA-DRB3/4/5, -DQ, and -DP are also known for presenting allopeptides to CD4+ T cells. In this study, we analyzed the impact of predicted allopeptides presented by these additional loci on the incidence of HLA-specific antibodies after an immunization event. We considered pregnancy as a model system of an HLA immunization and observed child-specific HLA antibody (CSA) development of 231 mothers during pregnancy by samples being taken at delivery. Our data confirm that PIRCHE presented by HLA-DRB1 along with HLA-DRB3/4/5, -DQ, and -DP are significant predictors for the development of CSA. Although there was limited peptidome overlap observed within the mothers’ presenting HLA proteins, combining multiple presenting loci in a single predictor improved the model only marginally. Prediction performance of PIRCHE further improved when normalizing scores by the respective presenters’ binding promiscuity. Immunogenicity analysis of specific allopeptides could not identify significant drivers of an immune response in this small cohort, suggesting confirmatory studies.
Collapse
Affiliation(s)
- Matthias Niemann
- Research and Development, PIRCHE AG, Berlin, Germany
- *Correspondence: Matthias Niemann,
| | - Benedict M. Matern
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center, Utrecht, Netherlands
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
219
|
Martín-Galiano AJ, Díez-Fuertes F, McConnell MJ, López D. Predicted Epitope Abundance Supports Vaccine-Induced Cytotoxic Protection Against SARS-CoV-2 Variants of Concern. Front Immunol 2021; 12:732693. [PMID: 34899692 PMCID: PMC8656262 DOI: 10.3389/fimmu.2021.732693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The effect of emerging SARS-CoV-2 variants on vaccine efficacy is of critical importance. In this study, the potential impact of mutations that facilitate escape from the cytotoxic cellular immune response in these new virus variants for the 551 most abundant HLA class I alleles was analyzed. Computational prediction showed that most of these alleles, that cover >90% of the population, contain enough epitopes without escape mutations in the principal SARS-CoV-2 variants. These data suggest that the cytotoxic cellular immune protection elicited by vaccination is not greatly affected by emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infection Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Francisco Díez-Fuertes
- Acquired Immune Deficiency Syndrome (AIDS) Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Michael J McConnell
- Intrahospital Infection Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Daniel López
- Presentation and Immune Regulation Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
220
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S. Approaching Genetics Through the MHC Lens: Tools and Methods for HLA Research. Front Genet 2021; 12:774916. [PMID: 34925459 PMCID: PMC8677840 DOI: 10.3389/fgene.2021.774916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The current SARS-CoV-2 pandemic era launched an immediate and broad response of the research community with studies both about the virus and host genetics. Research in genetics investigated HLA association with COVID-19 based on in silico, population, and individual data. However, they were conducted with variable scale and success; convincing results were mostly obtained with broader whole-genome association studies. Here, we propose a technical review of HLA analysis, including basic HLA knowledge as well as available tools and advice. We notably describe recent algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data, respectively, which opens the possibility to investigate HLA from large datasets without a specific initial focus on this region. We thus hope this overview will empower geneticists who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the Covid-19|HLA & Immunogenetics Consortium.
Collapse
Affiliation(s)
- Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| |
Collapse
|
221
|
Cargou M, Andreani M, Galluccio T, Ralazamahaleo M, Visentin J. Characterization of the novel HLA-DQA1*05:49 allele by sequencing-based typing. HLA 2021; 99:140-141. [PMID: 34837666 DOI: 10.1111/tan.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022]
Abstract
HLA-DQA1*05:49 differs from HLA-DQA1*05:01:01:02 by one nucleotide substitution in codon 78 in exon 2.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Tiziana Galluccio
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,University of Bordeaux, CNRS, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
222
|
Cargou M, Elsermans V, Cambridge CA, Guidicelli G, Visentin J. Characterization of the novel HLA-DPB1*665:01:02 allele by sequencing-based typing. HLA 2021; 99:150-152. [PMID: 34837466 DOI: 10.1111/tan.14496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
HLA-DPB1*665:01:02 differs from HLA-DPB1*665:01:01 by one nucleotide substitution in codon 139 in exon 3.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | | | | | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
223
|
Cargou M, Andreani M, Troiano M, Wojciechowski E, Visentin J. Characterization of the novel HLA-DRB4*01:151 allele by sequencing-based typing. HLA 2021; 99:64-66. [PMID: 34837481 DOI: 10.1111/tan.14501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
HLA-DRB4*01:151 differs from DRB4*01:01:01:01 by one nucleotide substitution in codon 178 in exon 3.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Maria Troiano
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France.,CNRS, ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France.,CNRS, ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| |
Collapse
|
224
|
Cargou M, Elsermans V, Top I, Guidicelli G, Visentin J. Characterization of the novel HLA-B*57:146 allele by sequencing-based typing. HLA 2021; 99:389-390. [PMID: 34837669 DOI: 10.1111/tan.14497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
HLA-B*57:146 differs from HLA-B*57:01:01:01 by one nucleotide substitution in codon 103 in exon 3.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Vincent Elsermans
- CHU de Lille, Institut d'Immunologie-HLA, Bd du Professeur Jules Leclercq, Lille, France
| | - Isabelle Top
- CHU de Lille, Institut d'Immunologie-HLA, Bd du Professeur Jules Leclercq, Lille, France
| | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,CNRS, ImmunoConcEpT, UMR 5164, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
225
|
Cargou M, Andreani M, Bianculli AG, Ralazamahaleo M, Visentin J. Characterization of the novel HLA-DQA1*01:76 allele by sequencing-based typing. HLA 2021; 99:136-137. [PMID: 34837665 DOI: 10.1111/tan.14499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
HLA-DQA1*01:76 differs from HLA-DQA1*01:03:01:06 by one nucleotide substitution in codon -11 in exon 1.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Viale Ferdinando Baldelli 40, Roma, Italy
| | - Antonio Giuseppe Bianculli
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Viale Ferdinando Baldelli 40, Roma, Italy
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France.,University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 146 rue Léo Saignat, Bordeaux, France
| |
Collapse
|
226
|
Piriyapongsa J, Sukritha C, Kaewprommal P, Intarat C, Triparn K, Phornsiricharoenphant K, Chaosrikul C, Shaw PJ, Chantratita W, Mahasirimongkol S, Tongsima S. PharmVIP: A Web-Based Tool for Pharmacogenomic Variant Analysis and Interpretation. J Pers Med 2021; 11:1230. [PMID: 34834582 PMCID: PMC8618518 DOI: 10.3390/jpm11111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
The increasing availability of next generation sequencing (NGS) for personal genomics could promote pharmacogenomics (PGx) discovery and application. However, current tools for analysis and interpretation of pharmacogenomic variants from NGS data are inadequate, as none offer comprehensive analytic functions in a simple, web-based platform. In addition, no tools exist to analyze human leukocyte antigen (HLA) genes for determining potential risks of immune-mediated adverse drug reaction (IM-ADR). We describe PharmVIP, a web-based PGx tool, for one-stop comprehensive analysis and interpretation of genome-wide variants obtained from NGS platforms. PharmVIP comprises three main interpretation modules covering analyses of pharmacogenes involved in pharmacokinetics, pharmacodynamics and IM-ADR. The Guideline module provides Clinical Pharmacogenetics Implementation Consortium (CPIC) drug guideline recommendations based on the translation of genotypic data in genes having guidelines. The HLA module reports HLA genotypes, potential adverse drug reactions, and the relevant drug guidelines. The Pharmacogenes module is employed for prioritizing variants according to variant effect on gene function. Detailed, customizable reports are provided as exportable files and as an interactive web version. PharmVIP is a new integrated NGS workflow for the PGx community to facilitate discovery and clinical application.
Collapse
Affiliation(s)
- Jittima Piriyapongsa
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| | - Chanathip Sukritha
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| | - Pavita Kaewprommal
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| | - Chalermpong Intarat
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| | - Kwankom Triparn
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| | - Krittin Phornsiricharoenphant
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| | - Chadapohn Chaosrikul
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| | - Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand;
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Phayathai, Bangkok 10400, Thailand;
| | - Surakameth Mahasirimongkol
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand; (C.S.); (P.K.); (C.I.); (K.T.); (K.P.); (C.C.); (S.T.)
| |
Collapse
|
227
|
Liu Y, Budylowski P, Dong S, Li Z, Goroshko S, Leung LYT, Grunebaum E, Campisi P, Propst EJ, Wolter NE, Rini JM, Zia A, Ostrowski M, Ehrhardt GRA. SARS-CoV-2-Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. THE JOURNAL OF IMMUNOLOGY 2021; 207:2581-2588. [PMID: 34607939 DOI: 10.4049/jimmunol.2100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a respiratory pathogen that can cause severe disease in at-risk populations but results in asymptomatic infections or a mild course of disease in the majority of cases. We report the identification of SARS-CoV-2-reactive B cells in human tonsillar tissue obtained from children who were negative for coronavirus disease 2019 prior to the pandemic and the generation of mAbs recognizing the SARS-CoV-2 Spike protein from these B cells. These Abs showed reduced binding to Spike proteins of SARS-CoV-2 variants and did not recognize Spike proteins of endemic coronaviruses, but subsets reacted with commensal microbiota and exhibited SARS-CoV-2-neutralizing potential. Our study demonstrates pre-existing SARS-CoV-2-reactive Abs in various B cell populations in the upper respiratory tract lymphoid tissue that may lead to the rapid engagement of the pathogen and contribute to prevent manifestations of symptomatic or severe disease.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sofiya Goroshko
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Y T Leung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Paolo Campisi
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Evan J Propst
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Nikolas E Wolter
- Department of Otolaryngology-Head & Neck Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; and
| | - Amin Zia
- dYcode.bio, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
228
|
Mazibuko NA, Yang KL. Two probable human leukocyte antigen haplotypes in association with human leukocyte antigen HLA-DRB1*13:50:01 identified in 41 randomized unrelated Taiwanese individuals. Tzu Chi Med J 2021; 33:370-373. [PMID: 34760633 PMCID: PMC8532578 DOI: 10.4103/tcmj.tcmj_304_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 11/05/2022] Open
Abstract
Objectives: Here, we show two probable haplotypes associated with the human leukocyte antigen (HLA) DRB1*13:50:01 allele. The haplotypes were observed from 41 randomized unrelated Taiwanese individuals among a population of 23,064 individuals tested. Materials and Methods: The samples in this study were blood samples, preserved in dipotassium ethylenediaminetetraacetic acid and/or ACD anticoagulants. The population is of donors from Tzu Chi Bone Marrow Donor Registry. Allele typing was performed using the sequence-based typing method, Sanger's sequencing. To discern the HLA-A and HLA-B alleles, exons 2 and 3 were sequenced. For DRB1 alleles, exon 2 was sequenced. Target exon sequence amplifications were done by a polymerase chain reaction and the resulting amplicons were sequenced by Bigdye Terminator Cycle Sequencing Ready Reaction kit, according to the manufacturer's protocols. Results: Two probable haplotypes that are associated with the DRB1*13:50:01 were observed among the 23,064 Taiwanese randomized unrelated individuals. One of the haplotypes is observed in 39 individuals while the other in two individuals. Conclusion: The findings in this study may be useful in studies reinforcing the understanding and clinical application of the polymorphism of HLA genes and haplotypes.
Collapse
Affiliation(s)
| | - Kuo-Liang Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan.,Laboratory of Immunogenetics, Tzu Chi Cord Blood Bank, and Buddhist Tzu Chi Bone Marrow Donor Registry, Buddhist Tzu Chi Stem Cells Centre, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
229
|
Blandin L, Ralazamahaleo M, Guidicelli G, Rouzaire P, Lemal R. Characterization of the novel HLA-DQA1*05:01:07 allele by sequencing-based typing. HLA 2021; 99:138-139. [PMID: 34755475 DOI: 10.1111/tan.14484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023]
Abstract
HLA-DQA1*05:01:07 differs from HLA-DQA1*05:01:01:02 by one nucleotide substitution in codon 58 in exon 2.
Collapse
Affiliation(s)
- Lucie Blandin
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Paul Rouzaire
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,Clermont-Auvergne University, Clermont-Ferrand, France
| | - Richard Lemal
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,Clermont-Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
230
|
Blandin L, Cargou M, Wojciechowski E, Lemal R, Rouzaire P. Characterization of the novel HLA-A*29:02:38 allele by sequencing-based typing. HLA 2021; 99:198-200. [PMID: 34755482 DOI: 10.1111/tan.14485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
HLA-A*29:02:38 differs from HLA-A*29:02:01:01 by one nucleotide substitution in codon 201 in exon 4.
Collapse
Affiliation(s)
- Lucie Blandin
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Marine Cargou
- Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France.,CNRS, ImmunoConcEpT, UMR 5164, University of Bordeaux, Bordeaux, France
| | - Elodie Wojciechowski
- Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Richard Lemal
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,Clermont-Auvergne University, EA 7453 CHELTER, Clermont-Ferrand, France
| | - Paul Rouzaire
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,Clermont-Auvergne University, EA 7453 CHELTER, Clermont-Ferrand, France
| |
Collapse
|
231
|
Arakawa A, Reeves E, Vollmer S, Arakawa Y, He M, Galinski A, Stöhr J, Dornmair K, James E, Prinz JC. ERAP1 Controls the Autoimmune Response against Melanocytes in Psoriasis by Generating the Melanocyte Autoantigen and Regulating Its Amount for HLA-C*06:02 Presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2235-2244. [PMID: 34580106 PMCID: PMC7611875 DOI: 10.4049/jimmunol.2100686] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023]
Abstract
Autoimmune diseases develop when autoantigens activate previously quiescent self-reactive lymphocytes. Gene-gene interaction between certain HLA class I risk alleles and variants of the endoplasmic reticulum aminopeptidase ERAP1 controls the risk for common immune-mediated diseases, including psoriasis, ankylosing spondylitis, and Behçet disease. The functional mechanisms underlying this statistical association are unknown. In psoriasis, HLA-C*06:02 mediates an autoimmune response against melanocytes by autoantigen presentation. Using various genetically modified cell lines together with an autoreactive psoriatic TCR in a TCR activation assay, we demonstrate in this study that in psoriasis, ERAP1 generates the causative melanocyte autoantigen through trimming N-terminal elongated peptide precursors to the appropriate length for presentation by HLA-C*06:02. An ERAP1 risk haplotype for psoriasis produced the autoantigen much more efficiently and increased HLA-C expression and stimulation of the psoriatic TCR by melanocytes significantly more than a protective haplotype. Compared with the overall HLA class I molecules, cell surface expression of HLA-C decreased significantly more upon ERAP1 knockout. The combined upregulation of ERAP1 and HLA-C on melanocytes in psoriasis lesions emphasizes the pathogenic relevance of their interaction in patients. We conclude that in psoriasis pathogenesis, the increased generation of an ERAP1-dependent autoantigen by an ERAP1 risk haplotype enhances the likelihood that autoantigen presentation by HLA-C*06:02 will exceed the threshold for activation of potentially autoreactive T cells, thereby triggering CD8+ T cell-mediated autoimmune disease. These data identify ERAP1 function as a central checkpoint and promising therapeutic target in psoriasis and possibly other HLA class I-associated diseases with a similar genetic predisposition.
Collapse
Affiliation(s)
- Akiko Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany;
| | - Emma Reeves
- Centre for Cancer Immunology, University Hospital Southampton, Southampton, United Kingdom; and
| | - Sigrid Vollmer
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yukiyasu Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Mengwen He
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Adrian Galinski
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Julia Stöhr
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Edward James
- Centre for Cancer Immunology, University Hospital Southampton, Southampton, United Kingdom; and
| | - Jörg C Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany;
| |
Collapse
|
232
|
Katrinli S, Smith AK. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol Stress 2021; 15:100366. [PMID: 34355049 PMCID: PMC8322450 DOI: 10.1016/j.ynstr.2021.100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 11/01/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition that adversely affect mental and physical health. Recent studies have increasingly explored the role of the immune system in risk for PTSD and its related symptoms. Dysregulation of the immune system may lead to central nervous system tissue damage and impair learning and memory processes. Individuals with PTSD often have comorbid inflammatory or auto-immune disorders. Evidence shows associations between PTSD and multiple genes that are involved in immune-related or inflammatory pathways. In this review, we will summarize the evidence of immune dysregulation in PTSD, outlining the contributions of distinct cell types, genes, and biological pathways. We use the Human Leukocyte Antigen (HLA) locus to illustrate the contribution of genetic variation to function in different tissues that contribute to PTSD etiology, severity, and comorbidities.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Alicia K. Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
233
|
Kloypan C, Koomdee N, Satapornpong P, Tempark T, Biswas M, Sukasem C. A Comprehensive Review of HLA and Severe Cutaneous Adverse Drug Reactions: Implication for Clinical Pharmacogenomics and Precision Medicine. Pharmaceuticals (Basel) 2021; 14:1077. [PMID: 34832859 PMCID: PMC8622011 DOI: 10.3390/ph14111077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human leukocyte antigen (HLA) encoded by the HLA gene is an important modulator for immune responses and drug hypersensitivity reactions as well. Genetic polymorphisms of HLA vary widely at population level and are responsible for developing severe cutaneous adverse drug reactions (SCARs) such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), maculopapular exanthema (MPE). The associations of different HLA alleles with the risk of drug induced SJS/TEN, DRESS and MPE are strongly supportive for clinical considerations. Prescribing guidelines generated by different national and international working groups for translation of HLA pharmacogenetics into clinical practice are underway and functional in many countries, including Thailand. Cutting edge genomic technologies may accelerate wider adoption of HLA screening in routine clinical settings. There are great opportunities and several challenges as well for effective implementation of HLA genotyping globally in routine clinical practice for the prevention of drug induced SCARs substantially, enforcing precision medicine initiatives.
Collapse
Affiliation(s)
- Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand;
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction THAI-SCAR Research-Genomics Thailand, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Pharmacogenomics and Precision Medicine Clinic, Bangkok 10110, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
234
|
Connecting MHC-I-binding motifs with HLA alleles via deep learning. Commun Biol 2021; 4:1194. [PMID: 34663927 PMCID: PMC8523706 DOI: 10.1038/s42003-021-02716-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
The selection of peptides presented by MHC molecules is crucial for antigen discovery. Previously, several predictors have shown impressive performance on binding affinity. However, the decisive MHC residues and their relation to the selection of binding peptides are still unrevealed. Here, we connected HLA alleles with binding motifs via our deep learning-based framework, MHCfovea. MHCfovea expanded the knowledge of MHC-I-binding motifs from 150 to 13,008 alleles. After clustering N-terminal and C-terminal sub-motifs on both observed and unobserved alleles, MHCfovea calculated the hyper-motifs and the corresponding allele signatures on the important positions to disclose the relation between binding motifs and MHC-I sequences. MHCfovea delivered 32 pairs of hyper-motifs and allele signatures (HLA-A: 13, HLA-B: 12, and HLA-C: 7). The paired hyper-motifs and allele signatures disclosed the critical polymorphic residues that determine the binding preference, which are believed to be valuable for antigen discovery and vaccine design when allele specificity is concerned. Ko-Han Lee et al. develop MHCfovea, a machine-learning method for predicting peptide-binding by MHC molecules and inferring peptide motifs and MHC allele signatures. They demonstrate that MHCfovea is capable of detecting meaningful hyper-motifs and allele signatures, making it a useful resource for the community.
Collapse
|
235
|
Machuldova A, Houdova L, Kratochvilova K, Leba M, Jindra P, Ostasov P, Maceckova D, Klieber R, Gmucova H, Sramek J, Holubova M. Single-Nucleotide Polymorphisms in MICA and MICB Genes Could Play a Role in the Outcome in AML Patients after HSCT. J Clin Med 2021; 10:jcm10204636. [PMID: 34682758 PMCID: PMC8537017 DOI: 10.3390/jcm10204636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
NKG2D and its ligands, MICA and MICB, are known as the key regulators of NK cells. NK cells are the first reconstituted cells after the allogeneic hematopoietic stem cell transplantation (HSCT); therefore, it is crucial to understand their role in HSCT outcome. In the presented study, we investigated the single amino acid changes across the exons 2–4 of MICA and MICB genes, and point mutations within the NKG2D gene, which defines the type of NKG2D haploblock (HNK/LNK) in the donors (n = 124), as well as in patients with acute myeloid leukemia (n = 78). In our cohort, we found that graft from a donor with at least one MICA allele containing glycine at position 14 (MICA-14Gly) is significantly associated with deterioration of a patient’s overall survival (OS) (p < 0.05). We also observed a negative effect of MICB-58 (Lys → Glu) polymorphism on relapse-free survival (RFS), although it was not statistically significant in multivariate analysis (p = 0.069). To our knowledge, this is the first work describing the role of MICA-14 and MICB-58 polymorphisms on HSCT outcome.
Collapse
Affiliation(s)
- Alena Machuldova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 66 Pilsen, Czech Republic;
- Correspondence: (A.M.); (M.H.)
| | - Lucie Houdova
- NTIS, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (L.H.); (K.K.); (M.L.)
| | - Katerina Kratochvilova
- NTIS, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (L.H.); (K.K.); (M.L.)
| | - Martin Leba
- NTIS, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (L.H.); (K.K.); (M.L.)
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
| | - Pavel Ostasov
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
| | - Diana Maceckova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
| | - Robin Klieber
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
| | - Hana Gmucova
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
| | - Jiri Sramek
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 66 Pilsen, Czech Republic;
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
| | - Monika Holubova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
- Correspondence: (A.M.); (M.H.)
| |
Collapse
|
236
|
Mkorombindo T, Tran-Nguyen TK, Yuan K, Zhang Y, Xue J, Criner GJ, Kim YI, Pilewski JM, Gaggar A, Cho MH, Sciurba FC, Duncan SR. HLA-C and KIR permutations influence chronic obstructive pulmonary disease risk. JCI Insight 2021; 6:e150187. [PMID: 34464355 PMCID: PMC8525585 DOI: 10.1172/jci.insight.150187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
A role for hereditary influences in the susceptibility for chronic obstructive pulmonary disease (COPD) is widely recognized. Cytotoxic lymphocytes are implicated in COPD pathogenesis, and functions of these leukocytes are modulated by interactions between their killer cell Ig-like receptors (KIR) and human leukocyte antigen–Class I (HLA–Class I) molecules on target cells. We hypothesized HLA–Class I and KIR inheritance affect risks for COPD. HLA–Class I alleles and KIR genotypes were defined by candidate gene analyses in multiple cohorts of patients with COPD (total n = 392) and control smokers with normal spirometry (total n = 342). Compared with controls, patients with COPD had overrepresentations of HLA-C*07 and activating KIR2DS1, with underrepresentations of HLA-C*12. Particular HLA-KIR permutations were synergistic; e.g., the presence of HLA-C*07 + KIR2DS1 + HLA-C12null versus HLAC*07null + KIR2DS1null + HLA-C12 was associated with COPD, especially among HLA-C1 allotype homozygotes. Cytotoxicity of COPD lymphocytes was more enhanced by KIR stimulation than those of controls and was correlated with lung function. These data show HLA-C and KIR polymorphisms strongly influence COPD susceptibility and highlight the importance of lymphocyte-mediated cytotoxicity in COPD pathogenesis. Findings here also indicate that HLA-KIR typing could stratify at-risk patients and raise possibilities that HLA-KIR axis modulation may have therapeutic potential.
Collapse
Affiliation(s)
- Takudzwa Mkorombindo
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thi K Tran-Nguyen
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaiyu Yuan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jianmin Xue
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Young-Il Kim
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael H Cho
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven R Duncan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
237
|
Peptides of H. sapiens and P. falciparum that are predicted to bind strongly to HLA-A*24:02 and homologous to a SARS-CoV-2 peptide. Acta Trop 2021; 221:106013. [PMID: 34146538 PMCID: PMC8255030 DOI: 10.1016/j.actatropica.2021.106013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
AIM This study is looking for a common pathogenicity between SARS-CoV-2 and Plasmodium species, in individuals with certain HLA serotypes. METHODS 1. Tblastx searches of SARS-CoV-2 are performed by limiting searches to five Plasmodium species that infect humans. 2. Aligned sequences in the respective organisms' proteomes are searched with blastp. 3. Binding predictions of the identified SARS-CoV-2 peptide to HLA supertype representatives are performed. 4. Blastp searches of predicted epitopes that bind strongly to the identified HLA allele are performed by limiting searches to H. sapiens and Plasmodium species, separately. 5. Peptides with minimum 60% identity to the predicted epitopes are found in results. 6. Peptides among those, which bind strongly to the same HLA allele, are predicted. 7. Step-4 is repeated by limiting searches to H. sapiens, followed by the remaining steps until step-7, for peptides sourced by Plasmodium species after step-6. RESULTS SARS-CoV-2 peptide with single letter amino acid code CFLGYFCTCYFGLFC has the highest identity to P. vivax. Its YFCTCYFGLF part is predicted to bind strongly to HLA-A*24:02. Peptides in the human proteome both homologous to YFCTCYFGLF and with a strong binding affinity to HLA-A*24:02 are YYCARRFGLF, YYCHCPFGVF, and YYCQQYFFLF. Such peptides in the Plasmodium species' proteomes are FFYTFYFELF, YFVACLFILF, and YFPTITFHLF. The first one belonging to P. falciparum has a homologous peptide (YFYLFSLELF) in the human proteome, which also has a strong binding affinity to the same HLA allele. CONCLUSION Immune responses to the identified-peptides with similar sequences and strong binding affinities to HLA-A*24:02 can be related to autoimmune response risk in individuals with HLA-A*24:02 serotypes, upon getting infected with SARS-CoV-2 or P. falciparum.
Collapse
|
238
|
Middlebrook EA, Stark DL, Cornwall DH, Kubinak JL, Potts WK. Deep Sequencing of MHC-Adapted Viral Lines Reveals Complex Recombinational Exchanges With Endogenous Retroviruses Leading to High-Frequency Variants. Front Genet 2021; 12:716623. [PMID: 34512727 PMCID: PMC8430262 DOI: 10.3389/fgene.2021.716623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Experimental evolution (serial passage) of Friend virus complex (FVC) in mice demonstrates phenotypic adaptation to specific host major histocompatibility complex (MHC) genotypes. These evolved viral lines show increased fitness and virulence in their host-genotype-of-passage, but display fitness and virulence tradeoffs when infecting unfamiliar host MHC genotypes. Here, we deep sequence these viral lines in an attempt to discover the genetic basis of FVC adaptation. The principal prediction for genotype-specific adaptation is that unique mutations would rise to high frequency in viral lines adapted to each host MHC genotype. This prediction was not supported by our sequencing data as most observed high-frequency variants were present in each of our independently evolved viral lines. However, using a multi-variate approach to measure divergence between viral populations, we show that populations of replicate evolved viral lines from the same MHC congenic mouse strain were more similar to one another than to lines derived from different MHC congenic mouse strains, suggesting that MHC genotype does predictably act on viral evolution in our model. Sequence analysis also revealed rampant recombination with endogenous murine leukemia virus sequences (EnMuLVs) that are encoded within the BALB/c mouse genome. The highest frequency variants in all six lines contained a 12 bp insertion from a recombinant EnMuLV source, suggesting such recombinants were either being favored by selection or were contained in a recombinational hotspot. Interestingly, they did not reach fixation, as if they are low fitness. The amount of background mutations linked to FVC/EnMuLV variable sites indicated that FVC/EnMuLV recombinants had not reached mutation selection equilibrium and thus, that EnMuLV sequences are likely continuously introgressing into the replicating viral population. These discoveries raise the question: is the expression of EnMuLV sequences in mouse splenocytes that permit recombination with exogenous FVC a pathogen or host adaptation?
Collapse
Affiliation(s)
- Earl A. Middlebrook
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Derek L. Stark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Douglas H. Cornwall
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jason L. Kubinak
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Wayne K. Potts
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
239
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
240
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
241
|
Hakim A, Hasan MM, Hasan M, Lokman SM, Azim KF, Raihan T, Chowdhury PA, Azad AK. Major Insights in Dynamics of Host Response to SARS-CoV-2: Impacts and Challenges. Front Microbiol 2021; 12:637554. [PMID: 34512561 PMCID: PMC8424194 DOI: 10.3389/fmicb.2021.637554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), a pandemic declared by the World Health Organization on March 11, 2020, is caused by the infection of highly transmissible species of a novel coronavirus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As of July 25, 2021, there are 194,372,584 cases and 4,167,937 deaths with high variability in clinical manifestations, disease burden, and post-disease complications among different people around the globe. Overall, COVID-19 is manifested as mild to moderate in almost 90% of the cases and only the rest 10% of the cases need hospitalization. However, patients with older age and those having different comorbidities have made worst the pandemic scenario. The variability of pathological consequences and clinical manifestations of COVID-19 is associated with differential host-SARS-CoV-2 interactions, which are influenced by the factors that originated from the SARS-CoV-2 and the host. These factors usually include the genomic attributes and virulent factors of the SARS-CoV-2, the burden of coinfection with other viruses and bacteria, age and gender of the individuals, different comorbidities, immune suppressions/deficiency, genotypes of major histocompatibility complex, and blood group antigens and antibodies. We herein retrieved and reviewed literatures from PubMed, Scopus, and Google relevant to clinical complications and pathogenesis of COVID-19 among people of different age, sex, and geographical locations; genomic characteristics of SARS-CoV-2 including its variants, host response under different variables, and comorbidities to summarize the dynamics of the host response to SARS-CoV-2 infection; and host response toward approved vaccines and treatment strategies against COVID-19. After reviewing a large number of published articles covering different aspects of host response to SARS-CoV-2, it is clear that one aspect from one region is not working with the scenario same to others, as studies have been done separately with a very small number of cases from a particular area/region of a country. Importantly, to combat such a pandemic as COVID-19, a conclusive understanding of the disease dynamics is required. This review emphasizes on the identification of the factors influencing the dynamics of host responses to SARS-CoV-2 and offers a future perspective to explore the molecular insights of COVID-19.
Collapse
Affiliation(s)
- Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Mahbub Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, London, United Kingdom
| | - Mahmudul Hasan
- Department of Pharmaceutical and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Mohammad Lokman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
242
|
Nilsson JB, Grifoni A, Tarke A, Sette A, Nielsen M. PopCover-2.0. Improved Selection of Peptide Sets With Optimal HLA and Pathogen Diversity Coverage. Front Immunol 2021; 12:728936. [PMID: 34484239 PMCID: PMC8416060 DOI: 10.3389/fimmu.2021.728936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The use of minimal peptide sets offers an appealing alternative for design of vaccines and T cell diagnostics compared to conventional whole protein approaches. T cell immunogenicity towards peptides is contingent on binding to human leukocyte antigen (HLA) molecules of the given individual. HLA is highly polymorphic, and each variant typically presents a different repertoire of peptides. This polymorphism combined with pathogen diversity challenges the rational selection of peptide sets with broad immunogenic potential and population coverage. Here we propose PopCover-2.0, a simple yet highly effective method, for resolving this challenge. The method takes as input a set of (predicted) CD8 and/or CD4 T cell epitopes with associated HLA restriction and pathogen strain annotation together with information on HLA allele frequencies, and identifies peptide sets with optimal pathogen and HLA (class I and II) coverage. PopCover-2.0 was benchmarked on historic data in the context of HIV and SARS-CoV-2. Further, the immunogenicity of the selected SARS-CoV-2 peptides was confirmed by experimentally validating the peptide pools for T cell responses in a panel of SARS-CoV-2 infected individuals. In summary, PopCover-2.0 is an effective method for rational selection of peptide subsets with broad HLA and pathogen coverage. The tool is available at https://services.healthtech.dtu.dk/service.php?PopCover-2.0.
Collapse
Affiliation(s)
- Jonas Birkelund Nilsson
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
243
|
Associations between HLA-B27 subtypes and outcomes in Thai children with enthesitis-related arthritis. Clin Rheumatol 2021; 41:203-212. [PMID: 34355293 DOI: 10.1007/s10067-021-05875-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Expression of human leukocyte antigen B27 (HLA-B27) has been identified as a predictor of severe disease in enthesitis-related arthritis (ERA) patients. However, the associations between HLA-B27 subtypes and outcomes of this disease are still unclear. Here, we examined the distributions of HLA-B27 subtypes among ERA patients and the associations with disease outcomes. METHODS This was a historical cohort study of ERA patients. Patients were followed from diagnosis to the most recent visit. Relationships between outcomes and the HLA-B27 subtype were assessed by mixed-effect regression, Kaplan-Meier survival, and Cox proportional hazards regression analyses. RESULTS Of the 66 ERA patients, 50 HLA-B27-positive (86% male) and 16 HLA-B27-negative (69% male) patients were included in this study. Patients with HLA-B27-positive were classified into HLA-B*27:04-positive (84%), including combined HLA-B*27:04 and HLA-B*27:07 (2%), and HLA-B*27:04-negative (16%), including HLA-B*27:05 (10%), HLA-B*27:06 (2%), HLA-B*27:07 (2%), and HLA-B*27:15 (2%). HLA-B*27:04-positive (83.3%) and HLA-B*27:04-negative patients (100%) had refractory disease more than HLA-B27-negative patients (37.5%, p = 0.001). HLA-B*27:04-negative patients (57%, 1.73 years) had relapsing disease more and earlier than HLA-B*27:04-positive (35%, 5.54 years) and HLA-B27-negative patients (40%, 6.92 years; p < 0.001). Furthermore, HLA-B*27:04-negative was predictors of refractory disease (HR 4.56, 95%CI 1.40-14.87; p = 0.012) and relapsing disease (HR 3.80, 95% CI 1.18-12.30; p = 0.026). The duration before anti-tumor necrosis factor treatment initiation > 1 year was also a predictor of refractory disease (HR 116.08, 95% CI 14.67-918.26; p < 0.001). CONCLUSION HLA-B*27:04 was the most common HLA-B27 subtype in Thai ERA patients. HLA-B*27:04-negative was associated with more unfavorable outcomes than HLA-B*27:04-positive and HLA-B27-negative patients. Key Points • Most ERA patients in Thailand had HLA-B27-positive, and HLA-B*27:04 was the most common HLA-B27 allele in these patients. • The outcomes of ERA were associated with the presence of HLA-B27 and its subtypes. • HLA-B*27:04-negative patients had unfavorable outcomes, including refractory and relapsing disease, compared to HLA-B*27:04-positive and HLA-B27-negative patients.
Collapse
|
244
|
Using de novo assembly to identify structural variation of eight complex immune system gene regions. PLoS Comput Biol 2021; 17:e1009254. [PMID: 34343164 PMCID: PMC8363018 DOI: 10.1371/journal.pcbi.1009254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/13/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Driven by the necessity to survive environmental pathogens, the human immune system has evolved exceptional diversity and plasticity, to which several factors contribute including inheritable structural polymorphism of the underlying genes. Characterizing this variation is challenging due to the complexity of these loci, which contain extensive regions of paralogy, segmental duplication and high copy-number repeats, but recent progress in long-read sequencing and optical mapping techniques suggests this problem may now be tractable. Here we assess this by using long-read sequencing platforms from PacBio and Oxford Nanopore, supplemented with short-read sequencing and Bionano optical mapping, to sequence DNA extracted from CD14+ monocytes and peripheral blood mononuclear cells from a single European individual identified as HV31. We use this data to build a de novo assembly of eight genomic regions encoding four key components of the immune system, namely the human leukocyte antigen, immunoglobulins, T cell receptors, and killer-cell immunoglobulin-like receptors. Validation of our assembly using k-mer based and alignment approaches suggests that it has high accuracy, with estimated base-level error rates below 1 in 10 kb, although we identify a small number of remaining structural errors. We use the assembly to identify heterozygous and homozygous structural variation in comparison to GRCh38. Despite analyzing only a single individual, we find multiple large structural variants affecting core genes at all three immunoglobulin regions and at two of the three T cell receptor regions. Several of these variants are not accurately callable using current algorithms, implying that further methodological improvements are needed. Our results demonstrate that assessing haplotype variation in these regions is possible given sufficiently accurate long-read and associated data. Continued reductions in the cost of these technologies will enable application of these methods to larger samples and provide a broader catalogue of germline structural variation at these loci, an important step toward making these regions accessible to large-scale genetic association studies. The human immune system is incredibly versatile underlying its capacity to defend the body against thousands of pathogens. At a molecular level, it recognizes pathogens using large libraries of antibodies and related protein receptors. These molecules are encoded by gene families that are particularly difficult to analyze due to their unusually complex patterns of similarities and differences between genes and individuals. To overcome this, we applied several sequencing methods to DNA from a single individual and developed methods to reconstruct the underlying sequence at eight of the immune-associated regions. Importantly, we used DNA extracted from monocytes to avoid capturing the further rearrangements that occur in active immune cells. We generated accurate assemblies by integrating multiple complementary data types, although we noted a small subset of locations that remain challenging. Moreover, we found that this individual contains multiple structural differences between the two inherited chromosomes and compared to previously analyzed genomes, affecting the copy number of immune system genes. Application of these methods in larger numbers of individuals will clearly uncover much more variation than is currently known, and might lead to new understanding of the effect of genetic variation on the broad range of human diseases determined by the immune response.
Collapse
|
245
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
246
|
Mayor NP, Wang T, Lee SJ, Kuxhausen M, Vierra-Green C, Barker DJ, Auletta J, Bhatt VR, Gadalla SM, Gragert L, Inamoto Y, Morris GP, Paczesny S, Reshef R, Ringdén O, Shaw BE, Shaw P, Spellman SR, Marsh SGE. Impact of Previously Unrecognized HLA Mismatches Using Ultrahigh Resolution Typing in Unrelated Donor Hematopoietic Cell Transplantation. J Clin Oncol 2021; 39:2397-2409. [PMID: 33835855 PMCID: PMC8280068 DOI: 10.1200/jco.20.03643] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Ultrahigh resolution (UHR) HLA matching is reported to result in better outcomes following unrelated donor hematopoietic cell transplantation, improving survival and reducing post-transplant complications. However, most studies included relatively small numbers of patients. Here we report the findings from a large, multicenter validation study. METHODS UHR HLA typing was available on 5,140 conventionally 10 out of 10 HLA-matched patients with malignant disease transplanted between 2008 and 2017. RESULTS After UHR HLA typing, 82% of pairs remained 10 out of 10 UHR-matched; 12.3% of patients were 12 out of 12 UHR HLA-matched. Compared with 12 out of 12 UHR-matched patients, probabilities of grade 2-4 acute graft-versus-host disease (aGVHD) were significantly increased with UHR mismatches (overall P = .0019) and in those patients who were HLA-DPB1 T-cell epitope permissively mismatched or nonpermissively mismatched (overall P = .0011). In the T-cell-depleted subset, the degree of UHR HLA mismatch was only associated with increased transplant-related mortality (TRM) (overall P = .0068). In the T-cell-replete subset, UHR HLA matching was associated with a lower probability of aGVHD (overall P = .0020); 12 out of 12 UHR matching was associated with reduced TRM risk when compared with HLA-DPB1 T-cell epitope permissively mismatched patients, whereas nonpermissive mismatching resulted in a greater risk (overall P = .0003). CONCLUSION This study did not confirm that UHR 12 out of 12 HLA matching increases the probability of overall survival but does demonstrate that aGVHD risk, and in certain settings TRM, is lowest in UHR HLA-matched pairs and thus warrants consideration when multiple 10 out of 10 HLA-matched donors of equivalent age are available.
Collapse
Affiliation(s)
- Neema P. Mayor
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Stephanie J. Lee
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | | | - Jeffrey Auletta
- Blood and Marrow Transplant Program and Host Defense Program, Nationwide Children's Hospital, Columbus, OH
| | - Vijaya R. Bhatt
- Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Shahinaz M. Gadalla
- Division of Cancer Epidemiology and Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD
| | - Loren Gragert
- Tulane Cancer Center, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Gerald P. Morris
- Department of Pathology, University of California San Diego, San Diego, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Ran Reshef
- Division of Hematology/Oncology and Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Olle Ringdén
- Department of Clinical Sciences, Intervention and Technology, Translational Cell Therapy Research Group, Karolinska Institute, Stockholm, Sweden
| | - Bronwen E. Shaw
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Peter Shaw
- Department of Child and Adolescent Health, Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Steven G. E. Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
247
|
Zhang W, Zeng B, Lin H, Guan W, Mo J, Wu S, Wei Y, Zhang Q, Yu D, Li W, Chan GCF. CanImmunother: a manually curated database for identification of cancer immunotherapies associating with biomarkers, targets, and clinical effects. Oncoimmunology 2021; 10:1944553. [PMID: 34345532 PMCID: PMC8288037 DOI: 10.1080/2162402x.2021.1944553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
As immunotherapy is evolving into an essential armamentarium against cancers, numerous translational studies associated with relevant biomarkers, targets, and clinical effects have been reported in recent years. However, a large amount of associated experimental data remains unexplored due to the difficulty in accessibility and utilization. Here, we established a comprehensive high-quality database for cancer immunotherapy called CanImmunother (http://www.biomedical-web.com/cancerit/) through manual curation on 4515 publications. CanImmunother contains 3267 experimentally validated associations between 218 cancer sub-types across 34 body parts and 484 immunotherapies with 642 biomarkers, 108 targets, and 121 control therapies. Each association was manually curated by professional curators, incorporated with valuable annotation and cross references, and assigned with an association score for prioritization. To help clinicians and researchers in identifying and discovering better cancer immunotherapy and their respective biomarkers and targets, CanImmunother offers user-friendly web applications including search, browse, excel table, association prioritization, and network visualization. CanImmunother presents a landscape of experimental cancer immunotherapy association data, serving as a useful resource to improve our insight and to facilitate further discovery of advanced immunotherapy options for cancer patients.
Collapse
Affiliation(s)
- Wenliang Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen, China
| | - Binghui Zeng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huancai Lin
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Mo
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen, China
| | - Song Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanjie Wei
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qianshen Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dongsheng Yu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University,Guangzhou, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
248
|
Tippalagama R, Singhania A, Dubelko P, Lindestam Arlehamn CS, Crinklaw A, Pomaznoy M, Seumois G, deSilva AD, Premawansa S, Vidanagama D, Gunasena B, Goonawardhana NDS, Ariyaratne D, Scriba TJ, Gilman RH, Saito M, Taplitz R, Vijayanand P, Sette A, Peters B, Burel JG. HLA-DR Marks Recently Divided Antigen-Specific Effector CD4 T Cells in Active Tuberculosis Patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:523-533. [PMID: 34193602 PMCID: PMC8516689 DOI: 10.4049/jimmunol.2100011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Upon Ag encounter, T cells can rapidly divide and form an effector population, which plays an important role in fighting acute infections. In humans, little is known about the molecular markers that distinguish such effector cells from other T cell populations. To address this, we investigated the molecular profile of T cells present in individuals with active tuberculosis (ATB), where we expect Ag encounter and expansion of effector cells to occur at higher frequency in contrast to Mycobacterium tuberculosis-sensitized healthy IGRA+ individuals. We found that the frequency of HLA-DR+ cells was increased in circulating CD4 T cells of ATB patients, and was dominantly expressed in M. tuberculosis Ag-specific CD4 T cells. We tested and confirmed that HLA-DR is a marker of recently divided CD4 T cells upon M. tuberculosis Ag exposure using an in vitro model examining the response of resting memory T cells from healthy IGRA+ to Ags. Thus, HLA-DR marks a CD4 T cell population that can be directly detected ex vivo in human peripheral blood, whose frequency is increased during ATB disease and contains recently divided Ag-specific effector T cells. These findings will facilitate the monitoring and study of disease-specific effector T cell responses in the context of ATB and other infections.
Collapse
Affiliation(s)
- Rashmi Tippalagama
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Akul Singhania
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Paige Dubelko
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | | | - Austin Crinklaw
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Mikhail Pomaznoy
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Gregory Seumois
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
| | - Aruna D deSilva
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Faculty of Medicine, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | | | | | - Bandu Gunasena
- National Hospital for Respiratory Diseases, Welisara, Sri Lanka
| | | | - Dinuka Ariyaratne
- Faculty of Medicine, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert H Gilman
- Johns Hopkins School of Public Health, Baltimore, MD
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Randy Taplitz
- Department of Medicine, City of Hope National Medical Center, Duarte, CA; and
| | - Pandurangan Vijayanand
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alessandro Sette
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Bjoern Peters
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA;
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Julie G Burel
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA;
| |
Collapse
|
249
|
Di D, Nunes JM, Jiang W, Sanchez-Mazas A. Like Wings of a Bird: Functional Divergence and Complementarity between HLA-A and HLA-B Molecules. Mol Biol Evol 2021; 38:1580-1594. [PMID: 33320202 PMCID: PMC8355449 DOI: 10.1093/molbev/msaa325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on 2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide. Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to complex and sometimes distinct environmental pressures.
Collapse
Affiliation(s)
- Da Di
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Jose Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| | - Wei Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| |
Collapse
|
250
|
Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021; 29:1076-1092. [PMID: 34237248 PMCID: PMC8139264 DOI: 10.1016/j.chom.2021.05.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Over the past year, numerous studies in the peer reviewed and preprint literature have reported on the virological, epidemiological and clinical characteristics of the coronavirus, SARS-CoV-2. To date, 25 studies have investigated and identified SARS-CoV-2-derived T cell epitopes in humans. Here, we review these recent studies, how they were performed, and their findings. We review how epitopes identified throughout the SARS-CoV2 proteome reveal significant correlation between number of epitopes defined and size of the antigen provenance. We also report additional analysis of SARS-CoV-2 human CD4 and CD8 T cell epitope data compiled from these studies, identifying 1,400 different reported SARS-CoV-2 epitopes and revealing discrete immunodominant regions of the virus and epitopes that are more prevalently recognized. This remarkable breadth of epitope repertoire has implications for vaccine design, cross-reactivity, and immune escape by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|